1
|
Koçak MN, Arslan R, Albayrak A, Tekin E, Bayraktar M, Çelik M, Kaya Z, Bekmez H, Tavaci T. An antihypertensive agent benidipine is an effective neuroprotective and antiepileptic agent: an experimental rat study. Neurol Res 2021; 43:1069-1080. [PMID: 34225559 DOI: 10.1080/01616412.2021.1949685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Benidipine is an L, N and T type calcium channel blocker drug that is widely used as an antihypertensive drug. OBJECTIVE For the first time in the literature, it was aimed to investigate the effectiveness of benidipine in controlling epileptic seizure and preventing the development of neurodegeneration in epilepsy. METHODS An experimentally epilepsy model was produced with pentylenetetrazole, and rats were divided into seven groups, in different benidipine treatment doses or with valproic acid combinations. The epileptic activities of all rats were recorded according to the Fisher&Kittner classification. Biochemical parameters, histopathological Caspase-3 activity, Wyler hippocampal sclerosis, gliosis and neuronal degenerations were investigated. RESULTS It was found that in the post-hoc analysis of epileptic activities, there was a similar antiepileptic scores among the treatment groups. IL-1 level was found to be significantly lower in the benidipine 4 mg/kg group, and TNF-alpha was lower in the group given valproic acid+benidipine 2 mg/kg (p<0.05). The other biochemical parameters were not found to be significant. Neural degeneration levels in the brain tissues were statistically significant (p<0.001). Compared with the healthy group, the most neural degeneration was in the control group, the least neural degeneration was in the valproic acid+benidipine 4 mg/kg group. CONCLUSIONS For the first time in the literature, benidipine, alone or combined with valproic acid, were found to have a statistically significant antiepileptic efficacy, and provided neuroprotection when combined with valproic acid. Benidipine will be a promising agent in the treatment of epilepsy with its antiepileptic and neuroprotective effects.
Collapse
Affiliation(s)
- Mehmet Nuri Koçak
- Department of Neurology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Remzi Arslan
- Department of Pathology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Abdulmecit Albayrak
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey.,Department of Emergency Medicine, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Erdal Tekin
- Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Mustafa Bayraktar
- Department of Family Medicine, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Muhammet Çelik
- Department of Medical Biochemistry, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Zülküf Kaya
- Department of Ear, Nose and Throat, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Hüseyin Bekmez
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Taha Tavaci
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| |
Collapse
|
2
|
Adenosine A1 Receptor Agonist (R-PIA) before Pilocarpine Modulates Pro- and Anti-Apoptotic Factors in an Animal Model of Epilepsy. Pharmaceuticals (Basel) 2021; 14:ph14040376. [PMID: 33919533 PMCID: PMC8074097 DOI: 10.3390/ph14040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022] Open
Abstract
We aimed to characterize the mechanisms involved in neuroprotection by R-PIA administered before pilocarpine-induced seizures. Caspase-1 and caspase-3 activities were assayed using fluorimetry, and cathepsin D, HSP-70, and AKT expression levels were assayed using Western Blot of hippocampal samples. R-PIA was injected before pilocarpine (PILO), and four groups were studied at 1 h 30 min and 7 days following initiation of status epilepticus (SE): PILO, R-PIA+PILO, SALINE, and R-PIA+SALINE. At 1 h 30 min, significantly higher activities of caspase-1 and -3 were observed in the PILO group than in the SALINE group. Caspase-1 and -3 activities were higher in the R-PIA+PILO group than in the PILO group. At 7 days following SE, caspase-1 and -3 activities were higher than in the initial post-seizure phase compared to the SALINE group. The pretreatment of rats receiving PILO significantly reduced caspase activities compared to the PILO group. Expression of HSP-70, AKT, and cathepsin D was significantly higher in the PILO group than in the SALINE. In the R-PIA+PILO group, the expression of AKT and HSP-70 was greater than in rats receiving only PILO, while cathepsin D presented decreased expression. Pretreatment with R-PIA in PILO-injected rats strongly inhibited caspase-1 and caspase-3 activities and cathepsin D expression. It also increased expression levels of the neuroprotective proteins HSP-70 and AKT, suggesting an important role in modulating the cellular survival cascade.
Collapse
|
3
|
The effects of sub-anesthetic ketamine plus ethanol on behaviors and apoptosis in the prefrontal cortex and hippocampus of adolescent rats. Pharmacol Biochem Behav 2019; 184:172742. [PMID: 31348944 DOI: 10.1016/j.pbb.2019.172742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Ketamine has become increasingly popular in adolescent drug abusers worldwide. Meanwhile, alcohol is usually used by ketamine users. However, little work has been conducted to examine the chronic combined effects of ketamine and ethanol on adolescent brain. Here we probed into the effects of chronic administration of ketamine at recreational doses alone or combined with ethanol on behaviors and neuron damage in an adolescent rat model. 28-day old rats were treated with either 20 or 30 mg/kg ketamine plus or not plus 10% ethanol daily for 21 days. Depressive like behaviors, anxiety like behavior and memory impairment were tested using open field test, forced swimming test, elevated plus maze and Morris water maze. Apoptosis in prefrontal cortex (PFC) and hippocampus (HIP) were determined by the TdT-mediated dUTP Nick-End Labeling (TUNEL) and protein and mRNA levels of caspase-3, Bax and Bcl-2. Results show that co-application of ketamine and ethanol significantly increased immobility time in the forced swimming test, up-regulated TUNEL positive cells and both protein and mRNA expressions of caspase-3 and Bax, compared with the control group and ketamine and ethanol use alone groups in the PFC, but not in the HIP. Our study suggests that chronic co-administration of ketamine and ethanol results in depressive-like behavior and the caspase-dependent apoptosis in the PFC of adolescent rats' brains.
Collapse
|
4
|
Pan YL, Xin R, Wang SY, Wang Y, Zhang L, Yu CP, Wu YH. Nickel-smelting fumes induce mitochondrial damage and apoptosis, accompanied by decreases in viability, in NIH/3T3 cells. Arch Biochem Biophys 2018; 660:20-28. [PMID: 30321500 DOI: 10.1016/j.abb.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/06/2018] [Accepted: 10/11/2018] [Indexed: 12/29/2022]
Abstract
Nickel (Ni) is widely present in the occupational environment and causes various adverse effects on the human body. Apoptosis induced by Ni2+ may be a key mechanism underlying its toxic effect. In the present study, we investigated the effect of Ni-smelting fumes on cell viability, mitochondrial damage, and apoptosis-related proteins in NIH/3T3 cells. The effects of Ni-smelting fumes at concentrations of 0, 25, 50, and 100 μg/mL were tested. Treatment with Ni-smelting fumes for 24 h and 48 h significantly decreased cell viability and lactate dehydrogenase activity in a dose- and time-dependent manner compared with the blank control group. Exposure to Ni-smelting fumes increased mitochondrial permeability transition pore opening in a dose-dependent manner and decreased mitochondrial membrane potential and the activity of the mitochondrial respiratory chain complexes I, II, and IV. The fumes significantly downregulated Bcl-2, procaspase-9, and procaspase-3 and upregulated Bax, caspase-9, and caspase-3 (P < 0.05). Ni-smelting fumes caused significant cytotoxicity, oxidative stress, mitochondrial damage, and apoptosis through the intrinsic pathway in mammalian cells. The present paper provides hypotheses and experimental support for these hypotheses that Ni-smelting fumes cause cytotoxicity through the mechanism of inducing mitochondrial damage and apoptosis in NIH/3T3 cells.
Collapse
Affiliation(s)
- Yu-Lin Pan
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, PR China
| | - Rui Xin
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, PR China
| | - Sheng-Yuan Wang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, PR China
| | - Yue Wang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, PR China
| | - Lin Zhang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, PR China
| | - Cui-Ping Yu
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, PR China
| | - Yong-Hui Wu
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, PR China.
| |
Collapse
|
5
|
Ingles J, Simpson A, Kyathanahalli C, Anamthathmakula P, Hassan S, Jeyasuria P, Condon JC. Preconditioning the uterine unfolded protein response maintains non-apoptotic Caspase 3-dependent quiescence during pregnancy. Cell Death Dis 2018; 9:933. [PMID: 30224704 PMCID: PMC6141493 DOI: 10.1038/s41419-018-1000-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
The prevention of apoptotic caspase 3 activation through biological preconditioning, mediated through the modulation of the unfolded protein response has been demonstrated to ameliorate multiple pathophysiologies. The maintenance of non-apoptotic caspase 3 activity by the unfolded protein response within the pregnant uterus has previously been proven to be critical in inhibiting uterine myocyte contractility during pregnancy. Here we report that the pregnant uterus utilizes an unfolded protein response-preconditioning paradigm to conserve myometrial caspase 3 in a non-apoptotic state in order to effectively inhibit uterine contractility thereby preventing the onset of preterm labor. In the absence of appropriate endogenous preconditioning during pregnancy, uterine caspase 3 is transformed from a non-apoptotic to an apoptotic phenotype. Apoptotic caspase 3 activation results in the precocious triggering of local uterine inflammatory signaling and prostaglandin production, consequently resulting in an increased incidence of preterm birth. These findings represent a paradigm shift in our understanding of how preconditioning promotes the maintenance of uterine non-apoptotic caspase 3 action during pregnancy preventing the onset of premature uterine contraction and therefore defining the timing of the onset of labor.
