1
|
Ünsal E, Duygun R, Yemeniciler İ, Bingöl E, Ceran Ö, Güntekin B. From Infancy to Childhood: A Comprehensive Review of Event- and Task-Related Brain Oscillations. Brain Sci 2024; 14:837. [PMID: 39199528 PMCID: PMC11352659 DOI: 10.3390/brainsci14080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Brain development from infancy through childhood involves complex structural and functional changes influenced by both internal and external factors. This review provides a comprehensive analysis of event and task-related brain oscillations, focusing on developmental changes across different frequency bands, including delta, theta, alpha, beta, and gamma. Electroencephalography (EEG) studies highlight that these oscillations serve as functional building blocks for sensory and cognitive processes, with significant variations observed across different developmental stages. Delta oscillations, primarily associated with deep sleep and early cognitive demands, gradually diminish as children age. Theta rhythms, crucial for attention and memory, display a distinct pattern in early childhood, evolving with cognitive maturation. Alpha oscillations, reflecting thalamocortical interactions and cognitive performance, increase in complexity with age. Beta rhythms, linked to active thinking and problem-solving, show developmental differences in motor and cognitive tasks. Gamma oscillations, associated with higher cognitive functions, exhibit notable changes in response to sensory stimuli and cognitive tasks. This review underscores the importance of understanding oscillatory dynamics to elucidate brain development and its implications for sensory and cognitive processing in childhood. The findings provide a foundation for future research on developmental neuroscience and potential clinical applications.
Collapse
Affiliation(s)
- Esra Ünsal
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Rümeysa Duygun
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
| | - İrem Yemeniciler
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Elifnur Bingöl
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey; (E.Ü.); (R.D.); (İ.Y.); (E.B.)
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Ömer Ceran
- Department of Pediatrics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Bahar Güntekin
- Neuroscience Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| |
Collapse
|
2
|
Gómez CM, Linares R, Rodríguez-Martínez EI, Pelegrina S. Age-related changes in brain oscillatory patterns during an n-back task in children and adolescents. Int J Psychophysiol 2024; 202:112372. [PMID: 38849088 DOI: 10.1016/j.ijpsycho.2024.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
The development of brain oscillatory responses and their possible role in the working memory (WM) performance of children, adolescents and young adults was investigated. A set of 0- and 1-back tasks with letter stimuli were administered to a final sample of 131 subjects (between 6 and 20 years of age). A decrease in response times (RTs) and an increase of the sensitivity index d-prime (d') were seen with increased age. RTs increased and d' decreased with load, indicating higher difficulty for higher loads. Event-related synchronization (ERS) and event-related desynchronization (ERD) were obtained by the convolution of Morlet wavelets on the recorded EEG. Statistical analyses were performed of the absolute and relative power of brain oscillations defined by topography, frequency and latency. Posterior alpha and beta ERD, and frontocentral theta ERS, were induced by the stimuli presented during the n-back task. While relative theta ERS increased with age, absolute theta ERS, absolute and relative alpha and, absolute beta ERD, decreased with age. Age-related improvement in behavioral performance was mediated by relative theta. Alpha and beta ERD were more pronounced for the most difficult task (1-back) and for the target condition. Globally, there was high consistency of the effects of target type and task load across development. Theta ERS maturation is a crucial step for improving WM performance during development, while alpha and beta ERD maturation seem to be less critical for behavioral performance improvement with age, possibly due to a sufficient level of alpha-beta ERD for good performance in young children.
Collapse
Affiliation(s)
- Carlos M Gómez
- University of Sevilla, Experimental Psychology Department, Human Psychobiology Lab., Sevilla, Spain
| | - Rocío Linares
- University of Jaén, Department of Psychology, Jaén, Spain
| | | | | |
Collapse
|
3
|
Martin JC, Liley DTJ, Beer CFLA, Davidson AJ. Topographical Features of Pediatric Electroencephalography during High Initial Concentration Sevoflurane for Inhalational Induction of Anesthesia. Anesthesiology 2024; 140:890-905. [PMID: 38207324 DOI: 10.1097/aln.0000000000004902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND High-density electroencephalographic (EEG) monitoring remains underutilized in clinical anesthesia, despite its obvious utility in unraveling the profound physiologic impact of these agents on central nervous system functioning. In school-aged children, the routine practice of rapid induction with high concentrations of inspiratory sevoflurane is commonplace, given its favorable efficacy and tolerance profile. However, few studies investigate topographic EEG during the critical timepoint coinciding with loss of responsiveness-a key moment for anesthesiologists in their everyday practice. The authors hypothesized that high initial sevoflurane inhalation would better precipitate changes in brain regions due to inhomogeneities in maturation across three different age groups compared with gradual stepwise paradigms utilized by other investigators. Knowledge of these changes may inform strategies for agent titration in everyday clinical settings. METHODS A total of 37 healthy children aged 5 to 10 yr underwent induction with 4% or greater sevoflurane in high-flow oxygen. Perturbations in anesthetic state were investigated in 23 of these children using 64-channel EEG with the Hjorth Laplacian referencing scheme. Topographical maps illustrated absolute, relative, and total band power across three age groups: 5 to 6 yr (n = 7), 7 to 8 yr (n = 8), and 9 to 10 yr (n = 8). RESULTS Spectral analysis revealed a large shift in total power driven by increased delta oscillations. Well-described topographic patterns of anesthesia, e.g., frontal predominance, paradoxical beta excitation, and increased slow activity, were evident in the topographic maps. However, there were no statistically significant age-related changes in spectral power observed in a midline electrode subset between the groups when responsiveness was lost compared to the resting state. CONCLUSIONS High initial concentration sevoflurane induction causes large-scale topographic effects on the pediatric EEG. Within the minute after unresponsiveness, this dosage may perturb EEG activity in children to an extent where age-related differences are not discernible. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
| | - David T J Liley
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christopher F L A Beer
- Swinburne University of Technology, Faculty of Science, Engineering, and Technology, Australia
| | - Andrew J Davidson
