1
|
Varon DJ, Jervis D, Pandey S, Gallardo SL, Balasus N, Yang LH, Jacob DJ. Quantifying NO x point sources with Landsat and Sentinel-2 satellite observations of NO 2 plumes. Proc Natl Acad Sci U S A 2024; 121:e2317077121. [PMID: 38913899 PMCID: PMC11228473 DOI: 10.1073/pnas.2317077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
We show that the Landsat and Sentinel-2 satellites can detect NO2 plumes from large point sources at 10 to 60 m pixel resolution in their blue and ultrablue bands. We use the resulting NO2 plume imagery to quantify nitrogen oxides (NOx) emission rates for several power plants in Saudi Arabia and the United States, including a 13-y analysis of 132 Landsat plumes from Riyadh power plant 9 from 2009 through 2021. NO2 in the plumes initially increases with distance from the source, likely reflecting recovery from ozone titration. The fine pixel resolutions of Landsat and Sentinel-2 enable separation of individual point sources and stacks, including in urban background, and the long records enable examination of multidecadal emission trends. Our inferred NOx emission rates are consistent with previous estimates to within a precision of about 30%. Sources down to ~500 kg h-1 can be detected over bright, quasi-homogeneous surfaces. The 2009 to 2021 data for Riyadh power plant 9 show a strong summer peak in emissions, consistent with increased power demand for air conditioning, and a marginal slow decrease following the introduction of Saudi Arabia's Ambient Air Standard 2012.
Collapse
Affiliation(s)
- Daniel J Varon
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | | | - Sudhanshu Pandey
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | | | - Nicholas Balasus
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Laura Hyesung Yang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Daniel J Jacob
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
2
|
Liu S, Valks P, Curci G, Chen Y, Shu L, Jin J, Sun S, Pu D, Li X, Li J, Zuo X, Fu W, Li Y, Zhang P, Yang X, Fu TM, Zhu L. Satellite NO 2 Retrieval Complicated by Aerosol Composition over Global Urban Agglomerations: Seasonal Variations and Long-Term Trends (2001-2018). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7891-7903. [PMID: 38602183 PMCID: PMC11080052 DOI: 10.1021/acs.est.3c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Tropospheric nitrogen dioxide (NO2) poses a serious threat to the environmental quality and public health. Satellite NO2 observations have been continuously used to monitor NO2 variations and improve model performances. However, the accuracy of satellite NO2 retrieval depends on the knowledge of aerosol optical properties, in particular for urban agglomerations accompanied by significant changes in aerosol characteristics. In this study, we investigate the impacts of aerosol composition on tropospheric NO2 retrieval for an 18 year global data set from Global Ozone Monitoring Experiment (GOME)-series satellite sensors. With a focus on cloud-free scenes dominated by the presence of aerosols, individual aerosol composition affects the uncertainties of tropospheric NO2 columns through impacts on the aerosol loading amount, relative vertical distribution of aerosol and NO2, aerosol absorption properties, and surface albedo determination. Among aerosol compositions, secondary inorganic aerosol mostly dominates the NO2 uncertainty by up to 43.5% in urban agglomerations, while organic aerosols contribute significantly to the NO2 uncertainty by -8.9 to 37.3% during biomass burning seasons. The possible contrary influences from different aerosol species highlight the importance and complexity of aerosol correction on tropospheric NO2 retrieval and indicate the need for a full picture of aerosol properties. This is of particular importance for interpreting seasonal variations or long-term trends of tropospheric NO2 columns as well as for mitigating ozone and fine particulate matter pollution.
Collapse
Affiliation(s)
- Song Liu
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology,
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control (AEMPC), Nanjing University of Information
Science and Technology, Nanjing 210044, China
| | - Pieter Valks
- Institut
für Methodik der Fernerkundung (IMF), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen 82234, Germany
| | - Gabriele Curci
- Department
of Physical and Chemical Sciences, University
of L’Aquila, L’Aquila 67100, Italy
- Center
of Excellence in Telesensing of Environment and Model Prediction of
Severe Events, University of L’Aquila, L’Aquila 67100, Italy
| | - Yuyang Chen
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Shu
- School of
Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jianbing Jin
- Jiangsu
Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control, Collaborative Innovation Center of Atmospheric Environment
and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shuai Sun
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongchuan Pu
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xicheng Li
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Juan Li
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoxing Zuo
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weitao Fu
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yali Li
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peng Zhang
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong
Provincial Observation and Research Station for Coastal Atmosphere
and Climate of the Greater Bay Area, Shenzhen 518055, China
- Shenzhen
Key Laboratory of Precision Measurement and Early Warning Technology
for Urban Environmental Health Risks, School of Environmental Science
and Engineering, Southern University of
Science and Technology, Shenzhen 518055, China
| | - Tzung-May Fu
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong
Provincial Observation and Research Station for Coastal Atmosphere
and Climate of the Greater Bay Area, Shenzhen 518055, China
- Shenzhen
Key Laboratory of Precision Measurement and Early Warning Technology
for Urban Environmental Health Risks, School of Environmental Science
and Engineering, Southern University of
Science and Technology, Shenzhen 518055, China
| | - Lei Zhu
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong
Provincial Observation and Research Station for Coastal Atmosphere
and Climate of the Greater Bay Area, Shenzhen 518055, China
- Shenzhen
Key Laboratory of Precision Measurement and Early Warning Technology
for Urban Environmental Health Risks, School of Environmental Science
and Engineering, Southern University of
Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Jin X, Fiore AM, Cohen RC. Space-Based Observations of Ozone Precursors within California Wildfire Plumes and the Impacts on Ozone-NO x-VOC Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14648-14660. [PMID: 37703172 DOI: 10.1021/acs.est.3c04411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The frequency of wildfires in the western United States has escalated in recent decades. Here we examine the impacts of wildfires on ground-level ozone (O3) precursors and the O3-NOx-VOC chemistry from the source to downwind urban areas. We use satellite retrievals of nitrogen dioxide (NO2) and formaldehyde (HCHO, an indicator of VOC) from the Tropospheric Monitoring Instrument (TROPOMI) to track the evolution of O3 precursors from wildfires over California from 2018 to 2020. We improved these satellite retrievals by updating the a priori profiles and explicitly accounting for the effects of smoke aerosols. TROPOMI observations reveal that the extensive and intense fire smoke in 2020 led to an overall increase in statewide annual average HCHO and NO2 columns by 16% and 9%. The increase in the level of NO2 offsets the anthropogenic NOx emission reduction from the COVID-19 lockdown. The enhancement of NO2 within fire plumes is concentrated near the regions actively burning, whereas the enhancement of HCHO is far-reaching, extending from the source regions to urban areas downwind due to the secondary production of HCHO from longer-lived VOCs such as ethene. Consequently, a larger increase in NOx occurs in NOx-limited source regions, while a greater increase in HCHO occurs in VOC-limited urban areas, both contributing to more efficient O3 production.
Collapse
Affiliation(s)
- Xiaomeng Jin
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Arlene M Fiore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald C Cohen
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Tao M, Fiore AM, Jin X, Schiferl LD, Commane R, Judd LM, Janz S, Sullivan JT, Miller PJ, Karambelas A, Davis S, Tzortziou M, Valin L, Whitehill A, Civerolo K, Tian Y. Investigating Changes in Ozone Formation Chemistry during Summertime Pollution Events over the Northeastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15312-15327. [PMID: 36219092 PMCID: PMC9670856 DOI: 10.1021/acs.est.2c02972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Understanding the local-scale spatial and temporal variability of ozone formation is crucial for effective mitigation. We combine tropospheric vertical column densities (VCDTrop) of formaldehyde (HCHO) and nitrogen dioxide (NO2), referred to as HCHO-VCDTrop and NO2-VCDTrop, retrieved from airborne remote sensing and the TROPOspheric Monitoring Instrument (TROPOMI) with ground-based measurements to investigate changes in ozone precursors and the inferred chemical production regime on high-ozone days in May-August 2018 over two Northeast urban domains. Over New York City (NYC) and Baltimore/Washington D.C. (BAL/DC), HCHO-VCDTrop increases across the domain, but higher NO2-VCDTrop occurs mainly in urban centers on ozone exceedance days (when maximum daily 8 h average (MDA8) ozone exceeds 70 ppb at any monitor in the region). The ratio of HCHO-VCDTrop to NO2-VCDTrop, proposed as an indicator of the sensitivity of local surface ozone production rates to its precursors, generally increases on ozone exceedance days, implying a transition toward a more NOx-sensitive ozone production regime that should lead to higher efficacy of NOx controls on the highest ozone days in NYC and BAL/DC. Warmer temperatures and enhanced influence from emissions in the local boundary layer on the high-ozone days are accompanied by slower wind speeds in BAL/DC but stronger, southwesterly winds in NYC.
