1
|
Taguchi H, Fujishiro H, Sumi D. Arsenite increases sialic acid levels on the cellular surface through the inhibition of sialidase activity. Biochem Biophys Res Commun 2024; 739:150973. [PMID: 39541927 DOI: 10.1016/j.bbrc.2024.150973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/08/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Chronic exposure to arsenic has been shown to induce carcinogenesis in multiple organs, but the mechanisms underlying the multi-organ carcinogenicity of arsenic remain unknown. We here examined whether arsenic affects the amount of sialic acid on the cellular surface of immortalized HaCaT cells rather than cancerous cells to clarify the process of arsenic-induced carcinogenesis, since sialic acid is known to assist cancer cells in suppressing attacks by natural killer (NK) cells. Our results indicated that exposure to arsenite (As(III)) increases the amounts of sialic acid on the cell surface of HaCaT cells. To elucidate the mechanisms underlying the increase in the levels of sialic acid on the cell surface by As(III) exposure, we measured the activities of sialyltransferase and sialidase in HaCaT cells exposed to As(III). The results showed there was no significant change in the silalyltransferase activity, and the sialidase activity was significantly inhibited by As(III) exposure. When we examined the mRNA levels of NEU1-4, the four types of sialidases identified in mammals after exposure to As(III), no significant change was observed. Furthermore, sialidase activity was significantly reduced in NEU1 siRNA-transfected HaCaT cells, which showed the highest mRNA levels among NEU1-4 in HaCaT cells. These results suggest that inhibition of NEU1-derived sialidase activity by exposure to As(III) resulted in an increase in the amounts of sialic acid on the cell surface.
Collapse
Affiliation(s)
- Hiroki Taguchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Hitomi Fujishiro
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Daigo Sumi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| |
Collapse
|
2
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
3
|
Du J, Shui H, Chen R, Dong Y, Xiao C, Hu Y, Wong NK. Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease. Curr Issues Mol Biol 2024; 46:8031-8052. [PMID: 39194692 DOI: 10.3390/cimb46080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongjun Chen
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Gisina A, Yarygin K, Lupatov A. The Impact of Glycosylation on the Functional Activity of CD133 and the Accuracy of Its Immunodetection. BIOLOGY 2024; 13:449. [PMID: 38927329 PMCID: PMC11200695 DOI: 10.3390/biology13060449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
The membrane glycoprotein CD133 (prominin-1) is widely regarded as the main molecular marker of cancer stem cells, which are the most malignant cell subpopulation within the tumor, responsible for tumor growth and metastasis. For this reason, CD133 is considered a promising prognostic biomarker and molecular target for antitumor therapy. Under normal conditions, CD133 is present on the cell membrane in glycosylated form. However, in malignancies, altered glycosylation apparently leads to changes in the functional activity of CD133 and the availability of some of its epitopes for antibodies. This review focuses on CD133's glycosylation in human cells and its impact on the function of this glycoprotein. The association of CD133 with proliferation, differentiation, apoptosis, autophagy, epithelial-mesenchymal transition, the organization of plasma membrane protrusions and extracellular trafficking is discussed. In this review, particular attention is paid to the influence of CD133's glycosylation on its immunodetection. A list of commercially available and custom antibodies with their characteristics is provided. The available data indicate that the development of CD133-based biomedical technologies should include an assessment of CD133's glycosylation in each tumor type.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V. N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | | |
Collapse
|
5
|
Gu J, Isaji T. Specific sialylation of N-glycans and its novel regulatory mechanism. Glycoconj J 2024; 41:175-183. [PMID: 38958800 PMCID: PMC11329402 DOI: 10.1007/s10719-024-10157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Altered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival. Sialylation typically exists in three prominent linkages: α2,3, α2,6, and α2,8, catalyzed by a group of sialyltransferases. The aberrant expression of all three linkages has been related to cancer progression. The increased α2,6 sialylation on N-glycans catalyzed by β-galactoside α2,6 sialyltransferase 1 (ST6Gal1) is frequently observed in many cancers. In contrast, functions of α2,3 sialylation on N-glycans catalyzed by at least three β-galactoside α2,3-sialyltransferases, ST3Gal3, ST3Gal4, and ST3Gal6 remain elusive due to a possibility of compensating for one another. In this minireview, we briefly describe functions of sialylation and recent findings that different α2,3 sialyltransferases specifically modify target proteins, as well as sialylation regulatory mechanisms vis a complex formation among integrin α3β1, Golgi phosphoprotein 3 (GOLPH3), phosphatidylinositol 4-kinase IIα (PI4KIIα), focal adhesion kinase (FAK) and sialyltransferase, which suggests a new concept for the regulation of glycosylation in cell biology.
Collapse
Affiliation(s)
- Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
6
|
Abdel-Naim AB, Kumar P, Bazuhair MA, Rizg WY, Niyazi HA, Alkuwaity K, Niyazi HA, Alharthy SA, Harakeh S, Haque S, Prakash A, Kumar V. Computational insights into dynamics and conformational stability of N-acetylmannosamine kinase mutations. J Biomol Struct Dyn 2024:1-11. [PMID: 38502682 DOI: 10.1080/07391102.2024.2323702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
The activity of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is essential for the biosynthesis of sialic acid, which is involved in cellular processes in health and diseases. GNE contains an N-terminal epimerase domain and a C-terminal kinase domain (N-acetylmannosamine kinase, MNK). Mutations of the GNE protein led to hypoactivity of the enzyme and cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy. Here, we used all-atom molecular dynamics (MD) simulations to comprehend the folding, dynamics and conformational stability of MNK variants, including the wild type (WT) and three mutants (H677R, V696M and H677R/V696M). The deleterious and destabilizing nature of MNK mutants were predicted using different prediction tools. Results predicted that mutations modulate the stability, flexibility and function of MNK. The effect of mutations on the conformational stability and dynamics of MNK was next studied through the free-energy landscape (FEL), hydrogen-bonds and secondary structure changes. The FEL results show that the mutations interfere with various conformational transitions in both WT and mutants, exposing the structural underpinnings of protein destabilization and unfolding brought on by mutation. We discover that, when compared to the other two mutations, V696M and H677R/V696M, H677R has the most harmful effects. These findings have a strong correlation with published experimental studies that demonstrate how these mutations disrupt MNK activity. Hence, this computational study describes the structural details to unravel the mutant effects at the atomistic resolution and has implications for understanding the GNE's physiological and pathological role.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pawan Kumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohammed A Bazuhair
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hatoon A Niyazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalil Alkuwaity
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanouf A Niyazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| |
Collapse
|
7
|
Gattani A, Agrawal A, Khan MH, Gupta R, Singh P. Evaluation of catalytic activity of human and animal origin viral neuraminidase: Current prospect. Anal Biochem 2023; 671:115157. [PMID: 37061113 DOI: 10.1016/j.ab.2023.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
With the exception of plants, almost all living organisms synthesize neuraminidase/sialidase. It is a one among the crucial proteins that controls how virulent a microorganism is. An essential enzyme in orthomyxoviruses and paramyxoviruses that destroys receptors is neuraminidase. It plays a number of roles throughout the viral life cycle in addition to one that involves the release of progeny virus particles. This protein is an important target for therapeutic interventions and diagnostic assays. Neuraminidase inhibitors effectively prevent the spread of disease and viral infection. Sensitive, quick, and inexpensive high throughput assays are needed to screen for specific neuraminidase inhibitory chemicals. To characterize the neuraminidase catalytic activity, however, the traditional assays are still the most common in laboratories. This review gives a brief overview of these neuraminidase assays and recent, innovative developments, particularly those involving biosensors.
Collapse
Affiliation(s)
- Anil Gattani
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India.
| | - Aditya Agrawal
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Rewa, M.P, India
| | - M Hira Khan
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India
| | - Rohini Gupta
- Department of Medicine, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India
| | - Praveen Singh
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute Izatnagar, 243122, Bareilly, UP, India; Biophysics Section, ICAR-Indian Veterinary Research Institute Izatnagar, 243122, Bareilly, UP, India
| |
Collapse
|
8
|
Yang D, Wu Y, Turan I, Keil J, Li K, Chen MH, Liu R, Wang L, Sun XL, Chen GY. Targeting intracellular Neu1 for coronavirus infection treatment. iScience 2023; 26:106037. [PMID: 36714013 PMCID: PMC9870608 DOI: 10.1016/j.isci.2023.106037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/03/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
There are currently no effective therapies for COVID-19 or antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and vaccines appear less effective against new SARS-CoV-2 variants; thus, there is an urgent need to understand better the virulence mechanisms of SARS-CoV-2 and the host response to develop therapeutic agents. Herein, we show that host Neu1 regulates coronavirus replication by controlling sialylation on coronavirus nucleocapsid protein. Coronavirus nucleocapsid proteins in COVID-19 patients and in coronavirus HCoV-OC43-infected cells were heavily sialylated; this sialylation controlled the RNA-binding activity and replication of coronavirus. Neu1 overexpression increased HCoV-OC43 replication, whereas Neu1 knockdown reduced HCoV-OC43 replication. Moreover, a newly developed Neu1 inhibitor, Neu5Ac2en-OAcOMe, selectively targeted intracellular sialidase, which dramatically reduced HCoV-OC43 and SARS-CoV-2 replication in vitro and rescued mice from HCoV-OC43 infection-induced death. Our findings suggest Neu1 inhibitors could be used to limit SARS-CoV-2 replication in patients with COVID-19, making Neu1 a potential therapeutic target for COVID-19 and future coronavirus pandemics.
