1
|
Shukla S, Dalai P, Agrawal-Rajput R. Metabolic crosstalk: Extracellular ATP and the tumor microenvironment in cancer progression and therapy. Cell Signal 2024; 121:111281. [PMID: 38945420 DOI: 10.1016/j.cellsig.2024.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Adenosine 5'-triphosphate (ATP) is a vital element in energy information. It plays a critical role in transmitting signals inside the body, which is necessary for controlling the life activities of all cells, including tumor cells [1]. Its significance extends from intracellular signaling pathways to tumor regression. Purinergic signaling, a form of extracellular paracrine signaling, relies on purine nucleotides. Extracellular ectonucleotidases convert these purine nucleotides to their respective di and mono-phosphate nucleoside forms, contributing significantly to immune biology, cancer biology, and inflammation studies. ATP functions as a mighty damage-linked molecular pattern when released outside the cell, accumulating in inflammatory areas. In the tumor microenvironment (TME), purinergic receptors such as ATP-gated ion channels P2X1-5 and G protein-coupled receptors (GPCR) (P2Y) interact with ATP and other nucleotides, influencing diverse immune cell activities. CD39 and CD73-mediated extracellular ATP degradation contributes to immunosuppression by diminishing ATP-dependent activation and generating adenosine (ADO), potentially hindering antitumor immunity and promoting tumor development. Unraveling the complexities of extracellular ATP (e-ATP) and ADO effects on the TME poses challenges in identifying optimal treatment targets, yet ongoing investigations aim to devise strategies combating e-ATP/ADO-induced immunosuppression, ultimately enhancing anti-tumor immunity. This review explores e-ATP metabolism, its purinergic signaling, and therapeutic strategies targeting associated receptors and enzymes.
Collapse
Affiliation(s)
- Sourav Shukla
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Parameswar Dalai
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India.
| |
Collapse
|
2
|
Du Y, Cao Y, Song W, Wang X, Yu Q, Peng X, Zhao R. Role of the P2X7 receptor in breast cancer progression. Purinergic Signal 2024:10.1007/s11302-024-10039-6. [PMID: 39039304 DOI: 10.1007/s11302-024-10039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer is a common malignant tumor, whose incidence is increasing year by year, and it has become the malignant tumor with the highest incidence rate in women. Purine ligand-gated ion channel 7 receptor (P2X7R) is a cation channel receptor with Adenosine triphosphate ( ATP) as a ligand, which is widely distributed in cells and tissues, and is closely related to tumorigenesis and progression. P2X7R plays an important role in cancer by interacting with ATP. Studies have shown that P2X7R is up-regulated in breast cancer and can promote tumor invasion and metastasis by activating the protein kinase B (AKT) signaling pathway, promoting epithelial-mesenchymal transition (EMT), controlling the generation of extracellular vesicle (EV), and regulating the expression of the inflammatory protein cyclooxygenase 2 (COX-2). Furthermore, P2X7R was proven to play an essential role in the proliferation and apoptosis of breast cancer cells. Recently, inhibitors targeting P2X7R have been found to inhibit the progression of breast cancer. Natural P2X7R antagonists, such as rhodopsin, and the isoquinoline alkaloid berberine, have also been shown to be effective in inhibiting breast cancer progression. In this article, we review the research progress of P2X7R and breast cancer intending to provide new targets and directions for breast cancer treatment.
Collapse
Affiliation(s)
- Yanan Du
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Yahui Cao
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Wei Song
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Xin Wang
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Qingqing Yu
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China.
| | - Ronglan Zhao
- School of Medical Laboratory, Shandong Second Medical University, Shandong, 261053, China.
| |
Collapse
|
3
|
Nuñez-Ríos JD, Reyna-Jeldes M, Mata-Martínez E, Campos-Contreras ADR, Lazcano-Sánchez I, González-Gallardo A, Díaz-Muñoz M, Coddou C, Vázquez-Cuevas FG. Extracellular ATP/P2X7 receptor, a regulatory axis of migration in ovarian carcinoma-derived cells. PLoS One 2024; 19:e0304062. [PMID: 38870128 PMCID: PMC11175443 DOI: 10.1371/journal.pone.0304062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
ATP is actively maintained at high concentrations in cancerous tissues, where it promotes a malignant phenotype through P2 receptors. In this study, we first evaluated the effect of extracellular ATP depletion with apyrase in SKOV-3, a cell line derived from metastatic ovarian carcinoma. We observed a decrease in cell migration and an increase in transepithelial electrical resistance and cell markers, suggesting a role in maintaining a mesenchymal phenotype. To identify the P2 receptor that mediated the effects of ATP, we compared the transcript levels of some P2 receptors and found that P2RX7 is three-fold higher in SKOV-3 cells than in a healthy cell line, namely HOSE6-3 (from human ovarian surface epithelium). Through bioinformatic analysis, we identified a higher expression of the P2RX7 transcript in metastatic tissues than in primary tumors; thus, P2X7 seems to be a promising effector for the malignant phenotype. Subsequently, we demonstrated the presence and functionality of the P2X7 receptor in SKOV-3 cells and showed through pharmacological approaches that its activity promotes cell migration and contributes to maintaining a mesenchymal phenotype. P2X7 activation using BzATP increased cell migration and abolished E-cadherin expression. On the other hand, a series of P2X7 receptor antagonists (A438079, BBG and OxATP) decreased cell migration. We used a CRISPR-based knock-out system directed to P2RX7. According to the results of our wound-healing assay, SKOV3-P2X7KO cells lacked receptor-mediated calcium mobilization and decreased migration. Altogether, these data let us propose that P2X7 receptor is a regulator for cancer cell migration and thus a potential drug target.
Collapse
Affiliation(s)
- José David Nuñez-Ríos
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Núcleo Para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo, Chile
| | - Esperanza Mata-Martínez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Anaí del Rocío Campos-Contreras
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Iván Lazcano-Sánchez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Adriana González-Gallardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Núcleo Para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo, Chile
| | - Francisco G. Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
4
|
Zhang GP, Liao JX, Liu YY, Zhu FQ, Huang HJ, Zhang WJ. Ion channel P2X7 receptor in the progression of cancer. Front Oncol 2024; 13:1297775. [PMID: 38273855 PMCID: PMC10808724 DOI: 10.3389/fonc.2023.1297775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
P2X7 receptor (P2X7) is a non-selective and ATP-sensitive ligand-gated cation channel. Studies have confirmed that it is expressed in a variety of cells and correlates with their function, frequently in immune cells and tumor cells. We found increased expression of this receptor in many tumor cells, and it has a role in tumor survival and progression. In immune cells, upregulation of the receptor has a double effect on tumor suppression as well as tumor promotion. This review describes the structure of P2X7 and its role in the tumor microenvironment and presents possible mechanisms of P2X7 in tumor invasion and metastasis. Understanding the potential of P2X7 for tumor treatment, we also present several therapeutic agents targeting P2X7 and their mechanisms of action. In conclusion, the study of P2X7 is an important guideline for the use of clinical tumor therapy and may be able to provide a new idea for tumor treatment, but considering the complexity of the biological effects of P2X7, the drugs should be used with caution in clinical practice.
Collapse
Affiliation(s)
- Guang-ping Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Critical Medicine, Ganzhou people’s Hospital, Ganzhou, Jiangxi, China
| | - Jun-xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fu-qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hui-jin Huang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Qiao C, Tang Y, Li Q, Zhu X, Peng X, Zhao R. ATP-gated P2X7 receptor as a potential target for prostate cancer. Hum Cell 2022; 35:1346-1354. [PMID: 35657562 DOI: 10.1007/s13577-022-00729-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the most common malignancy of the male genitourinary system and is one of the leading causes of male cancer death. The P2X7 receptor is an important member of purine receptor family. It is a gated ion channel with adenosine triphosphate (ATP) as the ligand, which exists in a variety of immune tissues and cells and can be involved in tumorigenesis and tumor progression. Studies have shown that the P2X7 receptor is abnormally expressed in prostate cancer, and is related to the level of prostate-specific antigen, P2X7 receptor may be an early biomarker of prostate cancer. The P2X7 receptor is essential in the occurrence and development of prostate cancer. The P2X7 receptor mainly affects the invasion and metastasis of prostate cancer cells through epithelial mesenchymal transition/invasion-related genes and the PI3K/AKT and ERK1/2 signaling pathways. The P2X7 receptor could be a promising therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Cuicui Qiao
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yiqing Tang
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Qianqian Li
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiaodi Zhu
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiaoxiang Peng
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Ronglan Zhao
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
6
|
Zhao Y, Chen X, He C, Gao G, Chen Z, Du J. Discovery of bilirubin as novel P2X7R antagonist with anti-tumor activity. Bioorg Med Chem Lett 2021; 51:128361. [PMID: 34543755 DOI: 10.1016/j.bmcl.2021.128361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023]
Abstract
As a unique ligand gated ion channel in the P2-receptor family, P2X7R is highly expressed in various tumors. The activated P2X7R facilitates tumor growth and metastasis. Hypoxia, inflammation and necrosis in the tumor microenvironment (TME) cause a large amount of adenosine triphosphate (ATP) accumulated in the TME. High concentration of ATP can abnormally activate P2X7R, which induces pore formation and further facilitates the Ca2+ ion influx and non-specific substance intake. Therefore, inhibition of P2X7R activation can be applied as a potential anti-tumor therapy strategy. However, there is currently no FDA approved drugs for this target for anti-tumor treatment. In this study, we identified bilirubin as novel P2X7R antagonist by using structure based virtual screening combined with cell based assays. Molecular docking studies indicated that bilirubin probably interacted with P2X7R by forming hydrogen-π interactions with residues V173, E174 and K311. The compound bilirubin inhibited the P2X7R gated EB intake by cancer cells. Meanwhile, bilirubin was capable to inhibit the cell proliferation and migration of P2X7R expressed HT29 cells. The phosphorylation of mTOR, STAT3 and GSK3β were significantly decreased when bilirubin was present. Finally, in vivo experiment exhibited the anti-tumor effect of bilirubin in the MC38 bearing mice model, but did not show tissue damage in different organs. In conclusion, bilirubin was identified as a novel P2X7R antagonist and it may have potential for anti-cancer treatment, although various functions of the molecule should be considered.
