1
|
Kessenich HE, Seppälä A, Rodger CJ. Potential drivers of the recent large Antarctic ozone holes. Nat Commun 2023; 14:7259. [PMID: 37989734 PMCID: PMC10663519 DOI: 10.1038/s41467-023-42637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
The past three years (2020-2022) have witnessed the re-emergence of large, long-lived ozone holes over Antarctica. Understanding ozone variability remains of high importance due to the major role Antarctic stratospheric ozone plays in climate variability across the Southern Hemisphere. Climate change has already incited new sources of ozone depletion, and the atmospheric abundance of several chlorofluorocarbons has recently been on the rise. In this work, we take a comprehensive look at the monthly and daily ozone changes at different altitudes and latitudes within the Antarctic ozone hole. Following indications of early-spring recovery, the October middle stratosphere is dominated by continued, significant ozone reduction since 2004, amounting to 26% loss in the core of the ozone hole. We link the declines in mid-spring Antarctic ozone to dynamical changes in mesospheric descent within the polar vortex, highlighting the importance of continued monitoring of the state of the ozone layer.
Collapse
Affiliation(s)
| | - Annika Seppälä
- Department of Physics, University of Otago, Dunedin, New Zealand.
| | - Craig J Rodger
- Department of Physics, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
The Antarctic ozone hole and the pattern effect on climate sensitivity. Proc Natl Acad Sci U S A 2022; 119:e2207889119. [PMID: 35994640 PMCID: PMC9436325 DOI: 10.1073/pnas.2207889119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We provide a perspective on recent scientific literature that argues the reduction in climate sensitivity identified with relative cooling in the eastern tropical Pacific Ocean could be caused by the onset of the Antarctic ozone hole starting in about 1980. If this is true, the pattern effect could persist as long as the ozone hole, nearly 60 y. This would continue the reduction in warming associated with the pattern effect on climate sensitivity. In addition, increased probability of La Niña events would imply an increased chance of drought in the American Southwest and other impacts of cooling in the eastern tropical Pacific. Since about 1980, the tropical Pacific has been anomalously cold, while the broader tropics have warmed. This has caused anomalous weather in midlatitudes as well as a reduction in the apparent sensitivity of the climate associated with enhanced low-cloud abundance over the cooler waters of the eastern tropical Pacific. Recent modeling work has shown that cooler temperatures over the Southern Ocean around Antarctica can lead to cooler temperatures over the eastern tropical Pacific. Here we suggest that surface wind anomalies associated with the Antarctic ozone hole can cause cooler temperatures over the Southern Ocean that extend into the tropics. We use the short-term variability of the Southern Annular Mode of zonal wind variability to show an association between surface zonal wind variations over the Southern Ocean, cooling over the Southern Ocean, and cooling in the eastern tropical Pacific. This suggests that the cooling of the eastern tropical Pacific may be associated with the onset of the Antarctic ozone hole.
Collapse
|
3
|
Relative Effects of the Greenhouse Gases and Stratospheric Ozone Increases on Temperature and Circulation in the Stratosphere over the Arctic. REMOTE SENSING 2022. [DOI: 10.3390/rs14143447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Using a stratosphere-resolving general circulation model, the relative effects of stratospheric ozone and greenhouse gases (GHGs) increase on the temperature and circulation in the Arctic stratosphere are examined. Results show that stratospheric ozone or GHGs increase alone could result in a cooling and strengthening extratropical stratosphere during February, March and April. However, the contribution of stratospheric ozone increases alone on the cooling and strengthening Arctic stratosphere is approximately 2 fold that of the GHGs increase alone. Model simulations suggested that the larger responses of the Arctic stratosphere to the ozone increase alone are closely related to the wave fluxes in the stratosphere, rather than the wave activity in the stratosphere. In response to the ozone increase, the vertical propagation of planetary waves from the troposphere into the mid-latitude stratosphere weakens, mainly contributed by its wavenumber-1 component. The impeded planetary waves tend to result from the larger zonal wind shear and vertical gradient of the buoyancy frequency. The magnitudes of anomalies in the zonal wind shear and buoyancy frequency in response to GHGs increase alone are smaller than in response to the ozone increase, which is in accordance with the larger contribution of stratospheric ozone to the temperature and circulation in the Arctic stratosphere.
