1
|
Kou X, Ma Q, Liu Y, Khan MZ, Wu B, Chen W, Liu X, Wang C, Li Y. Exploring the Effect of Gastrointestinal Prevotella on Growth Performance Traits in Livestock Animals. Animals (Basel) 2024; 14:1965. [PMID: 38998077 PMCID: PMC11240335 DOI: 10.3390/ani14131965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Microorganisms in the rumen play a crucial role in determining the most efficient utilization rate of nutrients. Among these microorganisms, Prevotella stands out as one of the most representative bacteria within the rumen biological system. Prevotella is a common strict anaerobic bacterium that is found in the gastrointestinal tract of livestock. Prevotella plays a crucial role in breaking down and metabolizing complex nutrients like cellulose and protein during food digestion. Moreover, it is capable of working together with other bacteria in the body's digestive system. Several studies have shown a strong correlation between the abundance of Prevotella and livestock growth performance. This paper provides a comprehensive review of the current research on the function, mechanisms, and applications of Prevotella in the gastrointestinal tract. The insights provided in this review could serve as a theoretical basis for accurately classifying Prevotella, further investigating its effects and potential mechanisms on livestock growth performance, and exploring its practical applications.
Collapse
Affiliation(s)
- Xiyan Kou
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qingshan Ma
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yihong Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Boxian Wu
- Shandong Dong’e Black Donkey Husbandry Technology Co., Ltd., Liaocheng 252000, China
| | - Wenting Chen
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xiaotong Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yan Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
2
|
Sharma G, Garg N, Hasan S, Saffarini D, Shirodkar S. Fumarate and nitrite reduction by Prevotella nigrescens and Prevotella buccae isolated from Chronic Periodontitis patients. Microb Pathog 2023; 176:106022. [PMID: 36739100 DOI: 10.1016/j.micpath.2023.106022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study is an investigation of anaerobic nitrite and fumarate reduction/respiration abilities of two characterised Prevotella species namely Prevotella nigrescens (SS6B) and Prevotella buccae (GS6B) isolated from the periodontal pockets of chronic periodontitis (ChP) patients. METHODS Isolation and identification of the periodontal bacteria from 20 patients showing clinical symptoms of ChP. Characterisation of anaerobic nitrite and fumarate reduction was done in P. nigrescens (SS6B) and P. buccae (GS6B) using reduction assays, inhibition assays with use of specific inhibitors, growth assays and enzyme activity assays. Degenerate PCR was used to detect and amplify nitrite reductase (nrfA) and fumarate reductase (frdA) gene sequences in these Prevotella isolates. In addition, molecular and in silico analysis of the amplified anaerobic reductase gene sequences was performed using NCBI conserved domain analysis, Interpro database and MegaX. RESULTS We provided experimental evidence for presence of active nitrite and fumarate reductase activities through enzyme activity, reduction, inhibitor and growth assays. Moreover, we were able to detect presence of 505 bps nrfA gene fragment and 400 bps frdA gene fragment in these Prevotella spp. These fragments show similarity to multiheme ammonia forming cytochrome c nitrite reductases and fumarate reductases flavoprotein subunit, respectively. CONCLUSION Anaerobic nitrite and fumarate respiration abilities in P. nigrescens and P. buccae isolates appear to be important for detoxification process and growth, respectively.
Collapse
Affiliation(s)
- Geetika Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Nancy Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Daad Saffarini
- Department of Biological Sciences, University of Wisconsin Milwaukee, 3209 N. Maryland Ave Milwaukee, WI, 53211, USA
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India.
| |
Collapse
|
3
|
Betancur-Murillo CL, Aguilar-Marín SB, Jovel J. Prevotella: A Key Player in Ruminal Metabolism. Microorganisms 2022; 11:microorganisms11010001. [PMID: 36677293 PMCID: PMC9866204 DOI: 10.3390/microorganisms11010001] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Ruminants are foregut fermenters that have the remarkable ability of converting plant polymers that are indigestible to humans into assimilable comestibles like meat and milk, which are cornerstones of human nutrition. Ruminants establish a symbiotic relationship with their microbiome, and the latter is the workhorse of carbohydrate fermentation. On the other hand, during carbohydrate fermentation, synthesis of propionate sequesters H, thus reducing its availability for the ultimate production of methane (CH4) by methanogenic archaea. Biochemically, methane is the simplest alkane and represents a downturn in energetic efficiency in ruminants; environmentally, it constitutes a potent greenhouse gas that negatively affects climate change. Prevotella is a very versatile microbe capable of processing a wide range of proteins and polysaccharides, and one of its fermentation products is propionate, a trait that appears conspicuous in P. ruminicola strain 23. Since propionate, but not acetate or butyrate, constitutes an H sink, propionate-producing microbes have the potential to reduce methane production. Accordingly, numerous studies suggest that members of the genus Prevotella have the ability to divert the hydrogen flow in glycolysis away from methanogenesis and in favor of propionic acid production. Intended for a broad audience in microbiology, our review summarizes the biochemistry of carbohydrate fermentation and subsequently discusses the evidence supporting the essential role of Prevotella in lignocellulose processing and its association with reduced methane emissions. We hope this article will serve as an introduction to novice Prevotella researchers and as an update to others more conversant with the topic.
