1
|
Dermawan D, Alotaiq N. Computational analysis of antimicrobial peptides targeting key receptors in infection-related cardiovascular diseases: molecular docking and dynamics insights. Sci Rep 2025; 15:8896. [PMID: 40087360 PMCID: PMC11909139 DOI: 10.1038/s41598-025-93683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Infection-related cardiovascular diseases (CVDs) pose a significant health challenge, driving the need for novel therapeutic strategies to target key receptors involved in inflammation and infection. Antimicrobial peptides (AMPs) show the potential to disrupt pathogenic processes and offer a promising approach to CVD treatment. This study investigates the binding potential of selected AMPs with critical receptors implicated in CVDs, aiming to explore their therapeutic potential. A comprehensive computational approach was employed to assess AMP interactions with CVD-related receptors, including ACE2, CRP, MMP9, NLRP3, and TLR4. Molecular docking studies identified AMPs with high binding affinities to these targets, notably Tachystatin, Pleurocidin, and Subtilisin A, which showed strong interactions with ACE2, CRP, and MMP9. Following docking, 100 ns molecular dynamics (MD) simulations confirmed the stability of AMP-receptor complexes, and MM/PBSA calculations provided quantitative insights into binding energies, underscoring the potential of these AMPs to modulate receptor activity in infection and inflammation contexts. The study highlights the therapeutic potential of Tachystatin, Pleurocidin, and Subtilisin A in targeting infection-related pathways in CVDs. These AMPs demonstrate promising receptor binding properties and stability in computational models. Future research should focus on in vitro and in vivo studies to confirm their efficacy and safety, paving the way for potential clinical applications in managing infection-related cardiovascular conditions.
Collapse
Affiliation(s)
- Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, 00-661, Poland
| | - Nasser Alotaiq
- Health Sciences Research Center (HSRC), Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia.
| |
Collapse
|
2
|
Ghaly G, Tallima H, Dabbish E, Badr ElDin N, Abd El-Rahman MK, Ibrahim MAA, Shoeib T. Anti-Cancer Peptides: Status and Future Prospects. Molecules 2023; 28:molecules28031148. [PMID: 36770815 PMCID: PMC9920184 DOI: 10.3390/molecules28031148] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The dramatic rise in cancer incidence, alongside treatment deficiencies, has elevated cancer to the second-leading cause of death globally. The increasing morbidity and mortality of this disease can be traced back to a number of causes, including treatment-related side effects, drug resistance, inadequate curative treatment and tumor relapse. Recently, anti-cancer bioactive peptides (ACPs) have emerged as a potential therapeutic choice within the pharmaceutical arsenal due to their high penetration, specificity and fewer side effects. In this contribution, we present a general overview of the literature concerning the conformational structures, modes of action and membrane interaction mechanisms of ACPs, as well as provide recent examples of their successful employment as targeting ligands in cancer treatment. The use of ACPs as a diagnostic tool is summarized, and their advantages in these applications are highlighted. This review expounds on the main approaches for peptide synthesis along with their reconstruction and modification needed to enhance their therapeutic effect. Computational approaches that could predict therapeutic efficacy and suggest ACP candidates for experimental studies are discussed. Future research prospects in this rapidly expanding area are also offered.
Collapse
Affiliation(s)
- Gehane Ghaly
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Hatem Tallima
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
- Correspondence:
| |
Collapse
|
3
|
Gimenez-Dejoz J, Numata K. Molecular dynamics study of the internalization of cell-penetrating peptides containing unnatural amino acids across membranes. NANOSCALE ADVANCES 2022; 4:397-407. [PMID: 36132688 PMCID: PMC9419563 DOI: 10.1039/d1na00674f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/10/2021] [Indexed: 06/16/2023]
Abstract
Peptide-based delivery systems that deliver target molecules into cells have been gaining traction. These systems need cell-penetrating peptides (CPPs), which have the remarkable ability to penetrate into biological membranes and help internalize different cargoes into cells through the cell membranes. The molecular internalization mechanism and structure-function relationships of CPPs are not clear, although the incorporation of nonproteinogenic amino acids such as α-aminoisobutyric acid (Aib) has been reported to increase their helicity, biostability and penetration efficiencies. Here, we used molecular dynamics to study two Aib-containing CPPs, poly(LysAibAla)3 (KAibA) and poly(LysAibGly)3 (KAibG), that previously showed high cell internalization efficiency. KAibA and KAibG displayed the lowest internalization energies among the studied CPPs, showing distinct internalization mechanisms depending on the lipid composition of the model membranes. The presence of Aib residues allows these CPPs to adopt amphipathic folding to efficiently penetrate through the membranes. Elucidating how Aib incorporation affects CPP-membrane binding and interactions is beneficial for the design of CPPs for efficient intracellular delivery.
Collapse
Affiliation(s)
- Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science Saitama Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science Saitama Japan
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyoto Japan
| |
Collapse
|
4
|
Choi J, Jang A, Yoon YK, Kim Y. Development of Novel Peptides for the Antimicrobial Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Infection. Pharmaceutics 2021; 13:pharmaceutics13111800. [PMID: 34834215 PMCID: PMC8619914 DOI: 10.3390/pharmaceutics13111800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) infection has a high mortality rate, making the development of novel effective antibiotic therapeutic strategies highly critical. Antimicrobial peptides can outperform conventional antibiotics regarding drug resistance and broad-spectrum activity. PapMA, an 18-residue hybrid peptide, containing N-terminal residues of papiliocin and magainin 2, has previously demonstrated potent antibacterial activity. In this study, PapMA analogs were designed by substituting Ala15 or Phe18 with Ala, Phe, and Trp. PapMA-3 with Trp18 showed the highest bacterial selectivity against CRAB, alongside low cytotoxicity. Biophysical studies revealed that PapMA-3 permeabilizes CRAB membrane via strong binding to LPS. To reduce toxicity via reduced antibiotic doses, while preventing the emergence of multi-drug resistant bacteria, the efficacy of PapMA-3 in combination with six selected antibiotics was evaluated against clinical CRAB isolates (C1–C5). At 25% of the minimum inhibition concentration, PapMA-3 partially depolarized the CRAB membrane and caused sufficient morphological changes, facilitating the entry of antibiotics into the bacterial cell. Combining PapMA-3 with rifampin significantly and synergistically inhibited CRAB C4 (FICI = 0.13). Meanwhile, combining PapMA-3 with vancomycin or erythromycin, both potent against Gram-positive bacteria, demonstrated remarkable synergistic antibiofilm activity against Gram-negative CRAB. This study could aid in the development of combination therapeutic approaches against CRAB.
Collapse
Affiliation(s)
- Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (J.C.); (A.J.)
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (J.C.); (A.J.)
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea;
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (J.C.); (A.J.)