Collapse
Affiliation(s)
- Judith Ingles
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Arren Simpson
- Department of Biology, University of Detroit Mercy, Detroit, MI, USA
| | | | | | - Sonia Hassan
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.,Perinatal Research Initiative in support of the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda and Detroit, MD and MI, USA
| | - Pancharatnam Jeyasuria
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.,Perinatal Research Initiative in support of the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda and Detroit, MD and MI, USA
| | - Jennifer C Condon
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA. .,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA. .,Perinatal Research Initiative in support of the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda and Detroit, MD and MI, USA.
| |
Collapse
|
6
|
Bono S, Lulli M, D'Agostino VG, Di Gesualdo F, Loffredo R, Cipolleschi MG, Provenzani A, Rovida E, Dello Sbarba P. Different BCR/Abl protein suppression patterns as a converging trait of chronic myeloid leukemia cell adaptation to energy restriction. Oncotarget 2018; 7:84810-84825. [PMID: 27852045 PMCID: PMC5356700 DOI: 10.18632/oncotarget.13319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
BCR/Abl protein drives the onset and progression of Chronic Myeloid Leukemia (CML). We previously showed that BCR/Abl protein is suppressed in low oxygen, where viable cells retain stem cell potential. This study addressed the regulation of BCR/Abl protein expression under oxygen or glucose shortage, characteristic of the in vivo environment where cells resistant to tyrosine kinase inhibitors (TKi) persist. We investigated, at transcriptional, translational and post-translational level, the mechanisms involved in BCR/Abl suppression in K562 and KCL22 CML cells. BCR/abl mRNA steady-state analysis and ChIP-qPCR on BCR promoter revealed that BCR/abl transcriptional activity is reduced in K562 cells under oxygen shortage. The SUnSET assay showed an overall reduction of protein synthesis under oxygen/glucose shortage in both cell lines. However, only low oxygen decreased polysome-associated BCR/abl mRNA significantly in KCL22 cells, suggesting a decreased BCR/Abl translation. The proteasome inhibitor MG132 or the pan-caspase inhibitor z-VAD-fmk extended BCR/Abl expression under oxygen/glucose shortage in K562 cells. Glucose shortage induced autophagy-dependent BCR/Abl protein degradation in KCL22 cells. Overall, our results showed that energy restriction induces different cell-specific BCR/Abl protein suppression patterns, which represent a converging route to TKi-resistance of CML cells. Thus, the interference with BCR/Abl expression in environment-adapted CML cells may become a useful implement to current therapy.
Collapse
Affiliation(s)
- Silvia Bono
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | | | - Federico Di Gesualdo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Rosa Loffredo
- Centre For Integrative Biology (CIBIO), Università degli Studi di Trento, Trento, Italy
| | - Maria Grazia Cipolleschi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Alessandro Provenzani
- Centre For Integrative Biology (CIBIO), Università degli Studi di Trento, Trento, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
7
|
Martínez-Torres AC, Reyes-Ruiz A, Benítez-Londoño M, Franco-Molina MA, Rodríguez-Padilla C. IMMUNEPOTENT CRP induces cell cycle arrest and caspase-independent regulated cell death in HeLa cells through reactive oxygen species production. BMC Cancer 2018; 18:13. [PMID: 29298674 PMCID: PMC5753472 DOI: 10.1186/s12885-017-3954-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Regulated cell death (RCD) is a mechanism by which the cell activates its own machinery to self-destruct. RCD is important for the maintenance of tissue homeostasis and its deregulation is involved in diseases such as cervical cancer. IMMUNEPOTENT CRP (I-CRP) is a dialyzable bovine leukocyte extract that contains transfer factors and acts as an immunomodulator, and can be cytotoxic to cancer cell lines and reduce tumor burden in vivo. Although I-CRP has shown to improve or modulate immune response in inflammation, infectious diseases and cancer, its widespread use has been limited by the absence of conclusive data on the molecular mechanism of its action. METHODS In this study we analyzed the mechanism by which I-CRP induces cytotoxicity in HeLa cells. We assessed cell viability, cell death, cell cycle, nuclear morphology and DNA integrity, caspase dependence and activity, mitochondrial membrane potential, and reactive oxygen species production. RESULTS I-CRP diminishes cell viability in HeLa cells through a RCD pathway and induces cell cycle arrest in the G2/M phase. We show that the I-CRP induces caspase activation but cell death induction is independent of caspases, as observed by the use of a pan-caspase inhibitor, which blocked caspase activity but not cell death. Moreover, we show that I-CRP induces DNA alterations, loss of mitochondrial membrane potential, and production of reactive-oxygen species. Finally, pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, prevented both ROS generation and cell death induced by I-CRP. CONCLUSIONS Our data indicate that I-CRP treatment induced cell cycle arrest in G2/M phase, mitochondrial damage, and ROS-mediated caspase-independent cell death in HeLa cells. This work opens the way to the elucidation of a more detailed cell death pathway that could potentially work in conjunction with caspase-dependent cell death induced by classical chemotherapies.
Collapse
Affiliation(s)
- Ana Carolina Martínez-Torres
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Alejandra Reyes-Ruiz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Milena Benítez-Londoño
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Moises Armides Franco-Molina
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Cristina Rodríguez-Padilla
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| |
Collapse
|
8
|
Abstract
The MST1 and MST2 protein kinases comprise the GCK-II subfamily of protein kinases. In addition to their amino-terminal kinase catalytic domain, related to that of the Saccharomyces cerevisiae protein kinase Ste20, their most characteristic feature is the presence near the carboxy terminus of a unique helical structure called a SARAH domain; this segment allows MST1/MST2 to homodimerize and to heterodimerize with the other polypeptides that contain SARAH domains, the noncatalytic polypeptides RASSF1-6 and Sav1/WW45. Early studies emphasized the potent ability of MST1/MST2 to induce apoptosis upon being overexpressed, as well as the conversion of the endogenous MST1/MST2 polypeptides to constitutively active, caspase-cleaved catalytic fragments during apoptosis initiated by any stimulus. Later, the cleaved, constitutively active form of MST1 was identified in nonapoptotic, quiescent adult hepatocytes as well as in cells undergoing terminal differentiation, where its presence is necessary to maintain those cellular states. The physiologic regulation of full length MST1/MST2 is controlled by the availability of its noncatalytic SARAH domain partners. Interaction with Sav1/WW45 recruits MST1/MST2 into a tumor suppressor pathway, wherein it phosphorylates and activates the Sav1-bound protein kinases Lats1/Lats2, potent inhibitors of the Yap1 and TAZ oncogenic transcriptional regulators. A constitutive interaction with the Rap1-GTP binding protein RASSF5B (Nore1B/RAPL) in T cells recruits MST1 (especially) and MST2 as an effector of Rap1's control of T cell adhesion and migration, a program crucial to immune surveillance and response; loss of function mutation in human MST1 results in profound immunodeficiency. MST1 and MST2 are also regulated by other protein kinases, positively by TAO1 and negatively by Par1, SIK2/3, Akt, and cRaf1. The growing list of candidate MST1/MST2 substrates suggests that the full range of MST1/MST2's physiologic programs and contributions to pathophysiology remains to be elucidated.
Collapse
Affiliation(s)
- Jacob A. Galan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Stanojlović M, Guševac I, Grković I, Mitrović N, Zlatković J, Horvat A, Drakulić D. Repeated Estradiol Treatment Attenuates Chronic Cerebral Hypoperfusion-Induced Neurodegeneration in Rat Hippocampus. Cell Mol Neurobiol 2016; 36:989-999. [PMID: 26689702 PMCID: PMC11482356 DOI: 10.1007/s10571-015-0289-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
Although a substantial number of pre-clinical and experimental studies have investigated effects of 17β-estradiol, its precise molecular mechanism of action in the early state of chronic cerebral hypoperfusion remains controversial. The present study attempted to verify whether post-ischemic estradiol treatment (33.3 μg/kg for seven consecutive days) affects previously reported number of hippocampal apoptotic cells and amount of DNA fragmentation characteristic for apoptosis as well as the expression of key elements within synaptosomal Akt and Erk signal transduction pathways (NF-κB, Bax, Bcl-2, cytochrome C, caspase 3, and PARP). Additionally, alterations of aforementioned molecules linked to protection in various neurodegenerative disorders were monitored in the cytosolic, mitochondrial, and nuclear fractions associating investigated kinases and NF-κB with gene expression of their downstream effectors-Bcl-2, Bax, and caspase 3. The results revealed that an initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by chronic cerebral hypoperfusion was significantly reduced by 17β-estradiol. In synaptic regions, an altered profile with respect to the protein expression of Bcl-2 and phosphorylated Akt was detected, although the level of other examined proteins was not modified. In other investigated sub-cellular fractions, 17β-estradiol elicited phosphorylation and translocation of Akt and Erk along with modulation of the expression of their subsequent effectors. Our findings support the concept that repeated post-ischemic 17β-estradiol treatment attenuates neurodegeneration induced by chronic cerebral hypoperfusion in hippocampus through the activation of investigated kinases and regulation of their downstream molecules in sub-cellular manner indicating a time window and regime of its administration as a valid therapeutic intervention.