Collapse
|
4
|
Garcia RR. On the response of the middle atmosphere to anthropogenic forcing. Ann N Y Acad Sci 2021; 1504:25-43. [PMID: 34263936 DOI: 10.1111/nyas.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Anthropogenic forcing of the atmosphere by greenhouse gases (GHG) and ozone-depleting substances has provided an unintended test of the robustness of current understanding of the physics and chemistry of the middle atmosphere, that is, the stratosphere and mesosphere. We explore this topic by examining how well anthropogenic changes can be simulated by modern, comprehensive numerical models. Specifically, we discuss the simulations of trends in global mean temperature; the development of the ozone hole and its impact on the dynamics of the Southern Hemisphere, both in the stratosphere and troposphere; trends in the stratospheric Brewer-Dobson circulation; and the response of the quasi-biennial oscillation (QBO) to increasing burdens of CO2 . We find that, in most of these cases, numerical simulation is able to reproduce observed changes and provide physical insights into the relevant mechanisms. Simulation of the QBO is on a less firm footing. Although many numerical models can now generate realistic QBOs, future projections of its behavior under the increasing burdens of GHG are inconsistent and even contradictory.
Collapse
|
5
|
Evaluation of Total Ozone Column from Multiple Satellite Measurements in the Antarctic Using the Brewer Spectrophotometer. REMOTE SENSING 2021. [DOI: 10.3390/rs13081594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than “which spatial resolution is used” for the investigation of the Antarctic TOC pattern. Additionally, the quality of satellite TOC is regionally different (e.g., OMI TOC is a little higher at the King Sejong station, but lower at the Zhongshan station than the Brewer TOC). Thus, it seems necessary to consider the difference of multiple satellite data for better assessing the spatiotemporal pattern of Antarctic TOC.
Collapse
|
6
|
Neale RE, Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Wilson SR, Madronich S, Andrady AL, Heikkilä AM, Bernhard GH, Bais AF, Aucamp PJ, Banaszak AT, Bornman JF, Bruckman LS, Byrne SN, Foereid B, Häder DP, Hollestein LM, Hou WC, Hylander S, Jansen MAK, Klekociuk AR, Liley JB, Longstreth J, Lucas RM, Martinez-Abaigar J, McNeill K, Olsen CM, Pandey KK, Rhodes LE, Robinson SA, Rose KC, Schikowski T, Solomon KR, Sulzberger B, Ukpebor JE, Wang QW, Wängberg SÅ, White CC, Yazar S, Young AR, Young PJ, Zhu L, Zhu M. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochem Photobiol Sci 2021; 20:1-67. [PMID: 33721243 PMCID: PMC7816068 DOI: 10.1007/s43630-020-00001-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/31/2023]
Abstract
This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.
Collapse
Affiliation(s)
- R E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - P W Barnes
- Biological Sciences and Environmental Program, Loyola University New Orleans, New Orleans, LA, USA
| | - T M Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - P J Neale
- Smithsonian Environmental Research Center, Maryland, USA
| | - C E Williamson
- Department of Biology, Miami University, Oxford, OH, USA
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - A M Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | - G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA
| | - A F Bais
- Department of Physics, Laboratory of Atmospheric Physics, Aristotle University, Thessaloniki, Greece
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - A T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, México
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | - L S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - S N Byrne
- The University of Sydney, School of Medical Sciences, Discipline of Applied Medical Science, Sydney, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - D-P Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | - L M Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - S Hylander
- Centre for Ecology and Evolution in Microbial model Systems-EEMiS, Linnaeus University, Kalmar, Sweden.