Collapse
Affiliation(s)
- Claudia Lorena Betancur-Murillo
- Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, UNAD, Bogotá 111511, Colombia
| | | | - Juan Jovel
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
- Correspondence:
| |
Collapse
|
4
|
Zhong Z, Wang C, Zhang H, Mi J, Liang JB, Liao X, Wu Y, Wang Y. Sodium butyrate reduces ammonia emissions through glutamate metabolic pathways in cecal microorganisms of laying hens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113299. [PMID: 35176673 DOI: 10.1016/j.ecoenv.2022.113299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Ammonia emission is an important problem that needs to be solved in laying hen industries. Sodium butyrate (SB) is considered to have potential for reducing ammonia production because of its ability to improve nitrogen metabolism. In this in vitro fermentation study, we presented a correlation analysis of the metatranscriptome and metaproteome of lay hen cecal microorganisms, in order to identify important proteins and pathways involved in ammonia production reduction due to sodium butyrate supplementation. The results showed that sodium butyrate supplement decreased the production of ammonia by 26.22% as compared with the non-sodium butyrate supplementation (CK) group. The SB group exhibited a lower concentration of ammonium nitrogen (NH4+-N) and a decreased pH. Sodium butyrate promoted the uric acid concentration and lowered the uricase activity in the fermentation broth of laying hens cecal content. Notably, the 'alanine, aspartate and glutamate metabolism' category was more abundant in the SB group. The addition of sodium butyrate increased the expression of glutamate dehydrogenase (GDH) gene in cecal microbiota (e.g., Ruminococcus sp. and Bacteroides sp.) in vitro. The metaproteome analysis results showed that the expression of GDH with NADPH as coenzyme (NADPH-GDH) was up-regulated in cecal microbiota by sodium butyrate supplement. Our results indicate that sodium butyrate can affect glutamate metabolism through regulating the expression of glutamate dehydrogenase in cecal microorganisms, thereby reducing ammonia production. This study reveals that glutamate dehydrogenase-mediated glutamate metabolism play a key role in ammonia emission reduction in laying hen and provide theoretical basis for further developing ammonia production reduction approach.
Collapse
Affiliation(s)
- Zhikang Zhong
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Chao Wang
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Huaidan Zhang
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Juan Boo Liang
- Institute of Tropical Agriculture, University Putra Malaysia, Serdang 43400, Malaysia
| | - Xindi Liao
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Roman-Garcia Y, Mitchell KE, Denton BL, Lee C, Socha MT, Wenner BA, Firkins JL. Conditions stimulating neutral detergent fiber degradation by dosing branched-chain volatile fatty acids. II: Relation with solid passage rate and pH on neutral detergent fiber degradation and microbial function in continuous culture. J Dairy Sci 2021; 104:9853-9867. [PMID: 34147227 DOI: 10.3168/jds.2021-20335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Abstract
To support improving genetic potential for increased milk production, intake of digestible carbohydrate must also increase to provide digestible energy and microbial protein synthesis. We hypothesized that the provision of exogenous branched-chain volatile fatty acids (BCVFA) would improve both neutral detergent fiber (NDF) degradability and efficiency of microbial protein synthesis. However, BCVFA should be more beneficial with increasing efficiency of bacterial protein synthesis associated with increasing passage rate (kp). We also hypothesized that decreasing pH would increase the need for isobutyrate over 2-methylbutyrate. To study these effects independent from other sources of variation in vivo, we evaluated continuous cultures without (control) versus with BCVFA (0 vs. 2 mmol/d each of isobutyrate, isovalerate, and 2-methylbutyrate), low versus high kp of the particulate phase (2.5 vs. 5.0%/h), and high versus low pH (ranging from 6.3 to 6.8 diurnally vs. 5.7 to 6.2) in a 2 × 2 × 2 factorial arrangement of treatments. Diets were 50% forage pellets and 50% grain pellets administered twice daily. Without an interaction, NDF degradability tended to increase from 29.7 to 35.0% for main effects of control compared with BCVFA treatments. Provision of BCVFA increased methanogenesis, presumably resulting from improved NDF degradability. Decreasing pH decreased methane production. Total volatile fatty acid (VFA) and acetate production were decreased with increasing kp, even though true organic matter degradability and bacterial nitrogen flow were not affected by treatments. Decreasing pH decreased acetate but increased propionate and valerate production, probably resulting from a shift in bacterial taxa and associated VFA stoichiometry. Decreasing pH decreased isobutyrate and isovalerate production while increasing 2-methylbutyrate production on a net basis (subtracting doses). Supplementing BCVFA improved NDF degradability in continuous cultures administered moderate (15.4%) crude protein diets (excluding urea in buffer) without major interactions with culture pH and kp.
Collapse
Affiliation(s)
- Y Roman-Garcia
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - K E Mitchell
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - B L Denton
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - C Lee
- Ohio Agricultural Research and Development Center, Wooster 44691
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | - B A Wenner
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210.
| |
Collapse
|
6
|
Trautmann A, Schleicher L, Deusch S, Gätgens J, Steuber J, Seifert J. Short-Chain Fatty Acids Modulate Metabolic Pathways and Membrane Lipids in Prevotella bryantii B 14. Proteomes 2020; 8:28. [PMID: 33081314 PMCID: PMC7709123 DOI: 10.3390/proteomes8040028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are bacterial products that are known to be used as energy sources in eukaryotic hosts, whereas their role in the metabolism of intestinal microbes is rarely explored. In the present study, acetic, propionic, butyric, isobutyric, valeric, and isovaleric acid, respectively, were added to a newly defined medium containing Prevotella bryantii B14 cells. After 8 h and 24 h, optical density, pH and SCFA concentrations were measured. Long-chain fatty acid (LCFA) profiles of the bacterial cells were analyzed via gas chromatography-time of flight-mass spectrometry (GC-ToF MS) and proteins were quantified using a mass spectrometry-based, label-free approach. Cultures supplemented with single SCFAs revealed different growth behavior. Structural features of the respective SCFAs were identified in the LCFA profiles, which suggests incorporation into the bacterial membranes. The proteomes of cultures supplemented with acetic and valeric acid differed by an increased abundance of outer membrane proteins. The proteome of the isovaleric acid supplementation showed an increase of proteins in the amino acid metabolism. Our findings indicate a possible interaction between SCFAs, the lipid membrane composition, the abundance of outer membrane proteins, and a modulation of branched chain amino acid biosynthesis by isovaleric acid.
Collapse
Affiliation(s)
- Andrej Trautmann
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.T.); (S.D.)
| | - Lena Schleicher
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany; (L.S.); (J.S.)
| | - Simon Deusch
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.T.); (S.D.)
| | - Jochem Gätgens
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Julia Steuber
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany; (L.S.); (J.S.)