Collapse
Affiliation(s)
- Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Guševac
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Jelena Zlatković
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Anica Horvat
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia.
| |
Collapse
|
10
|
Fan W, Dai Y, Xu H, Zhu X, Cai P, Wang L, Sun C, Hu C, Zheng P, Zhao BQ. Caspase-3 modulates regenerative response after stroke. Stem Cells 2014; 32:473-86. [PMID: 23939807 DOI: 10.1002/stem.1503] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of long-lasting disability in humans. However, currently there are still no effective therapies available for promoting stroke recovery. Recent studies have shown that the adult brain has the capacity to regenerate neurons after stroke. Although this neurogenic response may be functionally important for brain repair after injury, the mechanisms underlying stroke-induced neurogenesis are not known. Caspase-3 is a major executioner and has been identified as a key mediator of neuronal death in the acute stage of stroke. Recently, however, accumulating data indicate that caspase-3 also participates in various biological processes that do not cause cell death. Here, we show that cleaved caspase-3 was increased in newborn neuronal precursor cells (NPCs) in the subventricular zone (SVZ) and the dentate gyrus during the period of stroke recovery, with no evidence of apoptosis. We observed that cleaved caspase-3 was expressed by NPCs and limited its self-renewal without triggering apoptosis in cultured NPCs from the SVZ of ischemic mice. Moreover, we revealed that caspase-3 negatively regulated the proliferation of NPCs through reducing the phosphorylation of Akt. Importantly, we demonstrated that peptide inhibition of caspase-3 activity significantly promoted the proliferation and migration of SVZ NPCs and resulted in a significant increase in subsequent neuronal regeneration and functional recovery after stroke. Together, our data identify a previously unknown caspase-3-dependent mechanism that constrains stroke-induced endogenous neurogenesis and should revitalize interest in targeting caspase-3 for treatment of stroke.
Collapse
Affiliation(s)
- Wenying Fan
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang JY, Chen F, Fu XQ, Ding CS, Zhou L, Zhang XH, Luo ZG. Caspase-3 cleavage of dishevelled induces elimination of postsynaptic structures. Dev Cell 2014; 28:670-84. [PMID: 24631402 DOI: 10.1016/j.devcel.2014.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 12/17/2013] [Accepted: 02/13/2014] [Indexed: 11/19/2022]
Abstract
During the development of vertebrate neuromuscular junction (NMJ), agrin stabilizes, whereas acetylcholine (ACh) destabilizes AChR clusters, leading to the refinement of synaptic connections. The intracellular mechanism underlying this counteractive interaction remains elusive. Here, we show that caspase-3, the effector protease involved in apoptosis, mediates elimination of AChR clusters. We found that caspase-3 was activated by cholinergic stimulation of cultured muscle cells without inducing cell apoptosis and that this activation was prevented by agrin. Interestingly, inhibition of caspase-3 attenuated ACh agonist-induced dispersion of AChR clusters. Furthermore, we identified Dishevelled1 (Dvl1), a Wnt signaling protein involved in AChR clustering, as the substrate of caspase-3. Blocking Dvl1 cleavage prevented induced dispersion of AChR clusters. Finally, inhibition or genetic ablation of caspase-3 or expression of a caspase-3-resistant form of Dvl1 caused stabilization of aneural AChR clusters. Thus, caspase-3 plays an important role in the elimination of postsynaptic structures during the development of NMJs.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Agrin/physiology
- Animals
- Caspase 3/metabolism
- Cells, Cultured
- Dishevelled Proteins
- Electrophysiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Image Processing, Computer-Assisted
- Immunoenzyme Techniques
- Mice
- Mice, Knockout
- Motor Neurons/cytology
- Motor Neurons/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Neuromuscular Junction/physiology
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Small Interfering/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Cholinergic/metabolism
- Signal Transduction
- Synaptic Potentials/physiology
- Synaptic Transmission
Collapse
Affiliation(s)
- Jin-Yuan Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Fei Chen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiu-Qing Fu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Chuang-Shi Ding
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 319 Yueyang Road, Shanghai 200031, China
| | - Li Zhou
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiao-Hui Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhen-Ge Luo
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 319 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
12
|
Kudryashova IV. Molecular mechanisms of short-term plasticity as a basis of frequency coding: The role of proteolytic systems. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Brief maternal separation affects brain α1-adrenoceptors and apoptotic signaling in adult mice. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:161-9. [PMID: 24128685 DOI: 10.1016/j.pnpbp.2013.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/21/2013] [Accepted: 10/03/2013] [Indexed: 01/24/2023]
Abstract
Exposure to adversity during early life is a risk factor for the development of different mood and psychiatric disorders, including depressive-like behaviors. Here, neonatal mice were temporarily but repeatedly (day 1 to day 13) separated from mothers and placed in a testing environment containing a layer of odorless clean bedding (CB). We assessed in adult animals the impact of this early experience on binding sites and mRNA expression of α1-adrenergic receptor subtypes, heat shock proteins (HSPs) and proapoptotic and antiapoptotic members of the Bcl-2 family proteins in different brain regions involved in processing of olfactory information and rewarding stimuli. We found that repeated exposure to CB experience produced anhedonic-like behavior in terms of reduced saccharin intake and α1-adrenoceptor downregulation in piriform and somatosensory cortices, hippocampus, amygdala and discrete thalamic nuclei. We also found a selective decrease of α1B-adrenoceptor binding sites in the cingulate cortex and hippocampus and an increase of hippocampal α1A and α1B receptor, but not of α1D-adrenoceptor, mRNA levels. Moreover, while a significant decrease of antiapoptotic heat shock proteins Hsp72 and Hsp90 was identified in the prefrontal cortex, a parallel increase of antiapoptotic members of Bcl-2 family proteins was found at the hippocampal level. Together, these data provide evidence that the early exposure to CB experience produced enduring downregulation of α1-adrenoceptors in the prefrontal-limbic forebrain/limbic midbrain network, which plays a key role in the processing of olfactory information and reaction to rewarding stimuli. Finally, these data show that CB experience can "prime" the hippocampal circuitry and promote the expression of antiapoptotic factors that can confer potential neuroprotection to subsequent adversity.
Collapse
|
14
|
Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid. J Biomed Sci 2013; 20:90. [PMID: 24313976 PMCID: PMC4028745 DOI: 10.1186/1423-0127-20-90] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The roles of caspase 3 on the kainic acid-mediated neurodegeneration, dendritic plasticity alteration, neurogenesis, microglial activation and gliosis are not fully understood. Here, we investigate hippocampal changes using a mouse model that receive a single kainic acid-intracerebral ventricle injection. The effects of caspase 3 inhibition on these changes were detected during a period of 1 to 7 days post kainic acid injection. RESULT Neurodegeneration was assessed by Fluoro-Jade B staining and neuronal nuclei protein (NeuN) immunostaining. Neurogenesis, gliosis, neuritic plasticity alteration and caspase 3 activation were examined using immunohistochemistry. Dendritic plasticity, cleavvage-dependent activation of calcineurin A and glial fibrillary acidic protein cleavage were analyzed by immunoblotting. We found that kainic acid not only induced neurodegeneration but also arouse several caspase 3-mediated molecular and cellular changes including dendritic plasticity, neurogenesis, and gliosis. The acute caspase 3 activation occurred in pyramidal neurons as well as in hilar interneurons. The delayed caspase 3 activation occurred in astrocytes. The co-injection of caspase 3 inhibitor did not rescue kainic acid-mediated neurodegeneration but seriously and reversibly disturb the structural integrity of axon and dendrite. The kainic acid-induced events include microglia activation, the proliferation of radial glial cells, neurogenesis, and calcineurin A cleavage were significantly inhibited by the co-injection of caspase 3 inhibitor, suggesting the direct involvement of caspase 3 in these events. Alternatively, the kainic acid-mediated astrogliosis is not caspase 3-dependent, although caspase 3 cleavage of glial fibrillary acidic protein occurred. CONCLUSIONS Our results provide the first direct evidence of a causal role of caspase 3 activation in the cellular changes during kainic acid-mediated excitotoxicity. These findings may highlight novel pharmacological strategies to arrest disease progression and control seizures that are refractory to classical anticonvulsant treatment.
Collapse
|
15
|
Zhu H, Pytel P, Gomez CM. Selective inhibition of caspases in skeletal muscle reverses the apoptotic synaptic degeneration in slow-channel myasthenic syndrome. Hum Mol Genet 2013; 23:69-77. [PMID: 23943790 DOI: 10.1093/hmg/ddt397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Slow-channel syndrome (SCS) is a congenital myasthenic disorder caused by point mutations in subunits of skeletal muscle acetylcholine receptor leading to Ca(2+) overload and degeneration of the postsynaptic membrane, nuclei and mitochondria of the neuromuscular junction (NMJ). In both SCS muscle biopsies and transgenic mouse models for SCS (mSCS), the endplate regions are shrunken, and there is evidence of DNA damage in the subsynaptic region. Activated caspase-9, -3 and -7 are intensely co-localized at the NMJ, and the Ca(2+)-activated protease, calpain, and the atypical cyclin-dependent kinase (Cdk5) are overactivated in mSCS. Thus, the true mediator(s) of the disease process is not clear. Here, we demonstrate that selective inhibition of effector caspases, caspase-3 and -7, or initiator caspase, caspase-9, in limb muscle in vivo by localized expression of recombinant inhibitor proteins dramatically decreases subsynaptic DNA damage, increases endplate area and improves ultrastructural abnormalities in SCS transgenic mice. Calpain and Cdk5 are not affected by this treatment. On the other hand, inhibition of Cdk5 by expression of a dominant-negative form of Cdk5 has no effect on the degeneration. Together with previous studies, these results indicate that focal activation of caspase activity at the NMJ is the principal pathological process responsible for the synaptic apoptosis in SCS. Thus, treatments that reduce muscle caspase activity are likely to be of benefit for SCS patients.
