1
|
Tagawa S, Hatami R, Morino K, Terazawa S, Akıl C, Johnson-Finn K, Shibuya T, Fujishima K. Prebiotic Nucleoside Phosphorylation in a Simulated Deep-Sea Supercritical Carbon Dioxide-Water Two-Phase Environment. ASTROBIOLOGY 2024; 24:1151-1165. [PMID: 39560458 DOI: 10.1089/ast.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Prebiotic synthesis of complex organic molecules in water-rich environments has been a long-standing challenge. In the modern deep sea, emission of liquid CO2 has been observed in multiple locations, which indicates the existence of benthic CO2 pools. Recently, a liquid/supercritical CO2 (ScCO2) hypothesis has been proposed that a two-phase ScCO2-water environment could lead to efficient dehydration and condensation of organics. To confirm this hypothesis, we conducted a nucleoside phosphorylation reaction in a hydrothermal reactor creating ScCO2-water two-phase environment. After 120 h of uridine, cytosine, guanosine, and adenosine phosphorylation at 68.9°C, various nucleoside monophosphates (NMPs), nucleotide diphosphates, and carbamoyl nucleosides were produced. The addition of urea enhanced the overall production of phosphorylated species with 5'-NMPs, the major products that reached over 10% yield. As predicted, phosphorylation did not proceed in the fully aqueous environment without ScCO2. Further, a glass window reactor was introduced for direct observation of the two-phase environment, where the escape of water into the ScCO2 phase was observed. These results are similar to those of a wet-dry cycle experiment simulating the terrestrial hot spring environment, indicating that the presence of ScCO2 can create a comparatively dry condition in the deep sea. In addition, the high acidity present in the aqueous phase further supports nucleotide synthesis by enabling the release of orthophosphate from the hydroxyapatite mineral solving the phosphate problem. Thus, the present study highlights the potential of the unique ScCO2-water two-phase environment to drive prebiotic nucleotide synthesis and likely induce condensation reactions of various organic and inorganic compounds in the deep-sea CO2 pool on Earth and potentially other ocean worlds.
Collapse
Affiliation(s)
- Shotaro Tagawa
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Ryota Hatami
- Astronomical Science Program, The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
- National Astronomical Observatory of Japan, Mitaka, Japan
| | - Kohei Morino
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Shohei Terazawa
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Caner Akıl
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kristin Johnson-Finn
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Takazo Shibuya
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
2
|
Bohrmann G, Streuff K, Römer M, Knutsen SM, Smrzka D, Kleint J, Röhler A, Pape T, Sandstå NR, Kleint C, Hansen C, Dos Santos Ferreira C, Walter M, de Paula Santos GM, Bach W. Discovery of the first hydrothermal field along the 500-km-long Knipovich Ridge offshore Svalbard (the Jøtul field). Sci Rep 2024; 14:10168. [PMID: 38702385 PMCID: PMC11068752 DOI: 10.1038/s41598-024-60802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
Oceanic spreading centers north of Iceland are characterized by ultraslow spreading rates, and related hydrothermal activity has been detected in the water column and at the seafloor along nearly all ridge segments. An exception is the 500-km-long Knipovich Ridge, from where, until now, no hydrothermal vents were known. Here we report the investigation of the first hydrothermal vent field of the Knipovich Ridge, which was discovered in July 2022 during expedition MSM109. The newly discovered hydrothermal field, named Jøtul hydrothermal field, is associated with the eastern bounding fault of the rift valley rather than with an axial volcanic ridge. Guided by physico-chemical anomalies in the water column, ROV investigations on the seafloor showed a wide variety of fluid escape sites, inactive and active mounds with abundant hydrothermal precipitates, and chemosynthetic organisms. Fluids with temperatures between 8 and 316 °C as well as precipitates were sampled at four vent sites. High methane, carbon dioxide, and ammonium concentrations, as well as high 87Sr/86Sr isotope ratios of the vent fluids indicate strong interaction between magma and sediments from the Svalbard continental margin. Such interactions are important for carbon mobilization at the seafloor and the carbon cycle in the ocean.
Collapse
Affiliation(s)
- Gerhard Bohrmann
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany.
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany.
