1
|
Khan A, Ceylan S, van Driel M, Giardini D, Lognonné P, Samuel H, Schmerr NC, Stähler SC, Duran AC, Huang Q, Kim D, Broquet A, Charalambous C, Clinton JF, Davis PM, Drilleau M, Karakostas F, Lekic V, McLennan SM, Maguire RR, Michaut C, Panning MP, Pike WT, Pinot B, Plasman M, Scholz JR, Widmer-Schnidrig R, Spohn T, Smrekar SE, Banerdt WB. Upper mantle structure of Mars from InSight seismic data. Science 2021; 373:434-438. [PMID: 34437116 DOI: 10.1126/science.abf2966] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/14/2021] [Indexed: 11/03/2022]
Abstract
For 2 years, the InSight lander has been recording seismic data on Mars that are vital to constrain the structure and thermochemical state of the planet. We used observations of direct (P and S) and surface-reflected (PP, PPP, SS, and SSS) body-wave phases from eight low-frequency marsquakes to constrain the interior structure to a depth of 800 kilometers. We found a structure compatible with a low-velocity zone associated with a thermal lithosphere much thicker than on Earth that is possibly related to a weak S-wave shadow zone at teleseismic distances. By combining the seismic constraints with geodynamic models, we predict that, relative to the primitive mantle, the crust is more enriched in heat-producing elements by a factor of 13 to 20. This enrichment is greater than suggested by gamma-ray surface mapping and has a moderate-to-elevated surface heat flow.
Collapse
Affiliation(s)
- Amir Khan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland. .,Physik-Institut, University of Zürich, Zürich, Switzerland
| | - Savas Ceylan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - Martin van Driel
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland.,Mondaic AG, Zypressenstrasse 82, 8004 Zürich, Switzerland
| | | | - Philippe Lognonné
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Henri Samuel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | | | | | - Andrea C Duran
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - Quancheng Huang
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Doyeon Kim
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Adrien Broquet
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA.,Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France
| | | | - John F Clinton
- Swiss Seismological Service, ETH Zürich, Zürich, Switzerland
| | - Paul M Davis
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA
| | - Mélanie Drilleau
- Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Toulouse, France
| | - Foivos Karakostas
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Vedran Lekic
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Scott M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - Ross R Maguire
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Chloé Michaut
- Institut Universitaire de France, Paris, France.,Laboratoire de Géologie, Terre, Planétes, Environnement, Lyon, France
| | - Mark P Panning
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William T Pike
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Baptiste Pinot
- Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Toulouse, France
| | - Matthieu Plasman
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | | | | | - Tilman Spohn
- International Space Science Institute, Bern, Switzerland
| | - Suzanne E Smrekar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William B Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
2
|
Soldati A, Farrell JA, Wysocki R, Karson JA. Imagining and constraining ferrovolcanic eruptions and landscapes through large-scale experiments. Nat Commun 2021; 12:1711. [PMID: 33731713 PMCID: PMC7969621 DOI: 10.1038/s41467-021-21582-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/19/2021] [Indexed: 12/04/2022] Open
Abstract
Ferrovolcanism, yet to be directly observed, is the most exotic and poorly understood predicted manifestation of planetary volcanism. Large-scale experiments carried out at the Syracuse Lava Project offer insight into the emplacement dynamics of metallic flows as well as coeval metallic and silicate flows. Here, we find that, under the same environmental conditions, higher-density/lower-viscosity metallic lava moves ten times faster than lower-density/higher-viscosity silicate lava. The overall morphology of the silicate flow is not significantly affected by the co-emplacement of a metallic flow. Rather, the metallic flow is largely decoupled from the silicate flow, occurring mainly in braided channels underneath the silicate flow and as low-relief breakouts from the silicate flow front. Turbulent interactions at the metallic-silicate flow interface result in mingling of the two liquids, preserved as erosional surfaces and sharp contacts. The results have important implications for the interpretation of possible ferrovolcanic landscapes across our solar system. Ferrovolcanism is a hypothetical form of planetary volcanism in which the erupted lava is metallic in composition. Here we show that ferrovolcanic lava is denser and less viscous than silicate lava, resulting in fast-moving, thin, braided flows.