Collapse
|
16
|
Kudryashova IV, Onufriev MV. The synchronous and reciprocal regulation of the activities of cysteine proteases associated with long-term plasticity. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Palubinsky AM, Martin JA, McLaughlin B. The role of central nervous system development in late-onset neurodegenerative disorders. Dev Neurosci 2012; 34:129-39. [PMID: 22572535 PMCID: PMC6065248 DOI: 10.1159/000336828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 12/14/2022] Open
Abstract
The human brain is dependent upon successfully maintaining ionic, energetic and redox homeostasis within exceptionally narrow margins for proper function. The ability of neurons to adapt to genetic and environmental perturbations and evoke a 'new normal' can be most fully appreciated in the context of neurological disorders in which clinical impairments do not manifest until late in life, although dysfunctional proteins are expressed early in development. We now know that proteins controlling ATP generation, mitochondrial stability, and the redox environment are associated with neurological disorders such as Parkinson's disease and amyotrophic lateral sclerosis. Generally, focus is placed on the role that early or long-term environmental stress has in altering the survival of cells targeted by genetic dysfunctions; however, the central nervous system undergoes several periods of intense stress during normal maturation. One of the most profound periods of stress occurs when 50% of neurons are removed via programmed cell death. Unfortunately, we have virtually no understanding of how these events proceed in individuals who harbor mutations that are lethal later in life. Moreover, there is a profound lack of information on circuit formation, cell fate during development and neurochemical compensation in either humans or the animals used to model neurodegenerative diseases. In this review, we consider the current knowledge of how energetic and oxidative stress signaling differs between neurons in early versus late stages of life, the influence of a new group of proteins that can integrate cell stress signals at the mitochondrial level, and the growing body of evidence that suggests early development should be considered a critical period for the genesis of chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Amy M. Palubinsky
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacob A. Martin
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN 37232, USA
| | - BethAnn McLaughlin
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
18
|
Aras R, Barron AM, Pike CJ. Caspase activation contributes to astrogliosis. Brain Res 2012; 1450:102-15. [PMID: 22436850 PMCID: PMC3319728 DOI: 10.1016/j.brainres.2012.02.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/30/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
Abstract
Caspases, a family of cysteine proteases, are widely activated in neurons and glia in the injured brain, a response thought to induce apoptosis. However, caspase activation in astrocytes following injury is not strongly associated with apoptosis. The present study investigates the potential role of caspase activation in astrocytes with another characteristic response to neural injury, astrogliosis. Caspase activity and morphological and biochemical indices of astrogliosis and apoptosis were assessed in (i) cultured neonatal rat astrocytes treated with astrogliosis-inducing stimuli (dibutryl cAMP, β-amyloid peptide), and (ii) cultures of adult rat hippocampal astrocytes generated from control and kainate-lesioned rats. The effects of broad spectrum and specific pharmacological caspase inhibitors were assessed on indicators of astrogliosis, including stellate morphology and expression of glutamine synthetase and fibroblast growth factor-2. Reactive neonatal and adult astrocytes demonstrated an increase in total caspase activity with a corresponding increase in the expression of active caspase-3 in the absence of cell death. Broad spectrum caspase inhibition with zVAD significantly attenuated increases in glutamine synthetase and fibroblast growth factor-2 in the reactive astrocytes. In the reactive neonatal astrocyte cultures, specific inhibition of caspases-3 and -11 also attenuated glutamine synthetase and fibroblast growth factor-2 expression, but did not reverse the morphological reactive phenotype. Astrogliosis is observed in all forms of brain injury and despite extensive study, its molecular triggers remain largely unknown. While previous studies have demonstrated active caspases in astrocytes following acute brain injury, here we present evidence functionally implicating the caspases in astrogliosis.
Collapse
Affiliation(s)
- Radha Aras
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Anna M. Barron
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Christian J. Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
19
|
Abstract
Axon guidance is a crucial part of neural circuit formation. While precise axonal targeting forms the basis of accurate information delivery, the mechanisms that regulate this process are still unclear. Apoptotic signaling molecules have been identified in the axon terminal, but their specific role in axon guidance is not well understood. Here we use the mouse olfactory system as an in vivo model to demonstrate that by modulating Fas-associated factor 1 (FAF1), an apoptosis regulatory molecule, we can rewire axonal projections. Interestingly, FAF1 is highly expressed in the developing mouse olfactory system, but its expression is downregulated postnatally. Using a tetracycline-inducible promoter Tet-Off system, we generated transgenic mice in which FAF1 is specifically expressed in immature olfactory sensory neurons (OSNs) and show that overexpression of FAF1 not only misroutes OSN axons to deep layers of the olfactory bulb but also leads to widespread disruption of the glomerular layer. In addition, we also demonstrate that the specific convergence of P2 receptor OSN axons is completely distorted in the FAF1 mice. Strikingly, all of the mutant phenotypes can be recovered by shutting down FAF1 expression through the administration of doxycycline. Together, our study provides clear in vivo evidence that an apoptotic molecule can indeed regulate axon targeting and that OSNs can restore their organization even after broad disruption.
Collapse
|
20
|
Mendzheritskii AM, Karantysh GV, Ivonina KO. The effects of administering short peptides before occlusion of the carotid arteries on the behavior and caspase-3 activity in the brain of old rats. ADVANCES IN GERONTOLOGY 2011. [DOI: 10.1134/s2079057011040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Foran E, Bogush A, Goffredo M, Roncaglia P, Gustincich S, Pasinelli P, Trotti D. Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia 2011; 59:1719-31. [PMID: 21769946 DOI: 10.1002/glia.21218] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/16/2011] [Indexed: 12/12/2022]
Abstract
Dysregulation of glutamate handling ensuing downregulation of expression and activity levels of the astroglial glutamate transporter EAAT2 is implicated in excitotoxic degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). We previously reported that EAAT2 (a.k.a. GLT-1) is cleaved by caspase-3 at its cytosolic carboxy-terminus domain. This cleavage results in impaired glutamate transport activity and generates a proteolytic fragment (CTE) that we found to be post-translationally conjugated by SUMO1. We show here that this sumoylated CTE fragment accumulates in the nucleus of spinal cord astrocytes of the SOD1-G93A mouse model of ALS at symptomatic stages of disease. Astrocytic expression of CTE, artificially tagged with SUMO1 (CTE-SUMO1) to mimic the native sumoylated fragment, recapitulates the nuclear accumulation pattern of the endogenous EAAT2-derived proteolytic fragment. Moreover, in a co-culture binary system, expression of CTE-SUMO1 in spinal cord astrocytes initiates extrinsic toxicity by inducing caspase-3 activation in motor neuron-derived NSC-34 cells or axonal growth impairment in primary motor neurons. Interestingly, prolonged nuclear accumulation of CTE-SUMO1 is intrinsically toxic to spinal cord astrocytes, although this gliotoxic effect of CTE-SUMO1 occurs later than the indirect, noncell autonomous toxic effect on motor neurons. As more evidence on the implication of SUMO substrates in neurodegenerative diseases emerges, our observations strongly suggest that the nuclear accumulation in spinal cord astrocytes of a sumoylated proteolytic fragment of the astroglial glutamate transporter EAAT2 could participate to the pathogenesis of ALS and suggest a novel, unconventional role for EAAT2 in motor neuron degeneration.
Collapse
Affiliation(s)
- Emily Foran
- Weinberg Unit for ALS Research, Department of Neuroscience, Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Suzuki Y, Yazawa I. Pathological accumulation of atrophin-1 in dentatorubralpallidoluysian atrophy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2011; 4:378-384. [PMID: 21577324 PMCID: PMC3093063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 04/21/2011] [Indexed: 05/30/2023]
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is caused by the expansion of polyglutamine (polyQ) in atrophin-1 (ATN1), also known as DRPLA protein. ATN1 is ubiquitously expressed in the central nervous system (CNS), although selective regions of CNS are degenerated in DRPLA, and this selective neuronal damage gives rise to the specific clinical features of DRPLA. Accumulation of mutant ATN1 that carries an expanded polyQ tract seems to be the primary cause of DRPLA neurodegeneration, but it is still unclear how the accumulation of ATN1 leads to neu-rodegeneration. Recently, cleaved fragments of ATN1 were shown to accumulate in the disease models and the brain tissues of patients with DRPLA. Furthermore, proteolytic processing of ATN1 may regulate the intracellular localization of ATN1 and its fragments. Therefore, proteolytic processing of ATN1 may provide clues to disease pathogenesis and hopefully aid in the determination of molecular targets for effective therapeutic approaches for DRPLA.