| | - Katharina Streuff
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
| | - Miriam Römer
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
| | - Stig-Morten Knutsen
- Norwegian Offshore Directorate (NOD), Professor Olav Hanssens vei 10, 4021, Stavanger, Norway
| | - Daniel Smrzka
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
| | - Jan Kleint
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
| | - Aaron Röhler
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
| | - Thomas Pape
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
| | - Nils Rune Sandstå
- Norwegian Offshore Directorate (NOD), Professor Olav Hanssens vei 10, 4021, Stavanger, Norway
| | - Charlotte Kleint
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
| | - Christian Hansen
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
| | - Christian Dos Santos Ferreira
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
| | - Maren Walter
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Institute of Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, 28359, Bremen, Germany
| | - Gustavo Macedo de Paula Santos
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
| | - Wolfgang Bach
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
| |
Collapse
|
3
|
Eilertsen MH, Kongsrud JA, Tandberg AHS, Alvestad T, Budaeva N, Martell L, Ramalho SP, Falkenhaug T, Huys R, Oug E, Bakken T, Høisæter T, Rauch C, Carvalho FC, Savchenko AS, Ulvatn T, Kongshavn K, Berntsen CM, Olsen BR, Pedersen RB. Diversity, habitat endemicity and trophic ecology of the fauna of Loki's Castle vent field on the Arctic Mid-Ocean Ridge. Sci Rep 2024; 14:103. [PMID: 38167527 PMCID: PMC10761849 DOI: 10.1038/s41598-023-46434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024] Open
Abstract
Loki's Castle Vent Field (LCVF, 2300 m) was discovered in 2008 and represents the first black-smoker vent field discovered on the Arctic Mid-Ocean Ridge (AMOR). However, a comprehensive faunal inventory of the LCVF has not yet been published, hindering the inclusion of the Arctic in biogeographic analyses of vent fauna. There is an urgent need to understand the diversity, spatial distribution and ecosystem function of the biological communities along the AMOR, which will inform environmental impact assesments of future deep-sea mining activities in the region. Therefore, our aim with this paper is to provide a comprehensive inventory of the fauna at LCVF and present a first insight into the food web of the vent community. The fauna of LCVF has a high degree of novelty, with five new species previously described and another ten new species awaiting formal description. Most of the new species from LCVF are either hydrothermal vent specialists or have been reported from other chemosynthesis-based ecosystems. The highest taxon richness is found in the diffuse venting areas and may be promoted by the biogenic habitat generated by the foundation species Sclerolinum contortum. The isotopic signatures of the vent community of LCVF show a clear influence of chemosynthetic primary production on the foodweb. Considering the novel and specialised fauna documented in this paper, hydrothermal vents on the AMOR should be regarded as vulnerable marine ecosystems and protective measures must therefore be implemented, especially considering the potential threat from resource exploration and exploitation activities in the near future.
Collapse
Affiliation(s)
- Mari Heggernes Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
- Center for Deep Sea Research, University of Bergen, Bergen, Norway.
| | - Jon Anders Kongsrud
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | | | - Tom Alvestad
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Nataliya Budaeva
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Luis Martell
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Sofia P Ramalho
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Tone Falkenhaug
- Institute of Marine Research, Flødevigen Research Station, His, Norway
| | - Rony Huys
- Department of Life Sciences, Natural History Museum, London, UK
| | - Eivind Oug
- Norwegian Institute for Water Research, Region South, Grimstad, Norway
| | - Torkild Bakken
- Norwegian University of Science and Technology, NTNU University Museum, Trondheim, Norway
| | - Tore Høisæter
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- , Loddefjord, Norway
| | - Cessa Rauch
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Francisca C Carvalho
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Alexandra S Savchenko
- Invertebrate Zoology Department, Biological Faculty, Moscow State University, Moscow, Russia
| | - Tone Ulvatn
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Center for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Katrine Kongshavn
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | | | | | - Rolf Birger Pedersen
- Center for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Zhao R, Babbin AR, Roerdink DL, Thorseth IH, Jørgensen SL. Nitrite accumulation and anammox bacterial niche partitioning in Arctic Mid-Ocean Ridge sediments. ISME COMMUNICATIONS 2023; 3:26. [PMID: 36991114 PMCID: PMC10060263 DOI: 10.1038/s43705-023-00230-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
By consuming ammonium and nitrite, anammox bacteria form an important functional guild in nitrogen cycling in many environments, including marine sediments. However, their distribution and impact on the important substrate nitrite has not been well characterized. Here we combined biogeochemical, microbiological, and genomic approaches to study anammox bacteria and other nitrogen cycling groups in two sediment cores retrieved from the Arctic Mid-Ocean Ridge (AMOR). We observed nitrite accumulation in these cores, a phenomenon also recorded at 28 other marine sediment sites and in analogous aquatic environments. The nitrite maximum coincides with reduced abundance of anammox bacteria. Anammox bacterial abundances were at least one order of magnitude higher than those of nitrite reducers and the anammox abundance maxima were detected in the layers above and below the nitrite maximum. Nitrite accumulation in the two AMOR cores co-occurs with a niche partitioning between two anammox bacterial families (Candidatus Bathyanammoxibiaceae and Candidatus Scalinduaceae), likely dependent on ammonium availability. Through reconstructing and comparing the dominant anammox genomes (Ca. Bathyanammoxibius amoris and Ca. Scalindua sediminis), we revealed that Ca. B. amoris has fewer high-affinity ammonium transporters than Ca. S. sediminis and lacks the capacity to access alternative substrates and/or energy sources such as urea and cyanate. These features may restrict Ca. Bathyanammoxibiaceae to conditions of higher ammonium concentrations. These findings improve our understanding about nitrogen cycling in marine sediments by revealing coincident nitrite accumulation and niche partitioning of anammox bacteria.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Desiree L Roerdink
- Centre for Deep Sea Research, Department of Earth Science, University of Bergen, Bergen, 5007, Norway
| | - Ingunn H Thorseth
- Centre for Deep Sea Research, Department of Earth Science, University of Bergen, Bergen, 5007, Norway
| | - Steffen L Jørgensen
- Centre for Deep Sea Research, Department of Earth Science, University of Bergen, Bergen, 5007, Norway.