Collapse
Affiliation(s)
- Madankui Tao
- Lamont-Doherty
Earth Observatory, Columbia University, Palisades, New York10964, United States
- Department
of Earth and Environmental Sciences, Columbia
University, New York, New York10027, United
States
| | - Arlene M. Fiore
- Lamont-Doherty
Earth Observatory, Columbia University, Palisades, New York10964, United States
- Department
of Earth and Environmental Sciences, Columbia
University, New York, New York10027, United
States
| | - Xiaomeng Jin
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California94720, United States
| | - Luke D. Schiferl
- Lamont-Doherty
Earth Observatory, Columbia University, Palisades, New York10964, United States
| | - Róisín Commane
- Lamont-Doherty
Earth Observatory, Columbia University, Palisades, New York10964, United States
- Department
of Earth and Environmental Sciences, Columbia
University, New York, New York10027, United
States
| | - Laura M. Judd
- NASA
Langley Research Center, Hampton, Virginia23681, United States
| | - Scott Janz
- NASA
Goddard Space Flight Center, Greenbelt, Maryland20771, United States
| | - John T. Sullivan
- NASA
Goddard Space Flight Center, Greenbelt, Maryland20771, United States
| | - Paul J. Miller
- Northeast
States for Coordinated Air Use Management, Boston, Massachusetts02111, United States
| | - Alexandra Karambelas
- Northeast
States for Coordinated Air Use Management, Boston, Massachusetts02111, United States
| | - Sharon Davis
- New
Jersey Department of Environmental Protection, Trenton, New Jersey08625, United States
| | - Maria Tzortziou
- The
City College of New York, New York, New York10031, United States
| | - Lukas Valin
- US
Environmental Protection Agency, Research Triangle Park, North Carolina27711, United States
| | - Andrew Whitehill
- US
Environmental Protection Agency, Research Triangle Park, North Carolina27711, United States
| | - Kevin Civerolo
- New
York State Department of Environmental Conservation, Albany, New York12233, United States
| | - Yuhong Tian
- New
York State Department of Environmental Conservation, Albany, New York12233, United States
| |
Collapse
|
5
|
Zhu Q, Laughner JL, Cohen RC. Combining Machine Learning and Satellite Observations to Predict Spatial and Temporal Variation of near Surface OH in North American Cities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7362-7371. [PMID: 35302754 DOI: 10.1021/acs.est.1c05636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hydroxyl radical (OH) is the primary cleansing agent in the atmosphere. The abundance of OH in cities initiates the removal of local pollutants; therefore, it serves as the key species describing the urban chemical environment. We propose a machine learning (ML) approach as an efficient alternative to OH simulation using a computationally expensive chemical transport model. The ML model is trained on the parameters simulated from the WRF-Chem model, and it suggests that six predictive parameters are capable of explaining 76% of the OH variability. The parameters are the tropospheric NO2 column, the tropospheric HCHO column, J(O1D), H2O, temperature, and pressure. We then use observations of the tropospheric NO2 column and HCHO column from OMI as input to the ML model to enable measurement-based prediction of daily near surface OH at 1:30 pm local time across 49 North American cities over the course of 10 years between 2005 and 2014. The result is validated by comparing the OH predictions to measurements of isoprene, which has a source that is uncorrelated with OH and is removed rapidly and almost exclusively by OH in the daytime. We demonstrate that the predicted OH is, as expected, anticorrelated with isoprene. We also show that this ML model is consistent with our understanding of OH chemistry given the solely data-driven nature.
Collapse
Affiliation(s)
- Qindan Zhu
- Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, California 94720, United States
| | - Joshua L Laughner
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Ronald C Cohen
- Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Chan KL, Xu J, Slijkhuis S, Valks P, Loyola D. TROPOspheric Monitoring Instrument observations of total column water vapour: Algorithm and validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153232. [PMID: 35090926 DOI: 10.1016/j.scitotenv.2022.153232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we present the total column water vapour (TCWV) retrieval for the TROPOspheric Monitoring Instrument (TROPOMI) observations in the visible blue spectral band. The TROPOMI TCWV algorithm is being optimized and validated in the framework of the Sentinel 5 Precursor Product Algorithm Laboratory (S5P-PAL) project from the European Space Agency (ESA). The retrieval was first developed to retrieve TCWV from the Global Ozone Monitoring Experiment 2 (GOME-2). We have optimized the settings of the retrieval to adapt it for TROPOMI observations. The TROPOMI TCWV algorithm follows the typical two step approach, using spectral fit retrieval of slant columns, and conversion of the slant columns to vertical columns using air mass factors (AMFs). An iterative optimization algorithm is developed to dynamically find the optimal a priori water vapour profile for the AMF calculation. Further optimizations on the spectral retrieval, air mass factor calculations as well as a new surface albedo retrieval approach are implemented. The TCWV retrieval algorithm is applied to TROPOMI observations from May 2018 to May 2021. The results are validated by comparing them to ERA5 reanalysis data, GOME-2, MODerate resolution Imaging Spectroradiometer (MODIS) and Special Sensor Microwave Imager Sounder (SSMIS) satellite observations. TCWV derived from TROPOMI observations agree well with the other data sets with Pearson correlation coefficient (R) ranging from 0.96 to 0.99. The mean bias between TROPOMI and ERA5 data is -1.24 kg m-2 for measurements over land and 0.73 kg m-2 for measurements over water. The comparison to MODIS observations show similar results with small dry bias of 1.51,kg m-2 for measurements over land and a small wet bias of 1.25 kg m-2 for measurements over water. Slightly larger dry bias of 1.98 kg m-2 for measurements over land and 1.74 kg m-2 for measurements over water are found when compared to GOME-2 obserations. Compared to SSMIS data over water, TROPOMI observations are bias low by 3.25 kg m-2. The small discrepancies found between TROPOMI and reference data sets are related to the differences in measurement technique, measurement time, surface albedo issue, as well as cloud and aerosol contamination. This study demonstrates that the algorithm can provide stable and consistent results on a global scale and can be applied to generate operational TCWV products from TROPOMI and the forthcoming Copernicus missions Sentinel-4 and Sentinel-5. We have also demonstrated the capability of retrieving fine scale water vapour structures in a case study over the Amazon. This indicates that the TROPOMI data set is also useful for local and regional climate studies.
Collapse
Affiliation(s)
- Ka Lok Chan
- Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany; Rutherford Appleton Laboratory Space, Harwell Oxford, United Kingdom.
| | - Jian Xu
- Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany; National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Sander Slijkhuis
- Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| | - Pieter Valks
- Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| | - Diego Loyola
- Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| |
Collapse
|
7
|
Choi J, Henze DK, Cao H, Nowlan CR, González Abad G, Kwon H, Lee H, Oak YJ, Park RJ, Bates KH, Maasakkers JD, Wisthaler A, Weinheimer AJ. An Inversion Framework for Optimizing Non-Methane VOC Emissions Using Remote Sensing and Airborne Observations in Northeast Asia During the KORUS-AQ Field Campaign. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2021JD035844. [PMID: 35865789 PMCID: PMC9285978 DOI: 10.1029/2021jd035844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
We aim to reduce uncertainties in CH2O and other volatile organic carbon (VOC) emissions through assimilation of remote sensing data. We first update a three-dimensional (3D) chemical transport model, GEOS-Chem with the KORUSv5 anthropogenic emission inventory and inclusion of chemistry for aromatics and C2H4, leading to modest improvements in simulation of CH2O (normalized mean bias (NMB): -0.57 to -0.51) and O3 (NMB: -0.25 to -0.19) compared against DC-8 aircraft measurements during KORUS-AQ; the mixing ratio of most VOC species are still underestimated. We next constrain VOC emissions using CH2O observations from two satellites (OMI and OMPS) and the DC-8 aircraft during KORUS-AQ. To utilize data from multiple platforms in a consistent manner, we develop a two-step Hybrid Iterative Finite Difference Mass Balance and four-dimensional variational inversion system (Hybrid IFDMB-4DVar). The total VOC emissions throughout the domain increase by 47%. The a posteriori simulation reduces the low biases of simulated CH2O (NMB: -0.51 to -0.15), O3 (NMB: -0.19 to -0.06), and VOCs. Alterations to the VOC speciation from the 4D-Var inversion include increases of biogenic isoprene emissions in Korea and anthropogenic emissions in Eastern China. We find that the IFDMB method alone is adequate for reducing the low biases of VOCs in general; however, 4D-Var provides additional refinement of high-resolution emissions and their speciation. Defining reasonable emission errors and choosing optimal regularization parameters are crucial parts of the inversion system. Our new hybrid inversion framework can be applied for future air quality campaigns, maximizing the value of integrating measurements from current and upcoming geostationary satellite instruments.