- Department of Anaesthetics, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Turoman N, Fiave PA, Zahnd C, deBettencourt MT, Vergauwe E. Decoding the content of working memory in school-aged children. Cortex 2024; 171:136-152. [PMID: 37995540 DOI: 10.1016/j.cortex.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/19/2023] [Accepted: 10/06/2023] [Indexed: 11/25/2023]
Abstract
Developmental improvements in working memory (WM) maintenance predict many real-world outcomes, including educational attainment. It is thus critical to understand which WM mechanisms support these behavioral improvements, and how WM maintenance strategies might change through development. One challenge is that specific WM neural mechanisms cannot easily be measured behaviorally, especially in a child population. However, new multivariate decoding techniques have been designed, primarily in adult populations, that can sensitively decode the contents of WM. The goal of this study was to deploy multivariate decoding techniques known to decode memory representations in adults to decode the contents of WM in children. We created a simple computerized WM game for children, in which children maintained different categories of information (visual, spatial or verbal). We collected electroencephalography (EEG) data from 20 children (7-12-year-olds) while they played the game. Using Multivariate Pattern Analysis (MVPA) on children's EEG signals, we reliably decoded the category of the maintained information during the sensory and maintenance period. Across exploratory reliability and validity analyses, we examined the robustness of these results when trained on less data, and how these patterns generalized within individuals throughout the testing session. Furthermore, these results matched theory-based predictions of WM across individuals and across ages. Our proof-of-concept study proposes a direct and age-appropriate potential alternative to exclusively behavioral WM maintenance measures in children. Our study demonstrates the utility of MVPA to measure and track the uninstructed representational content of children's WM. Future research could use our technique to investigate children's WM maintenance and strategies.
Collapse
Affiliation(s)
- Nora Turoman
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.
| | - Prosper A Fiave
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Clélia Zahnd
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | | | - Evie Vergauwe
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Kozhemiako N, Buckley AW, Chervin RD, Redline S, Purcell SM. Mapping neurodevelopment with sleep macro- and micro-architecture across multiple pediatric populations. Neuroimage Clin 2023; 41:103552. [PMID: 38150746 PMCID: PMC10788305 DOI: 10.1016/j.nicl.2023.103552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Profiles of sleep duration and timing and corresponding electroencephalographic activity reflect brain changes that support cognitive and behavioral maturation and may provide practical markers for tracking typical and atypical neurodevelopment. To build and evaluate a sleep-based, quantitative metric of brain maturation, we used whole-night polysomnography data, initially from two large National Sleep Research Resource samples, spanning childhood and adolescence (total N = 4,013, aged 2.5 to 17.5 years): the Childhood Adenotonsillectomy Trial (CHAT), a research study of children with snoring without neurodevelopmental delay, and Nationwide Children's Hospital (NCH) Sleep Databank, a pediatric sleep clinic cohort. Among children without neurodevelopmental disorders (NDD), sleep metrics derived from the electroencephalogram (EEG) displayed robust age-related changes consistently across datasets. During non-rapid eye movement (NREM) sleep, spindles and slow oscillations further exhibited characteristic developmental patterns, with respect to their rate of occurrence, temporal coupling and morphology. Based on these metrics in NCH, we constructed a model to predict an individual's chronological age. The model performed with high accuracy (r = 0.93 in the held-out NCH sample and r = 0.85 in a second independent replication sample - the Pediatric Adenotonsillectomy Trial for Snoring (PATS)). EEG-based age predictions reflected clinically meaningful neurodevelopmental differences; for example, children with NDD showed greater variability in predicted age, and children with Down syndrome or intellectual disability had significantly younger brain age predictions (respectively, 2.1 and 0.8 years less than their chronological age) compared to age-matched non-NDD children. Overall, our results indicate that sleep architectureoffers a sensitive window for characterizing brain maturation, suggesting the potential for scalable, objective sleep-based biomarkers to measure neurodevelopment.
Collapse
Affiliation(s)
- N Kozhemiako
- Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - A W Buckley
- Sleep & Neurodevelopment Core, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - R D Chervin
- Sleep Disorders Center and Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - S Redline
- Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - S M Purcell
- Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Turoman N, Fiave PA, Zahnd C, deBettencourt MT, Vergauwe E. Decoding the content of working memory in school-aged children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527990. [PMID: 36798254 PMCID: PMC9934641 DOI: 10.1101/2023.02.10.527990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Developmental improvements in working memory (WM) maintenance predict many real-world outcomes, including educational attainment. It is thus critical to understand which WM mechanisms support these behavioral improvements, and how WM maintenance strategies might change through development. One challenge is that specific WM neural mechanisms cannot easily be measured behaviorally, especially in a child population. However, new multivariate decoding techniques have been designed, primarily in adult populations, that can sensitively decode the contents of WM. The goal of this study was to deploy multivariate decoding techniques known to decode memory representations in adults to decode the contents of WM in children. We created a simple computerized WM game for children, in which children maintained different categories of information (visual, spatial or verbal). We collected electroencephalography (EEG) data from 20 children (7-12-year-olds) while they played the game. Using Multivariate Pattern Analysis (MVPA) on children's EEG signals, we reliably decoded the category of the maintained information during the sensory and maintenance period. Across exploratory reliability and validity analyses, we examined the robustness of these results when trained on less data, and how these patterns generalized within individuals throughout the testing session. Furthermore, these results matched theory-based predictions of WM across individuals and across ages. Our proof-of-concept study proposes a direct and age-appropriate potential alternative to exclusively behavioral WM maintenance measures in children. Our study demonstrates the utility of MVPA to measure and track the uninstructed representational content of children's WM. Future research could use our technique to investigate children's WM maintenance and strategies.