| |
Collapse
|
5
|
Little CTS, Johannessen KC, Bengtson S, Chan CS, Ivarsson M, Slack JF, Broman C, Thorseth IH, Grenne T, Rouxel OJ, Bekker A. A late Paleoproterozoic (1.74 Ga) deep-sea, low-temperature, iron-oxidizing microbial hydrothermal vent community from Arizona, USA. GEOBIOLOGY 2021; 19:228-249. [PMID: 33594795 DOI: 10.1111/gbi.12434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Modern marine hydrothermal vents occur in a wide variety of tectonic settings and are characterized by seafloor emission of fluids rich in dissolved chemicals and rapid mineral precipitation. Some hydrothermal systems vent only low-temperature Fe-rich fluids, which precipitate deposits dominated by iron oxyhydroxides, in places together with Mn-oxyhydroxides and amorphous silica. While a proportion of this mineralization is abiogenic, most is the result of the metabolic activities of benthic, Fe-oxidizing bacteria (FeOB), principally belonging to the Zetaproteobacteria. These micro-organisms secrete micrometer-scale stalks, sheaths, and tubes with a variety of morphologies, composed largely of ferrihydrite that act as sacrificial structures, preventing encrustation of the cells that produce them. Cultivated marine FeOB generally require neutral pH and microaerobic conditions to grow. Here, we describe the morphology and mineralogy of filamentous microstructures from a late Paleoproterozoic (1.74 Ga) jasper (Fe-oxide-silica) deposit from the Jerome area of the Verde mining district in central Arizona, USA, that resemble the branching tubes formed by some modern marine FeOB. On the basis of this comparison, we interpret the Jerome area filaments as having formed by FeOB on the deep seafloor, at the interface of weakly oxygenated seawater and low-temperature Fe-rich hydrothermal fluids. We compare the Jerome area filaments with other purported examples of Precambrian FeOB and discuss the implications of their presence for existing redox models of Paleoproterozoic oceans during the "Boring Billion."
Collapse
Affiliation(s)
| | | | - Stefan Bengtson
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, USA
| | - Magnus Ivarsson
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - John F Slack
- U.S. Geological Survey (Emeritus), National Center, Reston, USA
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | | | - Tor Grenne
- Geological Survey of Norway, Trondheim, Norway
| | | | - Andrey Bekker
- Department of Earth and Planetary Sciences, University of California, Riverside, USA
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
6
|
Johannessen KC, McLoughlin N, Vullum PE, Thorseth IH. On the biogenicity of Fe-oxyhydroxide filaments in silicified low-temperature hydrothermal deposits: Implications for the identification of Fe-oxidizing bacteria in the rock record. GEOBIOLOGY 2020; 18:31-53. [PMID: 31532578 DOI: 10.1111/gbi.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 08/02/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Microaerophilic Fe(II)-oxidizing bacteria produce biomineralized twisted and branched stalks, which are promising biosignatures of microbial Fe oxidation in ancient jaspers and iron formations. Extracellular Fe stalks retain their morphological characteristics under experimentally elevated temperatures, but the extent to which natural post-depositional processes affect fossil integrity remains to be resolved. We examined siliceous Fe deposits from laminated mounds and chimney structures from an extinct part of the Jan Mayen Vent Fields on the Arctic Mid-Ocean Ridge. Our aims were to determine how early seafloor diagenesis affects morphological and chemical signatures of Fe-oxyhydroxide biomineralization and how extracellular stalks differ from abiogenic features. Optical and scanning electron microscopy in combination with focused ion beam-transmission electron microscopy (FIB-TEM) was used to study the filamentous textures and cross sections of individual stalks. Our results revealed directional, dendritic, and radial arrangements of biogenic twisted stalks and randomly organized networks of hollow tubes. Stalks were encrusted by concentric Fe-oxyhydroxide laminae and silica casings. Element maps produced by energy dispersive X-ray spectroscopy (EDS) in TEM showed variations in the content of Si, P, and S within filaments, demonstrating that successive hydrothermal fluid pulses mediate early diagenetic alteration and modify the chemical composition and surface features of stalks through Fe-oxyhydroxide mineralization. The carbon content of the stalks was generally indistinguishable from background levels, suggesting that organic compounds were either scarce initially or lost due to percolating hydrothermal fluids. Dendrites and thicker abiotic filaments from a nearby chimney were composed of nanometer-sized microcrystalline iron particles and silica and showed Fe growth bands indicative of inorganic precipitation. Our study suggests that the identification of fossil stalks and sheaths of Fe-oxidizing bacteria in hydrothermal paleoenvironments may not rely on the detection of organic carbon and demonstrates that abiogenic filaments differ from stalks and sheaths of Fe-oxidizing bacteria with respect to width distribution, ultrastructure, and textural context.