- Correspondence: ; Tel.: +822-450-3421; Fax: +822-447-5987
| |
Collapse
|
5
|
Peng J, Mishra B, Khader R, Felix L, Mylonakis E. Novel Cecropin-4 Derived Peptides against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:36. [PMID: 33401476 PMCID: PMC7824259 DOI: 10.3390/antibiotics10010036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Increasing microbial resistance, coupled with a lack of new antimicrobial discovery, has led researchers to refocus on antimicrobial peptides (AMPs) as novel therapeutic candidates. Significantly, the less toxic cecropins have gained widespread attention for potential antibacterial agent development. However, the narrow activity spectrum and long sequence remain the primary limitations of this approach. In this study, we truncated and modified cecropin 4 (41 amino acids) by varying the charge and hydrophobicity balance to obtain smaller AMPs. The derivative peptide C18 (16 amino acids) demonstrated high antibacterial activity against Gram-negative and Gram-positive bacteria, as well as yeasts. Moreover, C18 demonstrated a minimal inhibitory concentration (MIC) of 4 µg/mL against the methicillin-resistant Staphylococcus aureus (MRSA) and showed synergy with daptomycin with a fractional inhibition concentration index (FICI) value of 0.313. Similar to traditional cecropins, C18 altered the membrane potential, increased fluidity, and caused membrane breakage at 32 µg/mL. Importantly, C18 eliminated 99% persisters at 10 × MIC within 20 min and reduced the biofilm adherence by ~40% and 35% at 32 and 16 µg/mL. Besides, C18 possessed a strong binding ability with DNA at 7.8 μM and down-regulated the expression of virulence factor genes like agrA, fnb-A, and clf-1 by more than 5-fold (p < 0.05). Interestingly, in the Galleria mellonella model, C18 rescued more than 80% of larva infected with the MRSA throughout 120-h post-infection at a single dose of 8 mg/kg (p < 0.05). In conclusion, this study provides a reference for the transformation of cecropin to derive small peptides and presents C18 as an attractive therapeutic candidate to be developed to treat severe MRSA infections.
Collapse
Affiliation(s)
- Jian Peng
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Biswajit Mishra
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| | - Rajamohammed Khader
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| | - LewisOscar Felix
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| |
Collapse
|
6
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
7
|
Yue S, Jie J, Xie L, Li Y, Zhang J, Lai X, Xie J, Guo X, Zhai Y. Antimicrobial peptide CAMA-syn expressed in pulmonary epithelium by recombination adenovirus inhibited the growth of intracellular bacteria. J Gene Med 2019; 22:e3149. [PMID: 31770482 DOI: 10.1002/jgm.3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/21/2019] [Accepted: 11/24/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Intracellular bacteria, especially Mycobacterium tuberculosis, are important pathogenic microorganisms that endanger human health. Purified and synthesized cecropin A-magainin 2 (CAMA-syn) can exhibit a higher antibacterial activity and lower cytotoxicity. To enhance such antimicrobial potential, it would be desirable to deliver CAMA-syn expressed in lung epithelial cells by an adenovirus vector using gene therapy. METHODS A549 cells in vitro and lung epithelial cells in vivo were used to express CAMA-syn by transducing recombinant adenovirus Ad-SPC-CAMA/GFP, and the expression of CAMA-syn was determined by a reverse transcriptase-polymerase reaction (RT-PCR) and immunofluorescence. The antimicrobial activity in cells was investigated by colony-forming rate and growth curve. Forty Kunming mice of a Bacillus Calmette-Guerin (BCG) infection animal model were randomly divided into three groups: adenoviruses delivery of Ad-SPC-CAMA/GFP, Ad-CMV-CAMA/GFP and empty-virus Ad-CMV-GFP. The expression of CAMA-syn in mice was confirmed by RT-PCR and immunofluorescence. After tracheal injection of adenoviral vector for 3 days, lungs from the mouse model were extracted and homogenized for detection of colony-forming efficiency. RESULTS CAMA-syn expressed in lung epithelial cells A549 conferred antimicrobial activity against a series of bacteria, including Salmonella abortusovis and BCG. The results obtained in vivo showed that the colony-forming rate of Ad-SPC-CAMA/GFP (74.54%) and Ad-CMV-CAMA/GFP (62.31%) transduced into mice was significantly lower than that of the control group. CONCLUSIONS Lung epithelial-specific expression of antimicrobial peptide CAMA-syn mediated by adenovirus suppressed the growth of intracellular bacteria, providing a promising approach for the control of refractory intracellular infection.
Collapse
Affiliation(s)
- Shuohao Yue
- Fermentation Engineering, Ministry of Education, College of Bioengineering and Food, Hubei University of Technology, Wuhan, China.,Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Jing Jie
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Lilan Xie
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Yi Li
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, China
| | - Junlin Zhang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiaojing Lai
- College of Health Sclence Nursing, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Jumin Xie
- Medical school of Hubei Polytechnic University, No.16 Guilin North Road, Huangshi, Hubei, China
| | - Xiaohong Guo
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi Zhai
- State and Local Joint Engineering Laboratory of Recombinant Protein and Gene Detection Technology, Shandong Boaoke Biotechnology Co., LTD, Liaocheng, China
| |
Collapse
|
8
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
9
|
Wang J, Ma K, Ruan M, Wang Y, Li Y, Fu YV, Song Y, Sun H, Wang J. A novel cecropin B-derived peptide with antibacterial and potential anti-inflammatory properties. PeerJ 2018; 6:e5369. [PMID: 30065898 PMCID: PMC6064198 DOI: 10.7717/peerj.5369] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023] Open
Abstract
Cecropins, originally found in insects, are a group of cationic antimicrobial peptides. Most cecropins have an amphipathic N-terminal segment and a largely hydrophobic C-terminal segment, and normally form a helix-hinge-helix structure. In this study, we developed the novel 32-residue cecropin-like peptide cecropin DH by deleting the hinge region (Alanine-Glycine-Proline) of cecropin B isolated from Chinese oak silk moth, Antheraea pernyi. Cecropin DH possesses effective antibacterial activity, particularly against Gram-negative bacteria, with very low cytotoxicity against mammalian cells. Interactions between cecropin DH and the highly anionic lipopolysaccharide (LPS) component of the Gram-negative bacterial outer membrane indicate that it is capable of dissociating LPS micelles and disrupting LPS aggregates into smaller assemblies, which may play a vital role in its antimicrobial activity. Using LPS-stimulated mouse macrophage RAW264.7 cells, we found that cecropin DH exerted higher potential anti-inflammatory activity than cecropin B, as demonstrated by the inhibition of pro-inflammatory cytokines nitric oxide production and secretion of tumor necrosis factor-α. In conclusion, cecropin DH has potential as a therapeutic agent for both antibacterial and anti-inflammatory applications.