Collapse
Affiliation(s)
- Yunshuo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjie He
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guanfei Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Dillard C, Borde C, Mohammad A, Puchois V, Jourdren L, Larsen AK, Sabbah M, Maréchal V, Escargueil AE, Pramil E. Expression Pattern of Purinergic Signaling Components in Colorectal Cancer Cells and Differential Cellular Outcomes Induced by Extracellular ATP and Adenosine. Int J Mol Sci 2021; 22:ijms222111472. [PMID: 34768902 PMCID: PMC8583864 DOI: 10.3390/ijms222111472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
The purine nucleotide adenosine triphosphate (ATP) is known for its fundamental role in cellular bioenergetics. However, in the last decades, different works have described emerging functions for ATP, such as that of a danger signaling molecule acting in the extracellular space on both tumor and stromal compartments. Beside its role in immune cell signaling, several studies have shown that high concentrations of extracellular ATP can directly or indirectly act on cancer cells. Accordingly, it has been reported that purinergic receptors are widely expressed in tumor cells. However, their expression pattern is often associated with contradictory cellular outcomes. In this work, we first investigated gene expression profiles through "RNA-Sequencing" (RNA Seq) technology in four colorectal cancer (CRC) cell lines (HT29, LS513, LS174T, HCT116). Our results demonstrate that CRC cells mostly express the A2B, P2X4, P2Y1, P2Y2 and P2Y11 purinergic receptors. Among these, the P2Y1 and P2Y2 coding genes are markedly overexpressed in all CRC cells compared to the HCEC-1CT normal-like colonic cells. We then explored the cellular outcomes induced by extracellular ATP and adenosine. Our results show that in terms of cell death induction extracellular ATP is consistently more active than adenosine against CRC, while neither compound affected normal-like colonic cell survival. Intriguingly, while for the P2Y2 receptor pharmacological inhibition completely abolished the rise in cytoplasmic Ca2+ observed after ATP exposure in all CRC cell lines, Ca2+ mobilization only impacted the cellular outcome for HT29. In contrast, non-selective phosphodiesterase inhibition completely abolished the effects of extracellular ATP on CRC cells, suggesting that cAMP and/or cGMP levels might determine cellular outcome. Altogether, our study provides novel insights into the characterization of purinergic signaling in CRC.
Collapse
Affiliation(s)
- Clémentine Dillard
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
| | - Chloé Borde
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
| | - Ammara Mohammad
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France; (A.M.); (L.J.)
| | - Virginie Puchois
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
- Alliance for Research in Cancerology—APREC, Tenon Hospital, F-75020 Paris, France
| | - Laurent Jourdren
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France; (A.M.); (L.J.)
| | - Annette K. Larsen
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
| | - Michèle Sabbah
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
| | - Vincent Maréchal
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
| | - Alexandre E. Escargueil
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
- Correspondence: ; Tel.: +33-1-49-28-46-44
| | - Elodie Pramil
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
- Alliance for Research in Cancerology—APREC, Tenon Hospital, F-75020 Paris, France
| |
Collapse
|
8
|
Reyna-Jeldes M, Díaz-Muñoz M, Madariaga JA, Coddou C, Vázquez-Cuevas FG. Autocrine and paracrine purinergic signaling in the most lethal types of cancer. Purinergic Signal 2021; 17:345-370. [PMID: 33982134 PMCID: PMC8410929 DOI: 10.1007/s11302-021-09785-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer comprises a collection of diseases that occur in almost any tissue and it is characterized by an abnormal and uncontrolled cell growth that results in tumor formation and propagation to other tissues, causing tissue and organ malfunction and death. Despite the undeniable improvement in cancer diagnostics and therapy, there is an urgent need for new therapeutic and preventive strategies with improved efficacy and fewer side effects. In this context, purinergic signaling emerges as an interesting candidate as a cancer biomarker or therapeutic target. There is abundant evidence that tumor cells have significant changes in the expression of purinergic receptors, which comprise the G-protein coupled P2Y and AdoR families of receptors and the ligand-gated ion channel P2X receptors. Tumor cells also exhibit changes in the expression of nucleotidases and other enzymes involved in nucleotide metabolism, and the concentrations of extracellular nucleotides are significantly higher than those observed in normal cells. In this review, we will focus on the potential role of purinergic signaling in the ten most lethal cancers (lung, breast, colorectal, liver, stomach, prostate, cervical, esophagus, pancreas, and ovary), which together are responsible for more than 5 million annual deaths.
Collapse
Affiliation(s)
- M Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - J A Madariaga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile
| | - C Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile.
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile.
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México.
| |
Collapse
|
9
|
P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021; 906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.
Collapse
|
10
|
The P2X7 Receptor in the Maintenance of Cancer Stem Cells, Chemoresistance and Metastasis. Stem Cell Rev Rep 2021; 16:288-300. [PMID: 31813120 DOI: 10.1007/s12015-019-09936-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis is the worst prognosis predictor in the clinical course of cancer development. Features of metastatic cancer cells include migratory ability, low degree of differentiation, self-renewal and proliferation potentials, as well as resistance to therapies. Metastatic cells do not present all of the necessary characteristics at once. Indeed, they have a unique phenotypic plasticity, allowing the acquisition of features that make them successful in all steps of metastasis. Cancer stem cells (CSC), the most undifferentiated cells in the tumor mass, display highest metastatic potential and resistance to radio- and chemotherapy. Growing tumors exhibit marked upregulation of P2X7 receptor expression and secrete ATP. Since the P2X7 receptor plays an important role in the maintenance of undifferentiated state of pluripotent cells, its importance on cell fate regulation in the tumor mass is suggested. Considering the extensive crosstalk between CSCs, epithelial-mesenchymal transition, drug resistance and metastasis, current knowledge implicating P2X7 receptor function in these phenomena and new avenues for therapeutic strategies to control metastasis are reviewed.
Collapse
|
11
|
Zhao Y, Chen X, Lyu S, Ding Z, Wu Y, Gao Y, Du J. Identification of novel P2X7R antagonists by using structure-based virtual screening and cell-based assays. Chem Biol Drug Des 2021; 98:192-205. [PMID: 33993620 DOI: 10.1111/cbdd.13867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
In the tumor microenvironment, inflammation and necrosis cause the accumulations of ATP extracellularly, and high concentrations of ATP can activate P2X7 receptors (P2X7R), which leads to the influx of Na+ , K+ , or Ca2+ into cells and trigger the downstream signaling pathways. P2X7R is a relatively unique ligand-gated ion channel, which is over-expressed in most tumor cells. The activated P2X7R facilitates the tumor growth, invasion, and metastasis. Inhibition of the P2X7R activation can be applied as a potential anti-tumor therapy strategy. There are currently no anti-tumor agents against P2X7R, though several P2X7R antagonists for indications such as anti-inflammatory and anti-depression were reported. In this study, we combined homology modeling (HM), virtual screening, and EB intake assay to characterize the structural features of P2X7R and identify several novel antagonists, which were chemically different from any other known P2X7R antagonists. The identified antagonists could effectively prevent the pore opening of P2X7R with IC50 values ranging from 29.14 to 35.34 μM. HM model showed the area between ATP-binding pocket, and allosteric sides were hydrophobic and suitable for small molecule interaction. Molecular docking indicated a universal binding mode, of which residues R294 and K311 were used as hydrogen bond donors to participate in antagonist interactions. The binding mode can potentially be utilized for inhibitor optimization for increased affinity, and the identified antagonists can be further tested for anti-cancer activity or may serve as chemical agents to study P2X7R related functions.
Collapse
Affiliation(s)
- Yunshuo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Sifan Lyu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhe Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Drill M, Jones NC, Hunn M, O'Brien TJ, Monif M. Antagonism of the ATP-gated P2X7 receptor: a potential therapeutic strategy for cancer. Purinergic Signal 2021; 17:215-227. [PMID: 33728582 PMCID: PMC8155177 DOI: 10.1007/s11302-021-09776-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on immune cells and is highly upregulated in a number of human cancers where it can play a trophic role in tumorigenesis. Activation of this receptor leads to the formation of a non-selective cation channel, which has been associated with several cellular functions mediated by the PI3K/Akt pathway and protein kinases. Due to its broad range of functions, the receptor represents a potential therapeutic target for a number of cancers. This review describes the range of mechanisms associated with P2X7R activation in cancer settings and highlights the potential of targeted inhibition of P2X7R as a therapy. It also describes in detail a number of key P2X7R antagonists currently in pre-clinical and clinical development, including oxidised ATP, Brilliant Blue G (BBG), KN-62, KN-04, A740003, A438079, GSK1482160, CE-224535, JNJ-54175446, JNJ-55308942, and AZ10606120. Lastly, it summarises the in vivo studies and clinical trials associated with the use and development of these P2X7R antagonists in different disease contexts.
Collapse
Affiliation(s)
- Matthew Drill
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Melbourne University, Parkville, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Martin Hunn
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Department of Physiology, Melbourne University, Parkville, VIC, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia.
- Department of Neurology, Melbourne Health, Parkville, VIC, Australia.
| |
Collapse
|
13
|
La Camera G, Gelsomino L, Caruso A, Panza S, Barone I, Bonofiglio D, Andò S, Giordano C, Catalano S. The Emerging Role of Extracellular Vesicles in Endocrine Resistant Breast Cancer. Cancers (Basel) 2021; 13:cancers13051160. [PMID: 33800302 PMCID: PMC7962645 DOI: 10.3390/cancers13051160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Two-thirds of breast cancer patients present an estrogen receptor–positive tumor at diagnosis, and the main treatment options for these patients are endocrine therapies such as aromatase inhibitors, selective modulators of estrogen receptor activity or selective estrogen receptor down-regulators. Although endocrine therapies have high efficacy in early-stage breast cancers, the failure of the therapeutic response to these hormonal treatments remains the major clinical challenge. Recently, extracellular vesicles (EVs) have emerged as a novel mechanism of drug resistance. Indeed, EVs isolated from tumor and stromal cells act as key messengers in intercellular communications able to propagate traits of resistance and/or educate the microenvironment to sustain a breast cancer resistant phenotype. Understanding the EV-mediated molecular mechanisms involved in hormonal resistance can provide the rationale for novel and effective treatment modalities and allow for the identification of potential biomarkers to monitor therapy response in ER-positive breast cancer patients. Abstract Breast cancer is the most common solid malignancy diagnosed in females worldwide, and approximately 70% of these tumors express estrogen receptor α (ERα), the main biomarker of endocrine therapy. Unfortunately, despite the use of long-term anti-hormone adjuvant treatment, which has significantly reduced patient mortality, resistance to the endocrine treatments often develops, leading to disease recurrence and limiting clinical benefits. Emerging evidence indicates that extracellular vesicles (EVs), nanosized particles that are released by all cell types and responsible for local and systemic intercellular communications, might represent a newly identified mechanism underlying endocrine resistance. Unraveling the role of EVs, released by transformed cells during the tumor evolution under endocrine therapy, is still an open question in the cancer research area and the molecular mechanisms involved should be better defined to discover alternative therapeutic approaches to overcome resistance. In this review, we will provide an overview of recent findings on the involvement of EVs in sustaining hormonal resistance in breast cancer and discuss opportunities for their potential use as biomarkers to monitor the therapeutic response and disease progression.