Collapse
Affiliation(s)
- Jinkyul Choi
- Environmental Engineering ProgramUniversity of ColoradoBoulderCOUSA
| | - Daven K. Henze
- Department of Mechanical EngineeringUniversity of ColoradoBoulderCOUSA
| | - Hansen Cao
- Department of Mechanical EngineeringUniversity of ColoradoBoulderCOUSA
| | | | | | | | - Hyung‐Min Lee
- Department of Environmental Science and EngineeringEwha Womans UniversitySeoulSouth Korea
| | - Yujin J. Oak
- School of Earth and Environmental SciencesSeoul National UniversitySeoulSouth Korea
| | - Rokjin J. Park
- School of Earth and Environmental SciencesSeoul National UniversitySeoulSouth Korea
| | - Kelvin H. Bates
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | | | - Armin Wisthaler
- Institute for Ion Physics and Applied PhysicsUniversity of InnsbruckInnsbruckAustria
- Department of ChemistryUniversity of OsloOsloNorway
| | - Andrew J. Weinheimer
- Atmospheric Chemistry Observations and Modeling LaboratoryNational Center for Atmospheric ResearchBoulderCOUSA
| |
Collapse
|
8
|
Harkey M, Holloway T, Kim EJ, Baker KR, Henderson B. Satellite Formaldehyde to Support Model Evaluation. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2021; 126:10.1029/2020jd032881. [PMID: 34381662 PMCID: PMC8353957 DOI: 10.1029/2020jd032881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/16/2020] [Indexed: 06/13/2023]
Abstract
Formaldehyde (HCHO), a known carcinogen classified as a hazardous pollutant by the United States Environmental Protection Agency (U.S. EPA), is measured through monitoring networks across the U.S. Since these data are limited in spatial and temporal extent, model simulations from the U.S. EPA Community Multiscale Air Quality (CMAQ) model are used to estimate ambient HCHO exposure for the EPA National Air Toxics Assessment (NATA). Here, we employ satellite HCHO retrievals from the Ozone Monitoring Instrument (OMI)-the NASA retrieval developed by the Smithsonian Astrophysical Observatory (SAO), and the European Union Quality Assurance for Essential Climate Variables (QA4ECV) retrieval-to evaluate three CMAQ configurations, spanning the summers of 2011 and 2016, with differing biogenic emissions inputs and chemical mechanisms. These CMAQ configurations capture the general spatial and temporal behavior of both satellite retrievals, but underestimate column HCHO, particularly in the western U.S. In the southeastern U.S., the comparison with OMI HCHO highlights differences in modeled meteorology and biogenic emissions even with differences in satellite retrievals. All CMAQ configurations show low daily correlations with OMI HCHO (r = 0.26 - 0.38), however, we find higher monthly correlations (r = 0.52 - 0.73), and the models correlate best with the OMI-QA4ECV product. Compared to surface observations, we find improved agreement over a 24-hour period compared to afternoon-only, suggesting daily HCHO amounts are captured with more accuracy than afternoon amounts. This work highlights the potential for synergistic improvements in modeling and satellite retrievals to support near-surface HCHO estimates for the NATA and other applications.
Collapse
Affiliation(s)
- Monica Harkey
- Nelson Institute Center for Sustainability and the Global Environment (SAGE), University of Wisconsin-Madison, 1710 University Ave, Madison WI 53726
| | - Tracey Holloway
- Nelson Institute Center for Sustainability and the Global Environment (SAGE), University of Wisconsin-Madison, 1710 University Ave, Madison WI 53726
- Department of Atmospheric & Oceanic Sciences, University of Wisconsin-Madison, 1225 W Dayton Street, Madison, WI 53706
| | - Eliot J. Kim
- Nelson Institute Center for Sustainability and the Global Environment (SAGE), University of Wisconsin-Madison, 1710 University Ave, Madison WI 53726
| | - Kirk R. Baker
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Barron Henderson
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Assessing the Impact of Corona-Virus-19 on Nitrogen Dioxide Levels over Southern Ontario, Canada. REMOTE SENSING 2020. [DOI: 10.3390/rs12244112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A lockdown was implemented in Canada mid-March 2020 to limit the spread of COVID-19. In the wake of this lockdown, declines in nitrogen dioxide (NO2) were observed from the TROPOspheric Monitoring Instrument (TROPOMI). A method is presented to quantify how much of this decrease is due to the lockdown itself as opposed to variability in meteorology and satellite sampling. The operational air quality forecast model, GEM-MACH (Global Environmental Multi-scale - Modelling Air quality and CHemistry), was used together with TROPOMI to determine expected NO2 columns that represents what TROPOMI would have observed for a non-COVID scenario. Applying this methodology to southern Ontario, decreases in NO2 emissions due to the lockdown were seen, with an average 40% (roughly 10 kt[NO2]/yr) in Toronto and Mississauga and even larger declines in the city center. Natural and satellite sampling variability accounted for as much as 20–30%, which demonstrates the importance of taking meteorology into account. A model run with reduced emissions (from 65 kt[NO2]/yr to 40 kt[NO2]/yr in the Greater Toronto Area) based on emission activity data during the lockdown period was found to be consistent with TROPOMI NO2 columns.
Collapse
|
10
|
Judd LM, Al-Saadi JA, Szykman JJ, Valin LC, Janz SJ, Kowalewski MG, Eskes HJ, Veefkind JP, Cede A, Mueller M, Gebetsberger M, Swap R, Pierce RB, Nowlan CR, Abad GG, Nehrir A, Williams D. Evaluating Sentinel-5P TROPOMI tropospheric NO 2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound. ATMOSPHERIC MEASUREMENT TECHNIQUES 2020; 13:6113-6140. [PMID: 34122664 PMCID: PMC8193800 DOI: 10.5194/amt-13-6113-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Airborne and ground-based Pandora spectrometer NO2 column measurements were collected during the 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City/Long Island Sound region, which coincided with early observations from the Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) instrument. Both airborne- and ground-based measurements are used to evaluate the TROPOMI NO2 Tropospheric Vertical Column (TrVC) product v1.2 in this region, which has high spatial and temporal heterogeneity in NO2. First, airborne and Pandora TrVCs are compared to evaluate the uncertainty of the airborne TrVC and establish the spatial representativeness of the Pandora observations. The 171 coincidences between Pandora and airborne TrVCs are found to be highly correlated (r 2 =0.92 and slope of 1.03), with the largest individual differences being associated with high temporal and/or spatial variability. These reference measurements (Pandora and airborne) are complementary with respect to temporal coverage and spatial representativity. Pandora spectrometers can provide continuous long-term measurements but may lack areal representativity when operated in direct-sun mode. Airborne spectrometers are typically only deployed for short periods of time, but their observations are more spatially representative of the satellite measurements with the added capability of retrieving at subpixel resolutions of 250m×250m over the entire TROPOMI pixels they overfly. Thus, airborne data are more correlated with TROPOMI measurements (r 2 = 0.96) than Pandora measurements are with TROPOMI (r 2 = 0.84). The largest outliers between TROPOMI and the reference measurements appear to stem from too spatially coarse a priori surface reflectivity (0.5°) over bright urban scenes. In this work, this results during cloud-free scenes that, at times, are affected by errors in the TROPOMI cloud pressure retrieval impacting the calculation of tropospheric air mass factors. This factor causes a high bias in TROPOMI TrVCs of 4%-11%. Excluding these cloud-impacted points, TROPOMI has an overall low bias of 19%-33% during the LISTOS timeframe of June-September 2018. Part of this low bias is caused by coarse a priori profile input from the TM5-MP model; replacing these profiles with those from a 12 km North American Model-Community Multiscale Air Quality (NAMCMAQ) analysis results in a 12%-14% increase in the TrVCs. Even with this improvement, the TROPOMI-NAMCMAQ TrVCs have a 7%-19% low bias, indicating needed improvement in a priori assumptions in the air mass factor calculation. Future work should explore additional impacts of a priori inputs to further assess the remaining low biases in TROPOMI using these datasets.
Collapse
Affiliation(s)
- Laura M. Judd
- NASA Langley Research Center, Hampton, VA 23681, USA
| | | | - James J. Szykman
- Office of Research and Development, United States Environmental Protection Agency, Triangle Research Park, NC 27709, USA
| | - Lukas C. Valin
- Office of Research and Development, United States Environmental Protection Agency, Triangle Research Park, NC 27709, USA
| | - Scott J. Janz
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Matthew G. Kowalewski
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Henk J. Eskes
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
| | - J. Pepijn Veefkind
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
- Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
| | | | | | | | - Robert Swap
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - R. Bradley Pierce
- University of Wisconsin–Madison Space Science and Engineering Center, Madison, WI 53706, USA
| | | | | | - Amin Nehrir
- NASA Langley Research Center, Hampton, VA 23681, USA
| | - David Williams
- Office of Research and Development, United States Environmental Protection Agency, Triangle Research Park, NC 27709, USA
| |
Collapse
|
11
|
Goldberg DL, Anenberg SC, Griffin D, McLinden CA, Lu Z, Streets DG. Disentangling the Impact of the COVID-19 Lockdowns on Urban NO 2 From Natural Variability. GEOPHYSICAL RESEARCH LETTERS 2020; 47:e2020GL089269. [PMID: 32904906 PMCID: PMC7461033 DOI: 10.1029/2020gl089269] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 05/20/2023]
Abstract
TROPOMI satellite data show substantial drops in nitrogen dioxide (NO2) during COVID-19 physical distancing. To attribute NO2 changes to NO x emissions changes over short timescales, one must account for meteorology. We find that meteorological patterns were especially favorable for low NO2 in much of the United States in spring 2020, complicating comparisons with spring 2019. Meteorological variations between years can cause column NO2 differences of ~15% over monthly timescales. After accounting for solar angle and meteorological considerations, we calculate that NO2 drops ranged between 9.2% and 43.4% among 20 cities in North America, with a median of 21.6%. Of the studied cities, largest NO2 drops (>30%) were in San Jose, Los Angeles, and Toronto, and smallest drops (<12%) were in Miami, Minneapolis, and Dallas. These normalized NO2 changes can be used to highlight locations with greater activity changes and better understand the sources contributing to adverse air quality in each city.