Collapse
Affiliation(s)
- A Soldati
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA.
| | - J A Farrell
- Department of Earth Sciences, Syracuse University, Syracuse, NY, USA
| | - R Wysocki
- School of Art, Syracuse University, Syracuse, NY, USA
| | - J A Karson
- Department of Earth Sciences, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
3
|
Costello LJ, Filiberto J, Crandall JR, Potter-McIntyre SL, Schwenzer SP, Miller MA, Hummer DR, Olsson-Francis K, Perl S. Habitability of Hydrothermal Systems at Jezero and Gusev Craters as Constrained by Hydrothermal Alteration of a Terrestrial Mafic Dike. CHEMIE DER ERDE : BEITRAGE ZUR CHEMISCHEN MINERALOGIE, PETROGRAPHIE UND GEOLOGIE 2020; 80:125613. [PMID: 33299255 PMCID: PMC7720477 DOI: 10.1016/j.chemer.2020.125613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
NASA's search for habitable environments has focused on alteration mineralogy of the Martian crust and the formation of hydrous minerals, because they reveal information about the fluid and environmental conditions from which they precipitated. Extensive work has focused on the formation of alteration minerals at low temperatures, with limited work investigating metamorphic or high-temperature alteration. We have investigated such a site as an analog for Mars: a mafic dike on the Colorado Plateau that was hydrothermally altered from contact with groundwater as it was emplaced in the porous and permeable Jurassic Entrada sandstone. Our results show evidence for fluid mobility removing Si and K but adding S, Fe, Ca, and possibly Mg to the system as alteration progresses. Mineralogically, all samples contain calcite, hematite, and kaolinite; with most samples containing minor anatase, barite, halite, and dolomite. The number of alteration minerals increase with alteration. The hydrothermal system that formed during interaction of the magma (heat source) and groundwater would have been a habitable environment once the system cooled below ~120° C. The mineral assemblage is similar to alteration minerals seen within the Martian crust from orbit, including those at Gusev and Jezero Craters. Therefore, based on our findings, and extrapolating them to the Martian crust, these sites may represent habitable environments which would call for further exploration and sample return of such hydrothermally altered igneous materials.
Collapse
Affiliation(s)
- Lacey J. Costello
- Southern Illinois University, Department of Geology, 1259 Lincoln Drive, Carbondale, IL 62901, USA
| | - Justin Filiberto
- Lunar and Planetary Institute, USRA, 3600 Bay Area Blvd., Houston, TX 77058, USA
| | - Jake R. Crandall
- Eastern Illinois University, Department of Geology and Geography, Physical Science Building, 600 Lincoln Ave., Charleston, IL 61920, USA
| | - Sally L. Potter-McIntyre
- Southern Illinois University, Department of Geology, 1259 Lincoln Drive, Carbondale, IL 62901, USA
| | - Susanne P. Schwenzer
- School of Environment, Earth, and Ecosystems Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Michael A. Miller
- Materials Engineering Department, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238, USA
| | - Daniel R. Hummer
- Southern Illinois University, Department of Geology, 1259 Lincoln Drive, Carbondale, IL 62901, USA
| | - Karen Olsson-Francis
- School of Environment, Earth, and Ecosystems Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Scott Perl
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109-8001, USA
| |
Collapse
|
4
|
Aerts JW, van Spanning RJM, Flahaut J, Molenaar D, Bland PA, Genge MJ, Ehrenfreund P, Martins Z. Microbial Communities in Sediments From Four Mildly Acidic Ephemeral Salt Lakes in the Yilgarn Craton (Australia) - Terrestrial Analogs to Ancient Mars. Front Microbiol 2019; 10:779. [PMID: 31133990 PMCID: PMC6512757 DOI: 10.3389/fmicb.2019.00779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 11/24/2022] Open
Abstract
The Yilgarn Craton in Australia has a large number of naturally occurring shallow ephemeral lakes underlain by a dendritic system of paleodrainage channels. Processes like evaporation, flooding, erosion, as well as inflow of saline, often acidic and ion-rich groundwater contribute to the (dynamic) nature of the lakes and the composition of the sediments. The region has previously been described as an analog environment for early Mars due to its geological and geophysical similarities. Here, we investigated sediment samples of four lake environments aimed at getting a fundamental understanding of the native microbial communities and the mineralogical and (bio)chemical composition of the sediments they are associated with. The dominant mineral phases in the sediments were quartz, feldspars and amphiboles, while halite and gypsum were the only evaporites detected. Element analysis revealed a rich and complex image, in which silicon, iron, and aluminum were the dominant ions, but relative high concentrations of trace elements such as strontium, chromium, zirconium, and barium were also found. The concentrations of organic carbon, nitrogen, and phosphorus were generally low. 16S amplicon sequencing on the Illumina platform showed the presence of diverse microbial communities in all four lake environments. We found that most of the communities were dominated by extremely halophilic Archaea of the Halobacteriaceae family. The dynamic nature of these lakes appears to influence the biological, biochemical, and geological components of the ecosystem to a large effect. Inter- and intra-lake variations in the distributions of microbial communities were significant, and could only to a minor degree be explained by underlying environmental conditions. The communities are likely significantly influenced by small scale local effects caused by variations in geological settings and dynamic interactions caused by aeolian transport and flooding and evaporation events.