Collapse
Affiliation(s)
- Karen C Johannessen
- K. G. Jebsen Centre for Deep Sea Research and Department of Earth Science, University of Bergen, Bergen, Norway
| | - Nicola McLoughlin
- Department of Geology and the Albany Museum, Rhodes University, Grahamstown, South Africa
| | - Per Erik Vullum
- Department of Materials and Nanotechnology, SINTEF Industry, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingunn H Thorseth
- K. G. Jebsen Centre for Deep Sea Research and Department of Earth Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Characterisation of Mineralised Material from the Loki’s Castle Hydrothermal Vent on the Mohn’s Ridge. MINERALS 2018. [DOI: 10.3390/min8120576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Loki’s Castle on the Arctic Mid-Ocean Ridge (AMOR) is an area of possible seafloor massive sulphide (SMS)-style mineralisation under Norwegian jurisdiction, which, due to mounting social pressure, may be a strategic future source of base and precious metals. The purpose of this study is to characterise mineralised material from a hydrothermal vent system on the AMOR in detail for the first time, and to discuss the suitability of methods used; reflected light microscopy, X-ray diffraction (XRD), whole rock geochemistry, electron probe micro-analysis (EPMA), and QEMSCAN. The primary sulphide phases, identifiable by microscopy, are pyrite and marcasite with minor pyrrhotite and galena, but multiple samples from the Loki’s Castle contain economically interesting quantities of copper (hosted in isocubanite and chalcopyrite) and zinc (hosted in sphalerite), as well as silver and gold. This reinforces the notion that slow spreading ridges may host significant base metal deposits. Micro-textures (chalcopyrite inclusions and exsolutions in sphalerite and isocubanite respectively) are typically undefinable by QEMSCAN, and require quantitative measurement by EPMA. QEMSCAN can be used to efficiently generate average grain size and mineral association data, as well as composition data, and is likely to be a powerful tool in assessing the effectiveness of SMS mineral processing.
Collapse
|
8
|
Dahle H, Le Moine Bauer S, Baumberger T, Stokke R, Pedersen RB, Thorseth IH, Steen IH. Energy Landscapes in Hydrothermal Chimneys Shape Distributions of Primary Producers. Front Microbiol 2018; 9:1570. [PMID: 30061874 PMCID: PMC6055050 DOI: 10.3389/fmicb.2018.01570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/25/2018] [Indexed: 11/25/2022] Open
Abstract
Hydrothermal systems are excellent natural laboratories for the study of how chemical energy landscapes shape microbial communities. Yet, only a few attempts have been made to quantify relationships between energy availability and microbial community structure in these systems. Here, we have investigated how microbial communities and chemical energy availabilities vary along cross-sections of two hydrothermal chimneys from the Soria Moria Vent Field and the Bruse Vent Field. Both vent fields are located on the Arctic Mid-Ocean Ridge, north of the Jan Mayen Island and the investigated chimneys were venting fluids with markedly different H2S:CH4 ratios. Energy landscapes were inferred from a stepwise in silico mixing of hydrothermal fluids (HFs) with seawater, where Gibbs energies of relevant redox-reactions were calculated at each step. These calculations formed the basis for simulations of relative abundances of primary producers in microbial communities. The simulations were compared with an analysis of 24 samples from chimney wall transects by sequencing of 16S rRNA gene amplicons using 454 sequencing. Patterns in relative abundances of sulfide oxidizing Epsilonproteobacteria and methane oxidizing Methylococcales and ANME-1, were consistent with simulations. However, even though H2 was present in HFs from both chimneys, the observed abundances of putative hydrogen oxidizing anaerobic sulfate reducers (Archaeoglobales) and methanogens (Methanococcales) in the inner parts of the Soria Moria Chimney were considerably higher than predicted by simulations. This indicates biogenic production of H2 in the chimney wall by fermentation, and suggests that biological activity inside the chimneys may modulate energy landscapes significantly. Our results are consistent with the notion that energy landscapes largely shape the distribution of primary producers in hydrothermal systems. Our study demonstrates how a combination of modeling and field observations can be useful in deciphering connections between chemical energy landscapes and metabolic networks within microbial communities.