Collapse
Affiliation(s)
- Daniel L. Goldberg
- Department of Environmental and Occupational HealthGeorge Washington UniversityWashingtonDCUSA
- Energy Systems DivisionArgonne National LaboratoryLemontILUSA
| | - Susan C. Anenberg
- Department of Environmental and Occupational HealthGeorge Washington UniversityWashingtonDCUSA
| | - Debora Griffin
- Air Quality Research DivisionEnvironment and Climate Change Canada (ECCC)TorontoOntarioCanada
| | - Chris A. McLinden
- Air Quality Research DivisionEnvironment and Climate Change Canada (ECCC)TorontoOntarioCanada
| | - Zifeng Lu
- Energy Systems DivisionArgonne National LaboratoryLemontILUSA
| | | |
Collapse
|
12
|
SO 2 and HCHO over the major cities of Kazakhstan from 2005 to 2016: influence of political, economic and industrial changes. Sci Rep 2020; 10:12635. [PMID: 32724141 PMCID: PMC7387459 DOI: 10.1038/s41598-020-69344-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/17/2020] [Indexed: 11/08/2022] Open
Abstract
Satellite observations of the Ozone Monitoring Instrument (OMI) for tropospheric sulfur dioxide (SO2) and formaldehyde (HCHO) column mass densities (CMD) are analyzed for the period 2005-2016 over the atmosphere of Kazakhstan. Regarding SO2 the major hot spots relate to regions with high population and large industrial facilities. Such an example is the city of Ekibastuz that hosts the biggest thermal power plants in the country and exhibits the higher SO2 CMD at national level. The annual average CMD in Ekibastuz reaches 2.5 × 10-5 kg/m2, whereas for the rest of the country respective values are 6 times lower. Other hotspots, mostly urban conglomerates such as Almaty and Nur-Sultan, experience high CMDs of SO2 in particular years, such as 2008. One of the main reasons for this behavior is the financial crisis of 2008, forcing the application of alternate heating sources based on cheap low-quality coal. Regarding HCHO, an oxygenated Volatile Organic Compound (VOC), the main hot spot is noticed over the city Atyrau, the oil capital of the country where two massive oil fields are located. The highest HCHO CMD (9 × 1015 molecules/cm2) appears in the summertime due to secondary production as a result of the photo-oxidation of VOCs emitted by industrial sectors, oil refinery plants and vehicles. Strongly elevated HCHO amounts are also observed in Nur-Sultan in 2012 that could be due to the residential coal combustion and vehicle exhaust under poor winter dispersion conditions. Significant reductions in HCHO observed between 2012 and 2015 can be attributed to two significant measures implemented in the country in 2013 that aimed at the improvement of air quality: the introduction of the emission trading system (ETS) for greenhouse gases and Euro-4 standards for new vehicles entering the national vehicle fleet.
Collapse
|
13
|
Zhang C, Liu C, Chan KL, Hu Q, Liu H, Li B, Xing C, Tan W, Zhou H, Si F, Liu J. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. LIGHT, SCIENCE & APPLICATIONS 2020; 9:66. [PMID: 32351690 PMCID: PMC7170962 DOI: 10.1038/s41377-020-0306-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 05/12/2023]
Abstract
The Environmental Trace Gases Monitoring Instrument (EMI) is the first Chinese satellite-borne UV-Vis spectrometer aiming to measure the distribution of atmospheric trace gases on a global scale. The EMI instrument onboard the GaoFen-5 satellite was launched on 9 May 2018. In this paper, we present the tropospheric nitrogen dioxide (NO2) vertical column density (VCD) retrieval algorithm dedicated to EMI measurement. We report the first successful retrieval of tropospheric NO2 VCD from the EMI instrument. Our retrieval improved the original EMI NO2 prototype algorithm by modifying the settings of the spectral fit and air mass factor calculations to account for the on-orbit instrumental performance changes. The retrieved EMI NO2 VCDs generally show good spatiotemporal agreement with the satellite-borne Ozone Monitoring Instrument and TROPOspheric Monitoring Instrument (correlation coefficient R of ~0.9, bias < 50%). A comparison with ground-based MAX-DOAS (Multi-Axis Differential Optical Absorption Spectroscopy) observations also shows good correlation with an R of 0.82. The results indicate that the EMI NO2 retrieval algorithm derives reliable and precise results, and this algorithm can feasibly produce stable operational products that can contribute to global air pollution monitoring.
Collapse
Affiliation(s)
- Chengxin Zhang
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Cheng Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026 China
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026 China
| | - Ka Lok Chan
- Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| | - Qihou Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 China
| | - Haoran Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Bo Li
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Chengzhi Xing
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Wei Tan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 China
| | - Haijin Zhou
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 China
| | - Fuqi Si
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 China
| | - Jianguo Liu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031 China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
| |
Collapse
|
14
|
Judd LM, Al-Saadi JA, Janz SJ, Kowalewski MG, Pierce RB, Szykman JJ, Valin LC, Swap R, Cede A, Mueller M, Tiefengraber M, Abuhassan N, Williams D. Evaluating the impact of spatial resolution on tropospheric NO 2 column comparisons within urban areas using high-resolution airborne data. ATMOSPHERIC MEASUREMENT TECHNIQUES 2019; 12:6091-6111. [PMID: 33014172 PMCID: PMC7526561 DOI: 10.5194/amt-12-6091-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
NASA deployed the GeoTASO airborne UV-Visible spectrometer in May-June 2017 to produce high resolution (approximately 250 × 250 m) gapless NO2 datasets over the western shore of Lake Michigan and over the Los Angeles Basin. The results collected show that the airborne tropospheric vertical column retrievals compare well with ground-based Pandora spectrometer column NO2 observations (r2=0.91 and slope of 1.03). Apparent disagreements between the two measurements can be sensitive to the coincidence criteria and are often associated with large local variability, including rapid temporal changes and spatial heterogeneity that may be observed differently by the sunward viewing Pandora observations. The gapless mapping strategy executed during the 2017 GeoTASO flights provides data suitable for averaging to coarser areal resolutions to simulate satellite retrievals. As simulated satellite pixel area increases to values typical of TEMPO, TROPOMI, and OMI, the agreement with Pandora measurements degraded, particularly for the most polluted columns as localized large pollution enhancements observed by Pandora and GeoTASO are spatially averaged with nearby less-polluted locations within the larger area representative of the satellite spatial resolutions (aircraft-to-Pandora slope: TEMPO scale=0.88; TROPOMI scale=0.77; OMI scale=0.57). In these two regions, Pandora and TEMPO or TROPOMI have the potential to compare well at least up to pollution scales of 30×1015 molecules cm-2. Two publicly available OMI tropospheric NO2 retrievals are both found to be biased low with respect to these Pandora observations. However, the agreement improves when higher resolution a priori inputs are used for the tropospheric air mass factor calculation (NASA V3 Standard Product slope = 0.18 and Berkeley High Resolution Product slope=0.30). Overall, this work explores best practices for satellite validation strategies with Pandora direct-sun observations by showing the sensitivity to product spatial resolution and demonstrating how the high spatial resolution NO2 data retrieved from airborne spectrometers, such as GeoTASO, can be used with high temporal resolution ground-based column observations to evaluate the influence of spatial heterogeneity on validation results.
Collapse
Affiliation(s)
- Laura M. Judd
- NASA Langley Research Center, Hampton, VA, 23681, United States
- NASA Postdoctoral Program, Hampton, VA, 23681, United States
| | | | - Scott J. Janz
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, United States
| | - Matthew G. Kowalewski
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, United States
- Universities Space Research Association, Columbia, MD, 21046, United States
| | - R. Bradley Pierce
- University of Wisconsin-Madison Space Science and Engineering Center, Madison, WI, 53706, United States
| | - James J. Szykman
- United States Environmental Protection Agency Office of Research and Development, Triangle Research Park, NC, 27709, United States
| | - Lukas C. Valin
- United States Environmental Protection Agency Office of Research and Development, Triangle Research Park, NC, 27709, United States
| | - Robert Swap
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, United States
| | | | - Moritz Mueller
- LuftBlick, Kreith, Austria
- Department of Atmospheric and Cryospheric Science, University of Innsbruck, Innsbruck, Austria
| | - Martin Tiefengraber
- LuftBlick, Kreith, Austria
- Department of Atmospheric and Cryospheric Science, University of Innsbruck, Innsbruck, Austria
| | - Nader Abuhassan
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, United States
- Joint Center for Earth Systems Technology, University of Maryland-Baltimore County, Baltimore, MD, 21228, United States
| | - David Williams
- United States Environmental Protection Agency Office of Research and Development, Triangle Research Park, NC, 27709, United States
| |
Collapse
|
15
|
Chaliyakunnel S, Millet DB, Chen X. Constraining Emissions of Volatile Organic Compounds Over the Indian Subcontinent Using Space-Based Formaldehyde Measurements. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:10525-10545. [PMID: 33614368 PMCID: PMC7894393 DOI: 10.1029/2019jd031262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
India is an air pollution mortality hot spot, but regional emissions are poorly understood. We present a high-resolution nested chemical transport model (GEOS-Chem) simulation for the Indian subcontinent and use it to interpret formaldehyde (HCHO) observations from two satellite sensors (OMI and GOME-2A) in terms of constraints on regional volatile organic compound (VOC) emissions. We find modeled biogenic VOC emissions to be overestimated by ~30-60% for most locations and seasons, and derive a best estimate biogenic flux of 16 Tg C/year subcontinent-wide for year 2009. Terrestrial vegetation provides approximately half the total VOC flux in our base-case inversions (full uncertainty range: 44-65%). This differs from prior understanding, in which biogenic emissions represent >70% of the total. Our derived anthropogenic VOC emissions increase slightly (13-16% in the base case, for a subcontinent total of 15 Tg C/year in 2009) over RETRO year 2000 values, with some larger regional discrepancies. The optimized anthropogenic emissions agree well with the more recent CEDS inventory, both subcontinent-wide (within 2%) and regionally. An exception is the Indo-Gangetic Plain, where we find an underestimate for both RETRO and CEDS. Anthropogenic emissions thus constitute 37-50% of the annual regional VOC source in our base-case inversions and exceed biogenic emissions over the Indo-Gangetic Plain, West India, and South India, and over the entire subcontinent during winter and post-monsoon. Fires are a minor fraction (<7%) of the total regional VOC source in the prior and optimized model. However, evidence suggests that VOC emissions in the fire inventory used here (GFEDv4) are too low over the Indian subcontinent.