Collapse
Affiliation(s)
- Jiarong Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Kun Ma
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Maosen Ruan
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Yujuan Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Yan Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yu V Fu
- State Key Laboratory of Microbial Resources, Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yonghong Song
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Hongbin Sun
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,Institute of Physical Science and information Technology, Anhui University, Hefei, China
| |
Collapse
|
10
|
Roccatano D, Sarukhanyan E, Zangi R. Adsorption mechanism of an antimicrobial peptide on carbonaceous surfaces: A molecular dynamics study. J Chem Phys 2018; 146:074703. [PMID: 28228017 DOI: 10.1063/1.4975689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Peptides are versatile molecules with applications spanning from biotechnology to nanomedicine. They exhibit a good capability to unbundle carbon nanotubes (CNT) by improving their solubility in water. Furthermore, they are a powerful drug delivery system since they can easily be uptaken by living cells, and their high surface-to-volume ratio facilitates the adsorption of molecules of different natures. Therefore, understanding the interaction mechanism between peptides and CNT is important for designing novel therapeutical agents. In this paper, the mechanisms of the adsorption of antimicrobial peptide Cecropin A-Magainin 2 (CA-MA) on a graphene nanosheet (GNS) and on an ultra-short single-walled CNT are characterized using molecular dynamics simulations. The results show that the peptide coats both GNS and CNT surfaces through preferential contacts with aromatic side chains. The peptide packs compactly on the carbon surfaces where the polar and functionalizable Lys side chains protrude into the bulk solvent. It is shown that the adsorption is strongly correlated to the loss of the peptide helical structure. In the case of the CNT, the outer surface is significantly more accessible for adsorption. Nevertheless when the outer surface is already covered by other peptides, a spontaneous diffusion, via the amidated C-terminus into the interior of the CNT, was observed within 150 ns of simulation time. We found that this spontaneous insertion into the CNT interior can be controlled by the polarity of the entrance rim. For the positively charged CA-MA peptide studied, hydrogenated and fluorinated rims, respectively, hinder and promote the insertion.
Collapse
Affiliation(s)
- Danilo Roccatano
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - Edita Sarukhanyan
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ronen Zangi
- Polymat and Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 San Sebastian, Spain
| |
Collapse
|
11
|
Facchini FA, Coelho H, Sestito SE, Delgado S, Minotti A, Andreu D, Jiménez-Barbero J, Peri F. Co-administration of Antimicrobial Peptides Enhances Toll-like Receptor 4 Antagonist Activity of a Synthetic Glycolipid. ChemMedChem 2018; 13:280-287. [PMID: 29265636 PMCID: PMC5900894 DOI: 10.1002/cmdc.201700694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/02/2017] [Indexed: 12/21/2022]
Abstract
This study examines the effect of co‐administration of antimicrobial peptides and the synthetic glycolipid FP7, which is active in inhibiting inflammatory cytokine production caused by TLR4 activation and signaling. The co‐administration of two lipopolysaccharide (LPS)‐neutralizing peptides (a cecropin A–melittin hybrid peptide and a human cathelicidin) enhances by an order of magnitude the potency of FP7 in blocking the TLR4 signal. Interestingly, this is not an additional effect of LPS neutralization by peptides, because it also occurs if cells are stimulated by the plant lectin phytohemagglutinin, a non‐LPS TLR4 agonist. Our data suggest a dual mechanism of action for the peptides, not exclusively based on LPS binding and neutralization, but also on a direct effect on the LPS‐binding proteins of the TLR4 receptor complex. NMR experiments in solution show that peptide addition changes the aggregation state of FP7, promoting the formation of larger micelles. These results suggest a relationship between the aggregation state of lipid A‐like ligands and the type and intensity of the TLR4 response.
Collapse
Affiliation(s)
- Fabio A Facchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Helena Coelho
- Molecular Recognition & Host-Pathogen Interactions Programme, CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170, Derio, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain.,UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Stefania E Sestito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Sandra Delgado
- Molecular Recognition & Host-Pathogen Interactions Programme, CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170, Derio, Spain
| | - Alberto Minotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jesús Jiménez-Barbero
- Molecular Recognition & Host-Pathogen Interactions Programme, CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170, Derio, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009, Bilbao, Spain
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| |
Collapse
|
12
|
Zhang J, Xie L, Xu D, Yue S, Li Y, Guo X, Lai X. Targeting expression of antimicrobial peptide CAMA-Syn by adenovirus vector in macrophages inhibits the growth of intracellular bacteria. Gene 2017; 630:59-67. [DOI: 10.1016/j.gene.2017.07.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
|
13
|
Booth V, Warschawski DE, Santisteban NP, Laadhari M, Marcotte I. Recent progress on the application of 2H solid-state NMR to probe the interaction of antimicrobial peptides with intact bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1500-1511. [PMID: 28844739 DOI: 10.1016/j.bbapap.2017.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Discoveries relating to innate immunity and antimicrobial peptides (AMPs) granted Bruce Beutler and Jules Hoffmann a Nobel prize in medicine in 2011, and opened up new avenues for the development of therapies against infections, and even cancers. The mechanisms by which AMPs interact with, and ultimately disrupt, bacterial cell membranes is still, to a large extent, incompletely understood. Up until recently, this mechanism was studied using model lipid membranes that failed to reproduce the complexity of molecular interactions present in real cells comprising lipids but also membrane proteins, a cell wall containing peptidoglycan or lipopolysaccharides, and other molecules. In this review, we focus on recent attempts to study, at the molecular level, the interaction between cationic AMPs and intact bacteria, by 2H solid-state NMR. Specifically-labeled lipids allow us to focus on the interaction of AMPs with the heart of the bacterial membrane, and measure the lipid order and its variation upon interaction with various peptides. We will review the important parameters to consider in such a study, and summarize the results obtained in the past 5years on various peptides, in particular aurein 1.2, caerin 1.1, MSI-78 and CA(1-8)M(1-10). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Dror E Warschawski
- UMR 7099, CNRS - Université Paris Diderot, IBPC, 13 rue Pierre et Marie Curie, F-75005 Paris, France; Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal H3C 3P8, Canada
| | - Nury P Santisteban
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Marwa Laadhari
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal H3C 3P8, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal H3C 3P8, Canada.