| | - M A K Jansen
- School of BEES, Environmental Research Institute, University College Cork, Cork, Ireland
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J B Liley
- National Institute of Water and Atmospheric Research, Lauder, New Zealand
| | - J Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, MD, USA
| | - R M Lucas
- National Centre of Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño, Spain
| | | | - C M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - K K Pandey
- Department of Wood Properties and Uses, Institute of Wood Science and Technology, Bangalore, India
| | - L E Rhodes
- Photobiology Unit, Dermatology Research Centre, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S A Robinson
- Securing Antarctica's Environmental Future, Global Challenges Program and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - K C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - T Schikowski
- IUF-Leibniz Institute of Environmental Medicine, Dusseldorf, Germany
| | - K R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - B Sulzberger
- Academic Guest Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - J E Ukpebor
- Chemistry Department, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S-Å Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - C C White
- Bee America, 5409 Mohican Rd, Bethesda, MD, USA
| | - S Yazar
- Garvan Institute of Medical Research, Sydney, Australia
| | - A R Young
- St John's Institute of Dermatology, King's College London, London, UK
| | - P J Young
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - L Zhu
- Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, China
| | - M Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China
| |
Collapse
|
7
|
Xia Y, Hu Y, Liu J. Comparison of trends in the Hadley circulation between CMIP6 and CMIP5. Sci Bull (Beijing) 2020; 65:1667-1674. [PMID: 36659043 DOI: 10.1016/j.scib.2020.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/21/2023]
Abstract
There have been extensive studies on poleward expansion of the Hadley cells and the associated poleward shift of subtropical dry zones in the past decade. In the present study, we study the trends in the width and strength of the Hadley cells, using currently available simulation results of the Coupled Model Intercomparison Project Phase-6 (CMIP6), and compare the trends with that in CMIP5 simulations. Our results show that the total annual-mean trend in the width of the Hadley cells is 0.13° ± 0.02° per decade over 1970-2014 in CMIP6 historical All-forcing simulations. It is almost the same as that in CMIP5. The trend in the strength of the Northern-Hemisphere (NH) cell shows much greater weakening in CMIP6 than in CMIP5, while the strength trend in the Southern-Hemisphere (SH) cell shows slight strengthening. Single-forcing simulations demonstrate that increasing greenhouse gases cause widening and weakening of both the NH and SH Hadley cells, while anthropogenic aerosols and stratospheric ozone changes cause weak strengthening trends in the SH cell. CMIP6 projection simulation results show that both the widening and weakening trends increase with radiative forcing.
Collapse
Affiliation(s)
- Yan Xia
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Yongyun Hu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China.
| | - Jiping Liu
- Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
8
|
Connection between Antarctic Ozone and Climate: Interannual Precipitation Changes in the Southern Hemisphere. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, we explored the connection between anomalies in springtime Antarctic ozone and all-year precipitation in the Southern Hemisphere by using observations from 1960–2018 and coupled simulations for 1960–2050. The observations showed that this correlation was enhanced during the last several decades, when a simultaneously increased coupling between ozone and Southern Annular Mode (SAM) anomalies became broader, covering most of the following summer and part of the previous winter. For eastern Australia, the ozone–precipitation connection shows a greater persistence toward the following summer than for other regions. On the other hand, for South America, the ozone–precipitation correlation seems more robust, especially in the early summer. There, the correlation also covers part of the previous winter, suggesting that winter planetary waves could affect both parameters. Further, we estimated the sensitivity of precipitation to changes in Antarctic ozone. In both observations and simulations, we found comparable sensitivity values during the spring–summer period. Overall, our results indicate that ozone anomalies can be understood as a tracer of stratospheric circulation. However, simulations indicate that stratospheric ozone chemistry still contributes to strengthening the interannual relationship between ozone and surface climate. Because simulations reproduced most of the observed connections, we suggest that including ozone variability in seasonal forecasting systems can potentially improve predictions.