Collapse
Affiliation(s)
- Joost W Aerts
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jessica Flahaut
- Centre de Recherches Pétrographiques et Géochimiques, Centre National de la Recherche Scientifique/Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Douwe Molenaar
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Phil A Bland
- Department of Applied Geology, Curtin University, Perth, WA, Australia
| | - Matt J Genge
- Department of Earth Science and Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Pascale Ehrenfreund
- Leiden Observatory, Leiden University, Leiden, Netherlands.,Space Policy Institute, Elliott School of International Affairs, George Washington University, Washington, DC, United States
| | - Zita Martins
- Centro de Química-Física Molecular-Institute of Nanoscience and Nanotechnology (CQFM-IN), Institute for Bioengineering and Biosciences (iBB), Departamento de Engenharia Química, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Dzaugis M, Spivack AJ, D'Hondt S. Radiolytic H 2 Production in Martian Environments. ASTROBIOLOGY 2018; 18:1137-1146. [PMID: 30048152 PMCID: PMC6150936 DOI: 10.1089/ast.2017.1654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/07/2018] [Indexed: 05/29/2023]
Abstract
Hydrogen, produced by water radiolysis, has been suggested to support microbial communities on Mars. We quantitatively assess the potential magnitude of radiolytic H2 production in wet martian environments (the ancient surface and the present subsurface) based on the radionuclide compositions of (1) eight proposed Mars 2020 landing sites, and (2) three sites that individually yield the highest or lowest calculated radiolytic H2 production rates on Mars. For the proposed landing sites, calculated H2 production rates vary by a factor of ∼1.6, while the three comparison sites differ by a factor of ∼6. Rates in wet martian sediment and microfractured rock are comparable with rates in terrestrial environments that harbor low concentrations of microbial life (e.g., subseafloor basalt). Calculated H2 production rates for low-porosity (<35%), fine-grained martian sediment (0.12-1.2 nM/year) are mostly higher than rates for South Pacific subseafloor basalt (∼0.02-0.6 nM/year). Production rates in martian high-porosity sediment (>35%) and microfractured (1 μm) hard rock (0.03 to <0.71 nM/year) are generally similar to rates in South Pacific basalt, while yields for larger martian fractures (1 and 10 cm) are one to two orders of magnitude lower (<0.01 nM/year). If minerals or brine that amplify radiolytic H2 production rates are present, H2 yields exceed the calculated rates.
Collapse
Affiliation(s)
- Mary Dzaugis
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island
| | - Arthur J. Spivack
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island
| | - Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island
| |
Collapse
|
6
|
Price A, Pearson VK, Schwenzer SP, Miot J, Olsson-Francis K. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Front Microbiol 2018; 9:513. [PMID: 29616015 PMCID: PMC5869265 DOI: 10.3389/fmicb.2018.00513] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate instrumentation.
Collapse
Affiliation(s)
- Alex Price
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K. Pearson
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P. Schwenzer
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Jennyfer Miot
- CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d’Histoire Naturelle, Université Pierre et Marie Curie – Sorbonne Universités, UMR 7590, Paris, France
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
7
|
Núñez JI, Farmer JD, Sellar RG, Swayze GA, Blaney DL. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars. ASTROBIOLOGY 2014; 14:132-69. [PMID: 24552233 PMCID: PMC3929460 DOI: 10.1089/ast.2013.1079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/15/2014] [Indexed: 05/30/2023]
Abstract
Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.