| |
Collapse
|
14
|
Krauson AJ, Hall OM, Fuselier T, Starr CG, Kauffman WB, Wimley WC. Conformational Fine-Tuning of Pore-Forming Peptide Potency and Selectivity. J Am Chem Soc 2015; 137:16144-52. [PMID: 26632653 PMCID: PMC4697923 DOI: 10.1021/jacs.5b10595] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To better understand the sequence-structure-function relationships that control the activity and selectivity of membrane-permeabilizing peptides, we screened a peptide library, based on the archetypal pore-former melittin, for loss-of-function variants. This was accomplished by assaying library members for failure to cause leakage of entrapped contents from synthetic lipid vesicles at a peptide-to-lipid ratio of 1:20, 10-fold higher than the concentration at which melittin efficiently permeabilizes the same vesicles. Surprisingly, about one-third of the library members are inactive under these conditions. In the negative peptides, two changes of hydrophobic residues to glycine were especially abundant. We show that loss-of-function activity can be completely recapitulated by a single-residue change of the leucine at position 16 to glycine. Unlike the potently cytolytic melittin, the loss-of-function peptides, including the single-site variant, are essentially inactive against phosphatidylcholine vesicles and multiple types of eukaryotic cells. Loss of function is shown to result from a shift in the binding-folding equilibrium away from the active, bound, α-helical state toward the inactive, unbound, random-coil state. Accordingly, the addition of anionic lipids to synthetic lipid vesicles restored binding, α-helical secondary structure, and potent activity of the "negative" peptides. While nontoxic to mammalian cells, the single-site variant has potent bactericidal activity, consistent with the anionic nature of bacterial membranes. The results show that conformational fine-tuning of helical pore-forming peptides is a powerful way to modulate their activity and selectivity.
Collapse
Affiliation(s)
- Aram J Krauson
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| | - O Morgan Hall
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| | - Taylor Fuselier
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| | - Charles G Starr
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| | - W Berkeley Kauffman
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| |
Collapse
|
15
|
Shin A, Lee E, Jeon D, Park YG, Bang JK, Park YS, Shin SY, Kim Y. Peptoid-Substituted Hybrid Antimicrobial Peptide Derived from Papiliocin and Magainin 2 with Enhanced Bacterial Selectivity and Anti-inflammatory Activity. Biochemistry 2015; 54:3921-31. [PMID: 26053120 DOI: 10.1021/acs.biochem.5b00392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) are important components of the host innate immune system. Papiliocin is a 37-residue AMP purified from larvae of the swallowtail butterfly Papilio xuthus. Magainin 2 is a 23-residue AMP purified from the skin of the African clawed frog Xenopus laevis. We designed an 18-residue hybrid peptide (PapMA) incorporating N-terminal residues 1-8 of papiliocin and N-terminal residues 4-12 of magainin 2, joined by a proline (Pro) hinge. PapMA showed high antimicrobial activity but was cytotoxic to mammalian cells. To decrease PapMA cytotoxicity, we designed a lysine (Lys) peptoid analogue, PapMA-k, which retained high antimicrobial activity but displayed cytotoxicity lower than that of PapMA. Fluorescent dye leakage experiments and confocal microscopy showed that PapMA targeted bacterial cell membranes whereas PapMA-k penetrated bacterial cell membranes. Nuclear magnetic resonance experiments revealed that PapMA contained an N-terminal α-helix from Lys(3) to Lys(7) and a C-terminal α-helix from Lys(10) to Lys(17), with a Pro(9) hinge between them. PapMA-k also had two α-helical structures in the same region connected with a flexible hinge residue at Nlys(9), which existed in a dynamic equilibrium of cis and trans conformers. Using lipopolysaccharide-stimulated RAW264.7 macrophages, the anti-inflammatory activity of PapMA and PapMA-k was confirmed by inhibition of nitric oxide and inflammatory cytokine production. In addition, treatment with PapMA and PapMA-k decreased the level of ultraviolet irradiation-induced expression of genes encoding matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in human keratinocyte HaCaT cells. Thus, PapMA and PapMA-k are potent peptide antibiotics with antimicrobial and anti-inflammatory activity, with PapMA-k displaying enhanced bacterial selectivity.
Collapse
Affiliation(s)
- Areum Shin
- †Department of Bioscience and Biotechnology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Eunjung Lee
- †Department of Bioscience and Biotechnology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Dasom Jeon
- †Department of Bioscience and Biotechnology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Young-Guen Park
- †Department of Bioscience and Biotechnology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Jeong Kyu Bang
- ‡Division of Magnetic Resonance, Korea Basic Science Institute, 804-1 Yangchung-ri, Ochang, Chungbuk 363-883, Republic of Korea
| | - Yong-Sun Park
- §Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Song Yub Shin
- ∥Department of Bio-Materials, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Yangmee Kim
- †Department of Bioscience and Biotechnology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
16
|
Sarukhanyan E, Milano G, Roccatano D. Cosolvent, ions, and temperature effects on the structural properties of cecropin A-Magainin 2 hybrid peptide in solutions. Biopolymers 2014; 103:1-14. [DOI: 10.1002/bip.22529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Edita Sarukhanyan
- School of Engineering and Science, Jacobs University Bremen; Campus Ring 1 D-28759 Bremen Germany
- Dipartimento di Chimica e Biologia and NANOMATES; Research Centre for NANOMAterials and nanoTEchnology at Università di Salerno; I-84084 via Ponte don Melillo Fisciano (SA) Italy
| | - Giuseppe Milano
- Dipartimento di Chimica e Biologia and NANOMATES; Research Centre for NANOMAterials and nanoTEchnology at Università di Salerno; I-84084 via Ponte don Melillo Fisciano (SA) Italy
- IMAST Scarl-Technological District in Polymer and Composite Engineering; P.le Fermi 1 80055 Portici (NA) Italy
| | - Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen; Campus Ring 1 D-28759 Bremen Germany
| |
Collapse
|
17
|
Kia A, Darve E. The accuracy of the CHARMM22/CMAP and AMBER ff99SB force fields for modelling the antimicrobial peptide cecropin P1. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.781599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
O'Connor S, Szwej E, Nikodinovic-Runic J, O'Connor A, Byrne AT, Devocelle M, O'Donovan N, Gallagher WM, Babu R, Kenny ST, Zinn M, Zulian QR, O'Connor KE. The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials 2013; 34:2710-8. [PMID: 23343631 DOI: 10.1016/j.biomaterials.2012.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/22/2012] [Indexed: 01/25/2023]
Abstract
The biodegradable polymer medium chain length polyhydroxyalkanoate (mclPHA), produced by Pseudomonas putida CA-3, was depolymerised and the predominant monomer (R)-3-hydroxydecanoic acid (R10) purified. R10 was conjugated to a d-peptide DP18 and its derivatives. All peptides conjugated with R10 exhibited greater anti-cancer activity compared to the unconjugated peptides. Unconjugated and conjugated peptides were cytocidal for cancer cells. Conjugation of R10 to peptides was essential for enhanced anti-proliferation activity, as unconjugated mixes did not result in enhancement of anti-cancer activity. The conjugation of R10 resulted in more rapid uptake of peptides into HeLa and MiaPaCa cells compared to unconjugated peptide. Both unconjugated and R10 conjugated peptides localized to the mitochondria of HeLa and MiaPaCa cells and induced apoptosis. Peptide conjugated with a terminally hydroxylated decanoic acid (ω-hydroxydecanoic acid) exhibited 3.3 and 6.3 fold higher IC(50) values compared to R10 conjugated peptide indicating a role for the position of the hydroxyl moiety in enhancement of anti-cancer activity. Conjugation of decanoic acid (C10) to peptides resulted in similar or higher IC(50) values compared to R10 conjugates but C10 conjugates did not exhibit any cancer selectivity. Combination studies showed that R10DP18L exhibited synergy with cisplatin, gemcitabine, and taxotere with IC(50) values in the nanomolar range.