Collapse
Affiliation(s)
- Sreelekha Chaliyakunnel
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| | - Dylan B Millet
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| | - Xin Chen
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| |
Collapse
|
16
|
Griffin D, McLinden CA, Boersma F, Bourassa A, Dammers E, Degenstein D, Eskes H, Fehr L, Fioletov V, Hayden K, Kharol SK, Li SM, Makar P, Martin RV, Mihele C, Mittermeier RL, Krotkov N, Sneep M, Lamsal LN, Ter Linden M, van Geffen J, Veefkind P, Wolde M, Zhao X. High resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands. GEOPHYSICAL RESEARCH LETTERS 2019; 46:1049-1060. [PMID: 33867596 PMCID: PMC8051066 DOI: 10.1029/2018gl081095] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/22/2018] [Indexed: 05/20/2023]
Abstract
UNLABELLED TROPOMI, on-board the Sentinel-5 Precursor satellite is a nadir-viewing spectrometer measuring reflected sunlight in the ultraviolet, visible, near-infrared, and shortwave infrared spectral range. From these spectra several important air quality and climate-related atmospheric constituents are retrieved at an unprecedented high spatial resolution, including nitrogen dioxide (NO2). We present the first retrievals of TROPOMI NO2 over the Canadian Oil Sands, contrasting them with observations from the OMI satellite instrument, and demonstrate its ability to resolve individual plumes and highlight its potential for deriving emissions from individual mining facilities. Further, the first TROPOMI NO2 validation is presented, consisting of aircraft and surface in-situ NO2 observations, as well as ground-based remote-sensing measurements between March and May 2018. Our comparisons show that the TROPOMI NO2 vertical column densities are highly correlated with the aircraft and surface in-situ NO2 observations, and the ground-based remote-sensing measurements with a low bias (15-30 %) over the Canadian Oil Sands. PLAIN LANGUAGE SUMMARY Nitrogen dioxide (NO2) is a pollutant that is linked to respiratory health issues and has negative environmental impacts such as soil and water acidification. Near the surface the most significant sources of NO2 are fossil fuel combustion and biomass burning. With a recently launched satellite instrument (TROPOspheric Monitoring Instrument; TROPOMI) NO2 can be measured with an unprecedented combination of accuracy, spatial coverage, and resolution. This work presents the first TROPOMI NO2 measurements near the Canadian Oil Sands and shows that these measurements have an outstanding ability to detect NO2 on a very high horizontal resolution that is unprecedented for satellite NO2 observations. Further, these satellite measurements are in excellent agreement with aircraft and ground-based measurements.
Collapse
Affiliation(s)
- Debora Griffin
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Chris A McLinden
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Folkert Boersma
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
- Wageningen University, Environmental Sciences Group, Wageningen, The Netherlands
| | - Adam Bourassa
- Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Enrico Dammers
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Doug Degenstein
- Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Henk Eskes
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
| | - Lukas Fehr
- Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Vitali Fioletov
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Katherine Hayden
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Shailesh K Kharol
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Shao-Meng Li
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Paul Makar
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Randall V Martin
- Dalhousie University, Department of Physics and Atmospheric Science, Halifax, Nova Scotia, Canada
| | - Cristian Mihele
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Richard L Mittermeier
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Nickolay Krotkov
- Laboratory for atmospheric chemistry and dynamics, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Maarten Sneep
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
| | - Lok N Lamsal
- Laboratory for atmospheric chemistry and dynamics, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD, USA
| | - Mark Ter Linden
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
- Science and Technology (S&T), Delft, Netherlands
| | - Jos van Geffen
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
| | - Pepijn Veefkind
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
- Delft University of Technology, Delft, The Netherlands
| | - Mengistu Wolde
- National Research Council Canada, Flight Research Laboratory, Ottawa, K1A 0R6, Canada
| | - Xiaoyi Zhao
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. REMOTE SENSING 2018. [DOI: 10.3390/rs10111789] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Improving air quality and reducing human exposure to unhealthy levels of airborne chemicals are important global missions, particularly in China. Satellite remote sensing offers a powerful tool to examine regional trends in NO2, thus providing a direct measure of key parameters that strongly affect surface air quality. To accurately resolve spatial gradients in NO2 concentration using satellite observations and thus understand local and regional aspects of air quality, a priori input data at sufficiently high spatial and temporal resolution to account for pixel-to-pixel variability in the characteristics of the land and atmosphere are required. In this paper, we adapt the Berkeley High Resolution product (BEHR-HK) and meteorological outputs from the Weather Research and Forecasting (WRF) model to describe column NO2 in southern China. The BEHR approach is particularly useful for places with large spatial variabilities and terrain height differences such as China. There are two major objectives and goals: (1) developing new BEHR-HK v3.0C product for retrieving tropospheric NO2 vertical column density (TVCD) within part of southern China, for four months of 2015, based upon satellite datasets from Ozone Monitoring Instrument (OMI); and (2) evaluating BEHR-HK v3.0C retrieval result through validation, by comparing with MAX-DOAS tropospheric column measurements conducted in Guangzhou. Results show that all BEHR-HK retrieval algorithms (with R-value of 0.9839 for v3.0C) are of higher consistency with MAX-DOAS measurements than OMI-NASA retrieval (with R-value of 0.7644). This opens new windows into research questions that require high spatial resolution, for example retrieving NO2 vertical column and ground pollutant concentration in China and other countries.
Collapse
|
18
|
A Conservative Downscaling of Satellite-Detected Chemical Compositions: NO2 Column Densities of OMI, GOME-2, and CMAQ. REMOTE SENSING 2018. [DOI: 10.3390/rs10071001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Cooper MJ, Martin RV, Lyapustin AI, McLinden CA. Assessing snow extent data sets over North America to inform and improve trace gas retrievals from solar backscatter. ATMOSPHERIC MEASUREMENT TECHNIQUES 2018; 11:2983-2994. [PMID: 30450131 PMCID: PMC6235450 DOI: 10.5194/amt-11-2983-2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Accurate representation of surface reflectivity is essential to tropospheric trace gas retrievals from solar backscatter observations. Surface snow cover presents a significant challenge due to its variability and thus snow-covered scenes are often omitted from retrieval data sets; however, the high reflectance of snow is potentially advantageous for trace gas retrievals. We first examine the implications of surface snow on retrievals from the upcoming TEMPO geostationary instrument for North America. We use a radiative transfer model to examine how an increase in surface reflectivity due to snow cover changes the sensitivity of satellite retrievals to NO2 in the lower troposphere. We find that a substantial fraction (>50%) of the TEMPO field of regard can be snow covered in January, and that the average sensitivity to the tropospheric NO2 column substantially increases (doubles) when the surface is snow covered. We then evaluate seven existing satellite-derived or reanalysis snow extent products against ground station observations over North America to assess their capability of informing surface conditions for TEMPO retrievals. The Interactive Multisensor Snow and Ice Mapping System (IMS) had the best agreement with ground observations (accuracy of 93%, precision of 87%, recall of 83%). Multiangle Implementation of Atmospheric Correction (MAIAC) retrievals of MODIS-observed radiances had high precision (90% for Aqua and Terra), but underestimated the presence of snow (recall of 74% for Aqua, 75% for Terra). MAIAC generally outperforms the standard MODIS products (precision of 51%, recall of 43% for Aqua; precision of 69%, recall of 45% for Terra). The Near-real-time Ice and Snow Extent (NISE) product had good precision (83%) but missed a significant number of snow-covered pixels (recall of 45%). The Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data set had strong performance metrics (accuracy of 91%, precision of 79%, recall of 82%). We use the F score, which balances precision and recall, to determine overall product performance (F = 85%, 82(82)%, 81%, 58%, 46(54)% for IMS, MAIAC Aqua(Terra), CMC, NISE, MODIS Aqua(Terra) respectively) for providing snow cover information for TEMPO retrievals from solar backscatter observations. We find that using IMS to identify snow cover and enable inclusion of snow-covered scenes in clear-sky conditions across North America in January can increase both the number of observations by a factor of 2.1 and the average sensitivity to the tropospheric NO2 column by a factor of 2.7.