Collapse
Affiliation(s)
- Jorge I. Núñez
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - R. Glenn Sellar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Diana L. Blaney
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
8
|
Tuff J, Wade J, Wood BJ. Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 2013; 498:342-5. [PMID: 23783628 DOI: 10.1038/nature12225] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/18/2013] [Indexed: 11/09/2022]
Abstract
Detailed information about the chemical composition and evolution of Mars has been derived principally from the SNC (shergottite-nakhlite-chassignite) meteorites, which are genetically related igneous rocks of Martian origin. They are chemically and texturally similar to terrestrial basalts and cumulates, except that they have higher concentrations of iron and volatile elements such as phosphorus and chlorine and lower concentrations of nickel and other chalcophile (sulphur-loving) elements. Most Martian meteorites have relatively young crystallization ages (1.4 billion years to 180 million years ago) and are considered to be derived from young, lightly cratered volcanic regions, such as the Tharsis plateau. Surface rocks from the Gusev crater analysed by the Spirit rover are much older (about 3.7 billion years old) and exhibit marked compositional differences from the meteorites. Although also basaltic in composition, the surface rocks are richer in nickel and sulphur and have lower manganese/iron ratios than the meteorites. This has led to doubts that Mars can be described adequately using the 'SNC model'. Here we show, however, that the differences between the compositions of meteorites and surface rocks can be explained by differences in the oxygen fugacity during melting of the same sulphur-rich mantle. This ties the sources of Martian meteorites to those of the surface rocks through an early (>3.7 billion years ago) oxidation of the uppermost mantle that had less influence on the deeper regions, which produce the more recent volcanic rocks.
Collapse
Affiliation(s)
- J Tuff
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | | | | |
Collapse
|
9
|
Agee CB, Wilson NV, McCubbin FM, Ziegler K, Polyak VJ, Sharp ZD, Asmerom Y, Nunn MH, Shaheen R, Thiemens MH, Steele A, Fogel ML, Bowden R, Glamoclija M, Zhang Z, Elardo SM. Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034. Science 2013; 339:780-5. [DOI: 10.1126/science.1228858] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Cousin A, Sautter V, Fabre C, Maurice S, Wiens RC. Textural and modal analyses of picritic basalts with ChemCam Laser-Induced Breakdown Spectroscopy. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004132] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Beuthe M, Le Maistre S, Rosenblatt P, Pätzold M, Dehant V. Density and lithospheric thickness of the Tharsis Province from MEX MaRS and MRO gravity data. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003976] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Affiliation(s)
- Harry Y. McSween
- Planetary Geosciences Institute and Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996–1410, USA
| | - G. Jeffrey Taylor
- Hawai’i Institute for Geophysics and Planetology, University of Hawai’i at Manoa, Honolulu, HI, 96822, USA
| | - Michael B. Wyatt
- Department of Geological Sciences, Brown University, Providence, RI 02912–1846, USA
| |
Collapse
|
13
|
Hamilton VE, Morris RV, Gruener JE, Mertzman SA. Visible, near-infrared, and middle infrared spectroscopy of altered basaltic tephras: Spectral signatures of phyllosilicates, sulfates, and other aqueous alteration products with application to the mineralogy of the Columbia Hills of Gusev Crater, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003049] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Tornabene LL, Moersch JE, McSween HY, Hamilton VE, Piatek JL, Christensen PR. Surface and crater-exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002988] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Rogers AD, Aharonson O. Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002995] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Mustard JF, Poulet F, Head JW, Mangold N, Bibring JP, Pelkey SM, Fassett CI, Langevin Y, Neukum G. Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002834] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. F. Mustard
- Department of Geological Sciences; Brown University; Providence Rhode Island USA
| | - F. Poulet
- Institut d'Astrophysique Spatiale; CNRS/Université Paris Sud; Orsay France
| | - J. W. Head
- Department of Geological Sciences; Brown University; Providence Rhode Island USA
| | - N. Mangold
- Laboratoire IDES; UMR8148 CNRS and Université Paris-Sud; Orsay France
| | - J.-P. Bibring
- Institut d'Astrophysique Spatiale; CNRS/Université Paris Sud; Orsay France