Collapse
Affiliation(s)
- Stephen O'Connor
- School of Biomolecular and Biomedical Sciences and Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mandal SM, Migliolo L, Das S, Mandal M, Franco OL, Hazra TK. Identification and characterization of a bactericidal and proapoptotic peptide from cycas revoluta seeds with DNA binding properties. J Cell Biochem 2011; 113:184-93. [DOI: 10.1002/jcb.23343] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Jeong KW, Shin SY, Kim JK, Kim YM. Analogues of Hybrid Antimicrobial Peptide, CAMA-P2, Designed with Improved Antimicrobial and Synergistic Activities. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.2577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Díaz MD, de la Torre BG, Fernández-Reyes M, Rivas L, Andreu D, Jiménez-Barbero J. Structural framework for the modulation of the activity of the hybrid antibiotic peptide cecropin A-melittin [CA(1-7)M(2-9)] by Nε-lysine trimethylation. Chembiochem 2011; 12:2177-83. [PMID: 21805551 DOI: 10.1002/cbic.201100269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Indexed: 11/09/2022]
Abstract
The 3D structures of six linear pentadecapeptides derived from the cecropin A-melittin antimicrobial peptide CA(1-7)M(2-9) [KWKLFKKIGAVLKVL-NH(2)] have been studied. These analogues are modified by ε-NH(2) trimethylation of one or more lysine residues and showed variation in both antimicrobial and cytotoxic activities, depending on the number and position of modified lysines. Since it is expected that these peptides will display a strong conformational ordering when in contact with membranes, we have investigated their structure on the basis of the data extracted from NMR experiments performed in membrane-mimetic environments. We show that inclusion of N(ε)-trimethylated lysine residues induces a certain degree of structural flexibility, while preserving to a variable extent a largely α-helical structure. In addition, peptide orientation with respect to SDS micelles has been explored by detection of the intensity changes of peptide NMR signals upon addition of a paramagnetic probe (Mn(2+) ions).
Collapse
Affiliation(s)
- M Dolores Díaz
- Departamento de Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Gupta M, Chauhan VS. De novo design of α,β-didehydrophenylalanine containing peptides: from models to applications. Biopolymers 2011; 95:161-73. [PMID: 21053260 DOI: 10.1002/bip.21561] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The de novo design of peptides and proteins has emerged as an approach for investigating protein structure and function. The success relies heavily on the ability to design relatively short peptides that can adopt stable secondary structures. To this end, substitution with α,β-dehydroamino acids, especially α,β-didehydrophenylalanine (ΔPhe or ΔF) has blossomed in manifold directions, providing a rich diversity of well-defined structural motifs. Introduction of α,β-didehydrophenylalanine induces β-bends in small and 3(10)-helices in longer peptide sequences. Most favorable conformation of ΔF residues are (φ,ψ) ∼(60°, 30°), (-60°, -30°), (-60°, 150°), and (60°, -150°). These features have been exploited in designing helix-turn-helix, helical bundle arrangements, and glycine zipper type super secondary structural motifs. The unusual capability of α,β-didehydrophenylalanine ring to form a variety of multicentered interactions (N-H…O, C-H…O, C-H…π, and N-H…π) suggests its possible exploitation for future de novo design of supramolecular structures. This work has now been extended to the de novo design of peptides with antibiotic, antifibrillization activity, etc. More recently, self-assembling properties of small dehydropeptides have been explored. This review focuses primarily on the structural and functional behavior of α,β-didehydrophenylalanine containing peptides.
Collapse
Affiliation(s)
- Madhvi Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | | |
Collapse
|
23
|
Istrate AN, Mantsyzov AB, Kozin SA, Polshakov VI. Optimization of the methods for small peptide solution structure determination by NMR spectroscopy. Mol Biol 2010. [DOI: 10.1134/s0026893310060130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
|
25
|
Huang W, Lu L, Shao X, Tang C, Zhao X. Anti-melanoma activity of hybrid peptide P18 and its mechanism of action. Biotechnol Lett 2009; 32:463-9. [PMID: 19957017 DOI: 10.1007/s10529-009-0175-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 02/05/2023]
Abstract
The anticancer properties and mechanism of action of a hybrid peptide -P18 were investigated. It had significant cytotoxic activity against human melanoma cells and low toxicity to normal NIH-3T3 cells. It also induced cell death via necrosis rather than classical apoptosis. The peptide targets the cells membrane, causing a sustained depolarization of transmembrane potential resulting in the cells swelling and bursting, thereby triggering cytolysis. P18 peptide initially binds to the melanoma cell membrane via electrostatic interaction, causing the cell membrane to rupture. The effect may be mediated by the amphiphilic alpha-helical structure of P18 peptide, coupled with changes in ion channels and an increase in plasma membrane permeability that eventually leads to melanoma cell death.
Collapse
Affiliation(s)
- Wenli Huang
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Sironi M, Ghitti M, Genoni A, Saladino G, Pieraccini S. DENPOL: A new program to determine electron densities of polypeptides using extremely localized molecular orbitals. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Porcelli F, Verardi R, Shi L, Henzler-Wildman KA, Ramamoorthy A, Veglia G. NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry 2008; 47:5565-72. [PMID: 18439024 PMCID: PMC5873590 DOI: 10.1021/bi702036s] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LL-37 is the only cathelicidin-derived polypeptide found in humans. Its eclectic function makes this peptide one of the most intriguing chemical defense agents, with crucial roles in moderating inflammation, promoting wound healing, and boosting the human immune system. LL-37 kills both prokaryotic and eukaryotic cells through physical interaction with cell membranes. In order to study its active conformation in membranes, we have reconstituted LL-37 into dodecylphosphocholine (DPC) micelles and determined its three-dimensional structure. We found that, under our experimental conditions, this peptide adopts a helix-break-helix conformation. Both the N- and C-termini are unstructured and solvent exposed. The N-terminal helical domain is more dynamic, while the C-terminal helix is more solvent protected and structured (high density of NOEs, slow H/D exchange). When it interacts with DPC, LL-37 is adsorbed on the surface of the micelle with the hydrophilic face exposed to the water phase and the hydrophobic face buried in the micelle hydrocarbon region. The break between the helices is positioned at K12 and is probably stabilized by a hydrophobic cluster formed by I13, F17, and I20 in addition to a salt bridge between K12 and E16. These results support the proposed nonpore carpet-like mechanism of action, in agreement with the solid-state NMR studies, and pave the way for understanding the function of the mature LL-37 at the atomic level.