Collapse
Affiliation(s)
- Nora Turoman
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Prosper Agbesi Fiave
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Clélia Zahnd
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | | | - Evie Vergauwe
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Portnova G, Nekrashevich M, Morozova M, Martynova O, Sharaev M. New approaches to Clinical Electroencephalography analysis in typically developing children and children with autism. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Cellier D, Riddle J, Petersen I, Hwang K. The development of theta and alpha neural oscillations from ages 3 to 24 years. Dev Cogn Neurosci 2021; 50:100969. [PMID: 34174512 PMCID: PMC8249779 DOI: 10.1016/j.dcn.2021.100969] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 10/27/2022] Open
Abstract
Intrinsic, unconstrained neural activity exhibits rich spatial, temporal, and spectral organization that undergoes continuous refinement from childhood through adolescence. The goal of this study was to investigate the development of theta (4-8 Hertz) and alpha (8-12 Hertz) oscillations from early childhood to adulthood (years 3-24), as these oscillations play a fundamental role in cognitive function. We analyzed eyes-open, resting-state EEG data from 96 participants to estimate genuine oscillations separately from the aperiodic (1/f) signal. We examined age-related differences in the aperiodic signal (slope and offset), as well as the peak frequency and power of the dominant posterior oscillation. For the aperiodic signal, we found that both the aperiodic slope and offset decreased with age. For the dominant oscillation, we found that peak frequency, but not power, increased with age. Critically, early childhood (ages 3-7) was characterized by a dominance of theta oscillations in posterior electrodes, whereas peak frequency of the dominant oscillation in the alpha range increased between ages 7 and 24. Furthermore, theta oscillations displayed a topographical transition from dominance in posterior electrodes in early childhood to anterior electrodes in adulthood. Our results provide a quantitative description of the development of theta and alpha oscillations.
Collapse
Affiliation(s)
- Dillan Cellier
- University of Iowa, Department of Psychological and Brain Sciences, United States; University of Iowa, Iowa Neuroscience Institute, United States.
| | - Justin Riddle
- University of North Carolina, Chapel Hill, Department of Psychiatry, United States
| | - Isaac Petersen
- University of Iowa, Department of Psychological and Brain Sciences, United States; University of Iowa, Iowa Neuroscience Institute, United States
| | - Kai Hwang
- University of Iowa, Department of Psychological and Brain Sciences, United States; University of Iowa, Iowa Neuroscience Institute, United States
| |
Collapse
|
9
|
Pelegrina S, Molina R, Rodríguez-Martínez EI, Linares R, Gómez CM. Age-related changes in selection, recognition, updating and maintenance information in WM. An ERP study in children and adolescents. Biol Psychol 2020; 157:107977. [PMID: 33159983 DOI: 10.1016/j.biopsycho.2020.107977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 11/25/2022]
Abstract
Possible age-related changes in different working memory (WM) subcomponents were assessed by analyzing the event-related-potentials associated with the n-back task. Two versions of the task (0- and 1-back) were administered to 168 subjects between 6 and 20 years of age. In both n-back tasks, lists of symbol-letter pairs were presented. Participants had to select the letter and decide whether it matched the target in memory. Selection-matching of the relevant item, as indexed by an N2pc component, was evident in all age groups, indicating early maturation of this ability. The decreasing amplitude of the P300 with age, coupled with the longer duration of the load effect in young children, suggests that WM updating requires greater processing resources at younger ages. The slow wave, present during the maintenance period, showed an inversion of polarity with age in anterior sites that could reflect age-related changes in the active maintenance of information in WM.
Collapse
Affiliation(s)
| | - Rosa Molina
- University of Jaén, Department of Psychology, Jaén, Spain
| | | | - Rocío Linares
- University of Jaén, Department of Psychology, Jaén, Spain
| | - Carlos M Gómez
- University of Sevilla, Experimental Psychology Department, Human Psychobiology Lab., Sevilla, Spain
| |
Collapse
|
10
|
Lyakso E, Frolova O, Matveev Y. Speech Features and Electroencephalogram Parameters in 4- to 11-Year-Old Children. Front Behav Neurosci 2020; 14:30. [PMID: 32231524 PMCID: PMC7088452 DOI: 10.3389/fnbeh.2020.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The goal of the study is to investigate a correlation between different levels of speech organization, indicating the physiological processes of maturation of the vocal tract structures and brain regions associated with speech and language, and basic electroencephalogram (EEG) rhythms, reflecting the age-related dynamics of maturation of brain structures in children aged 4-11 years. The complex method of analysis, including EEG registration, clinical and spectral analysis of EEG; dichotic listening, identifying the profile of functional lateral asymmetry (PFLA), and phonemic hearing of the child; recording, linguistic, and acoustic analysis of child speech; and identification of speech characteristics reflecting the formation of its different levels, was used. Two complementary experimental series were conducted: the correlation between EEG parameters, speech features, dichotic listening, the PFLA, and phonemic hearing of the child in the age dynamics of 4-11 years (first); the specificity of EEG patterns in children at different stages of reading skills formation (second). The result of this study showed the correlation between acoustic and linguistic features of child speech and brain activity. The analysis of EEG and acoustic features of child speech revealed the correlation between pitch and pitch range values in spontaneous speech and theta-rhythm intensity in EEG. High values of pitch and its variation in younger children (4-6 years) are related to the intensity of theta rhythm in the EEG pattern, as this rhythm is most expressed in younger children. It was revealed that the alpha rhythm is asymmetrically localized in children with clear pronunciation of words (which determines the intelligibility of their speech) that is typical for 6.5- to 11-year-old children. The formation of reading skills in a child is associated with a change in the characteristics of the alpha rhythm-from irregular, unstable, low frequency, and low amplitude in children at the beginning of reading skills mastering to medium and low amplitude, regular, asymmetrically localized in children reading words and phrases. The specifics of the relation between brain activity and different levels of speech formation at different child's age periods are discussed.