| | - S. M. Pelkey
- Department of Geological Sciences; Brown University; Providence Rhode Island USA
| | - C. I. Fassett
- Department of Geological Sciences; Brown University; Providence Rhode Island USA
| | - Y. Langevin
- Institut d'Astrophysique Spatiale; CNRS/Université Paris Sud; Orsay France
| | - G. Neukum
- Institut für Geologische Wissenschaften; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
17
|
Zolotov MY, Mironenko MV. Timing of acid weathering on Mars: A kinetic-thermodynamic assessment. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002882] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Poulet F, Gomez C, Bibring JP, Langevin Y, Gondet B, Pinet P, Belluci G, Mustard J. Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002840] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- F. Poulet
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - C. Gomez
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - J.-P. Bibring
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - Y. Langevin
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - B. Gondet
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - P. Pinet
- Laboratoire Dynamique Terrestre et Planétaire/UMR5562; Centre National de la Recherche Scientifique; Toulouse France
| | - G. Belluci
- Istituto Nazionale Di Astrofiscia dello Spazio Interplanetario; Rome Italy
| | - J. Mustard
- Geological Sciences; Brown University; Providence Rhode Island USA
| |
Collapse
|
19
|
Murchie S, Arvidson R, Bedini P, Beisser K, Bibring JP, Bishop J, Boldt J, Cavender P, Choo T, Clancy RT, Darlington EH, Des Marais D, Espiritu R, Fort D, Green R, Guinness E, Hayes J, Hash C, Heffernan K, Hemmler J, Heyler G, Humm D, Hutcheson J, Izenberg N, Lee R, Lees J, Lohr D, Malaret E, Martin T, McGovern JA, McGuire P, Morris R, Mustard J, Pelkey S, Rhodes E, Robinson M, Roush T, Schaefer E, Seagrave G, Seelos F, Silverglate P, Slavney S, Smith M, Shyong WJ, Strohbehn K, Taylor H, Thompson P, Tossman B, Wirzburger M, Wolff M. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002682] [Citation(s) in RCA: 666] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
|
21
|
Newsom HE, Crumpler LS, Reedy RC, Petersen MT, Newsom GC, Evans LG, Taylor GJ, Keller JM, Janes DM, Boynton WV, Kerry KE, Karunatillake S. Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002680] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Rogers AD, Bandfield JL, Christensen PR. Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002726] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Hahn BC, McLennan SM, Taylor GJ, Boynton WV, Dohm JM, Finch MJ, Hamara DK, Janes DM, Karunatillake S, Keller JM, Kerry KE, Metzger AE, Williams RMS. Mars Odyssey Gamma Ray Spectrometer elemental abundances and apparent relative surface age: Implications for Martian crustal evolution. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002821] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Rogers AD, Christensen PR. Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002727] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Karunatillake S, Squyres SW, Taylor GJ, Keller JM, Gasnault O, Evans LG, Reedy RC, Starr R, Boynton W, Janes DM, Kerry KE, Dohm JM, Sprague AL, Hahn BC, Hamara D. Composition of northern low-albedo regions of Mars: Insights from the Mars Odyssey Gamma Ray Spectrometer. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002675] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Schumacher S, Breuer D. Influence of a variable thermal conductivity on the thermochemical evolution of Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002429] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra Schumacher
- Institut für Planetologie; Westfälische Wilhelms-Universität Münster; Munster Germany
| | - Doris Breuer
- Institut für Planetenforschung; Deutsches Zentrum für Luft- und Raumfahrt (DLR); Berlin Germany
| |
Collapse
|
27
|
McSween HY, Wyatt MB, Gellert R, Bell JF, Morris RV, Herkenhoff KE, Crumpler LS, Milam KA, Stockstill KR, Tornabene LL, Arvidson RE, Bartlett P, Blaney D, Cabrol NA, Christensen PR, Clark BC, Crisp JA, Des Marais DJ, Economou T, Farmer JD, Farrand W, Ghosh A, Golombek M, Gorevan S, Greeley R, Hamilton VE, Johnson JR, Joliff BL, Klingelhöfer G, Knudson AT, McLennan S, Ming D, Moersch JE, Rieder R, Ruff SW, Schröder C, de Souza PA, Squyres SW, Wänke H, Wang A, Yen A, Zipfel J. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002477] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Hurowitz JA, McLennan SM, Tosca NJ, Arvidson RE, Michalski JR, Ming DW, Schröder C, Squyres SW. In situ and experimental evidence for acidic weathering of rocks and soils on Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002515] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. A. Hurowitz
