1
|
Campeau A, Vachon D, Bishop K, Nilsson MB, Wallin MB. Autumn destabilization of deep porewater CO 2 store in a northern peatland driven by turbulent diffusion. Nat Commun 2021; 12:6857. [PMID: 34824219 PMCID: PMC8616934 DOI: 10.1038/s41467-021-27059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The deep porewater of northern peatlands stores large amounts of carbon dioxide (CO2). This store is viewed as a stable feature in the peatland CO2 cycle. Here, we report large and rapid fluctuations in deep porewater CO2 concentration recurring every autumn over four consecutive years in a boreal peatland. Estimates of the vertical diffusion of heat indicate that CO2 diffusion occurs at the turbulent rather than molecular rate. The weakening of porewater thermal stratification in autumn likely increases turbulent diffusion, thus fostering a rapid diffusion of deeper porewater CO2 towards the surface where net losses occur. This phenomenon periodically decreases the peat porewater CO2 store by between 29 and 90 g C m-2 throughout autumn, which is comparable to the peatland's annual C-sink. Our results establish the need to consider the role of turbulent diffusion in regularly destabilizing the CO2 store in peat porewater.
Collapse
Affiliation(s)
- A Campeau
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
- Department of Air, Water and Landscape, Uppsala University, Uppsala, Sweden.
| | - D Vachon
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - K Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - M B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - M B Wallin
- Department of Air, Water and Landscape, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Wang L, Li C, Dong J, Quan Q, Liu J. Magnitudes and environmental drivers of greenhouse gas emissions from natural wetlands in China based on unbiased data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44973-44986. [PMID: 33855665 DOI: 10.1007/s11356-021-13843-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Whether natural wetlands serve as the source or sink of greenhouse gases (GHGs) remains uncertain. Wetlands in China are diverse in type and abundant in quantity and differ greatly in spatial distribution, environmental conditions, and GHG fluxes. However, few studies focused on the differences in GHG emissions from different types of natural wetlands. Here, we adopted strict data collection criteria to create comprehensive and detailed datasets of fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from the marsh, coastal, lake, and river wetlands in China, and relevant environmental variables. Our study synthesized 265 field observations on GHGs that lasted at least one year (covering both the growing season and non-growing season) from 109 studies, among which CO2 measurements using the opaque chamber method were not included for eliminating the influence of absence of photosynthesis on net CO2 accounting. We found that CH4 contributed the largest warming effect among the three types of GHGs, and coastal and river wetlands respectively acted as the mitigators and motivators of global warming among the four types of wetlands. Correlation and regression analyses suggested that geographic location, soil moisture and organic carbon, and contents of nitrogen, phosphorus, and dissolved oxygen jointly drove wetland GHG fluxes. The comprehensive global warming potential of Chinese natural wetlands was estimated as 427 Tg CO2-equivalents year-1, which might result from increased wetland drainage, reclamation, and external nutrient inputs. This study highlights the incorporation of the full year-round GHG monitoring data without using opaque chambers to measure CO2 flux when extrapolating net GHG emissions and gives implications for natural wetland management and global warming mitigation strategies.
Collapse
Affiliation(s)
- Lifei Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Changchao Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Junyu Dong
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Quan Quan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Niu B, Zhang X, Piao S, Janssens IA, Fu G, He Y, Zhang Y, Shi P, Dai E, Yu C, Zhang J, Yu G, Xu M, Wu J, Zhu L, Desai AR, Chen J, Bohrer G, Gough CM, Mammarella I, Varlagin A, Fares S, Zhao X, Li Y, Wang H, Ouyang Z. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. SCIENCE ADVANCES 2021; 7:7/15/eabc7358. [PMID: 33837072 PMCID: PMC8034862 DOI: 10.1126/sciadv.abc7358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/24/2021] [Indexed: 06/02/2023]
Abstract
Warming-induced carbon loss through terrestrial ecosystem respiration (Re) is likely getting stronger in high latitudes and cold regions because of the more rapid warming and higher temperature sensitivity of Re (Q 10). However, it is not known whether the spatial relationship between Q 10 and temperature also holds temporally under a future warmer climate. Here, we analyzed apparent Q 10 values derived from multiyear observations at 74 FLUXNET sites spanning diverse climates and biomes. We found warming-induced decline in Q 10 is stronger at colder regions than other locations, which is consistent with a meta-analysis of 54 field warming experiments across the globe. We predict future warming will shrink the global variability of Q 10 values to an average of 1.44 across the globe under a high emission trajectory (RCP 8.5) by the end of the century. Therefore, warming-induced carbon loss may be less than previously assumed because of Q 10 homogenization in a warming world.