Collapse
Affiliation(s)
- Darong Yang
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yin Wu
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Isaac Turan
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Joseph Keil
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Michael H. Chen
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Guo-Yun Chen
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
9
|
Alteration of the neuronal and glial cell profiles in Neu1-deficient zebrafish. Glycoconj J 2022; 39:499-512. [PMID: 35877057 DOI: 10.1007/s10719-022-10074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
Abstract
Neu1 is a glycosidase that releases sialic acids from the non-reducing ends of glycoconjugates, and its enzymatic properties are conserved among vertebrates. Recently, Neu1-KO zebrafish were generated using genome editing technology, and the KO fish showed abnormal emotional behavior, such as low schooling, low aggressiveness, and excess exploratory behavior, accompanied by the downregulation of anxiety-related genes. To examine the alteration of neuronal and glial cells in Neu1-KO zebrafish, we analyzed the molecular profiles in the zebrafish brain, focusing on the midbrain and telencephalon. Using immunohistochemistry, we found that signals of Maackia amurensis (MAM) lectin that recognizes Sia α2-3 linked glycoconjugates were highly increased in Neu1-KO zebrafish brains, accompanied by an increase in Lamp1a. Neu1-KO zebrafish suppressed the gene expression of AMPA-type glutamate receptors such as gria1a, gria2a, and gria3b, and vesicular glutamate transporter 1. Additionally, Neu1-KO zebrafish induced the hyperactivation of astrocytes accompanied by an increase in Gfap and phosphorylated ERK levels, while the mRNA levels of astrocyte glutamate transporters (eaat1a, eaat1c, and eaat2) were downregulated. The mRNA levels of sypb and ho1b, which are markers of synaptic plasticity, were also suppressed by Neu1 deficiency. Abnormal activity of microglia was also revealed by IHC, and the expressions of iNOS and IL-1β, an inflammatory cytokine, were increased in Neu1-KO zebrafish. Furthermore, drastic neuronal degeneration was detected in Neu1-KO zebrafish using Fluoro-Jade B staining. Collectively, the neuronal and glial abnormalities in Neu1-KO zebrafish may be caused by changes in the excitatory neurotransmitter glutamate and involved in the emotional abnormalities.
Collapse
|
10
|
Durgin JS, Thokala R, Johnson L, Song E, Leferovich J, Bhoj V, Ghassemi S, Milone M, Binder Z, O'Rourke DM, O'Connor RS. Enhancing CAR T function with the engineered secretion of C. perfringens neuraminidase. Mol Ther 2022; 30:1201-1214. [PMID: 34813961 PMCID: PMC8899523 DOI: 10.1016/j.ymthe.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Prior to adoptive transfer, CAR T cells are activated, lentivirally infected with CAR transgenes, and expanded over 9 to 11 days. An unintended consequence of this process is the progressive differentiation of CAR T cells over time in culture. Differentiated T cells engraft poorly, which limits their ability to persist and provide sustained tumor control in hematologic as well as solid tumors. Solid tumors include other barriers to CAR T cell therapies, including immune and metabolic checkpoints that suppress effector function and durability. Sialic acids are ubiquitous surface molecules with known immune checkpoint functions. The enzyme C. perfringens neuraminidase (CpNA) removes sialic acid residues from target cells, with good activity at physiologic conditions. In combination with galactose oxidase (GO), NA has been found to stimulate T cell mitogenesis and cytotoxicity in vitro. Here we determine whether CpNA alone and in combination with GO promotes CAR T cell antitumor efficacy. We show that CpNA restrains CAR T cell differentiation during ex vivo culture, giving rise to progeny with enhanced therapeutic potential. CAR T cells expressing CpNA have superior effector function and cytotoxicity in vitro. In a Nalm-6 xenograft model of leukemia, CAR T cells expressing CpNA show enhanced antitumor efficacy. Arming CAR T cells with CpNA also enhanced tumor control in xenograft models of glioblastoma as well as a syngeneic model of melanoma. Given our findings, we hypothesize that charge repulsion via surface glycans is a regulatory parameter influencing differentiation. As T cells engage target cells within tumors and undergo constitutive activation through their CARs, critical thresholds of negative charge may impede cell-cell interactions underlying synapse formation and cytolysis. Removing the dense pool of negative cell-surface charge with CpNA is an effective approach to limit CAR T cell differentiation and enhance overall persistence and efficacy.
Collapse
Affiliation(s)
- Joseph S Durgin
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Radhika Thokala
- Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA
| | - Lexus Johnson
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Song
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Leferovich
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Vijay Bhoj
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zev Binder
- Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Bourguet E, Figurska S, Fra Czek MM. Human Neuraminidases: Structures and Stereoselective Inhibitors. J Med Chem 2022; 65:3002-3025. [PMID: 35170942 DOI: 10.1021/acs.jmedchem.1c01612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This Perspective describes the classification, structures, substrates, mechanisms of action, and implications of human neuraminidases (hNEUs) in various pathologies. Some inhibitors have been developed for each isoform, leading to more precise interactions with hNEUs. Although crystal structure data are available for NEU2, most of the findings are based on NEU1 inhibition, and limited information is available for other hNEUs. Therefore, the synthesis of new compounds would facilitate the enrichment of the arsenal of inhibitors to better understand the roles of hNEUs and their mechanisms of action. Nevertheless, due to the already known inhibitors of human neuraminidase enzymes, a structure-activity relationship is presented along with different approaches to inhibit these enzymes for the development of potent and selective inhibitors. Among the different emerging strategies, one is the inhibition of the dimerization of NEU1 or NEU3, and the second is the inhibition of certain receptors located close to hNEU.
Collapse
Affiliation(s)
- Erika Bourguet
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, 51097 Reims, France
| | - Sylwia Figurska
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, 51097 Reims, France.,Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Manuela Maria Fra Czek
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, 51097 Reims, France.,Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
12
|
Zhang X, Dou P, Akhtar ML, Liu F, Hu X, Yang L, Yang D, Zhang X, Li Y, Qiao S, Li K, Tang R, Zhan C, Ma Y, Cheng Q, Bai Y, Han F, Nie H, Li Y. NEU4 inhibits motility of HCC cells by cleaving sialic acids on CD44. Oncogene 2021; 40:5427-5440. [PMID: 34282273 DOI: 10.1038/s41388-021-01955-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is an extremely metastatic tumor. Sialic acids (SAs) are associated with cancer development and metastasis. NEU4 is a sialidase that removes SAs from glycoconjugates, while the function of the NEU4 in HCC has not been clearly explored. In our research, we found the NEU4 expression was significantly down-regulated in HCC tissues, which was correlated with high grades and poor outcomes of HCC. The NEU4 expression could be regulated by histone acetylation. In the functional analysis of NEU4, the cell motility was inhibited when NEU4 was overexpressed, and restored when NEU4 expression was down-regulated. Similarly, NEU4 over-expressed HCC cells showed less metastasis in athymic nude mice. Further study revealed that NEU4 could inhibit cell migration by enzymatic decomposition of SAs. Our results verified a NEU4 active site (NEU4E235) and overexpressing inactivates NEU4E235A that weakens the inhibition ability to cell migration. Further, 70 kinds of specific interacting proteins of NEU4 including CD44 were identified through mass spectrum. Moreover, the α2,3-linked SAs on CD44 were decreased and the hyaluronic acid (HA) binding ability was increased when NEU4 over-expressed or activated. Additionally, the mutation of CD44 with six N-glycosylation sites showed less sensibility to NEU4 on cell migration compared with wild-type CD44. In summary, our results revealed the mechanism of low expression of NEU4 in HCC and its inhibitory effect on cell migration by removal of SAs on CD44, which may provide new treatment strategies to control the motility and metastasis of HCC.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Peng Dou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Muhammad Luqman Akhtar
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Fei Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Xibo Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Lijun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Depeng Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Xiaohan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Shupei Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Ran Tang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Chao Zhan
- The third affiliated hospital, Harbin Medical University, Harbin, Heilongjiang Provence, China, 150006
| | - Yue Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Qixiang Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Yan Bai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008.