Collapse
Affiliation(s)
- Giusi La Camera
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| |
Collapse
|
14
|
Zhu X, Li Q, Song W, Peng X, Zhao R. P2X7 receptor: a critical regulator and potential target for breast cancer. J Mol Med (Berl) 2021; 99:349-358. [PMID: 33486566 DOI: 10.1007/s00109-021-02041-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is currently the most common cancer and the leading cause of cancer death among women worldwide. Advanced breast cancer is prone to metastasis, and there is currently no drug to cure metastatic breast cancer. The purinergic ligand-gated ion channel 7 receptor is an ATP-gated nonselective cation channel receptor and is involved in signal transduction, growth regulation, cytokine secretion, and tumor cell development. Recent studies have shown that upregulation of the P2X7 receptor in breast cancer can mediate AKT signaling pathways, Ca2 þ-activated SK3 potassium channels, and EMT and regulate the secretion of small extracellular vesicles to promote breast cancer invasion and migration, which are affected by factors such as hypoxia and ATP. In addition, studies have shown that microRNAs can bind to the 3' untranslated region of the P2X7 receptor, which affects the occurrence and development of breast cancer by upregulating and downregulating P2X7 receptor expression. Studies have shown that new P2X7 receptor inhibitors, such as emodin and Uncaria tomentosa, can inhibit P2X7 receptor-mediated breast cancer invasion and are expected to be used clinically. This article reviews the research progress on the relationship between the P2X7 receptor and breast cancer to provide new ideas and a basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Wei Song
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
15
|
Abstract
The P2X7 receptor for extracellular ATP is a well-established mediator of tumoral development and progression both in solid cancers and hematological malignancies. The human P2X7 gene is highly polymorphic, and several splice variants of the receptor have been identified in time. P2X7 single-nucleotide polymorphisms (SNPs) have been broadly analyzed by studies relating them to pathologies as different as infectious, inflammatory, nervous, and bone diseases, among which cancer is included. Moreover, in the last years, an increasing number of reports concentrated on P2X7 splice variants’ different roles and their implications in pathological conditions, including oncogenesis. Here, we give an overview of established and recent literature demonstrating a role for human P2X7 gene products in oncological conditions, mainly focusing on current data emerging on P2X7 isoform B and nfP2X7. We explored the role of these and other genetic variants of P2X7 in cancer insurgence, dissemination, and progression, as well as the effect of chemotherapy on isoforms expression. The described literature strongly suggests that P2X7 variants are potential new biomarkers and therapeutical targets in oncological conditions and that their study in carcinogenesis deserves to be further pursued.
Collapse
|
16
|
Dutot M, Olivier E, Fouyet S, Magny R, Hammad K, Roulland E, Rat P, Fagon R. In Vitro Chemopreventive Potential of Phlorotannins-Rich Extract from Brown Algae by Inhibition of Benzo[a]pyrene-Induced P2X7 Activation and Toxic Effects. Mar Drugs 2021; 19:34. [PMID: 33466689 PMCID: PMC7828825 DOI: 10.3390/md19010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
Phlorotannins are polyphenols occurring exclusively in some species of brown algae, known for numerous biological activities, e.g., antioxidant, antiproliferative, antidiabetic, and antiallergic properties. Their effects on the response of human lung cells to benzo[a]pyrene (B[a]P) has not been characterized. Our objective was to in vitro evaluate the effects of a phlorotannin-rich extract obtained from the brown algae Ascophyllum nodosum and Fucus vesiculosus on B[a]P cytotoxic effects. The A549 cell line was incubated with B[a]P for 48 and 72 h in the presence or absence of the brown algae extract. Cytochrome P450 activity, activation of P2X7 receptor, F-actin disorganization, and loss of E-cadherin expression were assessed using microplate cytometry and fluorescence microscopy. Relative to control, incubation with the brown algae extract was associated with lower B[a]P-induced CYP1 activity, lower P2X7 receptor activation, and lower reactive oxygen species production. The brown algae extract inhibited the alterations of F-actin arrangement and the downregulation of E-cadherin expression. We identified a phlorotannins-rich extract that could be deeper investigated as a cancer chemopreventive agent to block B[a]P-mediated carcinogenesis.
Collapse
Affiliation(s)
- Mélody Dutot
- Recherche & Développement, Yslab, 29000 Quimper, France;
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Elodie Olivier
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Sophie Fouyet
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Romain Magny
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Karim Hammad
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Emmanuel Roulland
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Patrice Rat
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Roxane Fagon
- Recherche & Développement, Yslab, 29000 Quimper, France;
| |
Collapse
|
17
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
18
|
Feng LL, Cai YQ, Zhu MC, Xing LJ, Wang X. The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Cancer Cell Int 2020; 20:110. [PMID: 32280302 PMCID: PMC7137337 DOI: 10.1186/s12935-020-01195-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine triphosphate (eATP) and its main metabolite adenosine (ADO) constitute an intrinsic part of immunological network in tumor immunity. The concentrations of eATP and ADO in tumor microenvironment (TME) are controlled by ectonucleotidases, such as CD39 and CD73, the major ecto-enzymes expressed on immune cells, endothelial cells and cancer cells. Once accumulated in TME, eATP boosts antitumor immune responses, while ADO attenuates immunity against tumors. eATP and ADO, like yin and yang, represent two opposite aspects from immune-activating to immune-suppressive signals. Here we reviewed the functions of eATP and ADO in tumor immunity and attempt to block eATP hydrolysis, ADO formation and their contradictory effects in tumor models, allowing the induction of effective anti-tumor immune responses in TME. These attempts documented that therapeutic approaches targeting eATP/ADO metabolism and function may be effective methods in cancer therapy.
Collapse
Affiliation(s)
- Li-Li Feng
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Yi-Qing Cai
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Ming-Chen Zhu
- 5Department of Clinical Laboratory, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing, 210009 Jiangsu China
| | - Li-Jie Xing
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China
| | - Xin Wang
- 1Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, Jinan, 250021 Shandong China.,2School of Medicine, Shandong University, Jinan, 250012 Shandong China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China.,National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| |
Collapse
|
19
|
Hevia MJ, Castro P, Pinto K, Reyna-Jeldes M, Rodríguez-Tirado F, Robles-Planells C, Ramírez-Rivera S, Madariaga JA, Gutierrez F, López J, Barra M, De la Fuente-Ortega E, Bernal G, Coddou C. Differential Effects of Purinergic Signaling in Gastric Cancer-Derived Cells Through P2Y and P2X Receptors. Front Pharmacol 2019; 10:612. [PMID: 31249523 PMCID: PMC6584115 DOI: 10.3389/fphar.2019.00612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/15/2019] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer (GC) is the one of the most prevalent cancers and one of the leading causes of cancer-induced deaths. Previously, we found that the expression of purinergic P2Y2 receptor (P2Y2R) is increased in GC samples as compared to adjacent healthy mucosa taken from GC-diagnosed patients. In this work, we studied in detail purinergic signaling in the gastric adenocarcinoma-derived cell lines: AGS, MKN-45, and MKN-74, and compared them to a nontumoral epithelial cell line: GES-1. In GC-derived cells, we detected the expression of several purinergic receptors, and found important differences as compared to GES-1 cells. Functional studies revealed a strong contribution of P2Y2Rs in intracellular calcium increases, elicited by adenosine-triphosphate (ATP), uridine-triphosphate (UTP), and the P2Y2R agonist MRS2768. Responses were preserved in the absence of extracellular calcium and inhibited by P2Y2R antagonists. In GES-1 cells, ATP and UTP induced similar responses and the combination of P2X and P2Y receptor antagonists was able to block them. Proliferation studies showed that ATP regulates AGS and MKN-74 cells in a biphasic manner, increasing cell proliferation at 10–100 μM, but inhibiting at 300 μM ATP. On the other hand, 1–300 μM UTP, a P2Y2R agonist, increased concentration-dependent cell proliferation. The effects of UTP and ATP were prevented by both wide-range and specific purinergic antagonists. In contrast, in GES-1 cells ATP only decreased cell proliferation in a concentration-dependent manner, and UTP had no effect. Notably, the isolated application of purinergic antagonists was sufficient to change the basal proliferation of AGS cells, indicating that nucleotides released by the cells can act as paracrine/autocrine signals. Finally, in tumor-derived biopsies, we found an increase of P2Y2R and a decrease in P2X4R expression; however, we found high variability between seven different biopsies and their respective adjacent healthy gastric mucosa. Even so, we found a correlation between the expression levels of P2Y2R and P2X4R and survival rates of GC patients. Taken together, these results demonstrate the involvement of different purinergic receptors and signaling in GC, and the pattern of expression changes in tumoral cells, and this change likely directs ATP and nucleotide signaling from antiproliferative effects in healthy tissues to proliferative effects in cancer.