Collapse
|
9
|
Rae CD, Keeble J, Hitchcock P, Pyle JA. Prescribing Zonally Asymmetric Ozone Climatologies in Climate Models: Performance Compared to a Chemistry-Climate Model. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2019; 11:918-933. [PMID: 31423294 PMCID: PMC6686983 DOI: 10.1029/2018ms001478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 06/10/2023]
Abstract
Three different methods of specifying ozone in an atmosphere-only version of the HadGEM3-A global circulation model are compared to the coupled chemistry configuration of this model. These methods include a specified zonal-mean ozone climatology, a specified 3-D ozone climatology, and a calculated-asymmetry scheme in which a specified zonal-mean ozone field is adapted online to be consistent with dynamically produced zonal asymmetries. These simulations all use identical boundary conditions and, by construction, have the same climatological zonal-mean ozone, that of the coupled chemistry configuration of the model. Prescribing ozone, regardless of scheme, results in a simulation which is 3-4 times faster than the coupled chemistry-climate model (CCM). Prescribing climatological zonal asymmetries leads to a vortex which is the correct intensity but which is systematically displaced over regions with lower prescribed ozone. When zonal asymmetries in ozone are free to evolve interactively with model dynamics, the modeled wintertime stratospheric vortex shape and mean sea level pressure patterns closely resemble that produced by the full CCM in both hemispheres, in terms of statistically significant differences. Further, we separate out the two distinct pathways by which zonal ozone asymmetries influence modeled dynamics. We present this interactive-ozone zonal-asymmetry scheme as an inexpensive tool for accurately modeling the impacts of dynamically consistent ozone fields as seen in a CCM which ultimately influence mean sea level pressure and tropospheric circulation (particularly during wintertime in the Northern Hemisphere, when ozone asymmetries are generally largest), without the computational burden of simulating interactive chemistry.
Collapse
Affiliation(s)
- Cameron D. Rae
- Centre for Atmospheric Science, Department of ChemistryUniversity of CambridgeCambridgeUK
| | - James Keeble
- Centre for Atmospheric Science, Department of ChemistryUniversity of CambridgeCambridgeUK
- NCASUniversity of CambridgeCambridgeUK
| | - Peter Hitchcock
- Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
- Now at Earth and Atmospheric Sciences DepartmentCornell UniversityIthacaNYUSA
| | - John A. Pyle
- Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
| |
Collapse
|
10
|
Improved Global Surface Temperature Simulation using Stratospheric Ozone Forcing with More Accurate Variability. Sci Rep 2018; 8:14474. [PMID: 30262911 PMCID: PMC6160484 DOI: 10.1038/s41598-018-32656-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/12/2018] [Indexed: 11/18/2022] Open
Abstract
Increasingly, studies have pointed out that variations of stratospheric ozone significantly influence climate change in the Northern and Southern hemispheres. This leads us to consider whether making the variations of stratospheric ozone in a climate model closer to real ozone changes would improve the simulation of global climate change. It is found that replacing the original specified stratospheric ozone forcing with more accurate stratospheric ozone variations improves the simulated variations of surface temperature in a climate model. The improved stratospheric ozone variations in the Northern Hemisphere lead to better simulation of variations in Northern Hemisphere circulation. As a result, the simulated variabilities of surface temperature in the middle of the Eurasian continent and in lower latitudes are improved. In the Southern Hemisphere, improvements in surface temperature variations that result from improved stratospheric ozone variations influence the simulation of westerly winds. The simulations also suggest that the decreasing trend of stratospheric ozone may have enhanced the warming trend at high latitudes in the second half of the 20th century. Our results not only reinforce the importance of accurately simulating the stratospheric ozone but also imply the need for including fully coupled stratospheric dynamical–radiative–chemical processes in climate models to predict future climate changes.
Collapse
|
11
|
Li F, Vikhliaev YV, Newman PA, Pawson S, Perlwitz J, Waugh DW, Douglass AR. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System - Version 5 (GEOS-5). JOURNAL OF CLIMATE 2016; 29:3199-3218. [PMID: 32742076 PMCID: PMC7394345 DOI: 10.1175/jcli-d-15-0572.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind-stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.
Collapse
Affiliation(s)
- Feng Li
- Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, Maryland, USA
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Yury V. Vikhliaev
- Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, Maryland, USA
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Paul A. Newman
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Steven Pawson
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Judith Perlwitz
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado, USA
| | - Darryn W. Waugh
- Department of Earth and Planetary Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anne R. Douglass
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
12
|
Purich A, Cai W, England MH, Cowan T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat Commun 2016; 7:10409. [PMID: 26842498 PMCID: PMC4742833 DOI: 10.1038/ncomms10409] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/08/2015] [Indexed: 11/27/2022] Open
Abstract
Despite global warming, total Antarctic sea ice coverage increased over 1979-2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase.