Collapse
Affiliation(s)
- Håkon Dahle
- K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Sven Le Moine Bauer
- K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Tamara Baumberger
- Pacific Marine Environmental Laboratory (NOAA), Newport, OR, United States
| | - Runar Stokke
- K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Rolf B. Pedersen
- K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ingunn H. Thorseth
- K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ida H. Steen
- K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Schouw A, Vulcano F, Roalkvam I, Hocking WP, Reeves E, Stokke R, Bødtker G, Steen IH. Genome Analysis of Vallitalea guaymasensis Strain L81 Isolated from a Deep-Sea Hydrothermal Vent System. Microorganisms 2018; 6:E63. [PMID: 29973550 PMCID: PMC6163223 DOI: 10.3390/microorganisms6030063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
Abyssivirga alkaniphila strain L81T, recently isolated from a black smoker biofilm at the Loki’s Castle hydrothermal vent field, was previously described as a mesophilic, obligately anaerobic heterotroph able to ferment carbohydrates, peptides, and aliphatic hydrocarbons. The strain was classified as a new genus within the family Lachnospiraceae. Herein, its genome is analyzed and A. alkaniphila is reassigned to the genus Vallitalea as a new strain of V. guaymasensis, designated V. guaymasensis strain L81. The 6.4 Mbp genome contained 5651 protein encoding genes, whereof 4043 were given a functional prediction. Pathways for fermentation of mono-saccharides, di-saccharides, peptides, and amino acids were identified whereas a complete pathway for the fermentation of n-alkanes was not found. Growth on carbohydrates and proteinous compounds supported methane production in co-cultures with Methanoplanus limicola. Multiple confurcating hydrogen-producing hydrogenases, a putative bifurcating electron-transferring flavoprotein—butyryl-CoA dehydrogenase complex, and a Rnf-complex form a basis for the observed hydrogen-production and a putative reverse electron-transport in V. guaymasensis strain L81. Combined with the observation that n-alkanes did not support growth in co-cultures with M. limicola, it seemed more plausible that the previously observed degradation patterns of crude-oil in strain L81 are explained by unspecific activation and may represent a detoxification mechanism, representing an interesting ecological function. Genes encoding a capacity for polyketide synthesis, prophages, and resistance to antibiotics shows interactions with the co-occurring microorganisms. This study enlightens the function of the fermentative microorganisms from hydrothermal vents systems and adds valuable information on the bioprospecting potential emerging in deep-sea hydrothermal systems.
Collapse
Affiliation(s)
- Anders Schouw
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - Francesca Vulcano
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - Irene Roalkvam
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - William Peter Hocking
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - Eoghan Reeves
- Department of Earth Science and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - Runar Stokke
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - Gunhild Bødtker
- Centre for Integrated Petroleum Research (CIPR), Uni Research AS, Nygårdsgaten 112, N-5008 Bergen, Norway.
| | - Ida Helene Steen
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| |
Collapse
|
10
|
Vander Roost J, Thorseth IH, Dahle H. Microbial analysis of Zetaproteobacteria and co-colonizers of iron mats in the Troll Wall Vent Field, Arctic Mid-Ocean Ridge. PLoS One 2017; 12:e0185008. [PMID: 28931087 PMCID: PMC5607188 DOI: 10.1371/journal.pone.0185008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
Over the last decade it has become increasingly clear that Zetaproteobacteria are widespread in hydrothermal systems and that they contribute to the biogeochemical cycling of iron in these environments. However, how chemical factors control the distribution of Zetaproteobacteria and their co-occurring taxa remains elusive. Here we analysed iron mats from the Troll Wall Vent Field (TWVF) located at the Arctic Mid-Ocean Ridge (AMOR) in the Norwegian-Greenland Sea. The samples were taken at increasing distances from high-temperature venting chimneys towards areas with ultraslow low-temperature venting, encompassing a large variety in geochemical settings. Electron microscopy revealed the presence of biogenic iron stalks in all samples. Using 16S rRNA gene sequence profiling we found that relative abundances of Zetaproteobacteria in the iron mats varied from 0.2 to 37.9%. Biogeographic analyses of Zetaproteobacteria, using the ZetaHunter software, revealed the presence of ZetaOtus 1, 2 and 9, supporting the view that they are cosmopolitan. Relative abundances of co-occurring taxa, including Thaumarchaeota, Euryarchaeota and Proteobacteria, also varied substantially. From our results, combined with results from previous microbiological and geochemical analyses of the TWVF, we infer that the distribution of Zetaproteobacteria is connected to fluid-flow patterns and, ultimately, variations in chemical energy landscapes. Moreover, we provide evidence for iron-oxidizing members of Gallionellaceae being widespread in TWVF iron mats, albeit at low relative abundances.