Collapse
Affiliation(s)
- Elena Lyakso
- Laboratory of Child Speech Research Group, Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga Frolova
- Laboratory of Child Speech Research Group, Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Yuri Matveev
- Laboratory of Child Speech Research Group, Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
11
|
Rodríguez-Martínez EI, Angulo-Ruiz BY, Arjona-Valladares A, Rufo M, Gómez-González J, Gómez CM. Frequency coupling of low and high frequencies in the EEG of ADHD children and adolescents in closed and open eyes conditions. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 96:103520. [PMID: 31783276 DOI: 10.1016/j.ridd.2019.103520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
The present report examines the possible differences in absolute Power Spectral Density (PSD), the topography of brain rhythms, and low frequency (delta and theta) vs. beta PSD when attention deficit disorder (ADHD) children and controls are compared. These results would potentially be useful to test the validity of the developmental lag and differential developmental models for ADHD. The EEG resting state under the experimental conditions of open and closed eyes were recorded in samples of control subjects and children with ADHD (6-17 years old). The PSD from 0 to 46 Hz was calculated and ANOVAs were performed to compare the groups of subjects in the two experimental conditions. To observe differences in the co-maturation of the brain rhythms between the groups of subjects, correlations of the PSD of all frequency ranges were computed. These results showed an increase in delta power in children with ADHD compared to control subjects. The topographies of the different brain rhythms were similar in children with ADHD and controls. The maturational power-to-power frequency-coupling between low frequencies and beta rhythms was lower in children with ADHD. The increased delta PSD in ADHD and the similar brain rhythms topographies in children with ADHD and controls support the developmental lag model, whereas the decreased co-maturation of low frequencies vs. beta PSD in children with ADHD suggests a differential maturation rate for low and beta frequencies in children with ADHD compared to controls.
Collapse
Affiliation(s)
- Elena I Rodríguez-Martínez
- Human Psychobiology Lab, Experimental Psychology Department, University of Sevilla, 41018, Sevilla, Spain.
| | - Brenda Y Angulo-Ruiz
- Human Psychobiology Lab, Experimental Psychology Department, University of Sevilla, 41018, Sevilla, Spain.
| | - Antonio Arjona-Valladares
- Human Psychobiology Lab, Experimental Psychology Department, University of Sevilla, 41018, Sevilla, Spain.
| | - Miguel Rufo
- Instituto Hispalense de Pediatría, Seville, Spain.
| | | | - Carlos M Gómez
- Human Psychobiology Lab, Experimental Psychology Department, University of Sevilla, 41018, Sevilla, Spain.
| |
Collapse
|
12
|
Schmidt LA, Poole KL. Frontal brain maturation and the stability of children's shyness. Dev Psychobiol 2019; 62:446-453. [PMID: 31512756 DOI: 10.1002/dev.21919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Recent evidence suggests that relative to nonshy children, shy children exhibit a lower overall frontal EEG alpha/delta ratio (ADR) during middle childhood, possibly reflecting relatively less frontal brain maturation at this age. We examined this same ADR measure in relation to the stability of observed shyness and parent-reported child social anxiety measured across two laboratory visits separated by approximately 1 year during late childhood in 51 children (33% female, age range 10-16 years). We found that the overall frontal ADR score was significantly lower among children with high, stable observed shyness and parent-reported child social anxiety compared to children in the low, stable class. Findings provide convergent evidence suggesting that the stability of shyness in late childhood may be linked to relatively less overall frontal brain maturation at this age. We speculate on the adaptive function of delaying frontal brain maturation in the origins and maintenance of children's shyness.
Collapse
Affiliation(s)
- Louis A Schmidt
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Kristie L Poole
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Sujatha Ravindran A, Mobiny A, Cruz-Garza JG, Paek A, Kopteva A, Contreras Vidal JL. Assaying neural activity of children during video game play in public spaces: a deep learning approach. J Neural Eng 2019; 16:036028. [PMID: 30974426 DOI: 10.1088/1741-2552/ab1876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Understanding neural activity patterns in the developing brain remains one of the grand challenges in neuroscience. Developing neural networks are likely to be endowed with functionally important variability associated with the environmental context, age, gender, and other variables. Therefore, we conducted experiments with typically developing children in a stimulating museum setting and tested the feasibility of using deep learning techniques to help identify patterns of brain activity associated with different conditions. APPROACH A four-channel dry EEG-based Mobile brain-body imaging data of children at rest and during videogame play (VGP) was acquired at the Children's Museum of Houston. A data-driven approach based on convolutional neural networks (CNN) was used to describe underlying feature representations in the EEG and their ability to discern task and gender. The variability of the spectral features of EEG during the rest condition as a function of age was also analyzed. MAIN RESULTS Alpha power (7-13 Hz) was higher during rest whereas theta power (4-7 Hz) was higher during VGP. Beta (13-18 Hz) power was the most significant feature, higher in females, when differentiating between males and females. Using data from both temporoparietal channels to classify between VGP and rest condition, leave-one-subject-out cross-validation accuracy of 67% was obtained. Age-related changes in EEG spectral content during rest were consistent with previous developmental studies conducted in laboratory settings showing an inverse relationship between age and EEG power. SIGNIFICANCE These findings are the first to acquire, quantify and explain brain patterns observed during VGP and rest in freely behaving children in a museum setting using a deep learning framework. The study shows how deep learning can be used as a data driven approach to identify patterns in the data and explores the issues and the potential of conducting experiments involving children in a natural and engaging environment.