Collapse
Affiliation(s)
- María José Hevia
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Patricio Castro
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Katherine Pinto
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | | | | | - Sebastián Ramírez-Rivera
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Juan Andrés Madariaga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | | | - Javier López
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | - Marcelo Barra
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Giuliano Bernal
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
20
|
Benzaquen J, Heeke S, Janho Dit Hreich S, Douguet L, Marquette CH, Hofman P, Vouret-Craviari V. Alternative splicing of P2RX7 pre-messenger RNA in health and diseases: Myth or reality? Biomed J 2019; 42:141-154. [PMID: 31466708 PMCID: PMC6717933 DOI: 10.1016/j.bj.2019.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) tremendously increases the use of genetic information by generating protein isoforms that differ in protein-protein interactions, catalytic activity and/or subcellular localization. This review is not dedicated to AS in general, but rather we focus our attention on AS of P2RX7 pre-mRNA. Whereas P2RX7 mRNA is expressed by virtually all eukaryotic mammalian cells, the expression of this channel receptor is restrained to certain cells. When expressed at the cell membrane, P2RX7 controls downstream events including release of inflammatory molecules, phagocytosis, cell proliferation and death and metabolic events. Therefore, P2RX7 is an important actor of health and diseases. In this review, we summarize the general mechanisms leading to AS. Further, we recapitulate our current knowledge concerning the functional regions in P2RX7, identified at the genetic or exonic levels, and how AS may affect the expression of these regions. Finally, the potential of P2RX7 splice variants to control the fate of cancer cells is discussed.
Collapse
Affiliation(s)
- Jonathan Benzaquen
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France
| | - Simon Heeke
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | | | | - Charles Hugo Marquette
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France; University of Cote d'Azur, CHU de Nice, Department of Pulmonary Medicine, FHU OncoAge, Nice, France
| | - Paul Hofman
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | |
Collapse
|
21
|
Scarpellino G, Genova T, Munaron L. Purinergic P2X7 Receptor: A Cation Channel Sensitive to Tumor Microenvironment. Recent Pat Anticancer Drug Discov 2019; 14:32-38. [DOI: 10.2174/1574892814666190116122256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Background: Purinergic signalling is involved in several physiological and pathophysiological processes. P2X7 Receptor (P2X7R) is a calcium-permeable ion channel that is gaining interest as a potential therapeutic target for the treatment of different diseases including inflammation, pain, psychiatric disorders and cancer. P2X7R is ubiquitously expressed and sensitive to high ATP levels, usually found in tumor microenvironment. P2X7R regulates several cell functions, from migration to cell death, but its selective contribution to tumor progression remains controversial.Objective:Current review was conducted to check involvement of P2X7R use in cancer treatment.Methods:We review the most recent patents focused on the use of P2X7R in the treatment of cancer.Results:P2X7R is an intriguing purinergic receptor that plays different roles in tumor progression.Conclusion:Powerful strategies able to selectively interfere with its expression and function should reveal helpful in the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
22
|
Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 2018; 18:601-618. [PMID: 30006588 DOI: 10.1038/s41568-018-0037-0] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modulation of the biochemical composition of the tumour microenvironment is a new frontier of cancer therapy. Several immunosuppressive mechanisms operate in the milieu of most tumours, a condition that makes antitumour immunity ineffective. One of the most potent immunosuppressive factors is adenosine, which is generated in the tumour microenvironment owing to degradation of extracellular ATP. Accruing evidence over the past few years shows that ATP is one of the major biochemical constituents of the tumour microenvironment, where it acts at P2 purinergic receptors expressed on both tumour and host cells. Stimulation of P2 receptors has different effects depending on the extracellular ATP concentration, the P2 receptor subtype engaged and the target cell type. Among P2 receptors, the P2X purinergic receptor 7 (P2X7R) subtype appears to be a main player in host-tumour cell interactions. Preclinical studies in several tumour models have shown that P2X7R targeting is potentially a very effective anticancer treatment, and many pharmaceutical companies have now developed potent and selective small molecule inhibitors of P2X7R. In this Review, we report on the multiple mechanisms by which extracellular ATP shapes the tumour microenvironment and how its stimulation of host and tumour cell P2 receptors contributes to determining tumour fate.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
ATP in the tumour microenvironment drives expression of nfP2X 7, a key mediator of cancer cell survival. Oncogene 2018; 38:194-208. [PMID: 30087439 PMCID: PMC6328436 DOI: 10.1038/s41388-018-0426-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/29/2022]
Abstract
The ATP-gated receptor P2X7 is expressed in multiple malignant tumours including neuroblastoma, melanoma, prostate, lung and breast. P2X7 has a significant role in mediating diverse cell responses, which upon dysregulation are associated with tumour initiation and development. The rapid, ATP-mediated activation of P2X7 induces a fast-inward cation current in cells. However, prolonged ATP-mediated activation of P2X7 leads to formation of a pore that increases membrane permeability and eventually causes cell death. This presents a potential paradox, as the tumour microenvironment contains extracellular ATP at levels sufficient to activate the P2X7 pore and trigger cell death. However, P2X7 expression is associated with enhanced cancer cell survival, proliferation and metastatic potential. At least one distinct conformational form of P2X7, termed non-pore functional P2X7 (nfP2X7), has been described, which is not able to form a functional pore. We demonstrate for the first time in this study that exposure to a high ATP concentration, equivalent to those measured in the tumour microenvironment, drives nfP2X7 expression and also that nfP2X7 is essential for tumour cell survival. We show that monoclonal antibodies raised against a P2X7 amino acid sequence (200–216), whose conformation is distinct from that of wild-type (WT) P2X7, bind specifically to nfP2X7 expressed on the surface of tumour cells. We also show that nfP2X7 is broadly expressed in patient-derived tumour sections from a wide range of cancers. Therefore, antibodies raised against E200 provide tools that can differentiate between forms of the P2X7 receptor that have a key role in cancer.
Collapse
|
24
|
Salvestrini V, Orecchioni S, Talarico G, Reggiani F, Mazzetti C, Bertolini F, Orioli E, Adinolfi E, Di Virgilio F, Pezzi A, Cavo M, Lemoli RM, Curti A. Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells. Oncotarget 2018; 8:5895-5908. [PMID: 27980223 PMCID: PMC5351599 DOI: 10.18632/oncotarget.13927] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/25/2016] [Indexed: 11/25/2022] Open
Abstract
Recent studies have shown that high ATP levels exhibit direct cytotoxic effects on several cancer cells types. Among the receptors engaged by ATP, P2X7R is the most consistently expressed by tumors. P2X7R is an ATP-gated ion channel that could drive the opening of a non-selective pore, triggering cell-death signal. We previously demonstrated that acute myeloid leukemia (AML) cells express high level of P2X7R. Here, we show that P2X7R activation with high dose ATP induces AML blast cells apoptosis. Moreover, P2X7R is also expressed on leukemic stem/progenitor cells (LSCs) which are sensitive to ATP-mediated cytotoxicity. Conversely, this cytotoxic effect was not observed on normal hematopoietic stem/progenitor cells (HSCs). Notably, the antileukemic activity of ATP was also observed in presence of bone marrow stromal cells and its addition to the culture medium enhanced cytosine arabinoside cytotoxicity despite stroma-induced chemoresistance. Xenotransplant experiments confirmed ATP antineoplastic activity in vivo.Overall, our results demonstrate that P2X7R stimulation by ATP induced a therapeutic response in AML at the LSC level while the normal stem cell compartment was not affected. These results provide evidence that ATP would be promising for developing innovative therapy for AML.
Collapse
Affiliation(s)
- Valentina Salvestrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | | | | | - Cristina Mazzetti
- Department Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Annalisa Pezzi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberto M Lemoli
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Gilbert SM, Gidley Baird A, Glazer S, Barden JA, Glazer A, Teh LC, King J. A phase I clinical trial demonstrates that nfP2X 7 -targeted antibodies provide a novel, safe and tolerable topical therapy for basal cell carcinoma. Br J Dermatol 2017; 177:117-124. [PMID: 28150889 DOI: 10.1111/bjd.15364] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Expression of P2X7 , an ATP-gated calcium channel, increases cancer cell proliferation and invasiveness. A variant of P2X7 (termed nfP2X7 ), in which a normally hidden epitope (E200) is exposed for antibody binding, is observed in a variety of different cancers. OBJECTIVES To investigate the safety, tolerability and pharmacokinetics and assess indicative efficacy of a novel antibody ointment as a therapeutic for basal cell carcinoma (BCC). METHODS An open-label, phase I clinical trial was undertaken at three dermatology clinics to evaluate the safety and tolerability of topical administration of an ointment containing 10% sheep polyclonal anti-nfP2X7 antibodies (BIL010t) to primary BCC lesions twice daily for 28 days. Twenty-one patients with primary BCC lesions at least 0·5 cm2 in area and less than 2·0 cm in diameter were enrolled. The primary end points were safety, tolerability and pharmacokinetics. Change in lesion size after treatment was determined and histology was performed on pretreatment and end-of-treatment (EOT) biopsies. RESULTS Compliance was very high, with treatment being well tolerated. The most common adverse events were treatment site erythema, pruritus, dryness and pain. There was no evidence of systemic penetration of the sheep antibody. Lesions were measured prior to and after 28 days of treatment, with 65% of patients showing a reduction in lesion area, 20% showing no change and 15% showing an increase. Histopathology of post-treatment excision of lesion sites showed eight patients with stable disease, nine with partial response and three with complete response. CONCLUSIONS Antibodies against nfP2X7 (BIL010t) provide a novel, safe and well-tolerated treatment for BCC.