Collapse
Affiliation(s)
- Jan Vander Roost
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ingunn Hindenes Thorseth
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Håkon Dahle
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
11
|
Hestetun JT, Dahle H, Jørgensen SL, Olsen BR, Rapp HT. The Microbiome and Occurrence of Methanotrophy in Carnivorous Sponges. Front Microbiol 2016; 7:1781. [PMID: 27881974 PMCID: PMC5101230 DOI: 10.3389/fmicb.2016.01781] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/24/2016] [Indexed: 12/03/2022] Open
Abstract
As shown by recent studies, filter-feeding sponges are known to host a wide variety of microorganisms. However, the microbial community of the non-filtering carnivorous sponges (Porifera, Cladorhizidae) has been the subject of less scrutiny. Here, we present the results from a comparative study of the methanotrophic carnivorous sponge Cladorhiza methanophila from a mud volcano-rich area at the Barbados Accretionary Prism, and five carnivorous species from the Jan Mayen Vent Field (JMVF) at the Arctic Mid-Ocean Ridge. Results from 16S rRNA microbiome data indicate the presence of a diverse assemblage of associated microorganisms in carnivorous sponges mainly from the Gamma- and Alphaproteobacteria, Flavobacteriaceae, and Thaumarchaeota. While the abundance of particular groups varied throughout the dataset, we found interesting similarities to previous microbiome results from non-carnivorous deep sea sponges, suggesting that the carnivorous sponges share characteristics of a previously hypothesized putative deep-sea sponge microbial community. Chemolithoautotrophic symbiosis was confirmed for C. methanophila through a microbial community with a high abundance of Methylococcales and very light isotopic δ13C and δ15N ratios (-60 to -66‰/3.5 to 5.2‰) compared to the other cladorhizid species (-22 to -24‰/8.5 to 10.5‰). We provide evidence for the presence of putative sulfur-oxidizing Gammaproteobacteria in the arctic cladorhizids; however, δ13C and δ15N signatures did not provide evidence for significant chemoautotrophic symbiosis in this case, and the slightly higher abundance of cladorhizids at the JMVF site compared to the nearby deep sea likely stem from an increased abundance of prey rather than a more direct vent association. The phylogenetic position of C. methanophila in relation to other carnivorous sponges was established using a three-gene phylogenetic analysis, and it was found to be closely related to other non-methanotrophic Cladorhiza species with a similar morphology included in the dataset, suggesting a recent origin for methanotrophy in this species. C. methanophila remains the only known carnivorous sponge with a strong, chemolithoautotrophic symbiont association, and methanotrophic symbiosis does not seem to be a widespread property within the Cladorhizidae.
Collapse
Affiliation(s)
- Jon T. Hestetun
- Marine Biodiversity Group, Department of Biology, University of BergenBergen, Norway
- Centre for Geobiology, University of BergenBergen, Norway
| | - Håkon Dahle
- Centre for Geobiology, University of BergenBergen, Norway
| | | | - Bernt R. Olsen
- Marine Biodiversity Group, Department of Biology, University of BergenBergen, Norway
- Centre for Geobiology, University of BergenBergen, Norway
| | - Hans T. Rapp
- Marine Biodiversity Group, Department of Biology, University of BergenBergen, Norway
- Centre for Geobiology, University of BergenBergen, Norway
- Uni Research Environment, Uni Research ASBergen, Norway
| |
Collapse
|
12
|
Steinsbu BO, Røyseth V, Thorseth IH, Steen IH. Marinitoga arctica sp. nov., a thermophilic, anaerobic heterotroph isolated from a Mid-Ocean Ridge vent field. Int J Syst Evol Microbiol 2016; 66:5070-5076. [PMID: 27601246 DOI: 10.1099/ijsem.0.001472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thermophilic, anaerobic, heterotrophic bacterium, designated 2PyrY55-1T, was isolated from the wall of an active hydrothermal white-smoker chimney in the Soria Moria vent field (71° N) at the Mohns Ridge in the Norwegian-Greenland Sea. Cells of the strain were Gram-negative, motile rods that possessed a polar flagellum and a sheath-like outer structure ('toga'). Growth was observed at 45-70 °C (optimum 65 °C), at pH 5.0-7.5 (optimum pH 5.5) and in 1.5-5.5 % (w/v) NaCl (optimum 2.5 %). The strain grew on pyruvate, complex proteinaceous substrates and various sugars. Cystine and elemental sulfur were used as electron acceptors, and sulfide was then produced. The G+C content of the genomic DNA was 27 mol% (Tm method). Cellular fatty acids included C16 : 0, C14 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH, C16 : 1ω9c, C18 : 1ω9c, C18 : 0, C18 : 1ω7c and C12 : 0. Phylogenetic analyses of the 16S rRNA gene showed that the strain belonged to the genus Marinitoga in the family Petrotogaceae. Based on the phylogenetic and chemotaxonomic data, strain 2PyrY55-1T (=DSM 29778T=JCM 30566T) is the type strain of a novel species of the genus Marinitoga, for which the name Marinitoga arctica sp. nov. is proposed.
Collapse
Affiliation(s)
- Bjørn O Steinsbu
- Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5006 Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Victoria Røyseth
- Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.,Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5006 Bergen, Norway
| | - Ingunn H Thorseth
- Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.,Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Ida H Steen
- Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.,Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5006 Bergen, Norway
| |
Collapse
|
13
|
Hodgkinson MRS, Webber AP, Roberts S, Mills RA, Connelly DP, Murton BJ. Talc-dominated seafloor deposits reveal a new class of hydrothermal system. Nat Commun 2015; 6:10150. [PMID: 26694142 PMCID: PMC4703833 DOI: 10.1038/ncomms10150] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022] Open
Abstract
The Von Damm Vent Field (VDVF) is located on the flanks of the Mid-Cayman Spreading Centre, 13 km west of the axial rift, within a gabbro and peridotite basement. Unlike any other active vent field, hydrothermal precipitates at the VDVF comprise 85-90% by volume of the magnesium silicate mineral, talc. Hydrothermal fluids vent from a 3-m high, 1-m diameter chimney and other orifices at up to 215 °C with low metal concentrations, intermediate pH (5.8) and high concentrations (667 mmol kg(-1)) of chloride relative to seawater. Here we show that the VDVF vent fluid is generated by interaction of seawater with a mafic and ultramafic basement which precipitates talc on mixing with seawater. The heat flux at the VDVF is measured at 487±101 MW, comparable to the most powerful magma-driven hydrothermal systems known, and may represent a significant mode of off-axis oceanic crustal cooling not previously recognized or accounted for in global models.