Collapse
Affiliation(s)
| | | | | | | | - Ayyalusamy Ramamoorthy
- To whom correspondence should be addressed. G.V.: tel, (612) 625-0758; fax, (612) 625-2163, . A.R.: tel, (734) 647-6572;
| | - Gianluigi Veglia
- To whom correspondence should be addressed. G.V.: tel, (612) 625-0758; fax, (612) 625-2163, . A.R.: tel, (734) 647-6572;
| |
Collapse
|
29
|
Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:357-75. [PMID: 18078805 PMCID: PMC2238813 DOI: 10.1016/j.bbamem.2007.11.008] [Citation(s) in RCA: 911] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/23/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022]
Abstract
In spite of great advances in cancer therapy, there is considerable current interest in developing anticancer agents with a new mode of action because of the development of resistance by cancer cells towards current anticancer drugs. A growing number of studies have shown that some of the cationic antimicrobial peptides (AMPs), which are toxic to bacteria but not to normal mammalian cells, exhibit a broad spectrum of cytotoxic activity against cancer cells. Such studies have considerably enhanced the significance of AMPs, both synthetic and from natural sources, which have been of importance both for an increased understanding of the immune system and for their potential as clinical antibiotics. The electrostatic attraction between the negatively charged components of bacterial and cancer cells and the positively charged AMPs is believed to play a major role in the strong binding and selective disruption of bacterial and cancer cell membranes, respectively. However, it is unclear why some host defense peptides are able to kill cancer cells when others do not. In addition, it is not clear whether the molecular mechanism(s) underlying the antibacterial and anticancer activities of AMPs are the same or different. In this article, we review various studies on different AMPs that exhibit cytotoxic activity against cancer cells. The suitability of cancer cell-targeting AMPs as cancer therapeutics is also discussed.
Collapse
Affiliation(s)
- David W. Hoskin
- Departments of Pathology and Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
30
|
Mathur P, Jagannathan NR, Chauhan VS. Alpha,beta-dehydrophenylalanine containing cecropin-melittin hybrid peptides: conformation and activity. J Pept Sci 2007; 13:253-62. [PMID: 17394119 DOI: 10.1002/psc.841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synthesis and conformational studies of a cecropin-melittin hybrid pentadecapeptide CA(1-7)MEL(2-9), and its three alpha, beta-dehydrophenylalanine (DeltaPhe) containing analogs in water-TFE mixtures are described. DeltaPhe is placed at strategic positions in order to preserve the amphipathicity of the molecule. The wild type CAMEL0 and its three analogs, containing one, two and three DeltaPhe residues namely CAMELDeltaPhe1, CAMELDeltaPhe2 and CAMELDeltaPhe3 respectively were synthesized in solid phase and their conformation determined by CD and NMR. CAMELDeltaPhe2 and CAMELDeltaPhe3 peptides exhibit the presence of 3(10)-helix and beta-turns in the former and only turns in the latter. CAMELDeltaPhe1 peptide was found to have a largely extended conformation. Antibacterial and hemolytic activities of the peptides were also evaluated. CAMELDeltaPhe2 peptide is maximally potent against both Staphylococcus aureus ATCC 259230 and Escherichia coli ATCC 11303. CAMELDeltaPhe1 with a single DeltaPhe at the center shows minimal hemolysis.
Collapse
Affiliation(s)
- Puniti Mathur
- Department of N. M. R, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
31
|
Landon C, Meudal H, Boulanger N, Bulet P, Vovelle F. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation. Biopolymers 2006; 81:92-103. [PMID: 16170803 DOI: 10.1002/bip.20370] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stomoxyn and spinigerin belong to the class of linear cysteine-free insect antimicrobial peptides that kill a range of microorganisms, parasites, and some viruses but without any lytic activity against mammalian erythrocytes. Stomoxyn is localized in the gut epithelium of the nonvector stable fly that is sympatric with the trypanosome vector tsetse fly. Spinigerin is stored and secreted by hemocytes from the fungus-growing termite. The structure of synthetic stomoxyn and spinigerin in aqueous solution and in TFE/water mixtures was analyzed by CD and NMR spectroscopy combined with molecular modeling calculations. Stomoxyn and spinigerin adopt a flexible random coil structure in water while both assume a stable helical structure in the presence of TFE. In 50% TFE, the structure of stomoxyn is typical of cecropins, including an amphipathic helix at the N-terminus and a hydrophobic C-terminus with helical features that probably fold in a helical conformation at higher TFE concentration. In contrast to stomoxyn, spinigerin acquires very rapidly a helical conformation. In 10% TFE the helix is highly bent and the structure is poorly defined. In 50% TFE, the helical structure is well defined all along its sequence, and the slightly bent alpha-helix displays an amphiphilic character, as observed for magainin 2. The structural similarities between stomoxyn and cecropin A from Hyalophora cecropia and between spinigerin and magainin 2 suggest a similar mode of action on the bacterial membranes of both pairs of peptides. Our results also confirm that TFE induces helix formation and propagation for amino acids showing helical propensity in water but also enhances the helix propagation propensity of nonpolar beta-branched residues.
Collapse
Affiliation(s)
- Céline Landon
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, affiliated with the University of Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France
| | | | | | | | | |
Collapse
|
32
|
Sato H, Feix JB. Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1245-56. [PMID: 16697975 DOI: 10.1016/j.bbamem.2006.02.021] [Citation(s) in RCA: 396] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Antimicrobial peptides (AMPs) have received considerable interest as a source of new antibiotics with the potential for treatment of multiple-drug resistant infections. An important class of AMPs is composed of linear, cationic peptides that form amphipathic alpha-helices. Among the most potent of these are the cecropins and synthetic peptides that are hybrids of cecropin and the bee venom peptide, mellitin. Both cecropins and cecropin-mellitin hybrids exist in solution as unstructured monomers, folding into predominantly alpha-helical structures upon membrane binding with their long helical axis parallel to the bilayer surface. Studies using model membranes have shown that these peptides intercalate into the lipid bilayer just below the level of the phospholipid glycerol backbone in a location that requires expansion of the outer leaflet of the bilayer, and evidence from a variety of experimental approaches indicates that expansion and thinning of the bilayer are common characteristics during the early stages of antimicrobial peptide-membrane interactions. Subsequent disruption of the membrane permeability barrier may occur by a variety of mechanisms, leading ultimately to loss of cytoplasmic membrane integrity and cell death.