Collapse
Affiliation(s)
- Yasuyo Suzuki
- Laboratory of Research Resources, Research Institute for Longevity Sciences, National Center for Geriatrics and Gerontology Aichi, Japan
| | | |
Collapse
|
23
|
Costain WJ, Haqqani AS, Rasquinha I, Giguere MS, Slinn J, Zurakowski B, Stanimirovic DB. Proteomic analysis of synaptosomal protein expression reveals that cerebral ischemia alters lysosomal Psap processing. Proteomics 2011; 10:3272-91. [PMID: 20718007 DOI: 10.1002/pmic.200900447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral ischemia (CI) induces dramatic changes in synaptic structure and function that precedes delayed post-ischemic neuronal death. Here, a proteomic analysis was used to identify the effects of focal CI on synaptosomal protein levels. Contralateral and ipsilateral synaptosomes, prepared from adult mice subjected to 60 min middle cerebral artery occlusion, were isolated following 3, 6 and 20 h of reperfusion. Synaptosomal protein samples (n=3) were labeled using the cleavable ICAT system prior to analysis with nanoLC-MS/MS. Each sample was analyzed by LC-MS to identify differential expressions using InDEPT software and differentially expressed peptides were identified by targeted LC-MS/MS. A total of 62 differentially expressed proteins were identified and Gene Ontology classification (cellular component) indicated that the majority of the proteins were located in the mitochondria and other components consistent with synaptic localization. The observed alterations in synaptic protein levels poorly correlated with gene expression, indicating the involvement of post-transcriptional regulatory mechanisms in determining post-ischemic synaptic protein content. Additionally, immunohistochemistry analysis of prosaposin (Psap) and saposin C (SapC) indicates that CI disrupts Psap processing and glycosphingolipid metabolism. These results demonstrate that the synapse is adversely affected by CI and may play a role in mediating post-ischemic neuronal viability.
Collapse
Affiliation(s)
- Willard J Costain
- Glycosyltransferases and Neuroglycomics, Institute for Biological Sciences, National Research Council, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wagner DC, Riegelsberger UM, Michalk S, Härtig W, Kranz A, Boltze J. Cleaved caspase-3 expression after experimental stroke exhibits different phenotypes and is predominantly non-apoptotic. Brain Res 2011; 1381:237-42. [PMID: 21256117 DOI: 10.1016/j.brainres.2011.01.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 11/18/2022]
Abstract
Cleaved caspase-3 (CC3) is well known as an executioner protease of apoptosis following brain ischemia. However, an increasing body of evidence suggests several non-apoptotic functions of CC3. To improve our understanding of the relation between cell death-related and non-adverse effects of postischemic caspase-3 activation, we examined the spatiotemporal distribution and identity of CC3-positive cells at days 2, 3 and 4 after permanent middle cerebral artery occlusion in rats. The lacking colocalization of CC3 and TUNEL staining indicated, that CC3 expression was predominantly non-apoptotic. Nuclear CC3 expression was frequently found to be colocalized with GFAP-positive astrocytes within the tissue adjacent to the infarct, whereas cytoplasmatic CC3 expression occurred solely in the lesion. Multiple fluorescence labeling revealed costaining of cytoplasmatic CC3 with markers directed against astrocytes, macrophages/microglia and supposedly pericytes. Our findings suggest that CC3 expression was predominantly associated with cellular responses to stroke such as reactive astrogliosis and the infiltration of macrophages.
Collapse
Affiliation(s)
- Daniel-Christoph Wagner
- Fraunhofer Institute for Cell Therapy and Immunology, c/o Max-Bürger Forschungszentrum, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Suzuki Y, Nakayama K, Hashimoto N, Yazawa I. Proteolytic processing regulates pathological accumulation in dentatorubral-pallidoluysian atrophy. FEBS J 2010; 277:4873-87. [PMID: 20977674 DOI: 10.1111/j.1742-4658.2010.07893.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dentatorubral-pallidoluysian atrophy is caused by polyglutamine (polyQ) expansion in atrophin-1 (ATN1). Recent studies have shown that nuclear accumulation of ATN1 and cleaved fragments with expanded polyQ is the pathological process underlying neurodegeneration in dentatorubral-pallidoluysian atrophy. However, the mechanism underlying the proteolytic processing of ATN1 remains unclear. In the present study, we examined the proteolytic processing of ATN1 aiming to understand the mechanisms of ATN1 accumulation with polyQ expansion. Using COS-7 and Neuro2a cells that express the ATN1 gene, in which ATN1 was accumulated by increasing the number of polyQs, we identified a novel C-terminal fragment containing a polyQ tract. The mutant C-terminal fragment with expanded polyQ selectively accumulated in the cells, and this was also demonstrated in the brain tissues of patients with dentatorubral-pallidoluysian atrophy. Immunocytochemical and biochemical studies revealed that full-length ATN1 and C-terminal fragments displayed individual localization. The mutant C-terminal fragment was preferentially found in the cytoplasmic membrane/organelle and insoluble fractions. Accordingly, it is assumed that the proteolytic processing of ATN1 regulates the localization of C-terminal fragments. Accumulation of the C-terminal fragment was enhanced by inhibition of caspases in the cytoplasm of COS-7 cells. Collectively, these results suggest that the C-terminal fragment plays a principal role in the pathological accumulation of ATN1 in dentatorubral-pallidoluysian atrophy.
Collapse
Affiliation(s)
- Yasuyo Suzuki
- Laboratory of Research Resources, Research Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | | | | | |
Collapse
|
26
|
Combination of intracortically administered VEGF and environmental enrichment enhances brain protection in developing rats. J Neural Transm (Vienna) 2010; 118:135-44. [DOI: 10.1007/s00702-010-0496-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/24/2010] [Indexed: 01/07/2023]
|
27
|
Kudryashova IV. Structural and functional characteristics of potassium channels and their role in neuroplasticity. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Milanovic D, Popic J, Pesic V, Loncarevic-Vasiljkovic N, Kanazir S, Jevtovic-Todorovic V, Ruzdijic S. Regional and temporal profiles of calpain and caspase-3 activities in postnatal rat brain following repeated propofol administration. Dev Neurosci 2010; 32:288-301. [PMID: 20714114 PMCID: PMC3021498 DOI: 10.1159/000316970] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/14/2010] [Indexed: 11/19/2022] Open
Abstract
Exposure of newborn rats to a variety of anesthetics has been shown to induce apoptotic neurodegeneration in the developing brain. We investigated the effect of the general anesthetic propofol on the brain of 7-day-old (P7) Wistar rats during the peak of synaptic growth. Caspase and calpain protease families most likely participate in neuronal cell death. Our objective was to examine regional and temporal patterns of caspase-3 and calpain activity following repeated propofol administration (20 mg/kg). P7 rats were exposed for 2, 4 or 6 h to propofol and killed 0, 4, 16 and 24 h after exposure. Relative caspase-3 and calpain activities were estimated by Western blot analysis of the proteolytic cleavage products of α-II-spectrin, protein kinase C and poly(ADP-ribose) polymerase 1. Caspase-3 activity and expression displayed a biphasic pattern of activation. Calpain activity changed in a region- and time-specific manner that was distinct from that observed for caspase-3. The time profile of calpain activity exhibited substrate specificity. Fluoro-Jade B staining revealed an immediate neurodegenerative response that was in direct relationship to the duration of anesthesia in the cortex and inversely related to the duration of anesthesia in the thalamus. At later post-treatment intervals, dead neurons were detected only in the thalamus 24 h following the 6-hour propofol exposure. Strong caspase-3 expression that was detected at 24 h was not followed by cell death after 2- and 4-hour exposures to propofol. These results revealed complex patterns of caspase-3 and calpain activities following prolonged propofol anesthesia and suggest that both are a manifestation of propofol neurotoxicity at a critical developmental stage.
Collapse
Affiliation(s)
- Desanka Milanovic
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Jelena Popic
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Vesna Pesic
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | | | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | | | - Sabera Ruzdijic
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| |
Collapse
|
29
|
Essential role of the redox-sensitive kinase p66shc in determining energetic and oxidative status and cell fate in neuronal preconditioning. J Neurosci 2010; 30:5242-52. [PMID: 20392947 DOI: 10.1523/jneurosci.6366-09.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ischemic preconditioning is a phenomenon in which low-level stressful stimuli upregulate endogenous defensive programs, resulting in subsequent resistance to otherwise lethal injuries. We previously observed that signal transduction systems typically associated with neurodegeneration such as caspase activation are requisite events for the expression of tolerance and induction of HSP70. In this work, we sought to determine the extent and duration of oxidative and energetic dysfunction as well as the role of effector kinases on metabolic function in preconditioned cells. Using an in vitro neuronal culture model, we observed a robust increase in Raf and p66(Shc) activation within 1 h of preconditioning. Total ATP content decreased by 25% 3 h after preconditioning but returned to baseline by 24 h. Use of a free radical spin trap or p66(shc) inhibitor increased ATP content whereas a Raf inhibitor had no effect. Phosphorylated p66(shc) rapidly relocalized to the mitochondria and in the absence of activated p66(shc), autophagic processing increased. The constitutively expressed chaperone HSC70 relocalized to autophagosomes. Preconditioned cells experience significant total oxidative stress measured by F(2)-isoprostanes and neuronal stress evaluated by F(4)-neuroprostane measurement. Neuroprostane levels were enhanced in the presence of Shc inhibitors. Finally, we found that inhibiting either p66(shc) or Raf blocked neuroprotection afforded by preconditioning as well as upregulation of HSP70, suggesting both kinases are critical for preconditioning but function in fundamentally different ways. This is the first work to demonstrate the essential role of p66(shc) in mediating requisite mitochondrial and energetic compensation after preconditioning and suggests a mechanism by which protein and organelle damage mediated by ROS can increase HSP70.