Collapse
Affiliation(s)
- Matthew J Cooper
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | | | - Chris A McLinden
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Judd L, Al-saadi J, Valin L, Pierce RB, Yang K, Janz S, Kowalewski M, Szykman J, Tiefengraber M, Mueller M. The Dawn of Geostationary Air Quality Monitoring: Case Studies from Seoul and Los Angeles. FRONTIERS IN ENVIRONMENTAL SCIENCE 2018; 6:10.3389/fenvs.2018.00085. [PMID: 31534946 PMCID: PMC6749617 DOI: 10.3389/fenvs.2018.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
With the near-future launch of geostationary pollution monitoring satellite instruments over North America, East Asia, and Europe, the air quality community is preparing for an integrated global atmospheric composition observing system at unprecedented spatial and temporal resolutions. One of the ways that NASA has supported this community preparation is through demonstration of future space-borne capabilities using the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument. This paper integrates repeated high-resolution maps from GeoTASO, ground-based Pandora spectrometers, and low Earth orbit measurements from the Ozone Mapping and Profiler Suite (OMPS), for case studies over two metropolitan areas: Seoul, South Korea on June 9th, 2016 and Los Angeles, California on June 27th, 2017. This dataset provides a unique opportunity to illustrate how geostationary air quality monitoring platforms and ground-based remote sensing networks will close the current spatiotemporal observation gap. GeoTASO observes large differences in diurnal behavior between these urban areas, with NO2 accumulating within the Seoul Metropolitan Area through the day but NO2 peaking in the morning and decreasing throughout the afternoon in the Los Angeles Basin. In both areas, the earliest morning maps exhibit spatial patterns similar to emission source areas (e.g., urbanized valleys, roadways, major airports). These spatial patterns change later in the day due to boundary layer dynamics, horizontal transport, and chemistry. The nominal resolution of GeoTASO is finer than will be obtained from geostationary platforms, but when NO2 data over Los Angeles are up-scaled to the expected resolution of TEMPO, spatial features discussed are conserved. Pandora instruments installed in both metropolitan areas capture the diurnal patterns observed by GeoTASO, continuously and over longer time periods, and will play a critical role in validation of the next generation of satellite measurement.. These case studies demonstrate that different regions can have diverse diurnal patterns and that day-to-day variability due to meteorology or anthropogenic patterns such as weekday/weekend variations in emissions is large. Low Earth orbit measurements, despite their inability to capture the diurnal patterns at fine spatial resolution, will be essential for intercalibrating the geostationary radiances and cross-validating the geostationary retrievals in an integrated global observing system.
Collapse
Affiliation(s)
- Laura Judd
- NASA Langley Research Center, Hampton, Virginia, USA
- NASA Postdoctoral Program, Hampton, Virginia, USA
| | | | - Lukas Valin
- Environmental Protection Agency Office of Research & Development, Research Triangle Park, North Carolina, USA
| | - R. Bradley Pierce
- NOAA National Environmental Satellite Data and Information Service, Center for SaTellite Applications and Research, Madison, Wisconsin, USA
| | - Kai Yang
- Department of Atmospheric and Oceanic Science, University of Maryland College Park, College Park, Maryland, USA
| | - Scott Janz
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Matt Kowalewski
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- University Space Research Association, Columbia, Maryland, USA
| | - James Szykman
- Environmental Protection Agency Office of Research & Development, Research Triangle Park, North Carolina, USA
| | - Martin Tiefengraber
- LuftBlick, Kreith, Austria
- Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
| | - Moritz Mueller
- LuftBlick, Kreith, Austria
- Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Investigation of Simultaneous Effects of Aerosol Properties and Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals. REMOTE SENSING 2017. [DOI: 10.3390/rs9030208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Vaquero-Martínez J, Antón M, Ortiz de Galisteo JP, Cachorro VE, Wang H, González Abad G, Román R, Costa MJ. Validation of integrated water vapor from OMI satellite instrument against reference GPS data at the Iberian Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:857-864. [PMID: 27988187 DOI: 10.1016/j.scitotenv.2016.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/03/2016] [Accepted: 12/04/2016] [Indexed: 06/06/2023]
Abstract
This paper shows the validation of integrated water vapor (IWV) measurements retrieved from the Ozone Monitoring Instrument (OMI), using as reference nine ground-based GPS stations in the Iberian Peninsula. The study period covers from 2007 to 2009. The influence of two factors, - solar zenith angle (SZA) and IWV -, on OMI-GPS differences was studied in detail, as well as the seasonal dependence. The pseudomedian of the relative differences is -1 ± 1% and the inter-quartile range (IQR) is 41%. Linear regressions calculated over each station show an acceptable agreement (R2 up to 0.77). The OMI-GPS differences display a clear dependence on IWV values. Hence, OMI substantially overestimates the lower IWV data recorded by GPS (∼ 40%), while underestimates the higher IWV reference values (∼ 20%). In connection to this IWV dependence, the relative differences also show an evident SZA dependence when the whole range of IWV values are analyzed (OMI overestimates for high SZA values while underestimates for low values). Finally, the seasonal variation of the OMI-GPS differences is also associated with the strong IWV dependence found in this validation exercise.
Collapse
Affiliation(s)
- Javier Vaquero-Martínez
- Departamento de Física, Universidad de Extremadura, Badajoz, Spain; Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Badajoz, Spain.
| | - Manuel Antón
- Departamento de Física, Universidad de Extremadura, Badajoz, Spain; Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Badajoz, Spain
| | - José Pablo Ortiz de Galisteo
- Agencia Estatal de Meteorología (AEMET), Valladolid, Spain; Grupo de Óptica Atmosférica, Universidad de Valladolid, Valladolid, Spain
| | | | - Huiqun Wang
- Smithsonian Astrophysical Observatory, Cambridge, MA, United States
| | | | - Roberto Román
- Departamento de Física Aplicada, Universidad de Granada, Granada, Spain; Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, 18006, Granada, Spain
| | - Maria João Costa
- Departamento de Física, Instituto de Ciências da Terra, Escola de Ciências e Tecnología, Universidade de Évora, Évora, Portugal
| |
Collapse
|
23
|
Zoogman P, Liu X, Suleiman RM, Pennington WF, Flittner DE, Al-Saadi JA, Hilton BB, Nicks DK, Newchurch MJ, Carr JL, Janz SJ, Andraschko MR, Arola A, Baker BD, Canova BP, Chan Miller C, Cohen RC, Davis JE, Dussault ME, Edwards DP, Fishman J, Ghulam A, González Abad G, Grutter M, Herman JR, Houck J, Jacob DJ, Joiner J, Kerridge BJ, Kim J, Krotkov NA, Lamsal L, Li C, Lindfors A, Martin RV, McElroy CT, McLinden C, Natraj V, Neil DO, Nowlan CR, O'Sullivan EJ, Palmer PI, Pierce RB, Pippin MR, Saiz-Lopez A, Spurr RJD, Szykman JJ, Torres O, Veefkind JP, Veihelmann B, Wang H, Wang J, Chance K. Tropospheric Emissions: Monitoring of Pollution (TEMPO). JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER 2017; 186:17-39. [PMID: 32817995 PMCID: PMC7430511 DOI: 10.1016/j.jqsrt.2016.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.
Collapse
Affiliation(s)
- P Zoogman
- Harvard-Smithsonian Center for Astrophysics
| | - X Liu
- Harvard-Smithsonian Center for Astrophysics
| | | | | | | | | | | | | | | | | | - S J Janz
- NASA Goddard Space Flight Center
| | | | - A Arola
- Finnish Meteorological Institute
| | | | | | | | - R C Cohen
- University of California at Berkeley
| | - J E Davis
- Harvard-Smithsonian Center for Astrophysics
| | | | | | | | | | | | - M Grutter
- Universidad Nacional Autónoma de México
| | - J R Herman
- University of Maryland, Baltimore County
| | - J Houck
- Harvard-Smithsonian Center for Astrophysics
| | | | - J Joiner
- NASA Goddard Space Flight Center
| | | | | | | | - L Lamsal
- NASA Goddard Space Flight Center
- GESTAR, University Space Research Association
| | - C Li
- NASA Goddard Space Flight Center
- University of Maryland, Baltimore County
| | | | - R V Martin
- Harvard-Smithsonian Center for Astrophysics
- Dalhousie University
| | | | | | | | | | - C R Nowlan
- Harvard-Smithsonian Center for Astrophysics
| | | | | | - R B Pierce
- National Oceanic and Atmospheric Administration
| | | | - A Saiz-Lopez
- Instituto de Química Física Rocasolano, CSIC, Spain
| | | | | | - O Torres
- NASA Goddard Space Flight Center
| | | | | | - H Wang
- Harvard-Smithsonian Center for Astrophysics
| | | | - K Chance
- Harvard-Smithsonian Center for Astrophysics
| |
Collapse
|
24
|
Zhu L, Jacob DJ, Kim PS, Fisher JA, Yu K, Travis KR, Mickley LJ, Yantosca RM, Sulprizio MP, De Smedt I, Abad GG, Chance K, Li C, Ferrare R, Fried A, Hair JW, Hanisco TF, Richter D, Scarino AJ, Walega J, Weibring P, Wolfe GM. Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC 4RS aircraft observations over the Southeast US. ATMOSPHERIC CHEMISTRY AND PHYSICS 2016; 16:13477-13490. [PMID: 29619044 PMCID: PMC5880299 DOI: 10.5194/acp-16-13477-2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs) but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS campaign over the Southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the Southeast US (r=0.4-0.8 on a 0.5°×0.5° grid) and in their day-to-day variability (r=0.5-0.8). However, all retrievals are biased low in the mean by 20-51%, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.