Collapse
Affiliation(s)
- Ariaan Purich
- CSIRO Oceans and Atmosphere, Aspendale, Victoria 3195, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Wenju Cai
- CSIRO Oceans and Atmosphere, Aspendale, Victoria 3195, Australia
| | - Matthew H. England
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
- ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tim Cowan
- CSIRO Oceans and Atmosphere, Aspendale, Victoria 3195, Australia
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK
| |
Collapse
|
13
|
Malenovský Z, Turnbull JD, Lucieer A, Robinson SA. Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. THE NEW PHYTOLOGIST 2015; 208:608-24. [PMID: 26083501 DOI: 10.1111/nph.13524] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/17/2015] [Indexed: 05/04/2023]
Abstract
The health of several East Antarctic moss-beds is declining as liquid water availability is reduced due to recent environmental changes. Consequently, a noninvasive and spatially explicit method is needed to assess the vigour of mosses spread throughout rocky Antarctic landscapes. Here, we explore the possibility of using near-distance imaging spectroscopy for spatial assessment of moss-bed health. Turf chlorophyll a and b, water content and leaf density were selected as quantitative stress indicators. Reflectance of three dominant Antarctic mosses Bryum pseudotriquetrum, Ceratodon purpureus and Schistidium antarctici was measured during a drought-stress and recovery laboratory experiment and also with an imaging spectrometer outdoors on water-deficient (stressed) and well-watered (unstressed) moss test sites. The stress-indicating moss traits were derived from visible and near infrared turf reflectance using a nonlinear support vector regression. Laboratory estimates of chlorophyll content and leaf density were achieved with the lowest systematic/unsystematic root mean square errors of 38.0/235.2 nmol g(-1) DW and 0.8/1.6 leaves mm(-1) , respectively. Subsequent combination of these indicators retrieved from field hyperspectral images produced small-scale maps indicating relative moss vigour. Once applied and validated on remotely sensed airborne spectral images, this methodology could provide quantitative maps suitable for long-term monitoring of Antarctic moss-bed health.
Collapse
Affiliation(s)
- Zbyněk Malenovský
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
- Surveying and Spatial Sciences Group, School of Land and Food, University of Tasmania, Private Bag 76, Hobart, TAS, 7001, Australia
| | - Johanna D Turnbull
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Arko Lucieer
- Surveying and Spatial Sciences Group, School of Land and Food, University of Tasmania, Private Bag 76, Hobart, TAS, 7001, Australia
| | - Sharon A Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| |
Collapse
|
14
|
Robinson SA, Erickson DJ. Not just about sunburn--the ozone hole's profound effect on climate has significant implications for Southern Hemisphere ecosystems. GLOBAL CHANGE BIOLOGY 2015; 21:515-527. [PMID: 25402975 DOI: 10.1111/gcb.12739] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/23/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
Climate scientists have concluded that stratospheric ozone depletion has been a major driver of Southern Hemisphere climate processes since about 1980. The implications of these observed and modelled changes in climate are likely to be far more pervasive for both terrestrial and marine ecosystems than the increase in ultraviolet-B radiation due to ozone depletion; however, they have been largely overlooked in the biological literature. Here, we synthesize the current understanding of how ozone depletion has impacted Southern Hemisphere climate and highlight the relatively few documented impacts on terrestrial and marine ecosystems. Reviewing the climate literature, we present examples of how ozone depletion changes atmospheric and oceanic circulation, with an emphasis on how these alterations in the physical climate system affect Southern Hemisphere weather, especially over the summer season (December-February). These potentially include increased incidence of extreme events, resulting in costly floods, drought, wildfires and serious environmental damage. The ecosystem impacts documented so far include changes to growth rates of South American and New Zealand trees, decreased growth of Antarctic mosses and changing biodiversity in Antarctic lakes. The objective of this synthesis was to stimulate the ecological community to look beyond ultraviolet-B radiation when considering the impacts of ozone depletion. Such widespread changes in Southern Hemisphere climate are likely to have had as much or more impact on natural ecosystems and food production over the past few decades, than the increased ultraviolet radiation due to ozone depletion.