Collapse
|
30
|
Bottum K, Poon E, Haley B, Karmarkar S, Tischkau SA. Suprachiasmatic nucleus neurons display endogenous resistance to excitotoxicity. Exp Biol Med (Maywood) 2010; 235:237-46. [PMID: 20404040 DOI: 10.1258/ebm.2009.009244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comprehensive understanding of neuroprotective pathways is essential to progress in the battle against numerous neurodegenerative conditions. The hypothalamic suprachiasmatic nucleus (SCN) is endogenously resistant to glutamate (Glu) excitotoxicity in vivo. This study was designed to determine whether immortalized SCN neurons (SCN2.2 cells) retain this characteristic. We first established that SCN2.2 cells retained the ability to respond to Glu. SCN2.2 cells expressed N-methyl-d-aspartate (NMDA) receptor subtypes NR1 and NR2A/2B, suggesting the presence of functional receptors. mRNA for the NMDA receptor subunits NR2A and NR2B were higher in the SCN2.2 than in the control hypothalamic neurons (GT1-7). Specific NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate and d-(-)-2-amino-5-phosphonovaleric acid blocked Glu-induced activation of gene expression. SCN2.2 cells were resistant to Glu excitotoxicity compared with GT1-7 neurons as assessed with a mitochondrial function assay, cell death by trypan blue exclusion and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. SCN2.2 resistance to Glu excitoxicity was retained in the presence of the broad spectrum Glu transport inhibitor, l-trans-pyrrolidine-2,4 dicarboxylate, excluding glial Glu uptake as a major neuroprotective mechanism. Collectively, these observations demonstrate endogenous neuroprotection in SCN2.2 cells; this cell line is resistant to excitotoxicity under conditions that are toxic to other immortalized cell lines. Thus, the SCN2.2 cell line may provide insights into the molecular mechanisms that confer endogenous neuroprotection in the SCN.
Collapse
Affiliation(s)
- Kathleen Bottum
- Department of Medicine, Division of Internal Medicine and Psychiatry, Southern Illinois School of Medicine, Springfield, IL 62794-9636, USA
| | | | | | | | | |
Collapse
|
31
|
Systemic administration of 3-nitropropionic acid points out a different role for active caspase-3 in neurons and astrocytes. Neurochem Int 2010; 56:443-50. [DOI: 10.1016/j.neuint.2009.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/27/2009] [Accepted: 12/01/2009] [Indexed: 11/20/2022]
|
32
|
Abstract
Brain plasticity describes the potential of the organ for adaptive changes involved in various phenomena in health and disease. A substantial amount of experimental evidence, received in animal and cell models, shows that a cascade of plastic changes at the molecular, cellular, and tissue levels, is initiated in different regions of the postischemic brain. Underlying mechanisms include neurochemical alterations, functional changes in excitatory and inhibitory synapses, axonal and dendritic sprouting, and reorganization of sensory and motor central maps. Multiple lines of evidence indicate numerous points in which the process of postischemic recovery may be influenced with the aim to restore the full capacity of the brain tissue injured by an ischemic episode.
Collapse
Affiliation(s)
- Galyna G Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | |
Collapse
|
33
|
Kudryashova IV, Onufriev MV, Kudryashov IE, Gulyaeva NV. Regulation of cathepsin B and caspase-3 in long-term plasticity. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409040047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Sairanen T, Szepesi R, Karjalainen-Lindsberg ML, Saksi J, Paetau A, Lindsberg PJ. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol 2009; 118:541-52. [PMID: 19529948 DOI: 10.1007/s00401-009-0559-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/07/2009] [Accepted: 06/07/2009] [Indexed: 10/20/2022]
Abstract
Apoptotic cell death contributes to neuronal loss in the penumbral region of brain infarction. Activated caspase-3 (ACA-3) cleaves proteins including poly(ADP-ribose) polymerase-1 (PARP-1) important in DNA repair, thus promoting apoptosis. Overactivation of PARP-1 depletes NAD(+) and ATP, resulting in necrosis. These cell death phenomena have been investigated mostly in experimental animals. We studied an autopsy cohort of 13 fatal ischemic stroke cases (symptoms 15 h to 18 days) and 2 controls by immunohistochemical techniques. The number of PARP-1 immunoreactive neurons was highest in the periinfarct area. Nuclear PARP-1 correlated with increasing neuronal necrosis (P = 0.013). Cytoplasmic PARP-1 correlated with TUNEL in periinfarct and core areas (P = 0.01). Cytoplasmic cleaved PARP-1 was inversely correlated with increasing necrotic damage (P = 0.001). PAR-polymers were detected in neurons confirming enzymatic activity of PARP-1. Cytoplasmic ACA-3 correlated with death receptor Fas (r (s) = 0.48; P = 0.005). In conclusion, the confirmation of the same pathways of cell death than previously described in experimental animal models encourages neuroprotective treatments acting on these mediators also in human stroke.
Collapse
|
35
|
|
36
|
Fornito A, Yücel M, Dean B, Wood SJ, Pantelis C. Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull 2009; 35:973-93. [PMID: 18436528 PMCID: PMC2728810 DOI: 10.1093/schbul/sbn025] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The anterior cingulate cortex (ACC) is a functionally heterogeneous region involved in diverse cognitive and emotional processes that support goal-directed behaviour. Structural magnetic resonance imaging (MRI) and neuropathological findings over the past two decades have converged to suggest abnormalities in the region may represent a neurobiological basis for many of the clinical manifestations of schizophrenia. However, while each approach offers complimentary information that can provide clues regarding underlying patholophysiological processes, the findings from these 2 fields are seldom integrated. In this article, we review structural neuroimaging and neuropathological studies of the ACC, focusing on the unique information they provide. The available imaging data suggest grey matter reductions in the ACC precede psychosis onset in some categories of high-risk individuals, show sub-regional specificity, and may progress with illness duration. The available post-mortem findings indicate these imaging-related changes are accompanied by reductions in neuronal, synaptic, and dendritic density, as well as increased afferent input, suggesting the grey matter differences observed with MRI arise from alterations in both neuronal and non-neuronal tissue compartments. We discuss the potential mechanisms that might facilitate integration of these findings and consider strategies for future research.
Collapse
Affiliation(s)
- Alex Fornito
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia,ORYGEN Research Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Brian Dean
- The Rebecca L Cooper Research Laboratories, The Mental Health Research Institute, Parkville, Victoria, Australia,Departments of Pathology and Psychiatry, The University of Melbourne, Victoria, Australia,Department of Psychological Medicine, Monash University, Victoria, Australia
| | - Stephen J. Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia,Howard Florey Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy. J Neuropathol Exp Neurol 2009; 68:757-61. [PMID: 19535996 DOI: 10.1097/nen.0b013e3181a9fc66] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neurofibrillary tangles (NFTs) are associated with neuronal loss and correlate with cognitive impairment in Alzheimer disease, but how NFTs relate to neuronal death is not clear. We studied cell death in Tg4510 mice that reversibly express P301L mutant human tau and accumulate NFTs using in vivo multiphoton imaging of neurofibrillary pathology, propidium iodide (PI) incorporation into cells, caspase activation, and DNA labeling. We first observed that in live mice, a minority of neurons were labeled with the caspase probe or with PI fluorescence. These markers of cell stress were localized in the same cells and appeared specifically within NFT-bearing neurons. Contrary to expectations, the PI-stained neurons did not die during a day of observation; the presence of Hoechst-positive nuclei in them on the subsequent day indicated that the NFT-associated membrane disruption, as suggested by PI staining, and caspase activation do not lead to immediate death of neurons in this tauopathy model. This unique combination of in vivo multiphoton imaging with markers of cell death and pathological alteration is a powerful tool for investigating neuronal damage associated with neurofibrillary pathology.
Collapse
|
38
|
Hauser KF, Hahn YK, Adjan VV, Zou S, Buch SK, Nath A, Bruce-Keller AJ, Knapp PE. HIV-1 Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia 2009; 57:194-206. [PMID: 18756534 PMCID: PMC2743138 DOI: 10.1002/glia.20746] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human immunodeficiency virus (HIV)-infected individuals who abuse opiates show faster progression to AIDS, and enhanced incidence of HIV-1 encephalitis. Most opiates with abuse liability are preferential agonists for mu-opioid receptors (MORs), and MORs are expressed on both neurons and glia, including oligodendrocytes (OLs). Tat, gp120, and other viral toxins, cause neurotoxicity in vitro and/or when injected into brain, and co-exposure to opiates can augment HIV-1 protein-induced insults to both glial and neuronal populations. We examined the effects of HIV-1 Tat +/- opiate exposure on OL survival and differentiation. In vivo studies utilized transgenic mice expressing Tat(1-86) regulated by an inducible glial fibrillary acidic protein promoter. Although MBP levels were unchanged on immunoblots, certain structural and apoptotic indices were abnormal. After only 2 days of Tat induction, OLs showed an upregulation of active caspase-3 that was enhanced by morphine exposure. Tat also upregulated TUNEL staining, but only in the presence of morphine. Tat significantly reduced the length of processes in Golgi-Kopsch impregnated OLs. A greater proportion of cells exhibited diminished or aberrant cytoplasmic processes, especially when mice expressing Tat were co-exposed to morphine. Collectively, our data show that OLs in situ are extremely sensitive to effects of Tat +/- morphine, although it is not clear if immature OLs as well as differentiated OLs are targeted equally. Significant elevations in caspase-3 activity and TUNEL labeling, and evidence of increased degeneration/regeneration of OLs exposed to Tat +/- morphine suggest that toxicity toward OLs may be accompanied by heightened OL turnover.