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.T.); (S.D.)
| |
Collapse
|
7
|
Yeoh YK, Chan MH, Chen Z, Lam EWH, Wong PY, Ngai CM, Chan PKS, Hui M. The human oral cavity microbiota composition during acute tonsillitis: a cross-sectional survey. BMC Oral Health 2019; 19:275. [PMID: 31806002 PMCID: PMC6896734 DOI: 10.1186/s12903-019-0956-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Microbial culture-based investigations of inflamed tonsil tissues have previously indicated enrichment of several microorganisms such as Streptococcus, Staphylococcus and Prevotella. These taxa were also largely reflected in DNA sequencing studies performed using tissue material. In comparison, less is known about the response of the overall oral cavity microbiota to acute tonsillitis despite their role in human health and evidence showing that their compositions are correlated with diseases such as oral cancers. In addition, the influence of subject-specific circumstances including consumption of prescription antibiotics and smoking habits on the microbiology of acute tonsillitis is unknown. METHODS We collected oral rinse samples from 43 individuals admitted into hospital for acute tonsillitis and 165 non-disease volunteers recruited from the public, and compared their microbial community compositions using 16S rRNA gene sequencing. We assessed the impact of tonsillitis, whether subjects were prescribed antibiotics, the presence of oral abscesses and their smoking habits on community composition, and identified specific microbial taxa associated with tonsillitis and smoking. RESULTS Oral rinse community composition was primarily associated with disease state (tonsillitis vs non-tonsillitis) although its effect was subtle, followed by smoking habit. Multiple Prevotella taxa were enriched in tonsillitis subjects compared to the non-tonsillitis cohort, whereas the non-tonsillitis cohort primarily showed associations with several Neisseria sequence variants. The presence of oral abscesses did not significantly influence community composition. Antibiotics were prescribed to a subset of individuals in the tonsillitis cohort but we did not observe differences in community composition associated with antibiotics consumption. In both tonsillitis and non-tonsillitis cohorts, smoking habit was associated with enrichment of several Fusobacterium variants. CONCLUSIONS These findings show that the oral cavity microbial community is altered during acute tonsillitis, with a consistent enrichment of Prevotella during tonsillitis raising the possibility of targeted interventions. It also supports the possible link between smoking, Fusobacteria and oral cancers.
Collapse
Affiliation(s)
- Yun Kit Yeoh
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Hin Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Yan Chai Hospital, Hong Kong SAR, China
| | - Zigui Chen
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eddy W H Lam
- Department of Otorhinolaryngology, Head and Neck Surgery, Yan Chai Hospital, Hong Kong SAR, China
| | - Po Yee Wong
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Man Ngai
- Department of Otorhinolaryngology, Head and Neck Surgery, Yan Chai Hospital, Hong Kong SAR, China
| | - Paul K S Chan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mamie Hui
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Singh MP, Saxena M, Saimbi CS, Siddiqui MH, Roy R. Post-periodontal surgery propounds early repair salivary biomarkers by 1H NMR based metabolomics. Metabolomics 2019; 15:141. [PMID: 31612356 DOI: 10.1007/s11306-019-1593-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oral microflora is a well-orchestrated and acts as a sequential defense mechanism for any infection related to oral disease. Chronic periodontitis is a disease of a microbial challenge to symbiosis and homeostasis. Periodontal surgery is the most promising cure with repair process during periodontal regeneration. It has an encouraging outcome in terms of early recovery biomarkers. OBJECTIVE Saliva of periodontal surgery subjects with the chronic periodontitis have been evaluated by 1H NMR spectroscopy in search of possible early metabolic differences that could be obtained in order to see the eradication of disease which favours the symbiotic condition. METHOD The study employed 1H NMR spectroscopy on 176 human saliva samples in search of distinctive differences and their spectral data were further subjected to multivariate and quantitative analysis. RESULT The 1H NMR study of periodontal surgery samples shows clear demarcation and profound metabolic differences when compared with the diseased condition. Several metabolites such as lactate, ethanol, succinate, and glutamate were found to be of higher significance in periodontal surgery in contrast to chronic periodontitis subjects. The PLS-DA model of the studied group resulted in R2 of 0.83 and Q2 of 0.70. CONCLUSION Significant metabolites could be considered as early repair markers for chronic periodontitis disease as they are being restored to achieve symbiosis. The study, therefore, concluded the early recovery process of the diseased subjects with the restoration of possible metabolomic profile similar to the healthy controls.
Collapse
Affiliation(s)
- Manvendra Pratap Singh
- Centre of Biomedical Research, formerly Centre of Biomedical Magnetic Resonance (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Rae Bareli Road, Lucknow, 226014, India
| | - Mona Saxena
- Department of Periodontics, Career Post Graduate Institute of Dental Sciences and Hospital, Lucknow, 226020, India
- Department of Biochemistry, Saraswati Medical College, Unnao, India
| | - Charanjit S Saimbi
- Department of Periodontics, Career Post Graduate Institute of Dental Sciences and Hospital, Lucknow, 226020, India.
| | | | - Raja Roy
- Centre of Biomedical Research, formerly Centre of Biomedical Magnetic Resonance (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Rae Bareli Road, Lucknow, 226014, India.
| |
Collapse
|
9
|
Occurrence and Function of the Na +-Translocating NADH:Quinone Oxidoreductase in Prevotella spp. Microorganisms 2019; 7:microorganisms7050117. [PMID: 31035603 PMCID: PMC6560451 DOI: 10.3390/microorganisms7050117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
Strictly anaerobic Prevotella spp. are characterized by their vast metabolic potential. As members of the Prevotellaceae family, they represent the most abundant organisms in the rumen and are typically found in monogastrics such as pigs and humans. Within their largely anoxic habitats, these bacteria are considered to rely primarily on fermentation for energy conservation. A recent study of the rumen microbiome identified multiple subunits of the Na+-translocating NADH:quinone oxidoreductase (NQR) belonging to different Prevotella spp. Commonly, the NQR is associated with biochemical energy generation by respiration. The existence of this Na+ pump in Prevotella spp. may indicate an important role for electrochemical Na+ gradients in their anaerobic metabolism. However, detailed information about the potential activity of the NQR in Prevotella spp. is not available. Here, the presence of a functioning NQR in the strictly anaerobic model organism P. bryantii B14 was verified by conducting mass spectrometric, biochemical, and kinetic experiments. Our findings propose that P. bryantii B14 and other Prevotella spp. retrieved from the rumen operate a respiratory NQR together with a fumarate reductase which suggests that these ruminal bacteria utilize a sodium motive force generated during respiratory NADH:fumarate oxidoreduction.