Collapse
Affiliation(s)
- Sharon A Robinson
- Institute for Conservation Biology, School of Biological Sciences, The University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | | |
Collapse
|
15
|
Bais AF, McKenzie RL, Bernhard G, Aucamp PJ, Ilyas M, Madronich S, Tourpali K. Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 2015; 14:19-52. [DOI: 10.1039/c4pp90032d] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Percentage changes in the UV Index (UVI) for 2090 relative to 2015 due to changes in ozone (left) and aerosols (right) only. Large decreases are projected over Antarctica due to stratospheric ozone recovery. Increases are projected for parts of Asia due to decreases in aerosols, partly reversing the possible large reductions in UVI after the 1950s.
Collapse
Affiliation(s)
- A. F. Bais
- Laboratory of Atmospheric Physics
- Aristotle University of Thessaloniki
- 54124 Thessaloniki
- Greece
| | - R. L. McKenzie
- National Institute of Water and Atmospheric Research
- PB 50061 Omakau, Central Otago
- New Zealand
| | | | - P. J. Aucamp
- Ptersa Environmental Management Consultants
- Faerie Glen
- South Africa
| | - M. Ilyas
- School of Environmental Engineering
- University Malaysia Perlis
- Kangar
- Malaysia
| | - S. Madronich
- National Center for Atmospheric Research
- Boulder
- USA
| | - K. Tourpali
- Laboratory of Atmospheric Physics
- Aristotle University of Thessaloniki
- 54124 Thessaloniki
- Greece
| |
Collapse
|
16
|
Marshall J, Armour KC, Scott JR, Kostov Y, Hausmann U, Ferreira D, Shepherd TG, Bitz CM. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130040. [PMID: 24891392 PMCID: PMC4032509 DOI: 10.1098/rsta.2013.0040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.
Collapse
Affiliation(s)
- John Marshall
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kyle C Armour
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeffery R Scott
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yavor Kostov
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ute Hausmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David Ferreira
- Department of Meteorology, University of Reading, Reading, Berkshire, UK
| | | | - Cecilia M Bitz
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
|
18
|
Bramley-Alves J, King DH, Robinson SA, Miller RE. Dominating the Antarctic Environment: Bryophytes in a Time of Change. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-007-6988-5_17] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Numerical Modeling of Climate-Chemistry Connections: Recent Developments and Future Challenges. ATMOSPHERE 2013. [DOI: 10.3390/atmos4020132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Garabato ACN. A perspective on the future of physical oceanography. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:5480-5511. [PMID: 23129710 DOI: 10.1098/rsta.2012.0400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The ocean flows because it is forced by winds, tides and exchanges of heat and freshwater with the overlying atmosphere and cryosphere. To achieve a state where the defining properties of the ocean (such as its energy and momentum) do not continuously increase, some form of dissipation or damping is required to balance the forcing. The ocean circulation is thought to be forced primarily at the large scales characteristic of ocean basins, yet to be damped at much smaller scales down to those of centimetre-sized turbulence. For decades, physical oceanographers have sought to comprehend the fundamentals of this fractal puzzle: how the ocean circulation is driven, how it is damped and how ocean dynamics connects the very different scales of forcing and dissipation. While in the last two decades significant advances have taken place on all these three fronts, the thrust of progress has been in understanding the driving mechanisms of ocean circulation and the ocean's ensuing dynamical response, with issues surrounding dissipation receiving comparatively little attention. This choice of research priorities stems not only from logistical and technological difficulties in observing and modelling the physical processes responsible for damping the circulation, but also from the untested assumption that the evolution of the ocean's state over time scales of concern to humankind is largely independent of dissipative processes. In this article, I illustrate some of the key advances in our understanding of ocean circulation that have been achieved in the last 20 years and, based on a range of evidence, contend that the field will soon reach a stage in which uncertainties surrounding the arrest of ocean circulation will pose the main challenge to further progress. It is argued that the role of the circulation in the coupled climate system will stand as a further focal point of major advances in understanding within the next two decades, supported by the drive of physical oceanography towards a more operational enterprise by contextual factors. The basic elements that a strategy for the future must have to foster progress in these two areas are discussed, with an overarching emphasis on the promotion of curiosity-driven fundamental research against opposing external pressures and on the importance of upholding fundamental research as the apex of education in the field.