Collapse
|
14
|
Vandenbosch MMLJZ, van 't Ent D, Boomsma DI, Anokhin AP, Smit DJA. EEG-based age-prediction models as stable and heritable indicators of brain maturational level in children and adolescents. Hum Brain Mapp 2019; 40:1919-1926. [PMID: 30609125 DOI: 10.1002/hbm.24501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 12/31/2022] Open
Abstract
The human brain shows remarkable development of functional brain activity from childhood to adolescence. Here, we investigated whether electroencephalogram (EEG) recordings are suitable for predicting the age of children and adolescents. Moreover, we investigated whether overestimation or underestimation of age was stable over longer time periods, as stable prediction error can be interpreted as reflecting individual brain maturational level. Finally, we established whether the age-prediction error was genetically determined. Then, 3 min eyes-closed resting-state EEG data from the longitudinal EEG studies of Netherlands Twin Register (NTR; n = 836) and Washington University in St. Louis (n = 702) were used at ages 5, 7, 12, 14, 16, and 18. Longitudinal data were available within childhood (5-7 years) and adolescence (16-18 years). We calculated power in 1 Hz wide bins (1-24 Hz). Random forest (RF) regression and relevance vector machine with sixfold cross-validation were applied. The best mean absolute prediction error was obtained with RF (1.22 years). Classification of childhood versus puberty/adolescence reached over 94% accuracy. Prediction errors were moderately to highly stable over periods of 1.5-2.1 years (0.53 < r < 0.74) and signifcantly affected by genetic factors (heritability between 42 and 79%). Our results show that age prediction from low-cost EEG recordings is comparable in accuracy to those obtained with magnetic resonance imaging. Children and adolescents showed stable overestimation or underestimation of their age, which means that some participants have stable brain activity patterns that reflect those of an older or younger age, and could therefore reflect individual brain maturational level. This prediction error is heritable, suggesting that genes underlie maturational level of functional brain activity. We propose that age prediction based on EEG recordings can be used for tracking neurodevelopment in typically developing children, in preterm children, and in children with neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Dennis van 't Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andrey P Anokhin
- Washington University School of Medicine, Department of Psychiatry, St. Louis, Missouri
| | - Dirk J A Smit
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Predicting state transitions in brain dynamics through spectral difference of phase-space graphs. J Comput Neurosci 2018; 46:91-106. [PMID: 30315514 DOI: 10.1007/s10827-018-0700-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/03/2018] [Accepted: 10/01/2018] [Indexed: 01/22/2023]
Abstract
Networks are naturally occurring phenomena that are studied across many disciplines. The topological features of a network can provide insight into the dynamics of a system as it evolves, and can be used to predict changes in state. The brain is a complex network whose temporal and spatial behavior can be measured using electroencephalography (EEG). This data can be reconstructed to form a family of graphs that represent the state of the brain over time, and the evolution of these graphs can be used to predict changes in brain states, such as the transition from preictal to ictal in patients with epilepsy. This research proposes objective indications of seizure onset observed from minimally invasive scalp EEG. The approach considers the brain as a complex nonlinear dynamical system whose state can be derived through time-delay embedding of the EEG data and characterized to determine change in brain dynamics related to the preictal state. This method targets phase-space graph spectra as biomarkers for seizure prediction, correlates historical degrees of change in spectra, and makes accurate prediction of seizure onset. A significant trend of normalized dissimilarity over time indicates a departure from the norm, and thus a change in state. Our methods show high sensitivity (90-100%) and specificity (90%) on 241 h of scalp EEG training data, and sensitivity and specificity of 70%-90% on test data. Moreover, the algorithm was capable of processing 12.7 min of data per second on an Intel Core i3 CPU in Matlab, showing that real-time analysis is viable.
Collapse
|
16
|
De Groot K, Van Strien JW. Spontaneous resting-state gamma oscillations are not predictive of autistic traits in the general population. Eur J Neurosci 2018; 48:2928-2937. [PMID: 29797620 PMCID: PMC6220821 DOI: 10.1111/ejn.13973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
The autism spectrum hypothesis states that not only diagnosed individuals but also individuals from the general population exhibit a certain amount of autistic traits. While this idea is supported by neuroimaging studies, there have been few electrophysiological studies. In particular, there have been no spontaneous resting-state studies yet. In order to examine the autism spectrum hypothesis, the present study tried to predict the level of autistic traits typically developing young adults (n = 93) exhibit from spontaneous resting-state gamma power, a measure that has been linked to social functioning impairments seen in autism. The influence of age and gender was controlled for by employing regression. It was expected that enhanced gamma activity would be predictive of self-reported autistic traits. The model with only age and gender included reached significance, with higher age within this student population being related to more autistic traits. However, no relationship between either low (30-50 Hz) or high (50-70 Hz) gamma power and autistic traits was found. Models with eyes closed low gamma asymmetry and eyes closed high gamma asymmetry included did reach significance, but these findings were not robust, and the gamma asymmetry explained very little additional variance above age and gender. In addition, exploratory correlation analyses showed no relationship between the other power spectra (delta, theta, alpha and beta) on the one hand and autistic traits on the other hand, suggesting that any relationship between spontaneous resting-state brain electrophysiology and autistic traits might not be strong enough to be detected in the general population.