Collapse
|
10
|
Zhang Y, Zhen M, Zhan Y, Song Y, Zhang Q, Wang J. Population-Genomic Insights into Variation in Prevotella intermedia and Prevotella nigrescens Isolates and Its Association with Periodontal Disease. Front Cell Infect Microbiol 2017; 7:409. [PMID: 28983469 PMCID: PMC5613308 DOI: 10.3389/fcimb.2017.00409] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
High-throughput sequencing has helped to reveal the close relationship between Prevotella and periodontal disease, but the roles of subspecies diversity and genomic variation within this genus in periodontal diseases still need to be investigated. We performed a comparative genome analysis of 48 Prevotella intermedia and Prevotella nigrescens isolates that from the same cohort of subjects to identify the main drivers of their pathogenicity and adaptation to different environments. The comparisons were done between two species and between disease and health based on pooled sequences. The results showed that both P. intermedia and P. nigrescens have highly dynamic genomes and can take up various exogenous factors through horizontal gene transfer. The major differences between disease-derived and health-derived samples of P. intermedia and P. nigrescens were factors related to genome modification and recombination, indicating that the Prevotella isolates from disease sites may be more capable of genomic reconstruction. We also identified genetic elements specific to each sample, and found that disease groups had more unique virulence factors related to capsule and lipopolysaccharide synthesis, secretion systems, proteinases, and toxins, suggesting that strains from disease sites may have more specific virulence, particularly for P. intermedia. The differentially represented pathways between samples from disease and health were related to energy metabolism, carbohydrate and lipid metabolism, and amino acid metabolism, consistent with data from the whole subgingival microbiome in periodontal disease and health. Disease-derived samples had gained or lost several metabolic genes compared to healthy-derived samples, which could be linked with the difference in virulence performance between diseased and healthy sample groups. Our findings suggest that P. intermedia and P. nigrescens may serve as “crucial substances” in subgingival plaque, which may reflect changes in microbial and environmental dynamics in subgingival microbial ecosystems. This provides insight into the potential of P. intermedia and P. nigrescens as new predictive biomarkers and targets for effective interventions in periodontal disease.
Collapse
Affiliation(s)
- Yifei Zhang
- Central Laboratory, Peking University School and Hospital of StomatologyBeijing, China
| | - Min Zhen
- Department of Periodontology, Peking University School and Hospital of StomatologyBeijing, China
| | - Yalin Zhan
- Department of Periodontology, Peking University School and Hospital of StomatologyBeijing, China
| | - Yeqing Song
- Central Laboratory, Peking University School and Hospital of StomatologyBeijing, China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of StomatologyBeijing, China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
11
|
Investigation into the stability and culturability of Chinese enterotypes. Sci Rep 2017; 7:7947. [PMID: 28801639 PMCID: PMC5554170 DOI: 10.1038/s41598-017-08478-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
Although many gut microbial enterotypes have been reported in Europe, Africa and the U.S., their effects on human health are still not yet clear. Culturing gut microbial enterotypes in vitro will be helpful to study their effects and applications. Here, fecal samples from 13 healthy Chinese volunteers were collected and subjected to next-generation sequencing. The results showed that seven of these samples belong to the Bacteroides enterotype and another six to the Prevotella enterotype. Stability of these Chinese gut microbial enterotypes was also evaluated. Results showed that most of the tested volunteer gut microbiota to be very stable. For one volunteer, the bacterial community returned to the state it was in before intestinal lavage and antibiotics treatment after four months. XP medium was found effective for simulating the Bacteroides enterotype independent of the original gut microbial community in an in vitro chemostat culture system. Although, the Prevotella enterotype was not very well simulated in vitro, different culture elements selectively enriched different gut bacteria. Pectin and xylan were found to be related to the enrichment of the genera Bacteroides, Sutterella, and Flavonifractor in this chemostat culture system.
Collapse
|
12
|
Nascimento MM, Zaura E, Mira A, Takahashi N, Ten Cate JM. Second Era of OMICS in Caries Research: Moving Past the Phase of Disillusionment. J Dent Res 2017; 96:733-740. [PMID: 28384412 DOI: 10.1177/0022034517701902] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Novel approaches using OMICS techniques enable a collective assessment of multiple related biological units, including genes, gene expression, proteins, and metabolites. In the past decade, next-generation sequencing ( NGS) technologies were improved by longer sequence reads and the development of genome databases and user-friendly pipelines for data analysis, all accessible at lower cost. This has generated an outburst of high-throughput data. The application of OMICS has provided more depth to existing hypotheses as well as new insights in the etiology of dental caries. For example, the determination of complete bacterial microbiomes of oral samples rather than selected species, together with oral metatranscriptome and metabolome analyses, supports the viewpoint of dysbiosis of the supragingival biofilms. In addition, metabolome studies have been instrumental in disclosing the contributions of major pathways for central carbon and amino acid metabolisms to biofilm pH homeostasis. New, often noncultured, oral streptococci have been identified, and their phenotypic characterization has revealed candidates for probiotic therapy. Although findings from OMICS research have been greatly informative, problems related to study design, data quality, integration, and reproducibility still need to be addressed. Also, the emergence and continuous updates of these computationally demanding technologies require expertise in advanced bioinformatics for reliable interpretation of data. Despite the obstacles cited above, OMICS research is expected to encourage the discovery of novel caries biomarkers and the development of next-generation diagnostics and therapies for caries control. These observations apply equally to the study of other oral diseases.