Collapse
Affiliation(s)
- S M Gilbert
- Babraham Research Campus, Biosceptre (U.K.) Limited, Cambridge, U.K
| | - A Gidley Baird
- Biosceptre (Australia) Pty Ltd., 11 Julius Avenue, North Ryde, NSW, 2113, Australia
| | - S Glazer
- Glazer Dermatology, Buffalo Grove, IL, U.S.A
| | - J A Barden
- Biosceptre (Australia) Pty Ltd., 11 Julius Avenue, North Ryde, NSW, 2113, Australia
| | - A Glazer
- Glazer Dermatology, Buffalo Grove, IL, U.S.A
| | - L C Teh
- Biosceptre (Australia) Pty Ltd., 11 Julius Avenue, North Ryde, NSW, 2113, Australia
| | - J King
- Biosceptre (Australia) Pty Ltd., 11 Julius Avenue, North Ryde, NSW, 2113, Australia
| |
Collapse
|
26
|
Nie J, Huang GL, Deng SZ, Bao Y, Liu YW, Feng ZP, Wang CH, Chen M, Qi ST, Pan J. The purine receptor P2X7R regulates the release of pro-inflammatory cytokines in human craniopharyngioma. Endocr Relat Cancer 2017; 24:287-296. [PMID: 28389503 PMCID: PMC5457505 DOI: 10.1530/erc-16-0338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022]
Abstract
Craniopharyngiomas (CPs) are usually benign, non-metastasizing embryonic malformations originating from the sellar area. They are, however, locally invasive and generate adherent interfaces with the surrounding brain parenchyma. Previous studies have shown the tumor microenvironment is characterized by a local abundance of adenosine triphosphate (ATP), infiltration of leukocytes and elevated levels of pro-inflammatory cytokines that are thought to be responsible, at least in part, for the local invasion. Here, we examine whether ATP, via the P2X7R, participates in the regulation of cytokine expression in CPs. The expression of P2X7R and pro-inflammatory cytokines were measured at the RNA and protein levels both in tumor samples and in primary cultured tumor cells. Furthermore, cytokine modulation was measured after manipulating P2X7R in cultured tumor cells by siRNA-mediated knockdown, as well as pharmacologically by using selective agonists and antagonists. The following results were observed. A number of cytokines, in particular IL-6, IL-8 and MCP-1, were elevated in patient plasma, tumor tissue and cultured tumor cells. P2X7R was expressed in tumor tissue as well as in cultured tumor cells. RNA expression as measured in 48 resected tumors was positively correlated with the RNA levels of IL-6, IL-8 and MCP-1 in tumors. Furthermore, knockdown of P2X7R in primary tumor cultures reduced, and stimulation of P2XR7 by a specific agonist enhanced the expression of these cytokines. This latter stimulation involved a Ca2+-dependent mechanism and could be counteracted by the addition of an antagonist. In conclusion, the results suggest that P2X7R may promote IL-6, IL-8 and MCP-1 production and secretion and contribute to the invasion and adhesion of CPs to the surrounding tissue.
Collapse
Affiliation(s)
- Jing Nie
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Guang-Long Huang
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Sheng-Ze Deng
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Bao
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya-Wei Liu
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Zhan-Peng Feng
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao-Hu Wang
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Chen
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Song-Tao Qi
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Jun Pan
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Tanamachi K, Nishino K, Mori N, Suzuki T, Tanuma SI, Abe R, Tsukimoto M. Radiosensitizing Effect of P2X7 Receptor Antagonist on Melanoma in Vitro and in Vivo. Biol Pharm Bull 2017; 40:878-887. [DOI: 10.1248/bpb.b17-00083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keisuke Tanamachi
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Keisuke Nishino
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Natsuki Mori
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Toshihiro Suzuki
- Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Sei-ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
28
|
Santos KF, Gutierres JM, Pillat MM, Rissi VB, Santos Araújo MDCD, Bertol G, Gonçalves PBD, Schetinger MRC, Morsch VM. Uncaria tomentosa extract alters the catabolism of adenine nucleotides and expression of ecto-5'-nucleotidase/CD73 and P2X7 and A1 receptors in the MDA-MB-231 cell line. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:108-116. [PMID: 27590731 DOI: 10.1016/j.jep.2016.08.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
ETHOPHARMACOLOGICAL RELEVANCE Uncaria tomentosa (Willd.) DC. (Rubiaceae) (Ut), also known as cat's claw, is a woody liana widely spread throughout the Amazon rainforest of Central and South America, containing many chemical constituents such as oxindole alkaloids, which are responsible for various biological activities. Since ancient times, the indigenous people of Peru have used it as a bark infusion for the treatment of a wide range of health problems gastric ulcers, arthritis and rheumatism. Recently, Ut is distributed worldwide and used as an immunomodulatory and anti-inflammatory herbal remedy. Additionally, U. tomentosa also has antitumural activity. However, little is known about the action of U. tomentosa on the purinergic system mechanisms, which is involved in tumor progression. AIM OF THE STUDY Considering the pharmacological properties of U. tomentosa, we sought to evaluate the hydroalcoholic extract U tomentosa is able to influence the purinergic system in breast cancer cells, MDA-MB-231. Through the activity and expression of ectonucleotidases (NTPDase - CD39; Ecto-5'-nucleotidase - CD73) and purinergic repceptores (P2X7 and A1). MATERIALS AND METHODS A hydroalcoholic extract was prepared in two concentrations, 250 and 500μg/mL. (Ut250; Ut500). The effect of these concentrations on the activity and expression of ectonucleotidases, as well as on the density of purinergic receptors were investigated in MDA-MB-231 breast cancer cells. Cells were treated with the hydroalcoholic extract of Uncaria tomentosa and/or doxorubicin (Doxo 1μM; Ut250+Doxo; Ut500+Doxo) for 24h. RESULTS Although the results were not significant for the hydrolysis of the ATP, they presented an increase in the ADP hydrolysis in the Ut500+Doxo group when compared to the control group. Additionally, the activity of 5'-nucleotidase was inhibited in all groups when compared with the untreated group of cells. Inhibition of the enzyme was more evident in groups with U. tomentosa per se. The expression of CD39 was increased in the Ut250 and Ut250+Doxo groups when compared to the control group. No changes were found in the CD73 expression. Furthermore, a reduction in the density of the P2X7 receptor in all treated groups was detected. On the other hand, the density of the A1 receptor increased in all groups compared to the control group, with the exception of the Ut500+Doxo group. CONCLUSION Therefore, we conclude that hydroalcoholic extract of U. tomentosa may be responsible for the reduction of adenosine levels in the extracellular medium, which accelerates tumor progression. Interestingly, the dysregulation of A1 and P2X7 receptors in the MDA-MB-231 cells exacerbate the proliferation of this cells and U. tomentosa treatment may be stimulate the antitumor activity of adenosine A1 receptor and control the P2X7 effects. Our study demonstrates the significant participation of purinergic pathway in the regulation of MDA-MB-231 progression; additionally, U. tomentosa treatment alone or combined with chemotherapy may favor the action of doxorubicin.
Collapse
Affiliation(s)
- Karen Freitas Santos
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria (UFSM), Avenida Roraima, Prédio 18, CEP 97105-900 Santa Maria, RS, Brazil; Department of Health Sciences, Regional Integrada University (URI), CEP 984000-000 Frederico Westphalen, RS, Brazil.
| | - Jessié Martins Gutierres
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria (UFSM), Avenida Roraima, Prédio 18, CEP 97105-900 Santa Maria, RS, Brazil
| | - Micheli Mainardi Pillat
- Chemistry Institute, University of São Paulo (USP), Avenida Professor Lineu Prestes 748, CEP 05508-900 São Paulo, SP, Brazil
| | - Vitor Braga Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Avenida Roraima, Prédio 97, CEP 97105-900 Santa Maria, RS, Brazil
| | | | | | - Paulo Bayard Dias Gonçalves
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Avenida Roraima, Prédio 97, CEP 97105-900 Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria (UFSM), Avenida Roraima, Prédio 18, CEP 97105-900 Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria (UFSM), Avenida Roraima, Prédio 18, CEP 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
29
|
Hu J, Ye F, Cui M, Lee P, Wei C, Hao Y, Wang X, Wang Y, Lu Z, Galsky M, McBride R, Wang L, Wang D, Cordon-Cardo C, Wang C, Zhang DY. Protein Profiling of Bladder Urothelial Cell Carcinoma. PLoS One 2016; 11:e0161922. [PMID: 27626805 PMCID: PMC5023150 DOI: 10.1371/journal.pone.0161922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
This study aimed to detect protein changes that can assist to understand the underlying biology of bladder cancer. The data showed forty five proteins were found to be differentially expressed comparing tumors vs non-tumor tissues, of which EGFR and cdc2p34 were correlated with muscle invasion and histological grade. Ten proteins (ß-catenin, HSP70, autotaxin, Notch4, PSTPIP1, DPYD, ODC, cyclinB1, calretinin and EPO) were able to classify muscle invasive BCa (MIBC) into 2 distinct groups, with group 2 associated with poorer survival. Finally, 3 proteins (P2X7, cdc25B and TFIIH p89) were independent factors for favorable overall survival.