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008.
| |
Collapse
|
13
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Qi F, Isaji T, Duan C, Yang J, Wang Y, Fukuda T, Gu J. ST3GAL3, ST3GAL4, and ST3GAL6 differ in their regulation of biological functions via the specificities for the α2,3-sialylation of target proteins. FASEB J 2019; 34:881-897. [PMID: 31914669 DOI: 10.1096/fj.201901793r] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
The α2,3-sialylation of N-glycans is considered important but complicated because the functions of the three β-galactoside α2,3-sialyltransferases, ST3GAL3, ST3GAL4, and ST3GAL6, could be compensating for one another. To distinguish their specific functions, we established each individual knockout (KO) cell line. Loss of either the ST3GAL3 or ST3GAL6 genes decreased cell proliferation and colony formation, as opposed to the effect in the ST3GAL4 KO cells. The phosphorylation levels of ERK and AKT were significantly suppressed in the ST3GAL6 KO and ST3GAL3 KO cells, respectively. The cell aggregations were clearly observed in the KO cells, particularly the ST3GAL3 KO and ST3GAL6 KO cells, and the expression levels of E-cadherin and claudin-1 were enhanced in both those cell lines, but were suppressed in the ST3GAL4 KO cells. Those alterations were reversed with an overexpression of each corresponding gene in rescued cells. Of particular interest, the α2,3-sialylation levels of β1 integrin were clearly suppressed in the ST3GAL4 KO cells, but these were increased in the ST3GAL3 KO and ST3GAL6 KO cells, whereas the α2,3-sialylation levels of EGFR were significantly decreased in the ST3GAL6 KO cells. The decrease in α2,3-sialylation increased the α2,6-sialylation on β1, but not EGFR. Furthermore, a cross-restoration of each of the three genes in ST3GAL6 KO cells showed that overexpression of ST3GAL6 sufficiently rescued the total α2,3-sialylation levels, cell morphology, and α2,3-sialylation of EGFR, whereas the α2,3-sialylation levels of β1 were greatly enhanced by an overexpression of ST3GAL4. These results clearly demonstrate that the three α2,3-sialyltransferases modify characteristic target proteins and regulate cell biological functions in different ways.
Collapse
Affiliation(s)
- Feng Qi
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chengwei Duan
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jie Yang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuqin Wang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
15
|
Bacterial sialoglycosidases in Virulence and Pathogenesis. Pathogens 2019; 8:pathogens8010039. [PMID: 30909660 PMCID: PMC6471121 DOI: 10.3390/pathogens8010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Human oral microbiome and dysbiotic infections have been recently evidently identified. One of the major reasons for such dysbiosis is impairment of the immune system. Periodontitis is a chronic inflammatory disease affecting the tissues that surround and support the teeth. In the United States., approximately 65 million people are affected by this condition. Its occurrence is also associated with many important systemic diseases such as cardiovascular disease, rheumatoid arthritis, and Alzheimer’s disease. Among the most important etiologies of periodontitis is Porphyromonas gingivalis, a keystone bacterial pathogen. Keystone pathogens can orchestrate inflammatory disease by remodeling a normally benign microbiota causing imbalance between normal and pathogenic microbiota (dysbiosis). The important characteristics of P. gingivalis causing dysbiosis are its virulence factors which cause effective subversion of host defenses to its advantage allowing other pathogens to grow. Some of the mechanisms involved in these processes are still not well-understood. However, various microbial strategies target host sialoglycoproteins for immune dysregulation. In addition, the enzymes that break down sialoglycoproteins and sialoglycans are the “sialoglycoproteases”, resulting in exposed terminal sialic acid. This process could lead to pathogen-toll like receptor (TLR) interactions mediated through sialic acid receptor ligand mechanisms. Assessing the function of P. gingivalis sialoglycoproteases, could pave the way to designing carbohydrate analogues and sialic acid mimetics to serve as drug targets.
Collapse
|
16
|
Richards MR, Guo T, Hunter CD, Cairo CW. Molecular dynamics simulations of viral neuraminidase inhibitors with the human neuraminidase enzymes: Insights into isoenzyme selectivity. Bioorg Med Chem 2018; 26:5349-5358. [PMID: 29903413 DOI: 10.1016/j.bmc.2018.05.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022]
Abstract
Inhibitors of viral neuraminidase enzymes have been previously developed as therapeutics. Humans can express multiple forms of neuraminidase enzymes (NEU1, NEU2, NEU3, NEU4) that share a similar active site and enzymatic mechanism with their viral counterparts. Using a panel of purified human neuraminidase enzymes, we tested the inhibitory activity of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir, oseltamivir, and peramivir against each of the human isoenzymes. We find that, with the exceptions of DANA and zanamivir, these compounds show generally poor activity against the human neuraminidase enzymes. To provide insight into the interactions of viral inhibitors with human neuraminidases, we conducted molecular dynamics simulations using homology models based on coordinates reported for NEU2. Simulations revealed that an organized water is displaced by zanamivir in binding to NEU2 and NEU3 and confirmed the critical importance of engaging the binding pocket of the C7-C9 glycerol sidechain. Our results suggest that compounds designed to target the human neuraminidases should provide more selective tools for interrogating these enzymes. Furthermore, they emphasize a need for additional structural data to enable structure-based drug design in these systems.
Collapse
Affiliation(s)
- Michele R Richards
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Carmanah D Hunter
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
17
|
Elevated urinary total sialic acid and increased oxidative stress in patients with bladder cancer. ASIAN BIOMED 2018. [DOI: 10.2478/abm-2010-0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Increased production and release of sialic acid have been reported in many malignant conditions including bladder cancer. 8-hydroxydeoxyguanosine (8-OHdG) and malondialdehyde (MDA) have been widely used as oxidative stress biomarkers. Objective: Determine urinary levels of total sialic acid (TSA), 8-OHdG, and MDA in patients with urinary bladder cancer, and evaluate their clinical relevance. Patients and methods: Forty-five patients with histologically proven bladder cancer and 41 healthy subjects were recruited for the study. Morning urine samples were collected from all participants for measurements of TSA, 8-OHdG and MDA using thiobarbituric assay, competitive ELISA and spectrophotometry methods, respectively. Histological examination was performed for all patients. Results: Bladder cancer patients excreted urinary TSA, 8-OHdG, and MDA significantly higher than healthy controls. Based on receiver operating characteristic curve analysis, urinary TSA had adequate diagnostic potential to distinguish patients from healthy populations, and its cutoff value was chosen at 95.26 μg/g creatinine. Sensitivity, specificity, and accuracy of urinary TSA determination were 75.6%, 75.6%, and 75.6%, respectively. Both in patient and healthy groups, urinary TSA was linearly correlated with urinary 8-OHdG. Patients with highseverity grade (n=27) excreted urinary TSA significantly greater than those with low-severity grade (n=18). Conclusion: Urinary TSA, 8-OHdG, and MDA increased in patients with bladder cancer. The elevated urinary TSA was associated with enhanced oxidative stress. In addition, urinary TSA increased with progressiveness of the tumor.
Collapse
|
18
|
Haxho F, Neufeld RJ, Szewczuk MR. Neuraminidase-1: a novel therapeutic target in multistage tumorigenesis. Oncotarget 2018; 7:40860-40881. [PMID: 27029067 PMCID: PMC5130050 DOI: 10.18632/oncotarget.8396] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022] Open
Abstract
Several of the growth factors and their receptor tyrosine kinases (RTK) such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF) and insulin are promising candidate targets for cancer therapy. Indeed, tyrosine kinase inhibitors (TKI) have been developed to target these growth factors and their receptors, and have demonstrated dramatic initial responses in cancer therapy. Yet, most patients ultimately develop TKI drug resistance and relapse. It is essential in the clinical setting that the targeted therapies are to circumvent multistage tumorigenesis, including genetic mutations at the different growth factor receptors, tumor neovascularization, chemoresistance of tumors, immune-mediated tumorigenesis and the development of tissue invasion and metastasis. Here, we identify a novel receptor signaling platform linked to EGF, NGF, insulin and TOLL-like receptor (TLR) activations, all of which are known to play major roles in tumorigenesis. The importance of these findings signify an innovative and promising entirely new targeted therapy for cancer. The role of mammalian neuraminidase-1 (Neu1) in complex with matrix metalloproteinase-9 and G protein-coupled receptor tethered to RTKs and TLRs is identified as a major target in multistage tumorigenesis. Evidence exposing the link connecting growth factor-binding and immune-mediated tumorigenesis to this novel receptor-signaling paradigm will be reviewed in its current relationship to cancer.