Collapse
Affiliation(s)
- Matthew R. S. Hodgkinson
- National Oceanography Centre, Waterfront Campus, Southampton SO14 3ZH, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, UK
| | | | - Stephen Roberts
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, UK
| | - Rachel A. Mills
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, UK
| | | | - Bramley J. Murton
- National Oceanography Centre, Waterfront Campus, Southampton SO14 3ZH, UK
| |
Collapse
|
14
|
Dahle H, Økland I, Thorseth IH, Pederesen RB, Steen IH. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge. ISME JOURNAL 2015; 9:1593-606. [PMID: 25575309 PMCID: PMC4478700 DOI: 10.1038/ismej.2014.247] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 11/17/2022]
Abstract
Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.
Collapse
Affiliation(s)
- Håkon Dahle
- 1] Centre for Geobiology, University of Bergen, Bergen, Norway [2] Department of Biology, University of Bergen, Bergen, Norway
| | - Ingeborg Økland
- 1] Centre for Geobiology, University of Bergen, Bergen, Norway [2] Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ingunn H Thorseth
- 1] Centre for Geobiology, University of Bergen, Bergen, Norway [2] Department of Earth Science, University of Bergen, Bergen, Norway
| | - Rolf B Pederesen
- 1] Centre for Geobiology, University of Bergen, Bergen, Norway [2] Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ida H Steen
- 1] Centre for Geobiology, University of Bergen, Bergen, Norway [2] Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
The influence of vent systems on pelagic eukaryotic micro-organism composition in the Nordic Seas. Polar Biol 2014. [DOI: 10.1007/s00300-014-1621-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Eickmann B, Thorseth IH, Peters M, Strauss H, Bröcker M, Pedersen RB. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field. GEOBIOLOGY 2014; 12:308-321. [PMID: 24725254 DOI: 10.1111/gbi.12086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Barite chimneys are known to form in hydrothermal systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ∆36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86 Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2- and CH4-rich high-temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low-temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on these systems.
Collapse
Affiliation(s)
- B Eickmann
- Department of Earth Science, Centre for Geobiology, University of Bergen, Bergen, Norway; Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
17
|
Olsen BR, Troedsson C, Hadziavdic K, Pedersen RB, Rapp HT. A molecular gut content study ofThemisto abyssorum(Amphipoda) from Arctic hydrothermal vent and cold seep systems. Mol Ecol 2013; 23:3877-89. [DOI: 10.1111/mec.12511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/21/2013] [Accepted: 08/31/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Bernt Rydland Olsen
- Centre for Geobiology; University of Bergen; N-5020 Bergen Norway
- Department of Biology; University of Bergen; N-5020 Bergen Norway
| | | | - Kenan Hadziavdic
- Department of Biology; University of Bergen; N-5020 Bergen Norway
- Uni Environment; Uni Research AS; N-5020 Bergen Norway
| | - Rolf B. Pedersen
- Centre for Geobiology; University of Bergen; N-5020 Bergen Norway
- Department of Earth Science; University of Bergen; N-5020 Bergen Norway
| | - Hans Tore Rapp
- Centre for Geobiology; University of Bergen; N-5020 Bergen Norway
- Department of Biology; University of Bergen; N-5020 Bergen Norway
- Uni Environment; Uni Research AS; N-5020 Bergen Norway
| |
Collapse
|
18
|
Urich T, Lanzén A, Stokke R, Pedersen RB, Bayer C, Thorseth IH, Schleper C, Steen IH, Øvreas L. Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics. Environ Microbiol 2013; 16:2699-710. [DOI: 10.1111/1462-2920.12283] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/23/2013] [Accepted: 09/09/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Tim Urich
- Division of Archaea Biology and Ecogenomics; Department of Ecogenomics and Systems Biology; University of Vienna; 1090 Vienna Austria
- Centre for Geobiology; University of Bergen; 5007 Bergen Norway
| | - Anders Lanzén
- Centre for Geobiology; University of Bergen; 5007 Bergen Norway
- Department of Biology; University of Bergen; 5020 Bergen Norway
| | - Runar Stokke
- Centre for Geobiology; University of Bergen; 5007 Bergen Norway
- Department of Biology; University of Bergen; 5020 Bergen Norway
| | | | - Christoph Bayer
- Division of Archaea Biology and Ecogenomics; Department of Ecogenomics and Systems Biology; University of Vienna; 1090 Vienna Austria
| | - Ingunn H. Thorseth
- Centre for Geobiology; University of Bergen; 5007 Bergen Norway
- Department of Earth Science; University of Bergen; 5020 Bergen Norway
| | - Christa Schleper
- Division of Archaea Biology and Ecogenomics; Department of Ecogenomics and Systems Biology; University of Vienna; 1090 Vienna Austria
- Centre for Geobiology; University of Bergen; 5007 Bergen Norway