Collapse
Affiliation(s)
- Hiromi Sato
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
33
|
Powers JPS, Hancock REW. The relationship between peptide structure and antibacterial activity. Peptides 2003; 24:1681-91. [PMID: 15019199 DOI: 10.1016/j.peptides.2003.08.023] [Citation(s) in RCA: 653] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 08/08/2003] [Indexed: 10/26/2022]
Abstract
Cationic antimicrobial peptides are a class of small, positively charged peptides known for their broad-spectrum antimicrobial activity. These peptides have also been shown to possess anti-viral and anti-cancer activity and, most recently, the ability to modulate the innate immune response. To date, a large number of antimicrobial peptides have been chemically characterized, however, few high-resolution structures are available. Structure-activity studies of these peptides reveal two main requirements for antimicrobial activity, (1) a cationic charge and (2) an induced amphipathic conformation. In addition to peptide conformation, the role of membrane lipid composition, specifically non-bilayer lipids, on peptide activity will also be discussed.
Collapse
Affiliation(s)
- Jon-Paul S Powers
- Department of Microbiology and Immunology, University of British Columbia, #300-6174 University Boulevard, Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
34
|
Park K, Oh D, Shin SY, Hahm KS, Kim Y. Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy. Biochem Biophys Res Commun 2002; 290:204-12. [PMID: 11779154 DOI: 10.1006/bbrc.2001.6173] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PMAP-23 is a cathelicidin-derived antimicrobial peptide identified from porcine leukocytes. PMAP-23 was reported to show potent antimicrobial activity against Gram-negative and Gram-positive bacteria without hemolytic activity. To study the structure-antibiotic activity relationships of PMAP-23, two analogues by replacing Trp with Ala were synthesized and their tertiary structures bound to DPC micelles have been studied by NMR spectroscopy. PMAP-23 has two alpha-helices, one from Arg1 to Arg10 in the N-terminal region and the other from Phe18 to Arg23 in the C-terminal region. PMAP-1 (Trp(7)-->Ala) shows similar structure to PMAP-23, while PMAP-2 (Trp(21)-->Ala) has a random structure in the C-terminus. PMAP-2 was found to show less antibacterial and vesicle-disrupting activities than PMAP-23 and PMAP-1 [J. H. Kang, S. Y. Shin, S. Y. Jang, K. L. Kim, and K.-S. Hahm (1999) Biochem. Biophys. Res. Commun. 264, 281-286]. Trp(21) in PMAP-23 which induces an alpha-helical structure in the second alpha-helix is essential for the antibacterial activity of PMAP-23. Also, the fluorescence data proved that Trp(21) at the second alpha-helix is buried deep into the phospholipid in the membrane. Therefore, it implies that Trp(21) in the second alpha-helix at the C-terminus of PMAP-23 may play an important role on the interactions with the membrane and the flexible region including two proline residues may allow this alpha-helix to span the lipid bilayer.
Collapse
Affiliation(s)
- Kyoungsoo Park
- Department of Chemistry, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | |
Collapse
|
35
|
Chen Y, Mant CT, Hodges RS. Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic alpha-helix. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2002; 59:18-33. [PMID: 11906604 DOI: 10.1046/j.1397-002x.2001.10994.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe here a systematic study to determine the effect on secondary structure of d-amino acid substitutions in the nonpolar face of an amphipathic alpha-helical peptide. The helix-destabilizing ability of 19 d-amino acid residues in an amphipathic alpha-helical model peptide was evaluated by reversed-phase HPLC and CD spectroscopy. l-Amino acid and d-amino acid residues show a wide range of helix-destabilizing effects relative to Gly, as evidenced in melting temperatures (DeltaTm) ranging from -8.5 degrees C to 30.5 degrees C for the l-amino acids and -9.5 degrees C to 9.0 degrees C for the d-amino acids. Helix stereochemistry stability coefficients defined as the difference in Tm values for the l- and d-amino acid substitutions [(DeltaTm' = TmL and TmD)] ranging from 1 degrees C to 34.5 degrees C. HPLC retention times [DeltatR(XL-XD)] also had values ranging from -0.52 to 7.31 min at pH 7.0. The helix-destabilizing ability of a specific d-amino acid is highly dependent on its side-chain, with no clear relationship to the helical propensity of its corresponding l-enantiomers. In both CD and reversed-phase HPLC studies, d-amino acids with beta-branched side-chains destabilize alpha-helical structure to the greatest extent. A series of helix stability coefficients was subsequently determined, which should prove valuable both for protein structure-activity studies and de novo design of novel biologically active peptides.
Collapse
Affiliation(s)
- Y Chen
- Department of Biochemistry and the Canadian Institutes of Health Research, Group in Protein Structure and Function, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
36
|
Shin SY, Lee SH, Yang ST, Park EJ, Lee DG, Lee MK, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI. Antibacterial, antitumor and hemolytic activities of alpha-helical antibiotic peptide, P18 and its analogs. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 58:504-14. [PMID: 12005420 DOI: 10.1034/j.1399-3011.2001.00934.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The alpha-helical antibiotic peptide (P18: KWKLFKKIPKFLHLAKKF-NH2) designed from the cecropin A(1-8)-magainin 2 (1-12) hybrid displayed strong bactericidal and tumoricidal activity without inducing hemolysis. The effect of the Pro9 residue at central position of P18 on cell selectivity was investigated by Pro9 --> Leu or Pro9 --> Ser substitution. Either substitution markedly reduced the antibacterial activity of P18 and increased hemolysis, although it did not significantly affect cytotoxicity against human transformed tumor and normal fibroblast cells. These results suggest that a proline kink in alpha-helical antibiotic peptide P18 serves as a hinge region to facilitate ion channel formation on bacterial cell membranes and thus plays an important role in providing high selectivity against bacterial cells. Furthermore, to investigate the structure-antibiotic activity relationships of P18, a series of N- or C-terminal deletion and substitution analogs of P18 were synthesized. The C-terminal region of P18 was related to its antibiotic activity and alpha-helical conformation on lipid membranes rather than N-terminal one. Higher alpha-helicity of the peptides was involved in the hemolytic and antitumor activity rather than antibacterial activity. Except for [L9]-P18 and [S9]-P18, all the designed peptides containing a Pro residue showed potent antibacterial activity, although they did not induce a cytolytic effect against human erythrocyte and normal fibroblast cells at the concentration required to kill bacteria. In particular, P18 and some analogs (N-1, N-2, N-3, N-3L and N-4L) with potent bactericidal and tumoricidal activity and little or no normal cell toxicity may serve as an attractive candidate for the development of novel anti-infective or antitumor agents.