Collapse
Affiliation(s)
- Fiona Haxho
- Departments of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Myron R Szewczuk
- Departments of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Antibody against Microbial Neuraminidases Recognizes Human Sialidase 3 (NEU3): the Neuraminidase/Sialidase Superfamily Revisited. mBio 2017; 8:mBio.00078-17. [PMID: 28655817 PMCID: PMC5487728 DOI: 10.1128/mbio.00078-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuraminidases (NAs) are critical virulence factors for several microbial pathogens. With a highly conserved catalytic domain, a microbial NA "superfamily" has been proposed. We previously reported that murine polymorphonuclear leukocyte (PMN) sialidase activity was important in leukocyte trafficking to inflamed sites and that antibodies to Clostridium perfringens NA recognized a cell surface molecule(s), presumed to be a sialidase of eukaryotic origin on interleukin-8-stimulated human and murine PMNs. These antibodies also inhibited cell sialidase activity both in vitro and, in the latter instance, in vivo We therefore hypothesized that mammalian sialidases share structural homology and epitopes with microbial NAs. We now report that antibodies to one of the isoforms of C. perfringens NA, as well as anti-influenza virus NA serum, recognize human NEU3 but not NEU1 and that antibodies to C. perfringens NA inhibit NEU3 enzymatic activity. We conclude that the previously described microbial NA superfamily extends to human sialidases. Strategies designed to therapeutically inhibit microbial NA may need to consider potential compromising effects on human sialidases, particularly those expressed in cells of the immune system.IMPORTANCE We previously reported that sialidase activity of human neutrophils plays a critical role in the host inflammatory response. Since the catalytic domains of microbial neuraminidases are highly conserved, we hypothesized that antibodies against Clostridium perfringens neuraminidase might inhibit mammalian sialidase activity. Before the recognition of four mammalian sialidase (Neu) isoforms, we demonstrated that anti-C. perfringens neuraminidase antibodies inhibited human and murine sialidase activity in vivo and in vitro We now show that the antibodies to microbial neuraminidase (C. perfringens and influenza virus) recognize human NEU3, which is important for neural development and cell signaling. Since many microbes that infect mucosal surfaces express neuraminidase, it is possible that the use of sialidase inhibitors (e.g., zanamivir), might also compromise human sialidase activity critical to the human immune response. Alternatively, sialidase inhibitors may prove useful in the treatment of hyperinflammatory conditions.
Collapse
|
20
|
Membrane restructuring following in situ sialidase digestion of gangliosides: Complex model bilayers by synchrotron radiation reflectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:845-851. [DOI: 10.1016/j.bbamem.2017.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/30/2016] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
|
21
|
Ryuzono S, Takase R, Kamada Y, Ikenaga T, Chigwechokha PK, Komatsu M, Shiozaki K. Suppression of Neu1 sialidase delays the absorption of yolk sac in medaka (Oryzias latipes) accompanied with the accumulation of α2-3 sialo-glycoproteins. Biochimie 2017; 135:63-71. [DOI: 10.1016/j.biochi.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/16/2017] [Indexed: 02/01/2023]
|
22
|
Badr HA, AlSadek DMM, El-Houseini ME, Saeui CT, Mathew MP, Yarema KJ, Ahmed H. Harnessing cancer cell metabolism for theranostic applications using metabolic glycoengineering of sialic acid in breast cancer as a pioneering example. Biomaterials 2017; 116:158-173. [PMID: 27926828 PMCID: PMC5193387 DOI: 10.1016/j.biomaterials.2016.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022]
Abstract
Abnormal cell surface display of sialic acids - a family of unusual 9-carbon sugars - is widely recognized as distinguishing feature of many types of cancer. Sialoglycans, however, typically cannot be identified with sufficiently high reproducibility and sensitivity to serve as clinically accepted biomarkers and similarly, almost all efforts to exploit cancer-specific differences in sialylation signatures for therapy remain in early stage development. In this report we provide an overview of important facets of glycosylation that contribute to cancer in general with a focus on breast cancer as an example of malignant disease characterized by aberrant sialylation. We then describe how cancer cells experience nutrient deprivation during oncogenesis and discuss how the resulting metabolic reprogramming, which endows breast cancer cells with the ability to obtain nutrients during scarcity, constitutes an "Achilles' heel" that we believe can be exploited by metabolic glycoengineering (MGE) strategies to develop new diagnostic methods and therapeutic approaches. In particular, we hypothesize that adaptations made by breast cancer cells that allow them to efficiently scavenge sialic acid during times of nutrient deprivation renders them vulnerable to MGE, which refers to the use of exogenously-supplied, non-natural monosaccharide analogues to modulate targeted aspects of glycosylation in living cells and animals. In specific, once non-natural sialosides are incorporated into the cancer "sialome" they can be exploited as epitopes for immunotherapy or as chemical tags for targeted delivery of imaging or therapeutic agents selectively to tumors.
Collapse
Affiliation(s)
- Haitham A Badr
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dina M M AlSadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Motawa E El-Houseini
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Christopher T Saeui
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Mohit P Mathew
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Hafiz Ahmed
- GlycoMantra, Inc., Baltimore, MD 21227, USA.
| |
Collapse
|
23
|
Gattu S, Crihfield CL, Holland LA. Microscale Measurements of Michaelis-Menten Constants of Neuraminidase with Nanogel Capillary Electrophoresis for the Determination of the Sialic Acid Linkage. Anal Chem 2016; 89:929-936. [PMID: 27936604 PMCID: PMC5214287 DOI: 10.1021/acs.analchem.6b04074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phospholipid nanogels enhance the stability and performance of the exoglycosidase enzyme neuraminidase and are used to create a fixed zone of enzyme within a capillary. With nanogels, there is no need to covalently immobilize the enzyme, as it is physically constrained. This enables rapid quantification of Michaelis-Menten constants (KM) for different substrates and ultimately provides a means to quantify the linkage (i.e., 2-3 versus 2-6) of sialic acids. The fixed zone of enzyme is inexpensive and easily positioned in the capillary to support electrophoresis mediated microanalysis using neuraminidase to analyze sialic acid linkages. To circumvent the limitations of diffusion during static incubation, the incubation period is reproducibly achieved by varying the number of forward and reverse passes the substrate makes through the stationary fixed zone using in-capillary electrophoretic mixing. A KM value of 3.3 ± 0.8 mM (Vmax, 2100 ± 200 μM/min) was obtained for 3'-sialyllactose labeled with 2-aminobenzoic acid using neuraminidase from Clostridium perfringens that cleaves sialic acid monomers with an α2-3,6,8,9 linkage, which is similar to values reported in the literature that required benchtop analyses. The enzyme cleaves the 2-3 linkage faster than the 2-6, and a KM of 2 ± 1 mM (Vmax, 400 ± 100 μM/min) was obtained for the 6'-sialyllactose substrate. An alternative neuraminidase selective for 2-3 sialic acid linkages generated a KM value of 3 ± 2 mM (Vmax, 900 ± 300 μM/min) for 3'-sialyllactose. With a knowledge of Vmax, the method was applied to a mixture of 2-3 and 2-6 sialyllactose as well as 2-3 and 2-6 sialylated triantennary glycan. Nanogel electrophoresis is an inexpensive, rapid, and simple alternative to current technologies used to distinguish the composition of 3' and 6' sialic acid linkages.
Collapse
Affiliation(s)
- Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Cassandra L Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| |
Collapse
|
24
|
Jaako K, Waniek A, Parik K, Klimaviciusa L, Aonurm-Helm A, Noortoots A, Anier K, Van Elzen R, Gérard M, Lambeir AM, Roßner S, Morawski M, Zharkovsky A. Prolyl endopeptidase is involved in the degradation of neural cell adhesion molecules in vitro. J Cell Sci 2016; 129:3792-3802. [PMID: 27566163 DOI: 10.1242/jcs.181891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Membrane-associated glycoprotein neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) play an important role in brain plasticity by regulating cell-cell interactions. Here, we demonstrate that the cytosolic serine protease prolyl endopeptidase (PREP) is able to regulate NCAM and PSA-NCAM. Using a SH-SY5Y neuroblastoma cell line with stable overexpression of PREP, we found a remarkable loss of PSA-NCAM, reduced levels of NCAM180 and NCAM140 protein species, and a significant increase in the NCAM immunoreactive band migrating at an apparent molecular weight of 120 kDa in PREP-overexpressing cells. Moreover, increased levels of NCAM fragments were found in the concentrated medium derived from PREP-overexpressing cells. PREP overexpression selectively induced an activation of matrix metalloproteinase-9 (MMP-9), which could be involved in the observed degradation of NCAM, as MMP-9 neutralization reduced the levels of NCAM fragments in cell culture medium. We propose that increased PREP levels promote epidermal growth factor receptor (EGFR) signaling, which in turn activates MMP-9. In conclusion, our findings provide evidence for newly-discovered roles for PREP in mechanisms regulating cellular plasticity through NCAM and PSA-NCAM.