Collapse
Affiliation(s)
- Lei Zhu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Daniel J. Jacob
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Patrick S. Kim
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Jenny A. Fisher
- Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, Wollongong, NSW, Australia
- School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Karen Yu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Katherine R. Travis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Loretta J. Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Robert M. Yantosca
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Melissa P. Sulprizio
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | | | - Kelly Chance
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - Can Li
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | | - Alan Fried
- Institute of Arctic and Alpine Research, Univ. of Colorado, Boulder, CO, USA
| | | | | | - Dirk Richter
- Institute of Arctic and Alpine Research, Univ. of Colorado, Boulder, CO, USA
| | - Amy Jo Scarino
- Science Systems and Applications, Inc., Hampton, VA, USA
| | - James Walega
- Institute of Arctic and Alpine Research, Univ. of Colorado, Boulder, CO, USA
| | - Petter Weibring
- Institute of Arctic and Alpine Research, Univ. of Colorado, Boulder, CO, USA
| | - Glenn M. Wolfe
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Travis KR, Jacob DJ, Fisher JA, Kim PS, Marais EA, Zhu L, Yu K, Miller CC, Yantosca RM, Sulprizio MP, Thompson AM, Wennberg PO, Crounse JD, St Clair JM, Cohen RC, Laughner JL, Dibb JE, Hall SR, Ullmann K, Wolfe GM, Pollack IB, Peischl J, Neuman JA, Zhou X. Why do Models Overestimate Surface Ozone in the Southeastern United States? ATMOSPHERIC CHEMISTRY AND PHYSICS 2016; 16:13561-13577. [PMID: 29619045 PMCID: PMC5880041 DOI: 10.5194/acp-16-13561-2016] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.
Collapse
Affiliation(s)
- Katherine R. Travis
- Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Daniel J. Jacob
- Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Jenny A. Fisher
- Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, Wollongong, NSW, Australia
- School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Patrick S. Kim
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Eloise A. Marais
- Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Lei Zhu
- Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Karen Yu
- Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Christopher C. Miller
- Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Robert M. Yantosca
- Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Melissa P. Sulprizio
- Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | | | - Paul O. Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Jason M. St Clair
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Ronald C. Cohen
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Jack E. Dibb
- Earth System Research Center, University of New Hampshire, Durham, NH, USA
| | - Samuel R. Hall
- Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO, USA
| | - Kirk Ullmann
- Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO, USA
| | - Glenn M. Wolfe
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Illana B. Pollack
- Atmospheric Science Department, Colorado State University, Fort Collins, Colorado, USA
| | - Jeff Peischl
- University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA
- NOAA, Division of Chemical Science, Earth Systems Research Lab, Boulder, CO USA
| | - Jonathan A. Neuman
- University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA
- NOAA, Division of Chemical Science, Earth Systems Research Lab, Boulder, CO USA
| | - Xianliang Zhou
- Department of Environmental Health and Toxicology, School of Public Health, State University of New York at Albany, Albany, New York, USA
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
26
|
Investigations of the Diurnal Variation of Vertical HCHO Profiles Based on MAX-DOAS Measurements in Beijing: Comparisons with OMI Vertical Column Data. ATMOSPHERE 2015. [DOI: 10.3390/atmos6111816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Oikawa PY, Ge C, Wang J, Eberwein JR, Liang LL, Allsman LA, Grantz DA, Jenerette GD. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region. Nat Commun 2015; 6:8753. [PMID: 26556236 PMCID: PMC4659929 DOI: 10.1038/ncomms9753] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/28/2015] [Indexed: 11/27/2022] Open
Abstract
Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. Soil NOx emissions can significantly impact air quality in agricultural regions, particularly high temperature fertilized systems. Here, the authors investigate NOx emissions in one such system in California and suggest that the NOx emissions are the highest ever observed, with implications for air quality.
Collapse
Affiliation(s)
- P Y Oikawa
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA
| | - C Ge
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - J Wang
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - J R Eberwein
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - L L Liang
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - L A Allsman
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - D A Grantz
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - G D Jenerette
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
28
|
Baek KH, Kim JH, Park RJ, Chance K, Kurosu TP. Validation of OMI HCHO data and its analysis over Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:93-105. [PMID: 24840284 DOI: 10.1016/j.scitotenv.2014.04.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 05/12/2023]
Abstract
OMI HCHO is validated over the continental US (CONUS), and used to analyze regional sources in Northeast Asia (NA) and Southeast Asia (SA). OMI HCHO Version 2.0 data show unrealistic trends, which prompted the production of a corrected OMI HCHO data set. EOF and SVD are utilized to compare the spatial and temporal variability between OMI HCHO against GOME and SCIAMACHY, and against GEOS-Chem. CONUS HCHO chemistry is well studied; its concentrations are greatest in the southeastern US with annual cycle maximums corresponding to the summer vegetation. The corrected OMI HCHO agrees with this understanding as well as with the other sensors measurements and has no unrealistic trends. In NA the annual cycle is super-posed by extremely large concentrations in polluted mega-cities. The other sensors generally agree with NA's OMI HCHO regional distribution, but megacity signal is not seen in GEOS-Chem. Our study supports the findings proposed by others that the emission inventory used in GEOS-Chem significantly underestimates anthropogenic influence on HCHO emission over megacities. The persistent mega-city signal is also present in SA. In SA the spatial and temporal patterns of OMI HCHO show a maximum in the dry season. The patterns are in remarkably good agreement with fire counts, which illustrates that the variability of HCHO over SA is strongly influenced by biomass burning. The corrected OMI HCHO data has realistic trends, conforms to well-known sources over CONUS, and has shown a stationary large concentration over polluted Asian mega-cities, and a widespread biomass burning in SA.
Collapse
Affiliation(s)
- K H Baek
- Department of Atmospheric Science, Pusan National University, Republic of Korea
| | - Jae H Kim
- Department of Atmospheric Science, Pusan National University, Republic of Korea.
| | - Rokjin J Park
- School of Earth and Environmental Science, Seoul National University, Seoul, Republic of Korea
| | - Kelly Chance
- Harvard-Smithsonian Center for Astrophysics, USA
| | | |
Collapse
|
29
|
Lamsal LN, Martin RV, Parrish DD, Krotkov NA. Scaling relationship for NO2 pollution and urban population size: a satellite perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7855-61. [PMID: 23763377 DOI: 10.1021/es400744g] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Concern is growing about the effects of urbanization on air pollution and health. Nitrogen dioxide (NO2) released primarily from combustion processes, such as traffic, is a short-lived atmospheric pollutant that serves as an air-quality indicator and is itself a health concern. We derive a global distribution of ground-level NO2 concentrations from tropospheric NO2 columns retrieved from the Ozone Monitoring Instrument (OMI). Local scaling factors from a three-dimensional chemistry-transport model (GEOS-Chem) are used to relate the OMI NO2 columns to ground-level concentrations. The OMI-derived surface NO2 data are significantly correlated (r = 0.69) with in situ surface measurements. We examine how the OMI-derived ground-level NO2 concentrations, OMI NO2 columns, and bottom-up NOx emission inventories relate to urban population. Emission hot spots, such as power plants, are excluded to focus on urban relationships. The correlation of surface NO2 with population is significant for the three countries and one continent examined here: United States (r = 0.71), Europe (r = 0.67), China (r = 0.69), and India (r = 0.59). Urban NO2 pollution, like other urban properties, is a power law scaling function of the population size: NO2 concentration increases proportional to population raised to an exponent. The value of the exponent varies by region from 0.36 for India to 0.66 for China, reflecting regional differences in industrial development and per capita emissions. It has been generally established that energy efficiency increases and, therefore, per capita NOx emissions decrease with urban population; here, we show how outdoor ambient NO2 concentrations depend upon urban population in different global regions.
Collapse
Affiliation(s)
- L N Lamsal
- Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, Maryland 21044-3432, USA.
| | | | | | | |
Collapse
|
30
|
Kim S, Guenther A, Apel E. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1301-1314. [PMID: 23748571 DOI: 10.1039/c3em00040k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task.
Collapse
Affiliation(s)
- Saewung Kim
- Department of Earth System Science, School of Physical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
31
|
Barkley MP, Kurosu TP, Chance K, De Smedt I, Van Roozendael M, Arneth A, Hagberg D, Guenther A. Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for top-down isoprene emission estimates. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016827] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Marais EA, Jacob DJ, Kurosu TP, Chance K, Murphy JG, Reeves C, Mills G, Casadio S, Millet DB, Barkley MP, Paulot F, Mao J. Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. ATMOSPHERIC CHEMISTRY AND PHYSICS 2012; 12:6219-6235. [PMID: 33688332 PMCID: PMC7939075 DOI: 10.5194/acp-12-6219-2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We use 2005-2009 satellite observations of formaldehyde (HCHO) columns from the OMI instrument to infer biogenic isoprene emissions at monthly 1 × 1° resolution over the African continent. Our work includes new approaches to remove biomass burning influences using OMI absorbing aerosol optical depth data (to account for transport of fire plumes) and anthropogenic influences using AATSR satellite data for persistent small-flame fires (gas flaring). The resulting biogenic HCHO columns (ΩHCHO) from OMI follow closely the distribution of vegetation patterns in Africa. We infer isoprene emission (E ISOP) from the local sensitivity S = ΔΩHCHO / ΔE ISOP derived with the GEOS-Chem chemical transport model using two alternate isoprene oxidation mechanisms, and verify the validity of this approach using AMMA aircraft observations over West Africa and a longitudinal transect across central Africa. Displacement error (smearing) is diagnosed by anomalously high values of S and the corresponding data are removed. We find significant sensitivity of S to NOx under low-NOx conditions that we fit to a linear function of tropospheric column NO2. We estimate a 40% error in our inferred isoprene emissions under high-NOx conditions and 40-90% under low-NOx conditions. Our results suggest that isoprene emission from the central African rainforest is much lower than estimated by the state-of-the-science MEGAN inventory.