Collapse
Affiliation(s)
- M M Nascimento
- 1 Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - E Zaura
- 2 Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - A Mira
- 3 Department of Health & Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - N Takahashi
- 4 Department of Oral Biology, Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - J M Ten Cate
- 5 Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| |
Collapse
|
13
|
Wadsworth WD, Argiento R, Guindani M, Galloway-Pena J, Shelburne SA, Vannucci M. An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data. BMC Bioinformatics 2017; 18:94. [PMID: 28178947 PMCID: PMC5299727 DOI: 10.1186/s12859-017-1516-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Background The Human Microbiome has been variously associated with the immune-regulatory mechanisms involved in the prevention or development of many non-infectious human diseases such as autoimmunity, allergy and cancer. Integrative approaches which aim at associating the composition of the human microbiome with other available information, such as clinical covariates and environmental predictors, are paramount to develop a more complete understanding of the role of microbiome in disease development. Results In this manuscript, we propose a Bayesian Dirichlet-Multinomial regression model which uses spike-and-slab priors for the selection of significant associations between a set of available covariates and taxa from a microbiome abundance table. The approach allows straightforward incorporation of the covariates through a log-linear regression parametrization of the parameters of the Dirichlet-Multinomial likelihood. Inference is conducted through a Markov Chain Monte Carlo algorithm, and selection of the significant covariates is based upon the assessment of posterior probabilities of inclusions and the thresholding of the Bayesian false discovery rate. We design a simulation study to evaluate the performance of the proposed method, and then apply our model on a publicly available dataset obtained from the Human Microbiome Project which associates taxa abundances with KEGG orthology pathways. The method is implemented in specifically developed R code, which has been made publicly available. Conclusions Our method compares favorably in simulations to several recently proposed approaches for similarly structured data, in terms of increased accuracy and reduced false positive as well as false negative rates. In the application to the data from the Human Microbiome Project, a close evaluation of the biological significance of our findings confirms existing associations in the literature. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1516-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Raffaele Argiento
- ESOMAS Department, University of Torino and Collegio Carlo Alberto, Torino, Italy
| | - Michele Guindani
- Department of Statistics, University of California, Irvine, CA, USA
| | - Jessica Galloway-Pena
- Department of Infectious Disease, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Samuel A Shelburne
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, TX, USA.
| |
Collapse
|
14
|
Washio J, Ogawa T, Suzuki K, Tsukiboshi Y, Watanabe M, Takahashi N. Amino acid composition and amino acid-metabolic network in supragingival plaque. Biomed Res 2017; 37:251-7. [PMID: 27545001 DOI: 10.2220/biomedres.37.251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dental plaque metabolizes both carbohydrates and amino acids. The former can be degraded to acids mainly, while the latter can be degraded to various metabolites, including ammonia, acids and amines, and associated with acid-neutralization, oral malodor and tissue inflammation. However, amino acid metabolism in dental plaque is still unclear. This study aimed to elucidate what kinds of amino acids are available as metabolic substrates and how the amino acids are metabolized in supragingival plaque, by a metabolome analysis. Amino acids and the related metabolites in supragingival plaque were extracted and quantified comprehensively by CE-TOFMS. Plaque samples were also incubated with amino acids, and the amounts of ammonia and amino acid-related metabolites were measured. The concentration of glutamate was the highest in supragingival plaque, while the ammonia-production was the highest from glutamine. The obtained metabolome profile revealed that amino acids are degraded through various metabolic pathways, including deamination, decarboxylation and transamination and that these metabolic systems may link each other, as well as with carbohydrate metabolic pathways in dental plaque ecosystem. Moreover, glutamine and glutamate might be the main source of ammonia production, as well as arginine, and contribute to pH-homeostasis and counteraction to acid-induced demineralization in supragingival plaque.
Collapse
|
15
|
Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 2017; 250:29-44. [PMID: 28108235 DOI: 10.1016/j.jbiotec.2017.01.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Infections induced by oral biofilms include caries, as well as periodontal, and peri-implant disease, and may influence quality of life, systemic health, and expenditure. As bacterial biofilms are highly resistant and resilient to conventional antibacterial therapy, it has been difficult to combat these infections. An innovative alternative to the biocontrol of oral biofilms could be to use bacteriophages or phages, the viruses of bacteria, which are specific, non-toxic, self-proliferating, and can penetrate into biofilms. Phages for Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus spp., Neisseria spp., Streptococcus spp., and Veillonella spp. have been isolated and characterised. Recombinant phage enzymes (lysins) have been shown to lyse A. naeslundii and Streptococcus spp. However, only a tiny fraction of available phages and their lysins have been explored so far. The unique properties of phages and their lysins make them promising but challenging antimicrobials. The genetics and biology of phages have to be further explored in order to determine the most effective way of applying them. Studying the effect of phages and lysins on multispecies biofilms should pave the way for microbiota engineering and microbiota-based therapy.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| |
Collapse
|
16
|
Rubino F, Carberry C, M Waters S, Kenny D, McCabe MS, Creevey CJ. Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome. ISME JOURNAL 2017; 11:932-944. [PMID: 28085156 PMCID: PMC5364355 DOI: 10.1038/ismej.2016.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/28/2016] [Accepted: 09/21/2016] [Indexed: 01/16/2023]
Abstract
Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation.
Collapse
Affiliation(s)
- Francesco Rubino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK.,Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Ciara Carberry
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland.,School of Agriculture, University College Dublin, Dublin, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - David Kenny
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Matthew S McCabe
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Christopher J Creevey
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
17
|
Takahashi N, Nyvad B. Ecological Hypothesis of Dentin and Root Caries. Caries Res 2016; 50:422-31. [PMID: 27458979 DOI: 10.1159/000447309] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Recent advances regarding the caries process indicate that ecological phenomena induced by bacterial acid production tilt the de- and remineralization balance of the dental hard tissues towards demineralization through bacterial acid-induced adaptation and selection within the microbiota - from the dynamic stability stage to the aciduric stage via the acidogenic stage [Takahashi and Nyvad, 2008]. Dentin and root caries can also be partly explained by this hypothesis; however, the fact that these tissues contain a considerable amount of organic material suggests that protein degradation is involved in caries formation. In this review, we compiled relevant histological, biochemical, and microbiological information about dentin/root caries and refined the hypothesis by adding degradation of the organic matrix (the proteolytic stage) to the abovementioned stages. Bacterial acidification not only induces demineralization and exposure of the organic matrix in dentin/root surfaces but also activation of dentin-embedded and salivary matrix metalloproteinases and cathepsins. These phenomena initiate degradation of the demineralized organic matrix in dentin/root surfaces. While a bacterial involvement has never been confirmed in the initial degradation of organic material, the detection of proteolytic/amino acid-degrading bacteria and bacterial metabolites in dentin and root caries suggests a bacterial digestion and metabolism of partly degraded matrix. Moreover, bacterial metabolites might induce pulpitis as an inflammatory/immunomodulatory factor. Root and dentin surfaces are always at risk of becoming demineralized in the oral cavity, and exposed organic materials can be degraded by host-derived proteases contained in saliva and dentin itself. New approaches to the prevention and treatment of root/dentin caries are required.