Collapse
Affiliation(s)
- Jinghai Hu
- Department of Urology, The First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Fei Ye
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Miao Cui
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Peng Lee
- Departments of Pathology, New York University, School of Medicine, New York, NY, 10010, United States of America
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY, 10029, United States of America
| | - Yuanyuan Hao
- Department of Urology, The First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoqing Wang
- Department of Urology, The First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Yanbo Wang
- Department of Urology, The First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Zhihua Lu
- Department of Urology, The First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Matthew Galsky
- Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, NY, 10029, United States of America
| | - Russell McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Li Wang
- Departments of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029, United States of America
| | - Dongwen Wang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030002, China
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Chunxi Wang
- Department of Urology, The First Hospital, Jilin University, Changchun, Jilin, 130021, China
- * E-mail: (DYZ); (CXW)
| | - David Y. Zhang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
- * E-mail: (DYZ); (CXW)
| |
Collapse
|
30
|
Liu Z, Liu Y, Xu L, An H, Chang Y, Yang Y, Zhang W, Xu J. P2X7 receptor predicts postoperative cancer-specific survival of patients with clear-cell renal cell carcinoma. Cancer Sci 2015; 106:1224-31. [PMID: 26179886 PMCID: PMC4582993 DOI: 10.1111/cas.12736] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/15/2015] [Accepted: 07/06/2015] [Indexed: 12/23/2022] Open
Abstract
The P2X7 receptor, an ATP-gated plasma membrane ion channel, is involved in inflammation, apoptosis and cell proliferation, and thereby plays a crucial role during oncogenic transformation in various malignancies. This study aims to evaluate the impact of P2X7 receptor expression on postoperative cancer-specific survival of patients with clear-cell renal cell carcinoma (ccRCC). A total of 273 patients with ccRCC undergoing nephrectomy at a single institution were retrospectively enrolled in this study, among which 86 patients died of this disease and six patients died of other causes. Clinicopathologic features and cancer-specific survival (CSS) were recorded. P2X7 expression was assessed by immunohistochemistry in clinical specimens. Kaplan–Meier method with log rank test was performed to compare survival curves. Cox regression models were used to evaluate the prognostic values of variables on CSS. Concordance index was calculated to assess prognostic accuracy of prognostic models. Median follow-up period was 90 months (range, 11–120 months). Intratumoral P2X7 expression was significantly lower than peritumoral tissues (P < 0.001). Moreover, high intratumoral P2X7 expression, which was significantly associated with shorten CSS (P < 0.001), high TNM stage (P = 0.038), Fuhrman grade (P = 0.035), SSIGN (stage, size, grade, and necrosis) score (P = 0.021) and University of California Integrated Staging System (UISS) score (P = 0.007), was indicated to be an independent prognostic factor for CSS (hazard ratio [HR], 1.693; P = 0.034). The prognostic accuracy of TNM stage, UISS and SSIGN scoring models was improved when intratumoral P2X7 expression was added. Intratumoral P2X7 expression is a potential independent adverse prognostic indicator for postoperative CSS of patients with ccRCC.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yidong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huimin An
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanfeng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
31
|
BOLDRINI LAURA, GIORDANO MIRELLA, ALÌ GRETA, MELFI FRANCA, ROMANO GAETANO, LUCCHI MARCO, FONTANINI GABRIELLA. P2X7 mRNA expression in non-small cell lung cancer: MicroRNA regulation and prognostic value. Oncol Lett 2015; 9:449-453. [PMID: 25436007 PMCID: PMC4247004 DOI: 10.3892/ol.2014.2620] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/11/2014] [Indexed: 12/21/2022] Open
Abstract
The human P2X7 receptor is significant and exhibits several functions in neoplasia. At present, little is known with regard to its regulation. P2X7 expression may be regulated post-transcriptionally and putative microRNA (miRNA) binding sites are considered to be involved. The aim of this study was to determine whether miRNAs (miR-21, let-7 g and miR-205) regulate P2X7 mRNA stability. In addition, the impact of P2X7 expression in patients with non-small cell lung cancer (NSCLC) was investigated. P2X7 mRNA and mature Let-7 g, miR-21, and miR-205 expression levels were quantified in 96 NSCLC cases using quantitative reverse transcription polymerase chain reaction. In all samples, epidermal growth factor receptor and K-Ras mutational analysis was also performed. Samples with low P2X7 expression were found to exhibit a higher fold change in miR-21 expression when compared with samples exhibiting high P2X7 expression. Significantly higher miR-21 expression was observed in the tumors of NSCLC patients with a K-Ras mutation when compared with patients who had K-Ras wild-type tumors (P=0.003). Additionally, to evaluate the association between P2X7 expression and prognosis in NSCLC patients, survival analysis was performed using the Kaplan-Meier method. A significant difference in the progression-free survival and overall survival in the NSCLC patients with high P2X7 expression was identified, when compared with that of patients with low expression (P=0.03 and P=0.02, respetively). Therefore, we hypothesized that high levels of miR-21 expression in NSCLC patients with K-Ras mutations may be regulated by a complex circuit, including P2X7 downregulation and together these processes may promote tumor progression.
Collapse
Affiliation(s)
- LAURA BOLDRINI
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| | - MIRELLA GIORDANO
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| | - GRETA ALÌ
- Unit of Pathological Anatomy III, University Hospital of Pisa, Pisa 56126, Italy
| | - FRANCA MELFI
- Unit of Thoracic Surgery, University Hospital of Pisa, Pisa 56126, Italy
| | - GAETANO ROMANO
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| | - MARCO LUCCHI
- Unit of Thoracic Surgery, University Hospital of Pisa, Pisa 56126, Italy
| | - GABRIELLA FONTANINI
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
32
|
Qiu Y, Li WH, Zhang HQ, Liu Y, Tian XX, Fang WG. P2X7 mediates ATP-driven invasiveness in prostate cancer cells. PLoS One 2014; 9:e114371. [PMID: 25486274 PMCID: PMC4259308 DOI: 10.1371/journal.pone.0114371] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022] Open
Abstract
The ATP-gated P2X7 has been shown to play an important role in invasiveness and metastasis of some tumors. However, the possible links and underlying mechanisms between P2X7 and prostate cancer have not been elucidated. Here, we demonstrated that P2X7 was highly expressed in some prostate cancer cells. Down-regulation of P2X7 by siRNA significantly attenuated ATP- or BzATP-driven migration and invasion of prostate cancer cells in vitro, and inhibited tumor invasiveness and metastases in nude mice. In addition, silencing of P2X7 remarkably attenuated ATP- or BzATP- driven expression changes of EMT/invasion-related genes Snail, E-cadherin, Claudin-1, IL-8 and MMP-3, and weakened the phosphorylation of PI3K/AKT and ERK1/2 in vitro. Similar effects were observed in nude mice. These data indicate that P2X7 stimulates cell invasion and metastasis in prostate cancer cells via some EMT/invasion-related genes, as well as PI3K/AKT and ERK1/2 signaling pathways. P2X7 could be a promising therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Ying Qiu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wei-hua Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hong-quan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xin-Xia Tian
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- * E-mail: (WGF); (XXT)
| | - Wei-Gang Fang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- * E-mail: (WGF); (XXT)
| |
Collapse
|
33
|
Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang LH. Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2584-602. [PMID: 25450340 DOI: 10.1016/j.bbamem.2014.10.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 01/05/2023]
Abstract
P2X7 is an intriguing ionotropic receptor for which the activation by extracellular ATP induces rapid inward cationic currents and intracellular signalling pathways associated with numerous physiological processes such as the induction of the inflammatory cascade, the survival and proliferation of cells. In contrast, long-term stimulation of P2X7 is generally associated with membrane permeabilisation and cell death. Recently, P2X7 has attracted great attention in the cancer field, and particularly in the neoplastic transformation and the progression of solid tumours. A growing number of studies were published; however they often appeared contradictory in their results and conclusions. As such, the involvement of P2X7 in the oncogenic process remains unclear so far. The present review aims to discuss the current knowledge and hypotheses on the involvement of the P2X7 receptor in the development and progression of solid tumours, and highlight the different aspects that require further clarification in order to decipher whether P2X7 could be considered as a cancer biomarker or as a target for pharmacological intervention. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Sébastien Roger
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France; Département de Physiologie Animale, UFR Sciences et Techniques, Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France.
| | - Bilel Jelassi
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Isabelle Couillin
- UMR CNRS 7355 Experimental and Molecular Immunology and Neurogenetics, Université d'Orléans, 3B rue de la Ferollerie, F-45071 Orléans, France
| | - Pablo Pelegrin
- Inflammation and Experimental Surgery Research Unit, CIBERehd, Clinical University Hospital "Virgen de la Arrixaca", Murcia's BioHealth Research Institute IMIB-Arrixaca, Carretera Cartagena-Madrid s/n, 30120 Murcia, Spain
| | - Pierre Besson
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
34
|
Trophic activity of human P2X7 receptor isoforms A and B in osteosarcoma. PLoS One 2014; 9:e107224. [PMID: 25226385 PMCID: PMC4165768 DOI: 10.1371/journal.pone.0107224] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022] Open
Abstract
The P2X7 receptor (P2X7R) is attracting increasing attention for its involvement in cancer. Several recent studies have shown a crucial role of P2X7R in tumour cell growth, angiogenesis and invasiveness. In this study, we investigated the role of the two known human P2X7R functional splice variants, the full length P2X7RA and the truncated P2X7RB, in osteosarcoma cell growth. Immunohistochemical analysis of a tissue array of human osteosarcomas showed that forty-four, of a total fifty-four tumours (81.4%), stained positive for both P2X7RA and B, thirty-one (57.4%) were positive using an anti-P2X7RA antibody, whereas fifteen of the total number (27.7%) expressed only P2X7RB. P2X7RB positive tumours showed increased cell density, at the expense of extracellular matrix. The human osteosarcoma cell line Te85, which lacks endogenous P2X7R expression, was stably transfected with either P2X7RA, P2X7RB, or both. Receptor expression was a powerful stimulus for cell growth, the most efficient growth-promoting isoform being P2X7RB alone. Growth stimulation was matched by increased Ca2+ mobilization and enhanced NFATc1 activity. Te85 P2X7RA+B cells presented pore formation as well as spontaneous extracellular ATP release. The ATP release was sustained in all clones by P2X7R agonist (BzATP) and reduced following P2X7R antagonist (A740003) application. BzATP also increased cell growth and activated NFATc1 levels. On the other hand cyclosporin A (CSA) affected both NFATc1 activation and cell growth, definitively linking P2X7R stimulation to NFATc1 and cell proliferation. All transfected clones also showed reduced RANK-L expression, and an overall decreased RANK-L/OPG ratio. Mineralization was increased in Te85 P2X7RA+B cells while it was significantly diminished in Te85 P2X7RB clones, in agreement with immunohistochemical results. In summary, our data show that the majority of human osteosarcomas express P2X7RA and B and suggest that expression of either isoform is differently coupled to cell growth or activity.
Collapse
|
35
|
P2X7 receptors are a potential novel target for anti-glioma therapies. JOURNAL OF INFLAMMATION-LONDON 2014. [DOI: 10.1186/s12950-014-0025-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Autocrine signaling via release of ATP and activation of P2X7 receptor influences motile activity of human lung cancer cells. Purinergic Signal 2014; 10:487-97. [PMID: 24627191 DOI: 10.1007/s11302-014-9411-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/02/2014] [Indexed: 12/20/2022] Open
Abstract
Extracellular nucleotides, such as ATP, are released from cells and play roles in various physiological and pathological processes through activation of P2 receptors. Here, we show that autocrine signaling through release of ATP and activation of P2X7 receptor influences migration of human lung cancer cells. Release of ATP was induced by stimulation with TGF-β1, which is a potent inducer of cell migration, in human lung cancer H292 cells, but not in noncancerous BEAS-2B cells. Treatment of H292 cells with a specific antagonist of P2X7 receptor resulted in suppression of TGF-β1-induced migration. PC-9 human lung cancer cells released a large amount of ATP under standard cell culture conditions, and P2X7 receptor-dependent dye uptake was observed even in the absence of exogenous ligand, suggesting constitutive activation of P2X7 receptor in this cell line. PC-9 cells showed high motile activity, which was inhibited by treatment with ecto-nucleotidase and P2X7 receptor antagonists, whereas a P2X7 receptor agonist enhanced migration. PC-9 cells also harbor a constitutively active mutation in epidermal growth factor receptor (EGFR). Treatment with EGFR tyrosine kinase inhibitor AG1478 suppressed both cell migration and P2X7 receptor expression in PC-9 cells. Compared to control PC-9 cells, cells treated with P2X7 antagonist exhibited broadened lamellipodia around the cell periphery, while AG1478-treated cells lacked lamellipodia. These results indicate that P2X7-mediated signaling and EGFR signaling may regulate migration of PC-9 cells through distinct mechanisms. We propose that autocrine ATP-P2X7 signaling is involved in migration of human lung cancer cells through regulation of actin cytoskeleton rearrangement.