- Department of Geosciences; State University of New York at Stony Brook; Stony Brook New York USA
| | - S. M. McLennan
- Department of Geosciences; State University of New York at Stony Brook; Stony Brook New York USA
| | - N. J. Tosca
- Department of Geosciences; State University of New York at Stony Brook; Stony Brook New York USA
| | - R. E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - J. R. Michalski
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - D. W. Ming
- NASA Johnson Space Center; Houston Texas USA
| | - C. Schröder
- Institut für Anorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
29
|
McSween HY, Ruff SW, Morris RV, Bell JF, Herkenhoff K, Gellert R, Stockstill KR, Tornabene LL, Squyres SW, Crisp JA, Christensen PR, McCoy TJ, Mittlefehldt DW, Schmidt M. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002698] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Searls ML, Banerdt WB, Phillips RJ. Utopia and Hellas basins, Mars: Twins separated at birth. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002666] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Michalski JR, Kraft MD, Sharp TG, Williams LB, Christensen PR. Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002438] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Christensen PR, McSween HY, Bandfield JL, Ruff SW, Rogers AD, Hamilton VE, Gorelick N, Wyatt MB, Jakosky BM, Kieffer HH, Malin MC, Moersch JE. Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature 2005; 436:504-9. [PMID: 16007077 DOI: 10.1038/nature03639] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Accepted: 04/07/2005] [Indexed: 11/09/2022]
Abstract
Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth.
Collapse
Affiliation(s)
- P R Christensen
- Department of Geological Sciences, Arizona State University Tempe, Arizona 85287, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Mustard JF, Poulet F, Gendrin A, Bibring JP, Langevin Y, Gondet B, Mangold N, Bellucci G, Altieri F. Olivine and Pyroxene Diversity in the Crust of Mars. Science 2005; 307:1594-7. [PMID: 15718427 DOI: 10.1126/science.1109098] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Data from the Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) on the Mars Express spacecraft identify the distinct mafic, rock-forming minerals olivine, low-calcium pyroxene (LCP), and high-calcium pyroxene (HCP) on the surface of Mars. Olivine- and HCP-rich regions are found in deposits that span the age range of geologic units. However, LCP-rich regions are found only in the ancient Noachian-aged units, which suggests that melts for these deposits were derived from a mantle depleted in aluminum and calcium. Extended dark regions in the northern plains exhibit no evidence of strong mafic absorptions or absorptions due to hydrated materials.
Collapse
Affiliation(s)
- J F Mustard
- Geological Sciences, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Solomon SC, Aharonson O, Aurnou JM, Banerdt WB, Carr MH, Dombard AJ, Frey HV, Golombek MP, Hauck SA, Head JW, Jakosky BM, Johnson CL, McGovern PJ, Neumann GA, Phillips RJ, Smith DE, Zuber MT. New Perspectives on Ancient Mars. Science 2005; 307:1214-20. [PMID: 15731435 DOI: 10.1126/science.1101812] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mars was most active during its first billion years. The core, mantle, and crust formed within approximately 50 million years of solar system formation. A magnetic dynamo in a convecting fluid core magnetized the crust, and the global field shielded a more massive early atmosphere against solar wind stripping. The Tharsis province became a focus for volcanism, deformation, and outgassing of water and carbon dioxide in quantities possibly sufficient to induce episodes of climate warming. Surficial and near-surface water contributed to regionally extensive erosion, sediment transport, and chemical alteration. Deep hydrothermal circulation accelerated crustal cooling, preserved variations in crustal thickness, and modified patterns of crustal magnetization.
Collapse
Affiliation(s)
- Sean C Solomon
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Elkins-Tanton LT. Possible formation of ancient crust on Mars through magma ocean processes. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002480] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Rogers AD. Compositional heterogeneity of the ancient Martian crust: Analysis of Ares Vallis bedrock with THEMIS and TES data. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002399] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Michalski JR. Thermal infrared analysis of weathered granitic rock compositions in the Sacaton Mountains, Arizona: Implications for petrologic classifications from thermal infrared remote-sensing data. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003je002197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|