Collapse
Affiliation(s)
- Ben Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhou Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shilong Piao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
| | - Ivan A Janssens
- Department of Biology, University of Antwerpen, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Gang Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongtao He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yangjian Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Erfu Dai
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengqun Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Zhang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianshuang Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Liping Zhu
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
| | - Ankur R Desai
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiquan Chen
- Department of Geography, Michigan State University, East Lansing, MI 48823, USA
| | - Gil Bohrer
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher M Gough
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, Helsinki FI-00014, Finland
| | - Andrej Varlagin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Silvano Fares
- National Research Council of Italy, Institute of BioEconomy, Via dei Taurini 19, 00100 Rome, Italy
| | - Xinquan Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Yingnian Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Huiming Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhu Ouyang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Mercury evasion from a boreal peatland shortens the timeline for recovery from legacy pollution. Sci Rep 2017; 7:16022. [PMID: 29167528 PMCID: PMC5700116 DOI: 10.1038/s41598-017-16141-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 11/07/2017] [Indexed: 12/02/2022] Open
Abstract
Peatlands are a major source of methylmercury that contaminates downstream aquatic food webs. The large store of mercury (Hg) in peatlands could be a source of Hg for over a century even if deposition is dramatically reduced. However, the reliability of Hg mass balances can be questioned due to missing long-term land-atmosphere flux measurements. We used a novel micrometeorological system for continuous measurement of Hg peatland-atmosphere exchange to derive the first annual Hg budget for a peatland. The evasion of Hg (9.4 µg m−2 yr−1) over the course of a year was seven times greater than stream Hg export, and over two times greater than wet bulk deposition to the boreal peatland. Measurements of dissolved gaseous Hg in the peat pore water also indicate Hg evasion. The net efflux may result from recent declines in atmospheric Hg concentrations that have turned the peatland from a net sink into a source of atmospheric Hg. This net Hg loss suggests that open boreal peatlands and downstream ecosystems can recover more rapidly from past atmospheric Hg deposition than previously assumed. This has important implications for future levels of methylmercury in boreal freshwater fish and the estimation of historical Hg accumulation rates from peat profiles.
Collapse
|
5
|
Atmospheric and Surface-Condition Effects on CO2 Exchange in the Liaohe Delta Wetland, China. WATER 2017. [DOI: 10.3390/w9100806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhao J, Peichl M, Nilsson MB. Long-term enhanced winter soil frost alters growing season CO 2 fluxes through its impact on vegetation development in a boreal peatland. GLOBAL CHANGE BIOLOGY 2017; 23:3139-3153. [PMID: 28075520 DOI: 10.1111/gcb.13621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short-term (1-3 years) and long-term (11 years) effects on CO2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m-2 s-1 , corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m-2 s-1 ) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO2 fluxes, suggesting that winter climate change could considerably alter the growing season CO2 exchange in boreal peatlands through its effect on vegetation development.
Collapse
Affiliation(s)
- Junbin Zhao
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
7
|
Zhao J, Peichl M, Öquist M, Nilsson MB. Gross primary production controls the subsequent winter CO 2 exchange in a boreal peatland. GLOBAL CHANGE BIOLOGY 2016; 22:4028-4037. [PMID: 27038205 DOI: 10.1111/gcb.13308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
In high-latitude regions, carbon dioxide (CO2 ) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO2 emissions. To test this hypothesis, we conducted a plot-scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long-term (2001-2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross-seasonal link between the growing season biotic processes and winter CO2 emissions, which has important implications for predicting winter CO2 emission dynamics in response to future climate change.
Collapse
Affiliation(s)
- Junbin Zhao
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Mats Öquist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
8
|
Mountain Peatlands Range from CO2 Sinks at High Elevations to Sources at Low Elevations: Implications for a Changing Climate. Ecosystems 2016. [DOI: 10.1007/s10021-016-0034-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Zhao J, Peichl M, Nilsson MB. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland. GLOBAL CHANGE BIOLOGY 2016; 22:750-762. [PMID: 26452333 DOI: 10.1111/gcb.13119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Winter climate change may result in reduced snow cover and could, consequently, alter the soil frost regime and biogeochemical processes underlying the exchange of methane (CH4 ) in boreal peatlands. In this study, we investigated the short-term (1-3 years) vs. long-term (11 years) effects of intensified winter soil frost (induced by experimental snow exclusion) on CH4 exchange during the following growing season in a boreal peatland. In the first 3 years (2004-2006), lower CH4 emissions in the treatment plots relative to the control coincided with delayed soil temperature increase in the treatment plots at the beginning of the growing season (May). After 11 treatment years (in 2014), CH4 emissions were lower in the treatment plots relative to the control over the entire growing season, resulting in a reduction in total growing season CH4 emission by 27%. From May to July 2014, reduced sedge leaf area coincided with lower CH4 emissions in the treatment plots compared to the control. From July to August, lower dissolved organic carbon concentrations in the pore water of the treatment plots explained 72% of the differences in CH4 emission between control and treatment. In addition, greater Sphagnum moss growth in the treatment plots resulted in a larger distance between the moss surface and the water table (i.e., increasing the oxic layer) which may have enhanced the CH4 oxidation potential in the treatment plots relative to the control in 2014. The differences in vegetation might also explain the lower temperature sensitivity of CH4 emission observed in the treatment plots relative to the control. Overall, this study suggests that greater soil frost, associated with future winter climate change, might substantially reduce the growing season CH4 emission in boreal peatlands through altering vegetation dynamics and subsequently causing vegetation-mediated effects on CH4 exchange.