Collapse
|
37
|
Vázquez-Cuevas FG, Cruz-Rico A, Garay E, García-Carrancá A, Pérez-Montiel D, Juárez B, Arellano RO. Differential expression of the P2X7 receptor in ovarian surface epithelium during the oestrous cycle in the mouse. Reprod Fertil Dev 2014; 25:971-84. [PMID: 23050672 DOI: 10.1071/rd12196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/04/2012] [Indexed: 12/13/2022] Open
Abstract
Purinergic signalling has been proposed as an intraovarian regulatory mechanism. Of the receptors responsible for purinergic transmission, the P2X7 receptor is an ATP-gated cationic channel that displays a broad spectrum of cellular functions ranging from apoptosis to cell proliferation and tumourigenesis. In the present study, we investigated the functional expression of P2X7 receptors in ovarian surface epithelium (OSE). P2X7 protein was detected in the OSE layer of the mouse, both in situ and in primary cultures. In cultures, 2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) activation of P2X7 receptors increased [Ca(2+)]i and induced apoptosis. The functionality of the P2X7 receptor was investigated in situ by intrabursal injection of BzATP on each day of the oestrous cycle and evaluation of apoptosis 24h using the terminal deoxyribonucleotidyl transferase-mediated dUTP-fluorescein nick end-labelling (TUNEL) assay. Maximum effects of BzATP were observed during pro-oestrus, with the effects being blocked by A438079, a specific P2X7 receptor antagonist. Immunofluorescence staining for P2X7 protein revealed more robust expression during pro-oestrus and in OSE regions behind the antral follicles, strongly supporting the notion that the differences in apoptosis can be explained by increased receptor expression, which is regulated during the oestrous cycle. Finally, P2X7 receptor expression was detected in the OSE layer of human ovaries, with receptor expression maintained in human ovaries diagnosed with cancer, as well as in the human ovarian carcinoma SKOV3 cell line.
Collapse
Affiliation(s)
- F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP, 76230, Querétaro México
| | | | | | | | | | | | | |
Collapse
|
38
|
Chadet S, Jelassi B, Wannous R, Angoulvant D, Chevalier S, Besson P, Roger S. The activation of P2Y2 receptors increases MCF-7 breast cancer cells migration through the MEK-ERK1/2 signalling pathway. Carcinogenesis 2014; 35:1238-47. [PMID: 24390819 DOI: 10.1093/carcin/bgt493] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenosine 5'-triphosphate (ATP) is found in high concentrations in the extracellular microenvironment of tumours and is postulated to play critical roles in cancer progression. In the present study, we found that stimulation of human MCF-7 breast cancer cells with 30 µM ATP increased their migration by 140 ± 31%, whereas it had minor or no effect on their proliferation. This effect was prevented by the ectonucleotidase apyrase and was antagonized by suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, consistently with the participation of P2 receptors. MCF-7 cells expressed messenger RNA for all known P2Y receptors and for P2X2, P2X4, P2X5, P2X6 and P2X7 receptors. Brief applications (20 s) of external ATP resulted in a 50 pA P2X-like inward current. ATP, but not adenosine diphosphate or uridine diphosphate, increased the intracellular calcium concentration in absence of extracellular calcium, and this effect was prevented by the inhibition of phospholipase C. Uridine triphosphate (UTP) (10 µM) and 2-thio-UTP (10 µM) increased intracellular calcium concentration and cell migration to the same extent as ATP. The UTP-dependent increase in cell migration was absent in cells knocked-down for P2Y2. It was inhibited by MEK inhibitor PD98059. UTP induced a time-dependent phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which was prevented by the incubation with PD98059. Taken together, these results highlight the importance of the purinergic signalling in cancer cells and indicate that the activation of P2Y2 receptors enhances breast cancer cells migration through the activation of a MEK-ERK1/2-dependent signalling pathway.
Collapse
Affiliation(s)
- Stéphanie Chadet
- UMR Inserm 1069 Nutrition, Croissance et Cancer and EA 4245 Cellules Dendritiques, Immunodulation et Greffes, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France and
| | | | | | - Denis Angoulvant
- EA 4245 Cellules Dendritiques, Immunodulation et Greffes, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France and
| | | | | | - Sébastien Roger
- UMR Inserm 1069 Nutrition, Croissance et Cancer and Département de Physiologie Animale, UFR Sciences et Techniques, Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France
| |
Collapse
|
39
|
Jelassi B, Anchelin M, Chamouton J, Cayuela ML, Clarysse L, Li J, Goré J, Jiang LH, Roger S. Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors. Carcinogenesis 2013; 34:1487-96. [PMID: 23524196 DOI: 10.1093/carcin/bgt099] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The adenosine 5'-triphosphate (ATP)-gated Ca(2+)-permeable channel P2X7 receptor (P2X7R) is strongly upregulated in many tumors and cancer cells, and has an important role in cancer cell invasion associated with metastases. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an anthraquinone derivative originally isolated from Rheum officinale Baill known for decades to possess anticancer properties. In this study, we examined the effects of emodin on P2X7R-dependent Ca(2+) signaling, extracellular matrix degradation, and in vitro and in vivo cancer cell invasiveness using highly aggressive human cancer cells. Inclusion of emodin at doses ≤10 µM in cell culture had no or very mild effect on the cell viability. ATP elicited increases in intracellular Ca(2+) concentration were reduced by 35 and 60% by 1 and 10 µM emodin, respectively. Emodin specifically inhibited P2X7R-mediated currents with an IC50 of 3 µM and did not inhibit the currents mediated by the other human P2X receptors heterologously expressed in human embryonic kidney (HEK293T) cells. ATP-induced increase in gelatinolytic activity, in cancer cell invasiveness in vitro and in cell morphology changes were prevented by 1 µM emodin. Furthermore, such ATP-evoked effects and inhibition by emodin were almost completely ablated in cancer cells transfected with P2X7R-specific small interfering RNA (siRNA) but not with scrambled siRNA. Finally, the in vivo invasiveness of the P2X7R-positive MDA-MB-435s breast cancer cells, assessed using a zebrafish model of micrometastases, was suppressed by 40 and 50% by 1 and 10 µM emodin. Taken together, these results provide consistent evidence to indicate that emodin inhibits human cancer cell invasiveness by specifically antagonizing the P2X7R.
Collapse
Affiliation(s)
- Bilel Jelassi
- Inserm U1069 Nutrition, Growth and Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
41
|
Corriden R, Insel PA. New insights regarding the regulation of chemotaxis by nucleotides, adenosine, and their receptors. Purinergic Signal 2012; 8:587-98. [PMID: 22528684 PMCID: PMC3360098 DOI: 10.1007/s11302-012-9311-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/05/2012] [Indexed: 12/23/2022] Open
Abstract
The directional movement of cells can be regulated by ATP, certain other nucleotides (e.g., ADP, UTP), and adenosine. Such regulation occurs for cells that are "professional phagocytes" (e.g., neutrophils, macrophages, certain lymphocytes, and microglia) and that undergo directional migration and subsequent phagocytosis. Numerous other cell types (e.g., fibroblasts, endothelial cells, neurons, and keratinocytes) also change motility and migration in response to ATP, other nucleotides, and adenosine. In this article, we review how nucleotides and adenosine modulate chemotaxis and motility and highlight the importance of nucleotide- and adenosine-regulated cell migration in several cell types: neutrophils, microglia, endothelial cells, and cancer cells. We also discuss difficulties in conducting experiments and drawing conclusions regarding the ability of nucleotides and adenosine to modulate the migration of professional and non-professional phagocytes.
Collapse
Affiliation(s)
- Ross Corriden
- Institute of Cell Signalling, University of Nottingham, Nottingham, UK
| | - Paul A. Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, CA USA
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, Mail code 0636, La Jolla, CA 92093 USA
| |
Collapse
|
42
|
Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, Di Virgilio F. Expression of P2X7 Receptor Increases In Vivo Tumor Growth. Cancer Res 2012; 72:2957-69. [DOI: 10.1158/0008-5472.can-11-1947] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
P2X7 Receptor Function in Bone-Related Cancer. J Osteoporos 2012; 2012:637863. [PMID: 22970409 PMCID: PMC3431089 DOI: 10.1155/2012/637863] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 01/31/2023] Open
Abstract
Modulation of tumor microenvironment by different mediators is central in determining neoplastic formation and progression. Among these molecules extracellular ATP is emerging as a good candidate in promoting cell growth, neovascularization, tumor-host interactions, and metastatization. This paper summarizes recent findings on expression and function of P2X7 receptor for extracellular ATP in primary and metastatic bone cancers. Search of mRNA expression microchip databases and literature analysis demonstrate a high expression of P2X7 in primary bone tumors as well as in other malignancies such as multiple myeloma, neuroblastoma, breast, and prostate cancer. Evidence that P2X7 triggers NFATc1, PI3K/Akt, ROCK, and VEGF pathways in osteoblasts promoting either primary tumor development or osteoblastic lesions is also reported. Moreover, P2X7 receptor is involved in osteoclast differentiation, RANKL expression, matrix metalloproteases and cathepsin secretion thus promoting bone resorption and osteolytic lesions. Taken together these data point to a pivotal role for the P2X7 receptor in bone cancer biology.
Collapse
|
44
|
Abstract
ATP-gated P2X7 receptors (P2X7) make a unique family of extracellular ATP-activated plasma membrane ion channels expressed in haematopoietic and epithelial cells. They have been extensively studied in immune cells where their activation leads to the rapid release of pro-inflammatory cytokines and the initiation of the inflammatory cascade. As such, P2X7 represent a pharmaceutical target for the treatment of inflammatory diseases. Recently, P2X7 expression has been found in diverse tumours and has been suggested as a potential cancer cell biomarker. On ATP stimulation, tumour cells can use P2X7 signalling in different scenarios: i) as a reaction to this death-related signal, they can downregulate P2X7 to avoid apoptosis or ii) as a cancer-promoting signal to survive and enhance invasion of new niches. The high levels of extracellular ATP found in tumours could represent a stressful stimulus for cancer cells by initiating P2X7-driven cell death. Therefore, the increased P2X7-dependent invasiveness of cancer cells could be an escape strategy to flee the noxious high level of ATP. The use of specific P2X7 antagonists could be a new alternative way to reduce the development of cancer metastases and improve the efficacy of conventional treatments.