Collapse
|
21
|
Cai W, Cowan T, Thatcher M. Rainfall reductions over Southern Hemisphere semi-arid regions: the role of subtropical dry zone expansion. Sci Rep 2012; 2:702. [PMID: 23050086 PMCID: PMC3463003 DOI: 10.1038/srep00702] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/13/2012] [Indexed: 11/23/2022] Open
Abstract
Since the late 1970s, Southern Hemisphere semi-arid regions such as southern-coastal Chile, southern Africa, and southeastern Australia have experienced a drying trend in austral autumn, predominantly during April and May. The rainfall reduction coincides with a poleward expansion of the tropical belt and subtropical dry zone by around 2°–3° in the same season. This has raised questions as to whether the regional rainfall reductions are attributable to this poleward expansion. Here we show that the impact of the poleward subtropical dry-zone shift is not longitudinally uniform: a clear shift occurs south of Africa and across southern Australia, but there is no evidence of a poleward shift in the southern Chilean sector. As such, a poleward shift of climatological April-May rainfall can explain most of the southeastern Australia rainfall decline, a small portion of the southern Africa rainfall trend, but not the autumn drying over southern Chile.
Collapse
Affiliation(s)
- Wenju Cai
- CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia.
| | | | | |
Collapse
|
22
|
Lucas C, Nguyen H, Timbal B. An observational analysis of Southern Hemisphere tropical expansion. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Allen RJ, Sherwood SC, Norris JR, Zender CS. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 2012; 485:350-4. [DOI: 10.1038/nature11097] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/29/2012] [Indexed: 11/09/2022]
|
24
|
Environmental effects of ozone depletion and its interactions with climate change: progress report, 2011. Photochem Photobiol Sci 2012; 11:13-27. [DOI: 10.1039/c1pp90033a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Kang SM, Polvani LM, Fyfe JC, Sigmond M. Impact of polar ozone depletion on subtropical precipitation. Science 2011; 332:951-4. [PMID: 21512001 DOI: 10.1126/science.1202131] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Over the past half-century, the ozone hole has caused a poleward shift of the extratropical westerly jet in the Southern Hemisphere. Here, we argue that these extratropical circulation changes, resulting from ozone depletion, have substantially contributed to subtropical precipitation changes. Specifically, we show that precipitation in the southern subtropics in austral summer increases significantly when climate models are integrated with reduced polar ozone concentrations. Furthermore, the observed patterns of subtropical precipitation change, from 1979 to 2000, are very similar to those in our model integrations, where ozone depletion alone is prescribed. In both climate models and observations, the subtropical moistening is linked to a poleward shift of the extratropical westerly jet. Our results highlight the importance of polar regions for the subtropical hydrological cycle.
Collapse
Affiliation(s)
- S M Kang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| | | | | | | |
Collapse
|
26
|
Karpechko AY, Gillett NP, Gray LJ, Dall'Amico M. Influence of ozone recovery and greenhouse gas increases on Southern Hemisphere circulation. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014423] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Gerber EP, Baldwin MP, Akiyoshi H, Austin J, Bekki S, Braesicke P, Butchart N, Chipperfield M, Dameris M, Dhomse S, Frith SM, Garcia RR, Garny H, Gettelman A, Hardiman SC, Karpechko A, Marchand M, Morgenstern O, Nielsen JE, Pawson S, Peter T, Plummer DA, Pyle JA, Rozanov E, Scinocca JF, Shepherd TG, Smale D. Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013770] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|