| | - Ida H. Steen
- Centre for Geobiology; University of Bergen; 5007 Bergen Norway
- Department of Biology; University of Bergen; 5020 Bergen Norway
| | - Lise Øvreas
- Centre for Geobiology; University of Bergen; 5007 Bergen Norway
- Department of Biology; University of Bergen; 5020 Bergen Norway
| |
Collapse
|
19
|
Tandberg AHS, Rapp HT, Schander C, Vader W. A new species ofExitomelita(Amphipoda: Melitidae) from a deep-water wood fall in the northern Norwegian Sea. J NAT HIST 2013. [DOI: 10.1080/00222933.2012.725778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Steinsbu BO, Tindall BJ, Torsvik VL, Thorseth IH, Daae FL, Pedersen RB. Rhabdothermus arcticus gen. nov., sp. nov., a member of the family Thermaceae isolated from a hydrothermal vent chimney in the Soria Moria vent field on the Arctic Mid-Ocean Ridge. Int J Syst Evol Microbiol 2011; 61:2197-2204. [PMID: 20935086 DOI: 10.1099/ijs.0.027839-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic member of the family Thermaceae, designated strain 2M70-1T, was isolated from the wall of an active white smoker chimney collected in the Soria Moria vent field at 71 °N in the Norwegian–Greenland Sea. Cells of the strain were Gram-negative, non-motile rods. Growth was observed at 37–75 °C (optimum 65 °C), at pH 6–8 (optimum pH 7.3) and in 1–5 % (w/v) NaCl (optimum 2.5–3.5 %). The isolate was aerobic but could also grow anaerobically using nitrate or elemental sulfur as electron acceptors. The strain was obligately heterotrophic, growing on complex organic substrates like yeast extract, Casamino acids, tryptone and peptone. Pyruvate, acetate, butyrate, sucrose, rhamnose and maltodextrin were used as complementary substrates. The G+C content of the genomic DNA was 68 mol%. Cells possessed characteristic phospholipids and glycolipids. Major fatty acids constituted saturated and unsaturated iso-branched and saturated anteiso-branched forms. Menaquinone 8 was the sole respiratory lipoquinone. Phylogenetic analysis of 16S rRNA gene sequences placed the strain in the family Thermaceae in the phylum ‘Deinococcus–Thermus’, which is consistent with the chemotaxonomic data. On the basis of phenotypic and phylogenetic data, strain 2M70-1T ( = JCM 15963T = DSM 22268T) represents the type strain of a novel species of a novel genus, for which the name Rhabdothermus arcticus gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Bjørn O. Steinsbu
- Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
- Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Brian J. Tindall
- DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstrasse 7b, D-38124 Braunschweig, Germany
| | - Vigdis L. Torsvik
- Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5020 Bergen, Norway
- Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Ingunn H. Thorseth
- Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
- Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Frida L. Daae
- Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5020 Bergen, Norway
- Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Rolf B. Pedersen
- Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
- Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
21
|
Pedersen RB, Rapp HT, Thorseth IH, Lilley MD, Barriga FJAS, Baumberger T, Flesland K, Fonseca R, Früh-Green GL, Jorgensen SL. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat Commun 2010; 1:126. [PMID: 21119639 PMCID: PMC3060606 DOI: 10.1038/ncomms1124] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 10/27/2010] [Indexed: 12/01/2022] Open
Abstract
The Arctic Mid-Ocean Ridge (AMOR) represents one of the most slow-spreading ridge systems on Earth. Previous attempts to locate hydrothermal vent fields and unravel the nature of venting, as well as the provenance of vent fauna at this northern and insular termination of the global ridge system, have been unsuccessful. Here, we report the first discovery of a black smoker vent field at the AMOR. The field is located on the crest of an axial volcanic ridge (AVR) and is associated with an unusually large hydrothermal deposit, which documents that extensive venting and long-lived hydrothermal systems exist at ultraslow-spreading ridges, despite their strongly reduced volcanic activity. The vent field hosts a distinct vent fauna that differs from the fauna to the south along the Mid-Atlantic Ridge. The novel vent fauna seems to have developed by local specialization and by migration of fauna from cold seeps and the Pacific. The Arctic Mid-Ocean Ridge spreads extremely slowly and hydrothermal vent fields have not been reported in its vicinity. Pedersen et al. describe a black smoker vent field with large hydrothermal deposits and novel fauna distinct from those found in similar environments in the Atlantic.
Collapse
Affiliation(s)
- Rolf B Pedersen
- 1] Centre for Geobiology, University of Bergen, 5007 Bergen, Norway. [2] Department of Earth Science, University of Bergen, 5007 Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|