Zuo Z, Cai T, Li J, Zhang D, Yu Y, Huang C. Hexavalent chromium Cr(VI) up-regulates COX-2 expression through an NFκB/c-Jun/AP-1-dependent pathway.
ENVIRONMENTAL HEALTH PERSPECTIVES 2012;
120:547-553. [PMID:
22472290 PMCID:
PMC3339461 DOI:
10.1289/ehp.1104179]
[Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND
Hexavalent chromium [Cr(VI)] is recognized as a human carcinogen via inhalation. However, the molecular mechanisms by which Cr(VI) causes cancers are not well understood.
OBJECTIVES
We evaluated cyclooxygenase-2 (COX-2) expression and the signaling pathway leading to this induction due to Cr(VI) exposure in cultured cells.
METHODS
We used the luciferase reporter assay and Western blotting to determine COX-2 induction by Cr(VI). We used dominant negative mutant, genetic knockout, gene knockdown, and chromatin immunoprecipitation approaches to elucidate the signaling pathway leading to COX-2 induction.
RESULTS
We found that Cr(VI) exposure induced COX-2 expression in both normal human bronchial epithelial cells and mouse embryonic fibroblasts in a concentration- and time-dependent manner. Deletion of IKKβ [inhibitor of transcription factor NFκB (IκB) kinase β; an upstream kinase responsible for nuclear factor κB (NFκB) activation] or overexpression of TAM67 (a dominant-negative mutant of c-Jun) dramatically inhibited the COX-2 induction due to Cr(VI), suggesting that both NFκB and c-Jun/AP-1 pathways were required for Cr(VI)-induced COX-2 expression. Our results show that p65 and c-Jun are two major components involved in NFκB and AP-1 activation, respectively. Moreover, our studies suggest crosstalk between NFκB and c-Jun/AP-1 pathways in cellular response to Cr(VI) exposure for COX-2 induction.
CONCLUSION
We demonstrate for the first time that Cr(VI) is able to induce COX-2 expression via an NFκB/c-Jun/AP-1-dependent pathway. Our results provide novel insight into the molecular mechanisms linking Cr(VI) exposure to lung inflammation and carcinogenesis.
Collapse