Collapse
Affiliation(s)
- Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | |
Collapse
|
18
|
Tanda N, Hoshikawa Y, Ishida N, Sato T, Takahashi N, Hosokawa R, Koseki T. Oral malodorous gases and oral microbiota: From halitosis to carcinogenesis. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Abstract
Recent advances in molecular biology have facilitated analyses of the oral microbiome ("Who are they?"); however, its functions (e.g., metabolic activities) are poorly understood ("What are they doing?"). This review aims to summarize our current understanding of the metabolism of the oral microbiome. Saccharolytic bacteria-including Streptococcus, Actinomyces, and Lactobacillus species-degrade carbohydrates into organic acids via the Embden-Meyerhof-Parnas pathway and several of its branch pathways, resulting in dental caries, while alkalization and acid neutralization via the arginine deiminase system, urease, and so on, counteract acidification. Proteolytic/amino acid-degrading bacteria, including Prevotella and Porphyromonas species, break down proteins and peptides into amino acids and degrade them further via specific pathways to produce short-chain fatty acids, ammonia, sulfur compounds, and indole/skatole, which act as virulent and modifying factors in periodontitis and oral malodor. Furthermore, it is suggested that ethanol-derived acetaldehyde can cause oral cancer, while nitrate-derived nitrite can aid caries prevention and systemic health. Microbial metabolic activity is influenced by the oral environment; however, it can also modify the oral environment, enhance the pathogenicity of bacteria, and induce microbial selection to create more pathogenic microbiome. Taking a metabolomic approach to analyzing the oral microbiome is crucial to improving our understanding of the functions of the oral microbiome.
Collapse
Affiliation(s)
- N Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
20
|
Real-time monitoring of the metabolic activity of periodontopathic bacteria. J Microbiol Methods 2015; 115:22-6. [PMID: 25986950 DOI: 10.1016/j.mimet.2015.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 11/20/2022]
Abstract
Bacterial metabolic activity is associated with the onset and progression mechanisms of oral biofilm-mediated disease; however, at present no method to monitor bacterial metabolism exists, especially for periodontopathic bacteria. Therefore, we aimed to establish a novel method for monitoring the metabolic activity of periodontopathic bacteria, Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn), as well as Streptococcus mutans (Sm) for comparison. The method is based on the dye resazurin, which is converted to the fluorescent molecule resorufin by reducing molecules derived from bacterial metabolism. Additionally, the effects of antimicrobial substances on bacterial metabolic activity were evaluated using this method. When bacterial suspensions were incubated with tryptone, glutamate, aspartate or glucose in the presence of resazurin, the fluorescence intensity increased over time by these bacterial metabolic reactions, indicating that this method can be used to monitor the metabolic activity of periodontopathic bacteria. Chlorhexidine showed the 50% inhibitory concentration (IC50) of 15-49 μg/ml for tryptone metabolism by Pg, Pi, and Fn, and 7.1-18 μg/ml for glucose metabolism by Pi and Sm. The IC50s for cetylpyridinium chloride and sodium dodecyl sulfate were 0.8-2.1 and 28-44 μg/ml, respectively for all bacteria examined. Fluoride had no effect except the IC50 of 640 μg/ml for Sm, while minocycline hydrochloride had no effect on any of the bacteria. The present study established the method for real-time monitoring of the metabolic activity of periodontopathic bacteria, and the method might be useful for evaluating the effects of antimicrobial substances on the bacterial metabolic activity.
Collapse
|
21
|
Ruan Y, Shen L, Zou Y, Qi Z, Yin J, Jiang J, Guo L, He L, Chen Z, Tang Z, Qin S. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation. BMC Genomics 2015; 16:122. [PMID: 25765460 PMCID: PMC4349605 DOI: 10.1186/s12864-015-1272-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/22/2015] [Indexed: 01/10/2023] Open
Abstract
Background Many species of the genus Prevotella are pathogens that cause oral diseases. Prevotella intermedia is known to cause various oral disorders e.g. periodontal disease, periapical periodontitis and noma as well as colonize in the respiratory tract and be associated with cystic fibrosis and chronic bronchitis. It is of clinical significance to identify the main drive of its various adaptation and pathogenicity. In order to explore the intra-species genetic differences among strains of Prevotella intermedia of different niches, we isolated a strain Prevotella intermedia ZT from the infected root canal of a Chinese patient with periapical periodontitis and gained a draft genome sequence. We annotated the genome and compared it with the genomes of other taxa in the genus Prevotella. Results The raw data set, consisting of approximately 65X-coverage reads, was trimmed and assembled into contigs from which 2165 ORFs were predicted. The comparison of the Prevotella intermedia ZT genome sequence with the published genome sequence of Prevotella intermedia 17 and Prevotella intermedia ATCC25611 revealed that ~14% of the genes were strain-specific. The Preveotella intermedia strains share a set of conserved genes contributing to its adaptation and pathogenic and possess strain-specific genes especially those involved in adhesion and secreting bacteriocin. The Prevotella intermedia ZT shares similar gene content with other taxa of genus Prevotella. The genomes of the genus Prevotella is highly dynamic with relative conserved parts: on average, about half of the genes in one Prevotella genome were not included in another genome of the different Prevotella species. The degree of conservation varied with different pathways: the ability of amino acid biosynthesis varied greatly with species but the pathway of cell wall components biosynthesis were nearly constant. Phylogenetic tree shows that the taxa from different niches are scarcely distributed among clades. Conclusions Prevotella intermedia ZT belongs to a genus marked with highly dynamic genomes. The specific genes of Prevotella intermedia indicate that adhesion, competing with surrounding microbes and horizontal gene transfer are the main drive of the evolution of Prevotella intermedia. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1272-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Yan Zou
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Zhengnan Qi
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jun Yin
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
| | - Liang Guo
- The Fourth Hospital of Jinan City; Taishan Medical College, Jinan, 250031, China.