Collapse
Affiliation(s)
- Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA USA
| | - Yun Kyung Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA USA
| | - Valeriya V. Adjan
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | - Shiping Zou
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA USA
| | - Shreya K. Buch
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | - Avindra Nath
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | | | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
39
|
Caspase-3 activity in hippocampal slices reflects changes in synaptic plasticity. ACTA ACUST UNITED AC 2008; 39:13-20. [PMID: 19089636 DOI: 10.1007/s11055-008-9089-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 10/28/2007] [Indexed: 01/03/2023]
Abstract
Electrophysiological measures of the functional activity of neurons in field CA1 in conditions of paired-pulse stimulation of Schäffer collaterals were performed in relation to the involvement of caspase-3 in mediating neuroplasticity; the relationship between functional activity and caspase-3 activity in hippocampal slices from Wistar rats was addressed. Enzyme activity was assessed in each individual slice at the end of the electrophysiological experiment. The results obtained here showed that the highest level of enzyme activity was seen when the efficiency of interneuronal interactions decreased. Nerve cell excitability showed no changes; interactions increasing synaptic efficiency, particularly in paired-pulse stimulation, produced normal response amplitudes. Further deterioration of the functional state of slices and impairments in spike generation were accompanied by increases in caspase-3 activity to the normal level. Increases in the activity of another proteinase, cathepsin B, were generally seen in any deviation from normal functioning, though there was no correlation with any of the electrophysiological parameters. It is suggested that high caspase-3 activity in slices is linked with neuroplastic processes in synapses and has no direct relationship to nerve cell apoptosis.
Collapse
|
40
|
Kudryashova IV, Onufriev MV, Kudryashov IE, Gulyaeva NV. Caspase-3 activation in the hippocampus of rat pups is modulated by the effectiveness of escape behavior in response to footshock. NEUROCHEM J+ 2008. [DOI: 10.1134/s1819712408040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Corsetti V, Amadoro G, Gentile A, Capsoni S, Ciotti MT, Cencioni MT, Atlante A, Canu N, Rohn TT, Cattaneo A, Calissano P. Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer's disease models. Mol Cell Neurosci 2008; 38:381-92. [PMID: 18511295 DOI: 10.1016/j.mcn.2008.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/20/2008] [Accepted: 03/28/2008] [Indexed: 11/29/2022] Open
Abstract
Biochemical modifications of tau proteins have been proposed to be among the earliest neurobiological changes in Alzheimer's disease (AD) and correlate better with cognitive symptoms than do beta-amyloid plaques. We have recently reported that adenovirus-mediated overexpression of the NH2 26-230aa tau fragment evokes a potent NMDA-mediated neurotoxic effect in primary neuronal cultures. In order to assess whether such N-terminal tau fragment(s) are indeed produced during apoptosis or neurodegeneration in vivo, we attempted to ascertain their presence in cell and animal models using an anti-tau antibody directed against the N-terminal sequence of human protein located downstream of the caspase(s)-cleavage site DRKD(25)-QGGYTMHQDQ. We provide biochemical evidence that a caspase(s)-cleaved NH2-terminal tau fragment of 20-22 kDa, consistent with the size of the NH2 26-230aa neurotoxic fragment of tau, is generated in vitro in differentiated human SH-SY5Y cells undergoing apoptosis by BDNF withdrawal or following treatment with staurosporine. In addition this NH2-terminally cleaved tau fragment, whose expression correlates with a significant up-regulation of caspase(s) activity, is also specifically detected in vivo in the hippocampus of 15 month-old AD11 transgenic mice, a model in which a progressive AD-like neurodegeneration is induced by the expression of transgenic anti-NGF antibodies. The results support the idea that aberrant activation of caspase(s), following apoptotic stimuli or neurodegeneration insults, may produce one or more toxic NH2 tau fragments, that further contribute to propagate and increase cellular dysfunctions in AD.
Collapse
Affiliation(s)
- V Corsetti
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Villapol S, Acarin L, Faiz M, Castellano B, Gonzalez B. Distinct spatial and temporal activation of caspase pathways in neurons and glial cells after excitotoxic damage to the immature rat brain. J Neurosci Res 2008; 85:3545-56. [PMID: 17668855 DOI: 10.1002/jnr.21450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although cleaved caspase-3 is known to be involved in apoptotic cell death mechanisms in neurons, it can also be involved in a nonapoptotic role in astrocytes after postnatal excitotoxic injury. Here we evaluate participation of upstream pathways activating caspase-3 in neurons and glial cells, by studying the intrinsic pathway via caspase-9, the extrinsic pathway via caspase-8, and activation of the p53-dependent pathway. N-methyl-D-aspartate (NMDA) was injected intracortically in 9-day-old postnatal rats, which were sacrificed at several survival times between 4 hr postlesion (pl) and 7 days pl. We analyzed temporal and spatial expression of caspase-8, caspase-9, and p53 and correlation with neuronal and glial markers and caspase-3 activation. Caspase-9 was significantly activated at 10 hpl, strongly correlating with caspase-3. It was present mainly in damaged cortical and hippocampal neurons but was also seen in astrocytes and oligodendrocytes in layer VI and corpus callosum (cc). Caspase-8 showed a diminished correlation with caspase-3. It was present in cortical neurons at 10-72 hpl, showing layer specificity, and also in astroglial and microglial nuclei, mainly in layer VI and cc. p53 Expression increased at 10-72 hpl but did not correlate with caspase-3. p53 Was seen in neurons of the degenerating cortex and in some astrocytes and microglial cells of layer VI and cc. In conclusion, after neonatal excitotoxicity, mainly the mitochondrial intrinsic pathway mediates neuronal caspase-3 and cell death. In astrocytes, caspase-3 is not widely correlated with caspase-8, caspase-9, or p53, except in layer VI-cc astrocytes, where activation of upstream cascades occurs.
Collapse
Affiliation(s)
- Sonia Villapol
- Medical Histology, Faculty of Medicine, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
43
|
Villapol S, Acarin L, Faiz M, Castellano B, Gonzalez B. Survivin and heat shock protein 25/27 colocalize with cleaved caspase-3 in surviving reactive astrocytes following excitotoxicity to the immature brain. Neuroscience 2008; 153:108-19. [PMID: 18358624 DOI: 10.1016/j.neuroscience.2008.01.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/27/2022]
Abstract
Following immature excitotoxic brain damage, distinct patterns of caspase activation have been described in neurons and glial cells. Neuronal cells show activation of the mitochondrial apoptosis pathway, caspase-3 cleavage and apoptotic cell death, while reactive astrocytes show caspase-3 cleavage that is not always correlated with enzymatic protease activity and does not generally terminate in cell death. Accordingly, the aim of the present study was to evaluate the astrocytic colocalization of cleaved caspase-3 and several anti-apoptotic proteins of the inhibitor of apoptosis proteins family (IAPs), such as survivin and cellular inhibitor of apoptosis-2 (cIAP-2), and the heat shock proteins (HSPs) family, Hsp25/27 and Hsc70/Hsp70, which can all prevent caspases from cleaving their substrates. At several survival times ranging from 4 h to 14 days after cortical excitotoxic damage induced by N-methyl-d-aspartate (NMDA) injection at postnatal day 9 in rat pups, single and double immunohistochemical techniques were performed in free floating cryostat sections and sections were analyzed by confocal microscopy. Our results show that survivin and Hsp25/27 are primarily expressed in reactive astrocytes of the damaged cortex and the adjacent white matter. In addition, both molecules strongly colocalize with cleaved caspase-3. Survivin is primarily located in the nucleus, like cleaved caspase-3; while Hsp25/27 is cytoplasmic but very frequently found in cells showing nuclear caspase-3. cIAP-2 was mostly found in damaged neurons but also in some glial scar reactive astrocytes and showed fewer correlation with caspase-3. Hsc70/Hsp70 was only expressed in injured neurons and did not correlate with caspase-3. Thus, we conclude that primarily survivin and Hsp25/27 may participate in the inhibition of cleaved caspase-3 in reactive astrocytes and may be involved in protecting astrocytes after injury.
Collapse
Affiliation(s)
- S Villapol
- Medical Histology, Torre M5, Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra 08193, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
44
|
Macrophage apolipoprotein-E knockdown modulates caspase-3 activation without altering sensitivity to apoptosis. Biochim Biophys Acta Gen Subj 2008; 1780:145-53. [DOI: 10.1016/j.bbagen.2007.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 10/09/2007] [Accepted: 10/25/2007] [Indexed: 11/21/2022]
|
45
|
Gdynia G, Grund K, Eckert A, Bock BC, Funke B, Macher-Goeppinger S, Sieber S, Herold-Mende C, Wiestler B, Wiestler OD, Roth W. Basal Caspase Activity Promotes Migration and Invasiveness in Glioblastoma Cells. Mol Cancer Res 2007; 5:1232-40. [DOI: 10.1158/1541-7786.mcr-07-0343] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Misra RS, Russell JQ, Koenig A, Hinshaw-Makepeace JA, Wen R, Wang D, Huo H, Littman DR, Ferch U, Ruland J, Thome M, Budd RC. Caspase-8 and c-FLIPL associate in lipid rafts with NF-kappaB adaptors during T cell activation. J Biol Chem 2007; 282:19365-74. [PMID: 17462996 PMCID: PMC4521413 DOI: 10.1074/jbc.m610610200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Humans and mice lacking functional caspase-8 in T cells manifest a profound immunodeficiency syndrome due to defective T cell antigen receptor (TCR)-induced NF-kappaB signaling and proliferation. It is unknown how caspase-8 is activated following T cell stimulation, and what is the caspase-8 substrate(s) that is necessary to initiate T cell cycling. We observe that following TCR ligation, a small portion of total cellular caspase-8 and c-FLIP(L) rapidly migrate to lipid rafts where they associate in an active caspase complex. Activation of caspase-8 in lipid rafts is followed by rapid cleavage of c-FLIP(L) at a known caspase-8 cleavage site. The active caspase.c-FLIP complex forms in the absence of Fas (CD95/APO1) and associates with the NF-kappaB signaling molecules RIP1, TRAF2, and TRAF6, as well as upstream NF-kappaB regulators PKC theta, CARMA1, Bcl-10, and MALT1, which connect to the TCR. The lack of caspase-8 results in the absence of MALT1 and Bcl-10 in the active caspase complex. Consistent with this observation, inhibition of caspase activity attenuates NF-kappaB activation. The current findings define a link among TCR, caspases, and the NF-kappaB pathway that occurs in a sequestered lipid raft environment in T cells.