Collapse
Affiliation(s)
- Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Keiti Parik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Linda Klimaviciusa
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Anu Aonurm-Helm
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Roos Van Elzen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp B-2610, Belgium
| | - Melanie Gérard
- Interdisciplinary Research Centre KU Leuven-Kortrijk, Kortrijk B-8500, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp B-2610, Belgium
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
25
|
Hyun SW, Liu A, Liu Z, Cross AS, Verceles AC, Magesh S, Kommagalla Y, Kona C, Ando H, Luzina IG, Atamas SP, Piepenbrink KH, Sundberg EJ, Guang W, Ishida H, Lillehoj EP, Goldblum SE. The NEU1-selective sialidase inhibitor, C9-butyl-amide-DANA, blocks sialidase activity and NEU1-mediated bioactivities in human lung in vitro and murine lung in vivo. Glycobiology 2016; 26:834-49. [PMID: 27226251 PMCID: PMC5884327 DOI: 10.1093/glycob/cww060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022] Open
Abstract
Neuraminidase-1 (NEU1) is the predominant sialidase expressed in human airway epithelia and lung microvascular endothelia where it mediates multiple biological processes. We tested whether the NEU1-selective sialidase inhibitor, C9-butyl-amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid (C9-BA-DANA), inhibits one or more established NEU1-mediated bioactivities in human lung cells. We established the IC50 values of C9-BA-DANA for total sialidase activity in human airway epithelia, lung microvascular endothelia and lung fibroblasts to be 3.74 µM, 13.0 µM and 4.82 µM, respectively. In human airway epithelia, C9-BA-DANA dose-dependently inhibited flagellin-induced, NEU1-mediated mucin-1 ectodomain desialylation, adhesiveness for Pseudomonas aeruginosa and shedding. In lung microvascular endothelia, C9-BA-DANA reversed NEU1-driven restraint of cell migration into a wound and disruption of capillary-like tube formation. NEU1 and its chaperone/transport protein, protective protein/cathepsin A (PPCA), were differentially expressed in these same cells. Normalized NEU1 protein expression correlated with total sialidase activity whereas PPCA expression did not. In contrast to eukaryotic sialidases, C9-BA-DANA exerted far less inhibitory activity for three selected bacterial neuraminidases (IC50 > 800 µM). Structural modeling of the four human sialidases and three bacterial neuraminidases revealed a loop between the seventh and eighth strands of the β-propeller fold, that in NEU1, was substantially shorter than that seen in the six other enzymes. Predicted steric hindrance between this loop and C9-BA-DANA could explain its selectivity for NEU1. Finally, pretreatment of mice with C9-BA-DANA completely protected against flagellin-induced increases in lung sialidase activity. Our combined data indicate that C9-BA-DANA inhibits endogenous and ectopically expressed sialidase activity and established NEU1-mediated bioactivities in human airway epithelia, lung microvascular endothelia, and fibroblasts in vitro and murine lungs in vivo.
Collapse
Affiliation(s)
- Sang W Hyun
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, USA Department of Medicine
| | - Anguo Liu
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, USA Department of Medicine
| | - Zhenguo Liu
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, USA
| | - Alan S Cross
- Department of Medicine Center for Vaccine Development, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | | | - Sadagopan Magesh
- Department of Applied Bio-organic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yadagiri Kommagalla
- Department of Applied Bio-organic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Chandrababunaidu Kona
- Department of Applied Bio-organic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiromune Ando
- Department of Applied Bio-organic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Irina G Luzina
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, USA Department of Medicine
| | - Sergei P Atamas
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, USA Department of Medicine Department of Microbology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Kurt H Piepenbrink
- Department of Medicine Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard St, Baltimore, MD 21201, USA
| | - Eric J Sundberg
- Department of Medicine Department of Microbology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard St, Baltimore, MD 21201, USA
| | - Wei Guang
- Department of Pediatrics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Simeon E Goldblum
- Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, USA Center for Vaccine Development, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Sajo M, Sugiyama H, Yamamoto H, Tanii T, Matsuki N, Ikegaya Y, Koyama R. Neuraminidase-Dependent Degradation of Polysialic Acid Is Required for the Lamination of Newly Generated Neurons. PLoS One 2016; 11:e0146398. [PMID: 26731280 PMCID: PMC4701216 DOI: 10.1371/journal.pone.0146398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Hippocampal granule cells (GCs) are generated throughout the lifetime and are properly incorporated into the innermost region of the granule cell layer (GCL). Hypotheses for the well-regulated lamination of newly generated GCs suggest that polysialic acid (PSA) is present on the GC surface to modulate GC-to-GC interactions, regulating the process of GC migration; however, direct evidence of this involvement is lacking. We show that PSA facilitates the migration of newly generated GCs and that the activity of N-acetyl-α-neuraminidase 1 (NEU1, sialidase 1) cleaves PSA from immature GCs, terminating their migration in the innermost GCL. Developing a migration assay of immature GCs in vitro, we found that the pharmacological depletion of PSA prevents the migration of GCs, whereas the inhibition of PSA degradation with a neuraminidase inhibitor accelerates this migration. We found that NEU1 is highly expressed in immature GCs. The knockdown of NEU1 in newly generated GCs in vivo increased PSA presence on these cells, and attenuated the proper termination of GC migration in the innermost GCL. In conclusion, this study identifies a novel mechanism that underlies the proper lamination of newly generated GCs through the modulation of PSA presence by neuronal NEU1.
Collapse
Affiliation(s)
- Mari Sajo
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sugiyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideaki Yamamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan
| | - Takashi Tanii
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
27
|
Williams PB, Barnes CS, Portnoy JM. Innate and Adaptive Immune Response to Fungal Products and Allergens. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:386-95. [PMID: 26755096 DOI: 10.1016/j.jaip.2015.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Exposure to fungi and their products is practically ubiquitous, yet most of this is of little consequence to most healthy individuals. This is because there are a number of elaborate mechanisms to deal with these exposures. Most of these mechanisms are designed to recognize and neutralize such exposures. However, in understanding these mechanisms it has become clear that many of them overlap with our ability to respond to disruptions in tissue function caused by trauma or deterioration. These responses involve the innate and adaptive immune systems usually through the activation of nuclear factor kappa B and the production of cytokines that are considered inflammatory accompanied by other factors that can moderate these reactivities. Depending on different genetic backgrounds and the extent of activation of these mechanisms, various pathologies with resulting symptoms can ensue. Complicating this is the fact that these mechanisms can bias toward type 2 innate and adaptive immune responses. Thus, to understand what we refer to as allergens from fungal sources, we must first understand how they influence these innate mechanisms. In doing so it has become clear that many of the proteins that are described as fungal allergens are essentially homologues of our own proteins that signal or cause tissue disruptions.
Collapse
Affiliation(s)
- P Brock Williams
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Charles S Barnes
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Jay M Portnoy
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo.
| | | |
Collapse
|
28
|
Huang K, Wang MM, Kulinich A, Yao HL, Ma HY, Martínez JER, Duan XC, Chen H, Cai ZP, Flitsch SL, Liu L, Voglmeir J. Biochemical characterisation of the neuraminidase pool of the human gut symbiont Akkermansia muciniphila. Carbohydr Res 2015; 415:60-5. [PMID: 26340137 DOI: 10.1016/j.carres.2015.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 11/26/2022]
Abstract
Since the isolation and identification of Akkermansia muciniphila one decade ago, much attention has been drawn to this gut bacterium due to its role in obesity and type 2 diabetes. This report describes the discovery and biochemical characterisation of all four putative neuraminidases annotated in the A. muciniphila genome. Recombinantly expressed candidate genes, which were designated Am0705, Am0707, Am1757 and Am2085, were shown to cover complementary pH ranges between 4.0 and 9.5. Temperature optima of the enzymes lay between 37 and 42 °C. All four enzymes were strongly inhibited by Cu(2+) and Zn(2+), and loss of activity after the addition of EDTA suggests that all neuraminidases, with the exception of Am0707, require divalent metal ions for their catalytic function. Chemoenzymatically synthesised α2,3- and α2,6-linked indoyl-sialosides were utilised to determine the regioselectivity and substrate promiscuity of the neuraminidases towards C5-modifications of sialic acids with N-acetyl-, N-glycolyl-, N-propionyl-, or hydroxyl-groups. The combination of simple purification procedures and good activities of some of the characterised neuraminidases makes them potentially interesting as tools in bioanalytical or industrial applications.