Collapse
Affiliation(s)
- Kristel De Groot
- Erasmus School of Social and Behavioural SciencesInstitute of PsychologyErasmus University RotterdamRotterdamThe Netherlands
- Department of Applied EconomicsErasmus School of EconomicsErasmus University RotterdamRotterdamThe Netherlands
- Erasmus University Rotterdam Institute for Behaviour and Biology (EURIBEB)Erasmus University RotterdamRotterdamThe Netherlands
| | - Jan W. Van Strien
- Erasmus School of Social and Behavioural SciencesInstitute of PsychologyErasmus University RotterdamRotterdamThe Netherlands
- Erasmus University Rotterdam Institute for Behaviour and Biology (EURIBEB)Erasmus University RotterdamRotterdamThe Netherlands
| |
Collapse
|
17
|
Zammit N, Falzon O, Camilleri K, Muscat R. Working memory alpha-beta band oscillatory signatures in adolescents and young adults. Eur J Neurosci 2018. [DOI: 10.1111/ejn.13897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nowell Zammit
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - Owen Falzon
- Centre for Biomedical Cybernetics; University of Malta; Msida Malta
| | - Kenneth Camilleri
- Centre for Biomedical Cybernetics; University of Malta; Msida Malta
- Department of Systems and Control Engineering; Faculty of Engineering; University of Malta; Msida Malta
| | - Richard Muscat
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
| |
Collapse
|
18
|
De Vos A, Vanvooren S, Vanderauwera J, Ghesquière P, Wouters J. A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia. Cortex 2017; 93:206-219. [DOI: 10.1016/j.cortex.2017.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/17/2017] [Accepted: 05/04/2017] [Indexed: 01/19/2023]
|
19
|
Giertuga K, Zakrzewska MZ, Bielecki M, Racicka-Pawlukiewicz E, Kossut M, Cybulska-Klosowicz A. Age-Related Changes in Resting-State EEG Activity in Attention Deficit/Hyperactivity Disorder: A Cross-Sectional Study. Front Hum Neurosci 2017; 11:285. [PMID: 28620288 PMCID: PMC5451878 DOI: 10.3389/fnhum.2017.00285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/16/2017] [Indexed: 12/03/2022] Open
Abstract
Numerous studies indicate that attention deficit/hyperactivity disorder (ADHD) is related to some developmental trends, as its symptoms change widely over time. Nevertheless, the etiology of this phenomenon remains ambiguous. There is a disagreement whether ADHD is related to deviations in brain development or to a delay in brain maturation. The model of deviated brain development suggests that the ADHD brain matures in a fundamentally different way, and does not reach normal maturity at any developmental stage. On the contrary, the delayed brain maturation model assumes that the ADHD brain indeed matures in a different, delayed way in comparison to healthy age-matched controls, yet eventually reaches proper maturation. We investigated age-related changes in resting-state EEG activity to find evidence to support one of the alternative models. A total of 141 children and teenagers participated in the study; 67 diagnosed with ADHD and 74 healthy controls. The absolute power of delta, theta, alpha, and beta frequency bands was analyzed. We observed a significant developmental pattern of decreasing absolute EEG power in both groups. Nonetheless, ADHD was characterized by consistently lower absolute EGG power, mostly in the theta frequency band, in comparison to healthy controls. Our results are in line with the deviant brain maturation theory of ADHD, as the observed effects of age-related changes in EEG power are parallel but different in the two groups.
Collapse
Affiliation(s)
- Katarzyna Giertuga
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsaw, Poland
| | - Marta Z. Zakrzewska
- Gösta Ekman Laboratory, Department of Psychology, Stockholm UniversityStockholm, Sweden
| | - Maksymilian Bielecki
- Department of Psychology, SWPS University of Social Sciences and HumanitiesWarsaw, Poland
| | | | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsaw, Poland
- Department of Psychology, SWPS University of Social Sciences and HumanitiesWarsaw, Poland
| | - Anita Cybulska-Klosowicz
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsaw, Poland
| |
Collapse
|
20
|
Markovska-Simoska S, Pop-Jordanova N. Quantitative EEG in Children and Adults With Attention Deficit Hyperactivity Disorder: Comparison of Absolute and Relative Power Spectra and Theta/Beta Ratio. Clin EEG Neurosci 2017; 48:20-32. [PMID: 27170672 DOI: 10.1177/1550059416643824] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
In recent decades, resting state electroencephalographic (EEG) measures have been widely used to document underlying neurophysiological dysfunction in attention deficit hyperactivity disorder (ADHD). Although most EEG studies focus on children, there is a growing interest in adults with ADHD too. The aim of this study was to objectively assess and compare the absolute and relative EEG power as well as the theta/beta ratio in children and adults with ADHD. The evaluated sample comprised 30 male children and 30 male adults with ADHD diagnosed according to DSM-IV criteria. They were compared with 30 boys and 30 male adults matched by age. The mean age (±SD) of the children's group was 9 (±2.44) years and the adult group 35.8 (±8.65) years. EEG was recorded during an eyes-open condition. Spectral analysis of absolute (μV2) and relative power (%) was carried out for 4 frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-21 Hz). The findings obtained for ADHD children are increased absolute power of slow waves (theta and delta), whereas adults exhibited no differences compared with normal subjects. For the relative power spectra there were no differences between the ADHD and control groups. Across groups, the children showed greater relative power than the adults in the delta and theta bands, but for the higher frequency bands (alpha and beta) the adults showed more relative power than children. Only ADHD children showed greater theta/beta ratio compared to the normal group. Classification analysis showed that ADHD children could be differentiated from the control group by the absolute theta values and theta/beta ratio at Cz, but this was not the case with ADHD adults. The question that should be further explored is if these differences are mainly due to maturation processes or if there is a core difference in cortical arousal between ADHD children and adults.