Collapse
Affiliation(s)
- E. A. Marais
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - D. J. Jacob
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - T. P. Kurosu
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - K. Chance
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - J. G. Murphy
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - C. Reeves
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - G. Mills
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - S. Casadio
- Instrument Data quality Evaluation and Analysis (IDEAS), Serco Spa Via Sciadonna 24, 00044 Frascati (Roma), Italy
| | - D. B. Millet
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA
| | - M. P. Barkley
- Space Research Centre, University of Leicester, Leicester, UK
| | - F. Paulot
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - J. Mao
- Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
33
|
Nowlan CR, Liu X, Chance K, Cai Z, Kurosu TP, Lee C, Martin RV. Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME-2) using an optimal estimation approach: Algorithm and initial validation. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015808] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Boeke NL, Marshall JD, Alvarez S, Chance KV, Fried A, Kurosu TP, Rappenglück B, Richter D, Walega J, Weibring P, Millet DB. Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model. ACTA ACUST UNITED AC 2011; 116. [PMID: 33716354 DOI: 10.1029/2010jd014870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
[1] We combine aircraft measurements (Second Texas Air Quality Study, Megacity Initiative: Local and Global Research Observations, Intercontinental Chemical Transport Experiment: Phase B) over the United States, Mexico, and the Pacific with a 3-D model (GEOS-Chem) to evaluate formaldehyde column (ΩHCHO) retrievals from the Ozone Monitoring Instrument (OMI) and assess the information they provide on HCHO across local to regional scales and urban to background regimes. OMI ΩHCHO correlates well with columns derived from aircraft measurements and GEOS-Chem (R = 0.80). For the full data ensemble, OMI's mean bias is -3% relative to aircraft-derived ΩHCHO (-17% where ΩHCHO > 5 × 1015 molecules cm-2) and -8% relative to GEOS-Chem, within expected uncertainty for the retrieval. Some negative bias is expected for the satellite and model, given the plume sampling of many flights and averaging over the satellite and model footprints. Major axis regression for OMI versus aircraft and model columns yields slopes (95% confidence intervals) of 0.80 (0.62-1.03) and 0.98 (0.73-1.35), respectively, with no significant intercept. Aircraft measurements indicate that the normalized vertical HCHO distribution, required by the satellite retrieval, is well captured by GEOS-Chem, except near Mexico City. Using measured HCHO profiles in the retrieval algorithm does not improve satellite-aircraft agreement, suggesting that use of a global model to specify shape factors does not substantially degrade retrievals over polluted areas. While the OMI measurements show that biogenic volatile organic compounds dominate intra-annual and regional ΩHCHO variability across the United States, smaller anthropogenic ΩHCHO gradients are detectable at finer spatial scales (∼20-200 km) near many urban areas.
Collapse
Affiliation(s)
- Nicholas L Boeke
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julian D Marshall
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sergio Alvarez
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA
| | - Kelly V Chance
- Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Alan Fried
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Thomas P Kurosu
- Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Bernhard Rappenglück
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA
| | - Dirk Richter
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - James Walega
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Petter Weibring
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Dylan B Millet
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
35
|
O'Byrne G, Martin RV, van Donkelaar A, Joiner J, Celarier EA. Surface reflectivity from the Ozone Monitoring Instrument using the Moderate Resolution Imaging Spectroradiometer to eliminate clouds: Effects of snow on ultraviolet and visible trace gas retrievals. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Sanghavi S, Platt U, Landgraf J. Bichromatic method for identification of clear-sky scenarios over ground pixel viewed from space. APPLIED OPTICS 2010; 49:3282-3290. [PMID: 20539345 DOI: 10.1364/ao.49.003282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We propose a method for identifying clear-sky scenarios from a measurement time series over satellite-observed ground pixels of unknown surface albedo and aerosol type. The lack of a general monotonic relationship between aerosol loading and observed reflectance encumbers the ordering of the observation time series according to aerosol loading. This problem is ameliorated by using two wavelengths at which the surface albedos are known to differ. Treating an observation as being cloud/aerosol free allows for the determination of the corresponding Lambertian equivalent albedo, the relative contrast of which at the two wavelengths varies monotonically with respect to aerosol-loading, clear-sky and completely clouded scenarios representing the extreme cases. Applying this method to the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography measurements over a nondark surface, we validate it by comparing measured against modeled O(2) A- and B-band absorption at the retrieved albedo in an aerosol-free atmosphere.
Collapse
Affiliation(s)
- Suniti Sanghavi
- SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands.
| | | | | |
Collapse
|
37
|
Lee C, Martin RV, van Donkelaar A, O'Byrne G, Krotkov N, Richter A, Huey LG, Holloway JS. Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd012123] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Kim SW, Heckel A, Frost GJ, Richter A, Gleason J, Burrows JP, McKeen S, Hsie EY, Granier C, Trainer M. NO2columns in the western United States observed from space and simulated by a regional chemistry model and their implications for NOxemissions. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011343] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Vijayaraghavan K, Snell HE, Seigneur C. Practical aspects of using satellite data in air quality modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:8187-8192. [PMID: 19068793 DOI: 10.1021/es7031339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Krish Vijayaraghavan
- Air Quality Division, Atmospheric & Environmental Research, Inc., San Ramon, Calif, USA.
| | | | | |
Collapse
|
40
|
Barkley MP, Palmer PI, Kuhn U, Kesselmeier J, Chance K, Kurosu TP, Martin RV, Helmig D, Guenther A. Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009863] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Kramer LJ, Leigh RJ, Remedios JJ, Monks PS. Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009168] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Stammes P, Sneep M, de Haan JF, Veefkind JP, Wang P, Levelt PF. Effective cloud fractions from the Ozone Monitoring Instrument: Theoretical framework and validation. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008820] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Bucsela EJ, Perring AE, Cohen RC, Boersma KF, Celarier EA, Gleason JF, Wenig MO, Bertram TH, Wooldridge PJ, Dirksen R, Veefkind JP. Comparison of tropospheric NO2from in situ aircraft measurements with near-real-time and standard product data from OMI. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008838] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Boersma KF, Jacob DJ, Eskes HJ, Pinder RW, Wang J, van der A RJ. Intercomparison of SCIAMACHY and OMI tropospheric NO2columns: Observing the diurnal evolution of chemistry and emissions from space. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008816] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Millet DB, Jacob DJ, Boersma KF, Fu TM, Kurosu TP, Chance K, Heald CL, Guenther A. Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008950] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Price H, Jaeglé L, Rice A, Quay P, Novelli PC, Gammon R. Global budget of molecular hydrogen and its deuterium content: Constraints from ground station, cruise, and aircraft observations. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008152] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Palmer PI, Barkley MP, Kurosu TP, Lewis AC, Saxton JE, Chance K, Gatti LV. Interpreting satellite column observations of formaldehyde over tropical South America. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2007; 365:1741-51. [PMID: 17513262 DOI: 10.1098/rsta.2007.2042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Space-borne column measurements of formaldehyde (HCHO), a high-yield oxidation product of volatile organic compounds (VOCs), represent important constraints for quantifying net regional fluxes of VOCs. Here, we interpret observed distributions of HCHO columns from the Global Ozone Monitoring Experiment (GOME) over tropical South America during 1997-2001. We present the first comparison of year-long in situ isoprene concentrations and fire-free GOME HCHO columns over a tropical ecosystem. GOME HCHO columns and in situ isoprene concentrations are elevated in the wet and dry seasons, with the highest values in the dry season. Previous analysis of the in situ data highlighted the possible role of drought in determining the elevated concentrations during the dry season, inferring the potential of HCHO columns to provide regional-scale constraints for estimating the role of drought on isoprene emissions. The agreement between the observed annual cycles of GOME HCHO columns and Along-Track Scanning Radiometer firecount data over the Amazon basin (correlations typically greater than 0.75 for a particular year) illustrates the potential of HCHO column to provide quantitative information about biomass burning emissions.
Collapse
Affiliation(s)
- Paul I Palmer
- School of GeoSciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
Fu TM, Jacob DJ, Palmer PI, Chance K, Wang YX, Barletta B, Blake DR, Stanton JC, Pilling MJ. Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007853] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Wang Y, McElroy MB, Martin RV, Streets DG, Zhang Q, Fu TM. Seasonal variability of NOxemissions over east China constrained by satellite observations: Implications for combustion and microbial sources. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007538] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Millet DB, Jacob DJ, Turquety S, Hudman RC, Wu S, Fried A, Walega J, Heikes BG, Blake DR, Singh HB, Anderson BE, Clarke AD. Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006853] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|