2
|
Wilson LB, Chen LJ, Wang S, Schwartz SJ, Turner DL, Stevens ML, Kasper JC, Osmane A, Caprioli D, Bale SD, Pulupa MP, Salem CS, Goodrich KA. Electron Energy Partition across Interplanetary Shocks. I. Methodology and Data Product. THE ASTROPHYSICAL JOURNAL. SUPPLEMENT SERIES 2019; 243:10.3847/1538-4365/ab22bd. [PMID: 31806920 PMCID: PMC6894189 DOI: 10.3847/1538-4365/ab22bd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Analyses of 15,314 electron velocity distribution functions (VDFs) within ±2 hr of 52 interplanetary (IP) shocks observed by the Wind spacecraft near 1 au are introduced. The electron VDFs are fit to the sum of three model functions for the cold dense core, hot tenuous halo, and field-aligned beam/strahl component. The best results were found by modeling the core as either a bi-kappa or a symmetric (or asymmetric) bi-self-similar VDF, while both the halo and beam/strahl components were best fit to bi-kappa VDF. This is the first statistical study to show that the core electron distribution is better fit to a self-similar VDF than a bi-Maxwellian under all conditions. The self-similar distribution deviation from a Maxwellian is a measure of inelasticity in particle scattering from waves and/or turbulence. The ranges of values defined by the lower and upper quartiles for the kappa exponents are κ ec ~ 5.40-10.2 for the core, κ eh ~ 3.58-5.34 for the halo, and κ eb ~ 3.40-5.16 for the beam/strahl. The lower-to-upper quartile range of symmetric bi-self-similar core exponents is s ec ~ 2.00-2.04, and those of asymmetric bi-self-similar core exponents are p ec ~ 2.20-4.00 for the parallel exponent and q ec ~ 2.00-2.46 for the perpendicular exponent. The nuanced details of the fit procedure and description of resulting data product are also presented. The statistics and detailed analysis of the results are presented in Paper II and Paper III of this three-part study.
Collapse
Affiliation(s)
- Lynn B Wilson
- NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD, USA
| | - Li-Jen Chen
- NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD, USA
| | - Shan Wang
- NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD, USA
- Astronomy Department, University of Maryland, College Park, Maryland, USA
| | - Steven J Schwartz
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Boulder, CO, USA
| | - Drew L Turner
- Space Sciences Department, The Aerospace Corporation, El Segundo, CA, USA
| | - Michael L Stevens
- Harvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA, USA
| | - Justin C Kasper
- University of Michigan, Ann Arbor, School of Climate and Space Sciences and Engineering, Ann Arbor, MI, USA
| | - Adnane Osmane
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Damiano Caprioli
- Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA
| | - Stuart D Bale
- University of California Berkeley, Space Sciences Laboratory, Berkeley, CA, USA
| | - Marc P Pulupa
- University of California Berkeley, Space Sciences Laboratory, Berkeley, CA, USA
| | - Chadi S Salem
- University of California Berkeley, Space Sciences Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
3
|
Chen LJ, Wang S, Wilson LB, Schwartz S, Bessho N, Moore T, Gershman D, Giles B, Malaspina D, Wilder FD, Ergun RE, Hesse M, Lai H, Russell C, Strangeway R, Torbert RB, F-Vinas A, Burch J, Lee S, Pollock C, Dorelli J, Paterson W, Ahmadi N, Goodrich K, Lavraud B, Le Contel O, Khotyaintsev YV, Lindqvist PA, Boardsen S, Wei H, Le A, Avanov L. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock. PHYSICAL REVIEW LETTERS 2018; 120:225101. [PMID: 29906189 DOI: 10.1103/physrevlett.120.225101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
Collapse
Affiliation(s)
- L-J Chen
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
- Department of Astronomy, University of Maryland, College Park, Maryland 20747, USA
| | - S Wang
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
- Department of Astronomy, University of Maryland, College Park, Maryland 20747, USA
| | - L B Wilson
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - S Schwartz
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80305, USA
| | - N Bessho
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
- Department of Astronomy, University of Maryland, College Park, Maryland 20747, USA
| | - T Moore
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - D Gershman
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - B Giles
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - D Malaspina
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80305, USA
| | - F D Wilder
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80305, USA
| | - R E Ergun
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80305, USA
| | - M Hesse
- University of Bergen, Bergen 5020, Norway
| | - H Lai
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | - C Russell
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | - R Strangeway
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | - R B Torbert
- Southwest Research Institute, San Antonio, Texas 78238, USA
| | - A F-Vinas
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - J Burch
- Southwest Research Institute, San Antonio, Texas 78238, USA
| | - S Lee
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - C Pollock
- Denali Scientific, Healy, Alaska 99743, USA
| | - J Dorelli
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - W Paterson
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - N Ahmadi
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80305, USA
| | - K Goodrich
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80305, USA
| | - B Lavraud
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS), CNRS, CNES, Toulouse, 31028 Cedex 4, France
| | - O Le Contel
- Laboratoire de Physique des Plasmas (UMR7648), CNRS/Ecole Polytechnique/Sorbonne Université/Univ. Paris Sud/Observatoire de Paris, Paris, F91128 Palaiseau Cedex, France
| | | | - P-A Lindqvist
- KTH Royal Institute of Technology, Stockholm SE-11428, Sweden
| | - S Boardsen
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
- Department of Astronomy, University of Maryland, College Park, Maryland 20747, USA
| | - H Wei
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | - A Le
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - L Avanov
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
- Department of Astronomy, University of Maryland, College Park, Maryland 20747, USA
| |
Collapse
|
5
|
Gedalin M, Dröge W, Kartavykh YY. Dependence of the Spectrum of Shock-Accelerated Ions on the Dynamics at the Shock Crossing. PHYSICAL REVIEW LETTERS 2016; 117:275101. [PMID: 28084768 DOI: 10.1103/physrevlett.117.275101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Diffusive shock acceleration (DSA) of ions occurs due to pitch-angle diffusion in the upstream and downstream regions of the shock and multiple crossing of the shock by these ions. The classical DSA theory implies continuity of the distribution at the shock transition and predicts a universal spectrum of accelerated particles, depending only on the ratio of the upstream and downstream fluid speeds. However, the ion dynamics at the shock front occurs within a collision-free region and is gyrophase dependent. The ions fluxes have to be continuous at the shock front. The matching conditions for the gyrophase-averaged distribution functions at the shock transition are formulated in terms of the transition and reflection probabilities. These probabilities depend on the shock angle and the magnetic compression as does the power spectrum of accelerated ions. Their spectral index is expressed in terms of the reflectivity. The spectrum is typically harder than the spectrum predicted by the classical DSA theory.
Collapse
Affiliation(s)
- M Gedalin
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - W Dröge
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg 97074, Germany
| | - Y Y Kartavykh
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|