Collapse
Affiliation(s)
- Ravi S. Misra
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405-0068
| | - Jennifer Q. Russell
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405-0068
| | - Andreas Koenig
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405-0068
| | - Jennifer A. Hinshaw-Makepeace
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405-0068
| | - Renren Wen
- Blood Research Institute, Department of Microbiology and Molecular Genetics, Blood Center of Wisconsin, Milwaukee, Wisconsin 53201-2178
| | - Demin Wang
- Blood Research Institute, Department of Microbiology and Molecular Genetics, Blood Center of Wisconsin, Milwaukee, Wisconsin 53201-2178
| | - Hairong Huo
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Dan R. Littman
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Uta Ferch
- Department of Medicine (Hematology/Oncology), Technical University of Munich, Munich, Germany
| | - Jurgen Ruland
- Department of Medicine (Hematology/Oncology), Technical University of Munich, Munich, Germany
| | - Margot Thome
- Institute of Biochemistry, University of Lausanne, BIL Biomedical Research Center, 1066 Epalinges, Switzerland
| | - Ralph C. Budd
- Immunobiology Program, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405-0068
- To whom correspondence should be addressed: Given Medical Bldg., Burlington, VT 05405-0068. Tel.: 802-656-2286; Fax: 802-656-3854;
| |
Collapse
|
47
|
O'Duffy AE, Bordelon YM, McLaughlin B. Killer proteases and little strokes--how the things that do not kill you make you stronger. J Cereb Blood Flow Metab 2007; 27:655-68. [PMID: 16896349 PMCID: PMC2881558 DOI: 10.1038/sj.jcbfm.9600380] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The phenomenon of ischemic preconditioning was initially observed over 20 years ago. The basic tenant is that if stimuli are applied at a subtoxic level, cells upregulate endogenous protective mechanisms to block injury induced by subsequent stress. Since this discovery, many conserved signaling mechanisms that contribute to activation of this potent protective program have been identified in the brain. A clinical correlate of this basic research finding can be found in patients with a history of transient ischemic attack (TIA), who have a decreased morbidity after stroke. In spite of multidisciplinary efforts to design safer, more effective stroke therapies, we have thus far failed to translate our understanding of endogenous protective pathways to treatments for neurodegeneration. This review is designed to provide clinicians and basic scientists with an overview of stress biology after TIA and preconditioning, discuss new therapeutic strategies to target the protein dysfunction that follows ischemic injury, and propose enhanced biochemical profiling to identify individuals at risk of stroke after TIA. We pay particular attention to the unanticipated consequences of overly aggressive intervention after TIA in which we have found that traditional cytotoxic agents such as free radicals and apoptosis associated proteases is essential for neuroprotection and communication in the stressed brain. These data emphasize the importance of understanding the complex interplay between chaperones, apoptotic proteases including caspases, and the proteolytic degradation machinery in adaptation to neurological injury.
Collapse
Affiliation(s)
- Anne E O'Duffy
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232-8548, USA
| | | | | |
Collapse
|
48
|
Acarin L, Villapol S, Faiz M, Rohn TT, Castellano B, González B. Caspase-3 activation in astrocytes following postnatal excitotoxic damage correlates with cytoskeletal remodeling but not with cell death or proliferation. Glia 2007; 55:954-65. [PMID: 17487878 DOI: 10.1002/glia.20518] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Caspase-3 has classically been defined as the main executioner of programmed cell death. However, recent data supports the participation of this protease in non-apoptotic cellular events including cell proliferation, cell cycle regulation, and cellular differentiation. In this study, astroglial cleavage of caspase-3 was analyzed following excitotoxic damage in postnatal rats to determine if its presence is associated with apoptotic cell death, cell proliferation, or cytoskeletal remodeling. A well-characterized in vivo model of excitotoxicity was studied, where damage was induced by intracortical injection of N-methyl-D-asparate (NMDA) in postnatal day 9 rats. Our results demonstrate that cleaved caspase-3 was mainly observed in the nucleus of activated astrocytes in the lesioned hemisphere as early as 4 h postlesion and persisted until the glial scar was formed at 7-14 days, and it was not associated with TUNEL labeling. Caspase-3 enzymatic activity was detected at 10 h and 1 day postlesion in astrocytes, and co-localized with caspase-cleaved fragments of glial fibrillary acidic protein (CCP-GFAP). However, at longer survival times, when astroglial hypertrophy was observed, astroglial caspase-3 did not generally correlate with GFAP cleavage, but instead was associated with de novo expression of vimentin. Moreover, astroglial caspase-3 cleavage was not associated with BrdU incorporation. These results provide further evidence for a nontraditional role of caspases in cellular function that is independent of cell death and suggest that caspase activation is important for astroglial cytoskeleton remodeling following cellular injury.
Collapse
Affiliation(s)
- Laia Acarin
- Medical Histology, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine and Institute of Neurosciences, Autonomous University of Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
Richie DL, Miley MD, Bhabhra R, Robson GD, Rhodes JC, Askew DS. TheAspergillus fumigatusmetacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Mol Microbiol 2006; 63:591-604. [PMID: 17176258 DOI: 10.1111/j.1365-2958.2006.05534.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have examined the contribution of metacaspases to the growth and stress response of the opportunistic human mould pathogen, Aspergillus fumigatus, based on increasing evidence implicating the yeast metacaspase Yca1p in apoptotic-like programmed cell death. Single metacaspase-deficient mutants were constructed by targeted disruption of each of the two metacaspase genes in A. fumigatus, casA and casB, and a metacaspase-deficient mutant, DeltacasA/DeltacasB, was constructed by disrupting both genes. Stationary phase cultures of wild-type A. fumigatus were associated with the appearance of typical markers of apoptosis, including elevated proteolytic activity against caspase substrates, phosphatidylserine exposure on the outer leaflet of the membrane, and loss of viability. By contrast, phosphatidylserine exposure was not observed in stationary phase cultures of the DeltacasA/DeltacasB mutant, although caspase activity and viability was indistinguishable from wild type. The mutant retained wild-type virulence and showed no difference in sensitivity to a range of pro-apoptotic stimuli that have been reported to initiate yeast apoptosis. However, the DeltacasA/DeltacasB mutant showed a growth detriment in the presence of agents that disrupt endoplasmic reticulum homeostasis. These findings demonstrate that metacaspase activity in A. fumigatus contributes to the apoptotic-like loss of membrane phospholipid asymmetry at stationary phase, and suggest that CasA and CasB have functions that support growth under conditions of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Daryl L Richie
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | | | | | | | | | | |
Collapse
|
50
|
Young JW, Kerr LE, Kelly JS, Marston HM, Spratt C, Finlayson K, Sharkey J. The odour span task: a novel paradigm for assessing working memory in mice. Neuropharmacology 2006; 52:634-45. [PMID: 17097694 DOI: 10.1016/j.neuropharm.2006.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 09/13/2006] [Accepted: 09/14/2006] [Indexed: 10/23/2022]
Abstract
Impoverished odour recognition and memory are amongst the earliest symptoms observed in mild cognitive impairment, Alzheimer's disease and schizophrenia, and have been advocated as early disease bio-markers. Although transgenic animals modelling disease pathologies continually emerge, there remains a paucity of tasks to examine olfactory working memory in mice. The present studies describe a mouse odour span task, which assesses the ability to remember increasing numbers of odours. Since caspase-3 is highly expressed throughout the olfactory system, we postulated that mice over-expressing this apoptogenic protein would exhibit impaired performance in the odour span task. Mice over-expressing human caspase-3 (Tg) exhibited age-independent deficits in olfactory working memory (6-18 months) compared with wild-type littermates, requiring longer for task acquisition and exhibiting impaired asymptotic performance, with reduced span lengths, lower accuracy and increased error rates. These impairments appeared to be selective for working memory, as Tg mice had no deficits in odour discriminatory ability or in locomotor measures. Importantly, nicotine, which improves working memory span in man, reversed the deficits exhibited by Tg mice. In conclusion, the mouse odour span task can detect subtle changes in olfactory working memory induced by genetic manipulation and drug administration and therefore should be applied to animal models of neurological disease.
Collapse
Affiliation(s)
- Jared W Young
- Astellas CNS Research in Edinburgh, The University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | | | | | | | | | | | | |
Collapse
|