Collapse
|
45
|
P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 2011; 30:2108-22. [PMID: 21242969 DOI: 10.1038/onc.2010.593] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ATP-gated P2X(7) receptors (P2X(7)R) are unusual plasma membrane ion channels that have been extensively studied in immune cells. More recently, P2X(7)R have been described as potential cancer cell biomarkers. However, mechanistic links between P2X(7)R and cancer cell processes are unknown. Here, we show, in the highly aggressive human breast cancer cell line MDA-MB-435s, that P2X(7) receptor is highly expressed and fully functional. Its activation is responsible for the extension of neurite-like cellular prolongations, of the increase in cell migration by 35% and in cell invasion through extracellular matrix by 150%. The change in cancer cell morphology and the increased migration appeared to be due to the activation of Ca(2+)-activated SK3 potassium channels. The enhanced invasion through the extracellular matrix was related to the increase of mature forms of cysteine cathepsins in the extracellular medium, which was independent of SK3 channel activity and not associated with cell death. Pharmacological targeting of P2X(7)R in vivo was crucial for cell invasiveness in a zebrafish model of metastases. Our results demonstrate a novel mechanistic link between P2X(7)R functionality in cancer cells and invasiveness, a key parameter in tumour growth and in the development of metastases. They also suggest a potential therapeutic role for the newly developed P2X(7)R antagonists.
Collapse
|
46
|
Gu LQ, Li FY, Zhao L, Liu Y, Chu Q, Zang XX, Liu JM, Ning G, Zhao YJ. Association of XIAP and P2X7 receptor expression with lymph node metastasis in papillary thyroid carcinoma. Endocrine 2010; 38:276-82. [PMID: 20972735 DOI: 10.1007/s12020-010-9384-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/20/2010] [Indexed: 12/31/2022]
Abstract
The expression of X-linked inhibitor of apoptosis (XIAP) and the P2X7 receptor were demonstrated in a variety of tumors. The purpose of the present study was to investigate the associations of XIAP and P2X7 receptor expression with the clinicopathological features of patients with papillary thyroid carcinoma (PTC). In this cross-sectional study, a total of 62 cases were examined, including 43 patients with PTCs and 19 with benign nodular goiters. XIAP and P2X7 receptor expression were examined by immunohistochemical methods on formalin-fixed, paraffin-embedded thyroid tissues. The staining intensity and extent were evaluated and scored using a semi-quantitative method. The immunohistochemical staining score integrating the intensity and extent of XIAP and P2X7 receptors in PTCs was higher than in nodular goiters. XIAP (OR: 5.6, 95% CI: 1.5-21.1, P=0.009) and P2X7 receptor (OR: 6.1, 95% CI: 1.5-24.4, P=0.007) expression were associated with lymph node metastasis in PTCs. In logistic regression analysis, P2X7 receptor expression, tumor size, and capsular infiltration were predictors for lymph node metastasis (P=0.001). Our results suggested that XIAP and P2X7 receptor expression may predict the aggressiveness of PTC.
Collapse
Affiliation(s)
- Li-Qun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center For Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, 197 Rui-jin Er Road, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tamajusuku ASK, Villodre ES, Paulus R, Coutinho-Silva R, Battasstini AMO, Wink MR, Lenz G. Characterization of ATP-induced cell death in the GL261 mouse glioma. J Cell Biochem 2010; 109:983-91. [PMID: 20069573 DOI: 10.1002/jcb.22478] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gliomas have one of the worst prognosis among cancers. Their resistance to cell death induced by endogenous neurotoxic agents, such as extracellular ATP, seems to play an important role in their pathobiology since alterations in the degradation rate of extracellular ATP drastically affects glioma growth in rats. In the present work we characterized the mechanisms of cell death induced by extracellular ATP in a murine glioma cell line, GL261. ATP and BzATP, a P2X7 agonist, induced cell death at concentrations that are described to activate the P2X7 receptor in mouse. oATP, an antagonist of P2X7, blocked the ATP-induced cell death. Agonists of purinergic receptors expressed in GL261 such as adenosine, ADP, UTP did not cause any cell death, even at mM concentrations. A sub-population of cells more sensitive to ATP expressed more P2X7 when compared to a less sensitive subpopulation. Accordingly, RNA interference of the P2X7 receptor drastically reduced ATP-induced cell death, suggesting that this receptor is necessary for this effect. The mechanism of ATP-induced cell death is predominantly necrotic, since cells presented shrinkage accompanied by membrane permeabilization, but not apoptotic, since no phosphatidylserine externalization or caspase activity was observed. These data show the importance of P2X7 in ATP-induced cell death and shed light on the importance of ATP-induced cell death in glioma development.
Collapse
|
48
|
Li X, Qi X, Zhou L, Fu W, Abdul-Karim FW, Maclennan G, Gorodeski GI. P2X(7) receptor expression is decreased in epithelial cancer cells of ectodermal, uro-genital sinus, and distal paramesonephric duct origin. Purinergic Signal 2009; 5:351-68. [PMID: 19399640 DOI: 10.1007/s11302-009-9161-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 04/06/2009] [Indexed: 11/25/2022] Open
Abstract
The P2X(7) receptor is an important regulator of epithelial cell growth. The aim of the present study was to better understand the biological significance of P2X(7) receptor expression in normal and cancer human epithelial tissues. P2X(7) receptor and messenger RNA (mRNA) levels were determined in human tissues containing epithelial dysplastic, pre- or early cancerous, and cancer cells, and the levels were compared to those in the corresponding normal epithelial cells within the same tissue of the same case. P2X(7) receptor levels were determined by quantification of immunoreactivity specific to the functional (full-length) P2X(7) receptor, and P2X(7) mRNA levels were determined by real-time polymerase chain reaction. P2X(7) receptor levels in cancer cells were similar (colon adenocarcinoma) or greater (thyroid papillary carcinoma) than those in the corresponding normal cells. In contrast, in cancer cells of the ectocervix (squamous), endocervix and endometrium (adenocarcinoma), urinary bladder (transitional cell carcinoma), and breast (ductal and lobular adenocarcinomas), P2X(7) receptor levels were lower by about twofold than those in the corresponding normal epithelial cells. Similarly, P2X(7) mRNA levels were lower in uterine, bladder, and breast cancer epithelial tissues by about fourfold than those in the corresponding normal tissues. In addition, P2X(7) receptor levels were decreased already in dysplastic ectocervical cells and pre- or early cancerous endometrial and bladder cells. The data suggest that in epithelia originating from the ectoderm, the uro-genital sinus, and the distal paramesonephric duct, decreased expression of the P2X(7) receptor precedes or coincides with neoplastic changes in those tissues.
Collapse
Affiliation(s)
- Xin Li
- Department of Pathology, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, OH, 43614, USA,
| | | | | | | | | | | | | |
Collapse
|
49
|
Di Virgilio F, Ferrari D, Adinolfi E. P2X(7): a growth-promoting receptor-implications for cancer. Purinergic Signal 2009; 5:251-6. [PMID: 19263244 DOI: 10.1007/s11302-009-9145-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/30/2008] [Indexed: 12/31/2022] Open
Abstract
The P2X(7) receptor is widely referred to as the paradigmatic cytotoxic nucleotide receptor, and is often taken as an epitome of cytotoxic receptors as a whole. However, cytotoxicity is the result of sustained pharmacological stimulation, which is likely to occur in vivo only under severe pathological conditions. Over the years, we have gathered robust experimental proof that led us to adopt an entirely different view, pointing to P2X(7) as a survival/growth-promoting rather than death-inducing receptor. Evidence in favour of this role is manifold: (1) extracellular ATP and benzoyl ATP support cell proliferation in peripheral T lymphocytes via a P2X(7)-like receptor; (2) P2X(7) transfection into several cell lines confers growth advantage; (3) HEK293 cells transfected with P2X(7) show enhanced mitochondrial metabolic activity and growth; (4) lipopolysaccharide (LPS)-dependent growth arrest of microglia is mediated via P2X(7) down-modulation; (5) several malignant tumours express high P2X(7) levels and (6) the ATP concentration in tumour interstitium is several-fold higher than in healthy tissues, to a level in principle sufficient to activate the P2X(7) receptor. The molecular basis of P2X(7)-mediated growth-promoting activity is poorly known, but mitochondria appear to play a central role. A deeper understanding of the role played by P2X(7) in cell proliferation might provide an insight into the mechanism of normal and malignant cell growth and suggest novel anti-tumour therapies.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Via Borsari 46, Ferrara, 44100, Italy,
| | | | | |
Collapse
|
50
|
Adinolfi E, Callegari MG, Cirillo M, Pinton P, Giorgi C, Cavagna D, Rizzuto R, Di Virgilio F. Expression of the P2X7 receptor increases the Ca2+ content of the endoplasmic reticulum, activates NFATc1, and protects from apoptosis. J Biol Chem 2009; 284:10120-8. [PMID: 19204004 DOI: 10.1074/jbc.m805805200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The P2X(7) receptor is known for the cytotoxic activity because of its ability to cause opening of non-selective pores in the plasma membrane and activate apoptotic caspases. A key factor of P2X(7)-dependent cytotoxicity is the massive intracellular Ca(2+) increase triggered by its activation. Here we show that P2X(7) transfection increased the ability of the endoplasmic reticulum to accumulate, store, and release Ca(2+). This caused a larger agonist-stimulated increase in cytosol and mitochondrial Ca(2+) in P2X(7) transfectants than in mock transfected cells. P2X(7) transfectants survived and even proliferated in serum-free conditions and were resistant to apoptosis triggered by ceramide, staurosporin, or intracellular Zn(2+) chelation. Finally, the nuclear factor of activated T cells complex 1 (NFATc1) was strongly activated in the P2X(7) transfectants. These observations support our previous finding that the P2X(7) receptor under tonic conditions of stimulation, i.e. those observed in response to basal ATP release, has an anti-apoptotic or even growth promoting rather than cytotoxic activity.
Collapse
Affiliation(s)
- Elena Adinolfi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, via Borsari 46, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|