Collapse
|
21
|
Developmental trajectories of event related potentials related to working memory. Neuropsychologia 2017; 95:215-226. [DOI: 10.1016/j.neuropsychologia.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/22/2022]
|
22
|
Absolute Power Spectral Density Changes in the Magnetoencephalographic Activity During the Transition from Childhood to Adulthood. Brain Topogr 2016; 30:87-97. [DOI: 10.1007/s10548-016-0532-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/12/2016] [Indexed: 11/26/2022]
|
23
|
Principal Component Analysis of Working Memory Variables during Child and Adolescent Development. THE SPANISH JOURNAL OF PSYCHOLOGY 2016; 19:E62. [PMID: 27692027 DOI: 10.1017/sjp.2016.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Correlation and Principal Component Analysis (PCA) of behavioral measures from two experimental tasks (Delayed Match-to-Sample and Oddball), and standard scores from a neuropsychological test battery (Working Memory Test Battery for Children) was performed on data from participants between 6-18 years old. The correlation analysis (p 1), the scores of the first extracted component were significantly correlated (p < .05) to most behavioral measures, suggesting some commonalities of the processes of age-related changes in the measured variables. The results suggest that this first component would be related to age but also to individual differences during the cognitive maturation process across childhood and adolescence stages. The fourth component would represent the speed-accuracy trade-off phenomenon as it presents loading components with different signs for reaction times and errors.
Collapse
|
24
|
Rodríguez-Martínez EI, Ruiz-Martínez FJ, Barriga Paulino CI, Gómez CM. Frequency shift in topography of spontaneous brain rhythms from childhood to adulthood. Cogn Neurodyn 2016; 11:23-33. [PMID: 28174610 DOI: 10.1007/s11571-016-9402-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/13/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022] Open
Abstract
It has been described that the frequency ranges at which theta, mu and alpha rhythms oscillate is increasing with age. The present report, by analyzing the spontaneous EEG, tries to demonstrate whether there is an increase with age in the frequency at which the cortical structures oscillate. A topographical approach was followed. The spontaneous EEG of one hundredand seventy subjects was recorded. The spectral power (from 0.5 to 45.5 Hz) was obtained by means of the Fast Fourier Transform. Correlations of spatial topographies among the different age groups showed that older groups presented the same topographical maps as younger groups, but oscillating at higher frequencies. The results suggest that the same brain areas oscillate at lower frequencies in children than in older groups, for a broad frequency range. This shift to a higher frequency with age would be a trend in spontaneous brain rhythm development.
Collapse
Affiliation(s)
- E I Rodríguez-Martínez
- Human Psychobiology Lab, Department of Experimental Psychology, University of Sevilla, Sevilla, Spain
| | - F J Ruiz-Martínez
- Human Psychobiology Lab, Department of Experimental Psychology, University of Sevilla, Sevilla, Spain
| | - C I Barriga Paulino
- Human Psychobiology Lab, Department of Experimental Psychology, University of Sevilla, Sevilla, Spain
| | - Carlos M Gómez
- Human Psychobiology Lab, Department of Experimental Psychology, University of Sevilla, Sevilla, Spain
| |
Collapse
|
25
|
Barriga-Paulino CI, Rodríguez-Martínez EI, Rojas-Benjumea MÁ, Gómez González CM. Electrophysiological Evidence of a Delay in the Visual Recognition Process in Young Children. Front Hum Neurosci 2015; 9:622. [PMID: 26635575 PMCID: PMC4653287 DOI: 10.3389/fnhum.2015.00622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 10/29/2015] [Indexed: 11/16/2022] Open
Abstract
The present study analyzes the development of the visual recognition processing of the relevant stimulus in a Delayed Match-To-Sample (DMS) task during the matching phase. To do so, Electroencephalograms of 170 subjects between 6 and 26 years old were recorded. Behavioral responses and Event Related Potentials (ERPs) induced by the stimuli were obtained. Reaction times and errors, mainly omissions, were inversely related to age. The ERPs analysis showed a parietal negativity in the P7 and P8 electrodes when the relevant stimulus was presented in the contralateral site. This negativity resulting from the recognition and selection of the relevant stimulus was present in all age groups. However, the youngest children showed an extended latency in the recognition process. The results suggest that children and adults use similar processes to recognize the item maintained in visual short-term memory (VSTM), but children need more time to successfully recognize the memorized item.
Collapse
Affiliation(s)
- Catarina I Barriga-Paulino
- Human Psychobiology Laboratory, Department of Experimental Psychology, University of Seville Seville, Spain
| | - Elena I Rodríguez-Martínez
- Human Psychobiology Laboratory, Department of Experimental Psychology, University of Seville Seville, Spain
| | - M Ángeles Rojas-Benjumea
- Human Psychobiology Laboratory, Department of Experimental Psychology, University of Seville Seville, Spain
| | - Carlos M Gómez González
- Human Psychobiology Laboratory, Department of Experimental Psychology, University of Seville Seville, Spain
| |
Collapse
|
26
|
Shimi A, Nobre AC, Scerif G. ERP markers of target selection discriminate children with high vs. low working memory capacity. Front Syst Neurosci 2015; 9:153. [PMID: 26594157 PMCID: PMC4633470 DOI: 10.3389/fnsys.2015.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022] Open
Abstract
Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM) system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults’ selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children’s selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults’ selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc). However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the “adult time-window” related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children’s neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM performance in children.