Collapse
Affiliation(s)
- Junbin Zhao
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| |
Collapse
|
10
|
Nijp JJ, Limpens J, Metselaar K, Peichl M, Nilsson MB, van der Zee SEATM, Berendse F. Rain events decrease boreal peatland net CO2 uptake through reduced light availability. GLOBAL CHANGE BIOLOGY 2015; 21:2309-2320. [PMID: 25580711 DOI: 10.1111/gcb.12864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 06/04/2023]
Abstract
Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely ignored.
Collapse
Affiliation(s)
- Jelmer J Nijp
- Nature Conservation and Plant Ecology Group, Wageningen University, Wageningen, The Netherlands; Soil Physics and Land Management Group, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Peichl M, Sonnentag O, Nilsson MB. Bringing Color into the Picture: Using Digital Repeat Photography to Investigate Phenology Controls of the Carbon Dioxide Exchange in a Boreal Mire. Ecosystems 2014. [DOI: 10.1007/s10021-014-9815-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Stoy PC, Trowbridge AM, Bauerle WL. Controls on seasonal patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic light response: contributions from both temperature and photoperiod. PHOTOSYNTHESIS RESEARCH 2014; 119:49-64. [PMID: 23408254 DOI: 10.1007/s11120-013-9799-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/30/2013] [Indexed: 06/01/2023]
Abstract
Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.
Collapse
Affiliation(s)
- Paul C Stoy
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA,
| | | | | |
Collapse
|
13
|
Eriksson T, Öquist MG, Nilsson MB. Effects of decadal deposition of nitrogen and sulfur, and increased temperature, on methane emissions from a boreal peatland. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jg001285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Drotz SH, Sparrman T, Nilsson MB, Schleucher J, Öquist MG. Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils. Proc Natl Acad Sci U S A 2010; 107:21046-51. [PMID: 21078966 PMCID: PMC3000251 DOI: 10.1073/pnas.1008885107] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A large proportion of the global soil carbon pool is stored in soils of high-latitude ecosystems in which microbial processes and production of greenhouse gases proceed during the winter months. It has been suggested that microorganisms have limited ability to sequester substrates at temperatures around and below 0 °C and that a metabolic shift to dominance of catabolic processes occurs around these temperatures. However, there are contrary indications that anabolic processes can proceed, because microbial growth has been observed at far lower temperatures. Therefore, we investigated the utilization of the microbial substrate under unfrozen and frozen conditions in a boreal forest soil across a temperature range from -9 °C to +9 °C, by using gas chromatography-isotopic ratio mass spectrometry and (13)C magic-angle spinning NMR spectroscopy to determine microbial turnover and incorporation of (13)C-labeled glucose. Our results conclusively demonstrate that the soil microorganisms maintain both catabolic (CO(2) production) and anabolic (biomass synthesis) processes under frozen conditions and that no significant differences in carbon allocation from [(13)C]glucose into [(13)C]CO(2) and cell organic (13)C-compounds occurred between +9 °C and -4 °C. The only significant metabolic changes detected were increased fluidity of the cell membranes synthesized at frozen conditions and increased production of glycerol in the frozen samples. The finding that the processes in frozen soil are similar to those in unfrozen soil has important implications for our general understanding and conceptualization of soil carbon dynamics in high-latitude ecosystems.
Collapse
Affiliation(s)
- Stina Harrysson Drotz
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd, SE-901 83 Umeå, Sweden; and
| | | | - Mats B. Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd, SE-901 83 Umeå, Sweden; and
| | - Jürgen Schleucher
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Mats G. Öquist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd, SE-901 83 Umeå, Sweden; and
| |
Collapse
|
15
|
Eppinga MB, Rietkerk M, Belyea LR, Nilsson MB, De Ruiter PC, Wassen MJ. Resource contrast in patterned peatlands increases along a climatic gradient. Ecology 2010; 91:2344-55. [PMID: 20836456 DOI: 10.1890/09-1313.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Maarten B Eppinga
- Department of Environmental Sciences, Copernicus Institute, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|