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Zijiang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| | - Zisheng Tang
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| |
Collapse
|
22
|
Shankar V, Homer D, Rigsbee L, Khamis HJ, Michail S, Raymer M, Reo NV, Paliy O. The networks of human gut microbe-metabolite associations are different between health and irritable bowel syndrome. ISME JOURNAL 2015; 9:1899-903. [PMID: 25635640 DOI: 10.1038/ismej.2014.258] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/21/2014] [Accepted: 11/30/2014] [Indexed: 02/08/2023]
Abstract
The goal of this study was to determine if fecal metabolite and microbiota profiles can serve as biomarkers of human intestinal diseases, and to uncover possible gut microbe-metabolite associations. We employed proton nuclear magnetic resonance to measure fecal metabolites of healthy children and those diagnosed with diarrhea-predominant irritable bowel syndrome (IBS-D). Metabolite levels were associated with fecal microbial abundances. Using several ordination techniques, healthy and irritable bowel syndrome (IBS) samples could be distinguished based on the metabolite profiles of fecal samples, and such partitioning was congruent with the microbiota-based sample separation. Measurements of individual metabolites indicated that the intestinal environment in IBS-D was characterized by increased proteolysis, incomplete anaerobic fermentation and possible change in methane production. By correlating metabolite levels with abundances of microbial genera, a number of statistically significant metabolite-genus associations were detected in stools of healthy children. No such associations were evident for IBS children. This finding complemented the previously observed reduction in the number of microbe-microbe associations in the distal gut of the same cohort of IBS-D children.
Collapse
Affiliation(s)
- Vijay Shankar
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Daniel Homer
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Laura Rigsbee
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Harry J Khamis
- Department of Mathematics and Statistics, Wright State University, Dayton, OH, USA
| | - Sonia Michail
- Department of Pediatrics, Wright State University, Dayton, OH, USA
| | - Michael Raymer
- Department of Computer Sciences, Wright State University, Dayton, OH, USA
| | - Nicholas V Reo
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
23
|
Somanah J, Bourdon E, Bahorun T, Aruoma OI. The inhibitory effect of a fermented papaya preparation on growth, hydrophobicity, and acid production of Streptococcus mutans, Streptococcus mitis, and Lactobacillus acidophilus: its implications in oral health improvement of diabetics. Food Sci Nutr 2013; 1:416-21. [PMID: 24804050 PMCID: PMC3951536 DOI: 10.1002/fsn3.55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 12/12/2022] Open
Abstract
Fermented papaya preparation (FPP) is a "natural health product." The high incidence of dental caries, gingivitis, periodontitis, and oral microbial infection cases among patients with diabetes mellitus continues to prevail. The potential role of FPP against common oral microbiota (Streptococcus mutans, Streptococcus mitis, and Lactobacillus acidophilus) isolated from the human oral cavity was investigated using in vitro simulation models of dental plaque and caries. FPP showed an inhibitory effect against the growth (at 0.05 mg/mL: S. mutans: -6.9%; S. mitis: -4.47%, P < 0.05), acid production (at 0.05 mg/mL: S. mutans: +6.38%; L. acidophilus: +2.25%), and hydrophobicity (at 50 mg/mL: S. mutans: 1.01%, P < 0.01; S. mitis: 7.66%, P < 0.05) of tested microbiota. The results of this study suggest that low doses of FPP may be a suitable complement to good oral hygiene practice for the effective prevention of dental caries, plaque, and gingivitis. The functional application of FPP as a constituent of a balanced diet and active lifestyle can make a positive contribution to the oral health status and well-being of patients with diabetes.
Collapse
Affiliation(s)
- Jhoti Somanah
- ANDI Center for Biomedical and Biomaterials Research, University of Mauritius Réduit, MSIRI Building, Mauritius, Republic of Mauritius
| | - Emmanuel Bourdon
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, Université de La Réunion Plateforme CYROI, Saint Denis, France
| | - Theeshan Bahorun
- ANDI Center for Biomedical and Biomaterials Research, University of Mauritius Réduit, MSIRI Building, Mauritius, Republic of Mauritius
| | - Okezie I Aruoma
- School of Pharmacy, American University of Health Sciences Signal Hill, California 90755, USA
| |
Collapse
|
24
|
Castrillon CA, Hincapie JP, Yepes FL, Roldan N, Moreno SM, Contreras A, Botero JE. Occurrence of red complex microorganisms and Aggregatibacter actinomycetemcomitans in patients with diabetes. ACTA ACUST UNITED AC 2013; 6:25-31. [PMID: 23857867 DOI: 10.1111/jicd.12051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Abstract
AIM The aim of the present study was to analyze the occurrence of Porphyromonas gingivalis (P. gingivalis), Tannerella forsythia (T. forsythia), Treponema denticola (T. denticola), and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in patients with diabetes. METHODS Periodontal and diabetic parameters and subgingival biofilm samples were obtained from 60 patients with diabetes and 62 patients without diabetes. By using polymerase chain reaction, the prevalence of red complex microorganisms (P. gingivalis, T. forsythia, and T. denticola) and A. actinomycetemcomitans were determined. Descriptive and non-parametric statistical analyses between groups were performed (Kruskal-Wallis, Mann-Whitney U-test, and Fisher's exact test). RESULTS Patients with diabetes presented significantly higher periodontal attachment loss levels compared to patients without diabetes. Red complex microorganisms were detected in lower frequencies in patients with diabetes. The detection of A. actinomycetemcomitans was higher in patients with diabetes and periodontitis compared to systemically-healthy patients without periodontitis (P < 0.05). P. gingivalis was associated with periodontitis in non-diabetic patients (P < 0.05), whereas A. actinomycetemcomitans was associated with periodontitis in diabetic patients (P < 0.05). CONCLUSIONS The findings of the present study indicate that there might be differences in the subgingival microbiota between diabetic and non-diabetic patients. In addition, P. gingivalis and A. actinomycetemcomitans were associated with periodontitis in patients without diabetes and patients with diabetes, respectively.