Collapse
Affiliation(s)
- Kun Huang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mao M Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Anna Kulinich
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong L Yao
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong Y Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Juana E R Martínez
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Xu C Duan
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huan Chen
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhi P Cai
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
29
|
Zamora CY, Ryan MJ, d'Alarcao M, Kumar K. Sialidases as regulators of bioengineered cellular surfaces. Glycobiology 2015; 25:784-91. [PMID: 25795684 DOI: 10.1093/glycob/cwv019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Human sialidases (NEUs) catalyze the removal of N-acetyl neuraminic acids from the glycome of the cell and regulate a diverse repertoire of nominal cellular functions, such as cell signaling and adhesion. A greater understanding of their substrate permissivity is of interest in order to discern their physiological functions in disease states and in the design of specific and effective small molecule inhibitors. Towards this, we have synthesized soluble fluorogenic reporters of mammalian sialidase activity bearing unnatural sialic acids commonly incorporated into the cellular glycocalyx via metabolic glycoengineering. We found cell-surface sialidases in Jurkat capable of cleaving unnatural sialic acids with differential activities toward a variety of R groups on neuraminic acid. In addition, we observed modulated structure-activity relationships when cell-surface sialidases were presented glycans with unnatural bulky, hydrophobic or fluorinated moieties incorporated directly via glycoengineering. Our results confirm the importance of cell-surface sialidases in glycoengineering incorporation data. We demonstrate the flexibility of human NEUs toward derivatized sugars and highlight the importance of native glycan presentation to sialidase binding and activity. These results stand to inform not only metabolic glycoengineering efforts but also inhibitor design.
Collapse
Affiliation(s)
| | - Matthew J Ryan
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Marc d'Alarcao
- Department of Chemistry, San José State University, San José, CA, USA
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, MA, USA Cancer Center, Tufts Medical Center Boston, Boston, MA, USA
| |
Collapse
|
30
|
Zhang Y, Zhao W, Zhao Y, He Q. Expression of ST3Gal, ST6Gal, ST6GalNAc and ST8Sia in human hepatic carcinoma cell lines, HepG-2 and SMMC-7721 and normal hepatic cell line, L-02. Glycoconj J 2015; 32:39-47. [PMID: 25572164 DOI: 10.1007/s10719-014-9569-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 01/05/2023]
Abstract
We measured ST3Gal, ST6Gal, ST6GalNAc and ST8Sia expression in human hepatic carcinoma cell lines, HepG-2 and SMMC-7721 and normal hepatic cell line, L-02 to reveal the relationship between hepatic carcinoma cell lines sialyltransferases expression and cell membrane sialic acid sugar chains. Membrane sialic acid sugar chains in L-02, HepG-2 and SMMC-7721 cell lines were measured with lectin microarrays to find expression profiles. Expression of 20 sialyltransferases was measured with DNA microarray. qRT-PCR and Western blot were used to verify DNA microarrays data. Siaα 2-3Galβ1-3[Siaα2-6GalNAc]α-R and Siaα 2-6Gal/GalNAc sugar chains in hepatic carcinoma cell lines, HepG-2 and SMMC-7721 were upregulated, and 7differentially expressed sialyltransferases were captured. ST3Gal-IV and ST6Gal I were overexpressed and ST3Gal-I, ST3Gal-V, ST3Gal-VI, ST6GalNAcII and ST6GalNAcVI were downregulated in HepG-2 and SMMC-7721 cell Lines, compared with control cell line. ST6GalNAc-IV and ST8sia expressions were not detected. Other sialyltransferases were not different among cell lines. Results from qRT-PCR and Western blot were consistent with DNA microarray. Overexpression of ST3Gal-IV and ST6Gal I in HepG-2 and SMMC-7721 cell lines may correlate with upregulation of Siaα 2-3Galβ1-3[Siaα2-6GalNAc]α-R and Siaα 2-6Gal/GalNAc sugar chains on cell membranes.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biochemistry, College of Basic Medicine, Shenyang Medical College, Shenyang, 110034, Liaoning, China
| | | | | | | |
Collapse
|
31
|
Albohy A, Richards MR, Cairo CW. Mapping substrate interactions of the human membrane-associated neuraminidase, NEU3, using STD NMR. Glycobiology 2014; 25:284-93. [DOI: 10.1093/glycob/cwu109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
32
|
Aiming at the sweet side of cancer: Aberrant glycosylation as possible target for personalized-medicine. Cancer Lett 2014; 352:102-12. [DOI: 10.1016/j.canlet.2013.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 01/26/2023]
|
33
|
Pshezhetsky AV, Ashmarina LI. Desialylation of surface receptors as a new dimension in cell signaling. BIOCHEMISTRY (MOSCOW) 2014; 78:736-45. [PMID: 24010837 DOI: 10.1134/s0006297913070067] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Terminal sialic acid residues are found in abundance in glycan chains of glycoproteins and glycolipids on the surface of all live cells forming an outer layer of the cell originally known as glycocalyx. Their presence affects the molecular properties and structure of glycoconjugates, modifying their function and interactions with other molecules. Consequently, the sialylation state of glycoproteins and glycolipids has been recognized as a critical factor modulating molecular recognitions inside the cell, between the cells, between the cells and the extracellular matrix, and between the cells and certain exogenous pathogens. Until recently sialyltransferases that catalyze transfer of sialic acid residues to the glycan chains in the process of their biosynthesis were thought to be mainly responsible for the creation and maintenance of a temporal and spatial diversity of sialylated moieties. However, the growing evidence suggests that in mammalian cells, at least equally important roles belong to sialidases/neuraminidases, which are located on the cell surface and in intracellular compartments, and may either initiate the catabolism of sialoglycoconjugates or just cleave their sialic acid residues, and thereby contribute to temporal changes in their structure and functions. The current review summarizes emerging data demonstrating that mammalian neuraminidase 1, well known for its lysosomal catabolic function, is also targeted to the cell surface and assumes the previously unrecognized role as a structural and functional modulator of cellular receptors.
Collapse
Affiliation(s)
- A V Pshezhetsky
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Qc, H3T1C5, Canada.
| | | |
Collapse
|
34
|
Modification of sialylation is associated with multidrug resistance in human acute myeloid leukemia. Oncogene 2014; 34:726-40. [PMID: 24531716 DOI: 10.1038/onc.2014.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/07/2013] [Accepted: 01/06/2014] [Indexed: 12/15/2022]
Abstract
Aberrant cell surface sialylation patterns have been shown to correlate with tumor progression and metastasis. However, the role of sialylation regulation of cancer multidrug resistance (MDR) remains poorly understood. This study investigated sialylation in modification on MDR in acute myeloid leukemia (AML). Using mass spectrometry (MS) analysis, the composition profiling of sialylated N-glycans differed in three pairs of AML cell lines. Real-time PCR showed the differential expressional profiles of 20 sialyltransferase (ST) genes in the both AML cell lines and bone marrow mononuclear cells (BMMCs) of AML patients. The expression levels of ST3GAL5 and ST8SIA4 were detected, which were overexpressed in HL60 and HL60/adriamycin-resistant (ADR) cells. The altered levels of ST3GAL5 and ST8SIA4 were found in close association with the MDR phenotype changing of HL60 and HL60/ADR cells both in vitro and in vivo. Further data demonstrated that manipulation of these two genes' expression modulated the activity of phosphoinositide-3 kinase (PI3K)/Akt signaling pathway and its downstream target thus regulated the proportionally mutative expression of P-glycoprotein (P-gp) and MDR-related protein 1 (MRP1), both of which are known to be involved in MDR. Blocking the PI3K/Akt pathway by its specific inhibitor LY294002 or by Akt small interfering RNA resulted in the reduced chemosensitivity of HL60/ADR cells. Therefore, this study indicated that sialylation involved in the development of MDR of AML cells probably through ST3GAL5 or ST8SIA4 regulating the activity of PI3K/Akt signaling and the expression of P-gp and MRP1.
Collapse
|
35
|
Richards MR, Brant MG, Boulanger MJ, Cairo CW, Wulff JE. Conformational analysis of peramivir reveals critical differences between free and enzyme-bound states. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00168k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An analysis of the conformational distribution of peramivir, a potent anti-influenza compound, in solution and the solid state reveals a large conformational change required for enzyme binding.