Collapse
Affiliation(s)
- Andria Shimi
- Attention, Brain, and Cognitive Development Lab, Department of Experimental Psychology, University of Oxford Oxford, UK
| | - Anna Christina Nobre
- Brain and Cognition Lab, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford Oxford, UK
| | - Gaia Scerif
- Attention, Brain, and Cognitive Development Lab, Department of Experimental Psychology, University of Oxford Oxford, UK
| |
Collapse
|
27
|
Rojas-Benjumea MÁ, Sauqué-Poggio AM, Barriga-Paulino CI, Rodríguez-Martínez EI, Gómez CM. Development of behavioral parameters and ERPs in a novel-target visual detection paradigm in children, adolescents and young adults. Behav Brain Funct 2015; 11:22. [PMID: 26141640 PMCID: PMC4491272 DOI: 10.1186/s12993-015-0067-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study analyzes the development of ERPs related to the process of selecting targets based on their novelty. METHODS One hundred and sixty-seven subjects from 6 to 26 years old were recorded with 30 electrodes during a visual target novelty paradigm. RESULTS Behavioral results showed good performance in children that improved with age: a decrease in RTs and errors and an increase in the d' sensitivity parameter with age were obtained. In addition, the C response bias parameter evolved from a conservative to a neutral bias with age. Fronto-polar Selection Positivity (FSP) was statistically significant in all the age groups when standards and targets were compared. There was a statistically significant difference in the posterior Selection Negativity (SN) between the target and standard conditions in all age groups. The P3a component obtained was statistically significant in the emergent adult (18-21 years) and young adult (22-26 years) groups. The modulation of the P3b component by novel targets was statistically significant in all the age groups, but it decreased in amplitude with age. Peak latencies of the FSP and P3b components decreased with age. CONCLUSIONS The results reveal differences in the ERP indexes for the cognitive evaluation of the stimuli presented, depending on the age of the subjects. The ability of the target condition to induce the modulation of the studied components would depend on the posterior-anterior gradient of cortex maturation and on the gradient of maturation of the low to higher order association areas.
Collapse
Affiliation(s)
| | - Ana María Sauqué-Poggio
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Sevilla, Spain
| | - Catarina I Barriga-Paulino
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Sevilla, Spain
| | - Elena I Rodríguez-Martínez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Sevilla, Spain
| | - Carlos M Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Sevilla, Spain.
| |
Collapse
|
28
|
Slowwavematurationonavisualworkingmemory task. Brain Cogn 2014; 88:43-54. [DOI: 10.1016/j.bandc.2014.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 11/18/2022]
|
29
|
Buyck I, Wiersema JR. Resting electroencephalogram in attention deficit hyperactivity disorder: developmental course and diagnostic value. Psychiatry Res 2014; 216:391-7. [PMID: 24656956 DOI: 10.1016/j.psychres.2013.12.055] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/22/2013] [Accepted: 12/30/2013] [Indexed: 11/28/2022]
Abstract
This study investigated electroencephalographic (EEG) activity and its developmental course in attention deficit hyperactivity disorder (ADHD) throughout the lifespan, as well as the accuracy of EEG parameters in distinguishing ADHD patients from typically developing individuals. Three minutes eyes closed resting EEG was compared between 62 individuals with ADHD (36 children, 26 adults) and 55 typically developing individuals (30 children, 25 adults). EEG activity and maturation did not differ between individuals with ADHD and typically developing individuals. However, despite comparable developmental course between clinical groups, persistent elevated theta/beta ratio and reduced relative beta power were observed in the ADHD inattentive subtype compared to the ADHD combined subtype and controls across the lifespan. Therefore, a maturational deviation rather than a maturational delay may underlie a subgroup of ADHD. EEG based classification failed for ADHD but proved successful for age. These findings emphasize heterogeneity in ADHD throughout the lifespan and question clinical utility of conventional EEG approaches for diagnostic purposes in ADHD.
Collapse
Affiliation(s)
- Inez Buyck
- Ghent University, Department of Experimental Clinical and Health Psychology, Henri Dunantlaan 2, 9000 Ghent, Belgium.
| | - Jan R Wiersema
- Ghent University, Department of Experimental Clinical and Health Psychology, Henri Dunantlaan 2, 9000 Ghent, Belgium
| |
Collapse
|
30
|
Rodríguez-Martínez EI, Barriga-Paulino CI, Rojas-Benjumea MA, Gómez CM. Co-Maturation of Theta and Low-beta Rhythms During Child Development. Brain Topogr 2014; 28:250-60. [DOI: 10.1007/s10548-014-0369-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/16/2014] [Indexed: 11/30/2022]
|
31
|
Performance of the Towers of Hanoi task and cortical electroencephalographic power changes associated with infancy, adolescence, and early adulthood. Exp Brain Res 2013; 231:315-24. [PMID: 24013790 DOI: 10.1007/s00221-013-3693-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
The executive functions, which depend on the adequate maturation and functioning of the prefrontal cortex and its connection to posterior zones, follow a process of development as age increases. This work studied changes in the absolute power (AP) of EEG activity recorded in the prefrontal and parietal areas during the performance of the Tower of Hanoi task in children, adolescents, and young adults. Three groups of healthy male subjects such as G1, 11-13; G2, 18-20; and G3, 26-30, years of age were recorded at the F3, F4, P3, and P4 derivations under two conditions: basal and performance of the Towers of Hanoi task. The majority of subjects in G1 failed to complete the task in the allotted time (7 min), while those in G2 and G3 were able to resolve the task quickly and efficiently. During the Towers of Hanoi task, G1 showed an increase of AP in the delta band only in the frontal areas, with a decrease in the alpha1 and alpha2 sub-bands only at the parietal derivations, while G2 and G3 were characterized by an increase of AP in the delta band and a decreased AP in the alpha1 and alpha2 sub-bands in all derivations. These data demonstrate that during the performance of the Towers of Hanoi task, the prefrontal and parietal areas show a characteristic EEG pattern in relation to age. It is probable that the AP patterns obtained in G2 and G3 are associated with the functional changes at cortical levels that adolescents and early adults require to achieve an adequate and fast performance of the Towers of Hanoi task.
Collapse
|
32
|
Martinez EIR, Barriga-Paulino CI, Zapata MI, Chinchilla C, López-Jiménez AM, Gómez CM. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period. BMC Neurosci 2012; 13:104. [PMID: 22920159 PMCID: PMC3480931 DOI: 10.1186/1471-2202-13-104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 08/09/2012] [Indexed: 11/20/2022] Open
Abstract
Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
Collapse
|