Collapse
Affiliation(s)
- S Y Shin
- Department of Life Science, Kwangju Institute of Science and Technology, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ernst WA, Thoma-Uszynski S, Teitelbaum R, Ko C, Hanson DA, Clayberger C, Krensky AM, Leippe M, Bloom BR, Ganz T, Modlin RL. Granulysin, a T cell product, kills bacteria by altering membrane permeability. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:7102-8. [PMID: 11120840 DOI: 10.4049/jimmunol.165.12.7102] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Granulysin, a protein located in the acidic granules of human NK cells and cytotoxic T cells, has antimicrobial activity against a broad spectrum of microbial pathogens. A predicted model generated from the nuclear magnetic resonance structure of a related protein, NK lysin, suggested that granulysin contains a four alpha helical bundle motif, with the alpha helices enriched for positively charged amino acids, including arginine and lysine residues. Denaturation of the polypeptide reduced the alpha helical content from 49 to 18% resulted in complete inhibition of antimicrobial activity. Chemical modification of the arginine, but not the lysine, residues also blocked the antimicrobial activity and interfered with the ability of granulysin to adhere to Escherichia coli and Mycobacterium tuberculosis. Granulysin increased the permeability of bacterial membranes, as judged by its ability to allow access of cytosolic ss-galactosidase to its impermeant substrate. By electron microscopy, granulysin triggered fluid accumulation in the periplasm of M. tuberculosis, consistent with osmotic perturbation. These data suggest that the ability of granulysin to kill microbial pathogens is dependent on direct interaction with the microbial cell wall and/or membrane, leading to increased permeability and lysis.
Collapse
Affiliation(s)
- W A Ernst
- Division of Dermatology, Division of Pulmonary Medicine, Department of Microbiology and Immunology, and Molecular Biology Institute, University of California School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Cytotoxic peptides are relatively small cationic molecules such as those found 1) in venoms, e.g., melittin in bee, scorpion toxins in scorpion, pilosulin 1 in jumper ant, and lycotoxin I and II in wolf spider; 2) in skin secretions (e.g., magainin I and II from Xenopus laevis, dermaseptin from frog, antimicrobials from carp) and cells of the immune system (e.g., insect, scorpion, and mammalian defensins and cryptdins); 3) as autocytotoxicity peptides, e.g., amylin cytotoxic to pancreatic beta-cells, prion peptide fragment 106-126 [PrP-(106-126)], and amyloid beta-protein (AbetaP) cytotoxic to neurons; and 4) as designed synthetic peptides based on the sequences and properties of naturally occurring cytotoxic peptides. The small cytotoxic peptides are composed of beta-sheets, e.g., mammalian defensins, AbetaP, amylin, and PrP-(106-126), whereas the larger cytotoxic peptides have several domains composed of both alpha-helices and beta-sheets stabilized by cysteine bonds, e.g., scorpion toxins, scorpion, and insect defensins. Electrophysiological and molecular biology techniques indicate that these structures modify cell membranes via 1) interaction with intrinsic ion transport proteins and/or 2) formation of ion channels. These two nonexclusive mechanisms of action lead to changes in second messenger systems that further augment the abnormal electrical activity and distortion of the signal transduction causing cell death.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Australian National University, Canberra City, Australian Capital Territory, 0200 Australia.
| | | |
Collapse
|
39
|
Shin SY, Kang JH, Jang SY, Kim Y, Kim KL, Hahm KS. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:209-18. [PMID: 10675500 DOI: 10.1016/s0005-2736(99)00210-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A 20-residue hybrid peptide (CA(1-8)-MA(1-12): KWKLFKKIGIGKFLHSAKKF-NH(2)) incorporating 1-8 residues of cecropin A (CA) and 1-12 residues of magainin 2 (MA) has potent antibiotic activity without hemolytic activity. In order to investigate the effects of the flexible hinge sequence, Gly-Ile-Gly of CA(1-8)-MA(1-12) (CA-MA) on antibiotic activity, CA-MA and its three analogues, CA-MA1, CA-MA2 and CA-MA3 were synthesized. The Gly-Ile-Gly sequence of CA-MA was deleted in CA-MA1 and replaced with Pro and Gly-Pro-Gly in CA-MA2 and CA-MA3, respectively. CA-MA1 and CA-MA3 caused a significant decrease in the bactericidal rate against Escherichia coli and Bacillus subtilis and the tumoricidal activity against four different tumor cells, and the PC/PS (4:1, w/w) vesicle-aggregating and disrupting activities. However, CA-MA2 showed a similar bactericidal rate and antitumor, vesicle-aggregating and disrupting activities, as compared with CA-MA. These results suggested that the flexibility or beta-turn induced by Gly-Ile-Gly or Pro in the central part of CA-MA may be important in the electrostatic interaction of the cationic short alpha-helical region in the N-terminus with the cell membrane surface and the hydrophobic interaction of amphipathic alpha-helical region in the C-terminus with the hydrophobic acyl chains in the cell membrane. CA-MA3 exhibited lower activity in antibacterial, antitumor, and vesicle-aggregating and disrupting activities than CA-MA and CA-MA2. This result suggested that the excessive beta-turn structure by Gly-Pro-Gly in CA-MA3 seems to interrupt the ion channel/pore formation on the lipid bilayer. It was concluded that the appropriate flexibility or beta-turn structure provided by the central hinge is responsible for the effective antibiotic activity of the antimicrobial peptides with the helix-hinge-helix structure.
Collapse
Affiliation(s)
- S Y Shin
- Peptide Engineering Research Unit, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yusong, Taejon, South Korea
| | | | | | | | | | | |
Collapse
|
40
|
Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1462:157-83. [PMID: 10590307 DOI: 10.1016/s0005-2736(99)00205-9] [Citation(s) in RCA: 371] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Linear peptide antibiotics have been isolated from amphibians, insects and humans and used as templates to design cheaper and more potent analogues for medical applications. Peptides such as cecropins or magainins are < or = 40 amino acids in length. Many of them have been prepared by solid-phase peptide synthesis with isotopic labels incorporated at selected sites. Structural analysis by solid-state NMR spectroscopy and other biophysical techniques indicates that these peptide antibiotics strongly interact with lipid membranes. In bilayer environments they exhibit amphipathic alpha-helical conformations and alignments of the helix axis parallel to the membrane surface. This contrasts the transmembrane orientations observed for alamethicin or gramicidin A. Models that have been proposed to explain the antibiotic and pore-forming activities of membrane-associated peptides, as well as other experimental results, include transmembrane helical bundles, wormholes, carpets, detergent-like effects or the in-plane diffusion of peptide-induced bilayer instabilities.
Collapse
Affiliation(s)
- B Bechinger
- Max Planck Institute for Biochemistry, Am Klopferspitz 18A, 82152, Martinsried, Germany.
| |
Collapse
|