Collapse
Affiliation(s)
- Michele R. Richards
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton Alberta T6G 2G2, Canada
| | - Michael G. Brant
- Department of Chemistry
- University of Victoria
- Victoria British Columbia V8W 3V6, Canada
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology
- University of Victoria
- Victoria British Columbia V8W 3V6, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton Alberta T6G 2G2, Canada
| | - Jeremy E. Wulff
- Department of Chemistry
- University of Victoria
- Victoria British Columbia V8W 3V6, Canada
| |
Collapse
|
36
|
Abstract
A review of known small molecule inhibitors and substrates of the human neuraminidase enzymes.
Collapse
Affiliation(s)
- Christopher W. Cairo
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton Alberta
- Canada
| |
Collapse
|
37
|
Sawant RC, Hung JT, Chuang HL, Lin HS, Chen WS, Yu AL, Luo SY. Synthesis of Hydroxylated Analogues of α-Galactosyl Ceramide (KRN7000) with Varying Stereochemistry. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Ahn JM, Sung HJ, Yoon YH, Kim BG, Yang WS, Lee C, Park HM, Kim BJ, Kim BG, Lee SY, An HJ, Cho JY. Integrated glycoproteomics demonstrates fucosylated serum paraoxonase 1 alterations in small cell lung cancer. Mol Cell Proteomics 2013; 13:30-48. [PMID: 24085812 PMCID: PMC3879622 DOI: 10.1074/mcp.m113.028621] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive type of lung cancer, and the detection of SCLCs at an early stage is necessary for successful therapy and for improving cancer survival rates. Fucosylation is one of the most common glycosylation-based modifications. Increased levels of fucosylation have been reported in a number of pathological conditions, including cancers. In this study, we aimed to identify and validate the aberrant and selective fucosylated glycoproteins in the sera of patients with SCLC. Fucosylated glycoproteins were enriched by the Aleuria aurantia lectin column after serum albumin and IgG depletion. In a narrowed down and comparative data analysis of both label-free proteomics and isobaric peptide-tagging chemistry iTRAQ approaches, the fucosylated glycoproteins were identified as up- or down-regulated in the sera of limited disease and extensive disease stage patients with SCLC. Verification was performed by multiple reaction monitoring-mass spectrometry to select reliable markers. Four fucosylated proteins, APCS, C9, SERPINA4, and PON1, were selected and subsequently validated by hybrid A. aurantia lectin ELISA (HLE) and Western blotting. Compared with Western blotting, the HLE analysis of these four proteins produced more optimal diagnostic values for SCLC. The PON1 protein levels were significantly reduced in the sera of patients with SCLC, whereas the fucosylation levels of PON1 were significantly increased. Fucosylated PON1 exhibited an area under curve of 0.91 for the extensive disease stage by HLE, whereas the PON1 protein levels produced an area under curve of 0.82 by Western blot. The glycan structural analysis of PON1 by MS/MS identified a biantennary fucosylated glycan modification consisting of a core + 2HexNAc + 1Fuc at increased levels in the sera of patients with SCLC. In addition, the PON1 levels were decreased in the sera of the Lewis lung carcinoma lung cancer mouse model that we examined. Our data suggest that fucosylated protein biomarkers, such as PON1, and their fucosylation levels and patterns can serve as diagnostic and prognostic serological markers for SCLC.
Collapse
Affiliation(s)
- Jung-Mo Ahn
- Department of Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Han YY, Liu HY, Han DJ, Zong XC, Zhang SQ, Chen YQ. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells. Biochem Pharmacol 2013; 86:1254-62. [PMID: 23962446 DOI: 10.1016/j.bcp.2013.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 12/11/2022]
Abstract
Antibacterial peptides (ABPs) with cancer-selective toxicity have received much more attention as alternative chemotherapeutic agents in recent years. However, the basis of their anticancer activity remains unclear. The modification of cell surface glycosylation is a characteristic of cancer cells. The present study investigated the effect of glycosylation, in particular sialic acid, on the anticancer activity of ABPs. We showed that aurein 1.2, buforin IIb and BMAP-28m exhibited selective cytotoxicity toward MX-1 and MCF-7 breast cancer cells. The binding activity, cytotoxicity and apoptotic activity of ABPs were enhanced by the presence of O-, N-glycoproteins, gangliosides and sialic acid on the surface of breast cancer cells. Among N-, O-glycoproteins and ganglioside, O-glycoproteins almost had the strongest effect on the binding and cytotoxicity of the three peptides. Further, up-regulation of hST6Gal1 in CHO-K1 cells enhanced the susceptibility of cells to these peptides. Finally, the growth of MX-1 xenograft tumors in mice was significantly suppressed by buforin IIb treatment, which was associated with induction of apoptosis and inhibition of vascularization. These data demonstrate that the three peptides bind to breast cancer cells via an interaction with surface O-, N-glycoproteins and gangliosides. Sialic acids act as key glycan binding sites for cationic ABP binding to glycoproteins and gangliosides. Therefore, glycosylation in breast cancer cells plays an important role in the anticancer activity of ABPs, which may partly explain their cancer-selective toxicity. Anticancer ABPs with cancer-selective cytotoxicity will be promising candidates for anticancer therapy in the future.
Collapse
Affiliation(s)
- Yang-Yang Han
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210000, China
| | | | | | | | | | | |
Collapse
|
40
|
Yen YF, Kulkarni SS, Chang CW, Luo SY. Concise synthesis of α-galactosyl ceramide from d-galactosyl iodide and d-lyxose. Carbohydr Res 2013; 368:35-9. [DOI: 10.1016/j.carres.2012.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/12/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
|
41
|
Sanda M, Pompach P, Brnakova Z, Wu J, Makambi K, Goldman R. Quantitative liquid chromatography-mass spectrometry-multiple reaction monitoring (LC-MS-MRM) analysis of site-specific glycoforms of haptoglobin in liver disease. Mol Cell Proteomics 2013; 12:1294-305. [PMID: 23389048 DOI: 10.1074/mcp.m112.023325] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Development of liver disease is associated with the appearance of multiply fucosylated glycoforms of haptoglobin. To analyze the disease-related haptoglobin glycoforms in liver cirrhosis and hepatocellular carcinoma, we have optimized an LC-MS-multiple reaction monitoring (MRM) workflow for glycopeptide quantification. The final quantitative analysis included 24 site-specific glycoforms generated by treatment of a tryptic digest of haptoglobin with α(2-3,6,8)-neuraminidase and β(1-4)-galactosidase. The combination of LC-MS-MRM with exoglycosidase digests allowed resolution of isobaric glycoforms of the haptoglobin-T3 glycopeptide for quantification of the multiply fucosylated Lewis Y-containing glycoforms we have identified in the context of liver disease. Fourteen multiply fucosylated glycoforms of the 20 examined increased significantly in the liver disease group compared with healthy controls with an average 5-fold increase in intensity (p < 0.05). At the same time, two tri-antennary glycoforms without fucoses did not increase in the liver disease group, and two tetra-antennary glycoforms without fucoses showed a marginal increase (at most 40%) in intensity. Our analysis of 30 individual patient samples (10 healthy controls, 10 cirrhosis patients, and 10 hepatocellular carcinoma patients) showed that these glycoforms were substantially increased in a small subgroup of liver disease patients but did not significantly differ between the groups of hepatocellular carcinoma and cirrhosis patients. The tri- and tetra-antennary singly fucosylated glycoforms are associated with a MELD score and low platelet counts (p < 0.05). The exoglycosidase-assisted LC-MS-MRM workflow, optimized for the quantification of fucosylated glycoforms of haptoglobin, can be used for quantification of these glycoforms on other glycopeptides with appropriate analytical behavior.
Collapse
Affiliation(s)
- Miloslav Sanda
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Alkyne-hinged 3-fluorosialyl fluoride (DFSA) containing an alkyne group was shown to be a mechanism-based target-specific irreversible inhibitor of sialidases. The ester-protected analog DFSA (PDFSA) is a membrane-permeable precursor of DFSA designed to be used in living cells, and it was shown to form covalent adducts with virus, bacteria, and human sialidases. The fluorosialyl-enzyme adduct can be ligated with an azide-annexed biotin via click reaction and detected by the streptavidin-specific reporting signals. Liquid chromatography-mass spectrometry/mass spectrometry analysis on the tryptic peptide fragments indicates that the 3-fluorosialyl moiety modifies tyrosine residues of the sialidases. DFSA was used to demonstrate influenza infection and the diagnosis of the viral susceptibility to the anti-influenza drug oseltamivir acid, whereas PDFSA was used for in situ imaging of the changes of sialidase activity in live cells.
Collapse
|
43
|
Brant MG, Wulff JE. A rigid bicyclic platform for the generation of conformationally locked neuraminidase inhibitors. Org Lett 2012. [PMID: 23181823 PMCID: PMC3516865 DOI: 10.1021/ol3027939] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapid mutation of the influenza virus through genetic mixing raises the prospect of new strains that are both highly transmissible and highly lethal, and which have the ability to evade both immunization strategies (through mutation of hemagglutinin) and current therapies (through mutation of neuraminidase). Inspired by a need for next-generation therapeutics, a synthetic strategy for a new class of rigid, bicyclic inhibitors of influenza neuraminidase is reported.
Collapse
Affiliation(s)
- Michael G Brant
- Department of Chemistry, University of Victoria, Victoria, BC, Canada, V8W 3V6
| | | |
Collapse
|
44
|
Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, Kunz-Schughart LA. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol 2012; 229:355-78. [DOI: 10.1002/path.4086] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/30/2012] [Accepted: 08/04/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Philipp Grosse-Gehling
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD); Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Claudia Dittfeld
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Yvette Garbe
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Malcolm R Alison
- Blizard Institute; Barts and The London School of Medicine and Dentistry; London; UK
| | - Denis Corbeil
- Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD); Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Leoni A Kunz-Schughart
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| |
Collapse
|
45
|
Lu DY, Xu J, Lu TR, Wu HY, Xu B. Inhibitions of several antineoplastic drugs on serum sialic Acid levels in mice bearing tumors. Sci Pharm 2012; 81:223-31. [PMID: 23641340 PMCID: PMC3617655 DOI: 10.3797/scipharm.1209-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/14/2012] [Indexed: 01/17/2023] Open
Abstract
Six murine tumors, including ascetic tumors HepA, EC, P388 leukemia, S180 and solid tumor S180, and Lewis lung carcinoma, were employed in this work. The free sialic acid concentrations in both blood and ascites were measured in tumor-bearing mice. The results showed that the content of sialic acids in blood was increased in tumor growth and certain tumor types. Higher sialic acid content was observed in ascites than that present in blood. The influence of antineoplastic agents (vincristine, thiotepa, adriamycin, probimane, cisplatin, oxalysine, cortisone, nitrogen mustard, lycobetaine, Ara-C, harringtonine, and cyclophosphamide) on the content of sialic acids in mice blood bearing solid tumors of either S180 or Lewis lung carcinoma was observed. Different inhibitions of antineoplastic drugs on both tumor growth and serum sialic acid levels in mice bearing tumors were found. Among these antineoplastic drugs, probimane, cisplatin, nitrogen mustard, and lycobetaine were able to decrease the serum sialic acid levels in mice bearing tumors. Since these four antineoplastic drugs are all DNA chelating agents, it was proposed that the inhibition of tumor sialic acids by these drugs might be through the DNA template via two ways. Since we have found no effect of antineoplastic drugs on serum sialic acid levels in normal mice, this suggests that the inhibition of antineoplastic drugs on sialic acids is by tumor involvement.
Collapse
Affiliation(s)
- Da-Yong Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | | | | | | | | |
Collapse
|
46
|
Yamaguchi K, Shiozaki K, Moriya S, Koseki K, Wada T, Tateno H, Sato I, Asano M, Iwakura Y, Miyagi T. Reduced susceptibility to colitis-associated colon carcinogenesis in mice lacking plasma membrane-associated sialidase. PLoS One 2012; 7:e41132. [PMID: 22815940 PMCID: PMC3398939 DOI: 10.1371/journal.pone.0041132] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/17/2012] [Indexed: 11/25/2022] Open
Abstract
Sialic acids are acidic monosaccharides that bind to the sugar chains of glycoconjugates and change their conformation, intermolecular interactions, and/or half-life. Thus, sialidases are believed to modulate the function of sialoglycoconjugates by desialylation. We previously reported that the membrane-associated mammalian sialidase NEU3, which preferentially acts on gangliosides, is involved in cell differentiation, motility, and tumorigenesis. The NEU3 gene expression is aberrantly elevated in several human cancers, including colon, renal, prostate, and ovarian cancers. The small interfering RNA-mediated knock-down of NEU3 in cancer cell lines, but not in normal cell-derived primary cultures, downregulates EGFR signaling and induces apoptosis. Here, to investigate the physiological role of NEU3 in tumorigenesis, we established Neu3-deficient mice and then subjected them to carcinogen-induced tumorigenesis, using a sporadic and a colitis-associated colon cancer models. The Neu3-deficient mice showed no conspicuous accumulation of gangliosides in the brain or colon mucosa, or overt abnormalities in their growth, development, behavior, or fertility. In dimethylhydrazine-induced colon carcinogenesis, there were no differences in the incidence or growth of tumors between the Neu3-deficient and wild-type mice. On the other hand, the Neu3-deficient mice were less susceptible than wild-type mice to the colitis-associated colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. These results suggest that NEU3 plays an important role in inflammation-dependent tumor development.
Collapse
Affiliation(s)
- Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Sialic acids are a diverse family of monosaccharides widely expressed on all cell surfaces of vertebrates and so-called "higher" invertebrates, and on certain bacteria that interact with vertebrates. This overview surveys examples of biological roles of sialic acids in immunity, with emphasis on an evolutionary perspective. Given the breadth of the subject, the treatment of individual topics is brief. Subjects discussed include biophysical effects regulation of factor H; modulation of leukocyte trafficking via selectins; Siglecs in immune cell activation; sialic acids as ligands for microbes; impact of microbial and endogenous sialidases on immune cell responses; pathogen molecular mimicry of host sialic acids; Siglec recognition of sialylated pathogens; bacteriophage recognition of microbial sialic acids; polysialic acid modulation of immune cells; sialic acids as pathogen decoys or biological masks; modulation of immunity by sialic acid O-acetylation; sialic acids as antigens and xeno-autoantigens; antisialoglycan antibodies in reproductive incompatibility; and sialic-acid-based blood groups.
Collapse
Affiliation(s)
- Ajit Varki
- Glycobiology Research and Training Center, Department of Medicine, University of California at San Diego, La Jolla, 92093-0687, USA.
| | | |
Collapse
|
48
|
Lu DY, Lu TR, Wu HY. Development of antimetastatic drugs by targeting tumor sialic acids. Sci Pharm 2012; 80:497-508. [PMID: 23008802 PMCID: PMC3447616 DOI: 10.3797/scipharm.1205-01] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/18/2012] [Indexed: 01/01/2023] Open
Abstract
One-third of all cancer categories in clinics have a high incidence of neoplasm metastasis. Neoplasm metastasis is one of the leading causes of cancer deaths. However, the prevailing therapeutic approach to this pathogenic process is presently unsatisfactory. Paradoxically to our efforts and expectations, except for some antibodies, no obvious improvements and therapeutic benefits in currently used drugs have been achieved until now. Therapeutic benefits in late-stage or elderly cancer patients are especially poor and useless. One of the reasons for this, we would guess, is the lack of therapeutic targets specifically related to neoplasm metastasis. In order to enhance the therapeutic efficacy, the development of antimetastatic drugs transcending from current drug-screening pathways is urgently needed. Antimetastatic drugs targeting aberrantly sialylated in tumors have evolved for about a quarter of a century and might be a future therapeutic option other than the currently utilized antimetastatic drugs, such as antivascular and MMP inhibitors. Since neoplasm tissues often manifest high levels of sialic acids and sialyl antigens or glycoligands, some types of sialic acid analogue, such as N-glycolylneuraminic acid (Nau5Gc), occurred in most tumor tissues which is normally absent in most humans. Consequently, more attention is needed to work with new therapeutic approaches to target these changes. This review addresses and discusses the latest six types of therapeutic approaches targeting sialic acids in metastatic tissues.
Collapse
Affiliation(s)
- Da-Yong Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | | | | |
Collapse
|
49
|
Bini D, Gregori M, Cosentino U, Moro G, Canales A, Capitoli A, Jiménez-Barbero J, Cipolla L. Synthesis and characterization of a paramagnetic sialic acid conjugate as probe for magnetic resonance applications. Carbohydr Res 2012; 354:21-31. [DOI: 10.1016/j.carres.2012.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 10/28/2022]
|
50
|
Lee WC, Lee WL, Shyong WY, Yang LW, Ko MC, Yeh CC, Edmond Hsieh SL, Wang PH. Altered ganglioside GD3 in HeLa cells might influence the cytotoxic abilities of NK cells. Taiwan J Obstet Gynecol 2012; 51:199-205. [DOI: 10.1016/j.tjog.2012.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2012] [Indexed: 10/28/2022] Open
|