Collapse
Affiliation(s)
- Cesar A Castrillon
- Department of Periodontics, Faculty of Dentistry, Universidad de Antioquia, Medellin, Colombia
| | | | | | | | | | | | | |
Collapse
|
25
|
Fuse H, Fukamachi H, Inoue M, Igarashi T. Identification and functional analysis of the gene cluster for fructan utilization in Prevotella intermedia. Gene 2013; 515:291-7. [DOI: 10.1016/j.gene.2012.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
26
|
Uematsu H, Hossain MZ, Alam T, Ikeda T, Kuvatanasuchati J, Hoshino E. Degradation of serine-containing oligopeptides by Peptostreptococcus micros ATCC 33270. ACTA ACUST UNITED AC 2007; 22:381-3. [PMID: 17949340 DOI: 10.1111/j.1399-302x.2007.00374.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND/AIMS Microorganisms of Peptostreptococcus micros are asaccharolytic, anaerobic gram-positive cocci that are frequently isolated from human oral sites such as periodontal pockets. Preliminary study showed that several amino acids, including serine, enhanced slightly the growth of P. micros. Therefore, we investigated the degradation of serine and serine-containing oligopeptides. METHODS Metabolic end products were determined with high-performance liquid chromatography. The related enzymatic activities in cell-free extract were also assayed. RESULTS Washed P. micros degraded serine-tripeptides (Ser-Ser-Ser), and produced formate, pyruvate, acetate, and ammonia. They also degraded serinyl-tyrosine (Ser-Tyr) to the same products. Related enzymatic activities, such as serine dehydratase, pyruvate formate-lyase, formate dehydrogenase, pyruvate oxidoreductase, phosphate acetyltransferase, and acetate kinase, were detected in the cell-free extract, indicating that the organisms produced ATP in the serine metabolism. CONCLUSION P. micros utilized serine-containing oligopeptides as exogenous metabolic substrates rather than serine itself, and degraded Ser-Ser-Ser and Ser-Tyr to formate, pyruvate, acetate, and ammonia with ATP generation.
Collapse
Affiliation(s)
- H Uematsu
- Oral Ecology in Health and Infection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Sheng J, Nguyen PTM, Baldeck JD, Olsson J, Marquis RE. Antimicrobial actions of benzimidazoles against the oral anaerobes Fusobacterium nucleatum and Prevotella intermedia. Arch Oral Biol 2006; 51:1015-23. [PMID: 16806047 DOI: 10.1016/j.archoralbio.2006.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 05/03/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND/OBJECTIVE Benzimidazoles are widely used as proton-pump inhibitors to control stomach hyperacidity and have been found also to have antimicrobial actions against Helicobacter pylori and oral streptococci. Our primary aim was to determine if they are active also against oral anaerobes associated with gingivitis. Our major focus was on catabolism because it leads to production of inflammatory metabolites such as butyrate and ammonia. The benzimidazoles are effective in the protonated form at acid pH values and cause irreversible inhibition of enzymes associated with formation of drug-target disulfide bonds. METHODS Fusobacterium nucleatum ATCC 25586 and Prevotella intermedia ATCC 25611 were grown anaerobically in suspension cultures, harvested, washed and exposed to the benzimidazole lansoprazole at pH values of 4 or 5 before being washed and used for standard assays to detect inhibition of catabolic functions, uptake of the agent and lethality. RESULTS Lansoprazole was found to be a bacteriostatic, multi-target antimicrobial against F. nucleatum under anaerobic conditions inhibitory for amino acid fermentation and also for glycolysis of glucose or fructose. ID(50) values for fermentation of amino acids and dipeptides by F. nucleatum ranged from 0.05 mM for lysine to 0.25 mM for serine. Fructose catabolism was highly sensitive with an ID(50) value of 0.03 mM apparently related to high sensitivity of the phosphoenolpyruvate:fructose phosphotransferase system, while the ID(50) for glucose catabolism by intact cells was some 0.07 mM. Fermentation of aspartate or aspartylaspartate by P. intermedia was found to be lansoprazole-sensitive with ID(50) values of about 0.18 and 0.20 mM, respectively. CONCLUSION Catabolism of amino acids, dipeptides and sugars by oral anaerobes associated with gingivitis are sensitive to the inhibitory actions of lansoprazole. Thus, catabolic pathways are potential targets for use of benzimidazoles against bacteria involved in gingivitis.
Collapse
Affiliation(s)
- Jiangyun Sheng
- Department of Microbiology and Immunology and Center for Oral Biology, The University of Rochester Medical Center, Rochester, NY 14642-8672, USA
| | | | | | | | | |
Collapse
|
28
|
Takahashi N. Microbial ecosystem in the oral cavity: Metabolic diversity in an ecological niche and its relationship with oral diseases. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ics.2005.06.071] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Sheng J, Nguyen PTM, Marquis RE. Multi-target antimicrobial actions of zinc against oral anaerobes. Arch Oral Biol 2005; 50:747-57. [PMID: 15958206 DOI: 10.1016/j.archoralbio.2005.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 01/05/2005] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Zinc is used in oral care products as an antiplaque/antigingivitis agent. Our objective was to assess the antimicrobial actions of zinc against oral anaerobes associated with gingivitis, specifically Fusobacterium nucleatum and Prevotella intermedia, with focus on catabolism and oxidative metabolism. METHODS The oral anaerobes were grown in complex medium in an anaerobic chamber, harvested by centrifugation and used directly for experiments with suspensions. Biofilm growth involved super-infection by F. nucleatum of an initial biofilm formed by Streptococcus sanguis. RESULTS Zn(2+) inhibited catabolism of glutamate, glutamyl-glutamate, glucose and fructose by F. nucleatum cells in suspensions with ID(50) values, respectively, of 0.05, 0.005, 0.01 and 0.01 mM. The ID(50) value for inhibition of glutamate catabolism by biofilms was 0.10 mM. Inhibition of glutamate catabolism could be related to inhibition of substrate uptake and of 2-oxoglutarate reductase. Zn(2+) also inhibited catabolism of aspartate or aspartyl-aspartate by P. intermedia with ID(50) values of 0.07 and about 0.03 mM, respectively. Respiration of intact cells of F. nucleatum and NADH oxidase in cell extracts were sensitive to zinc with ID(50) values, respectively, of about 1.0 and 1.4 mM. Zinc also inhibited production of hydrogen peroxide by F. nucleatum (ID(50) = ca. 0.04 mM.) but at high concentrations acted to potentiate and enhance peroxide killing of the anaerobe. CONCLUSION Zn(2+) is a potent inhibitor of catabolism by F. nucleatum and P. intermedia, including catabolism of peptides, which can be degraded to yield inflammatory metabolic end products. Zn(2+) also inhibits O(2) metabolism of F. nucleatum by about 50% and hydrogen peroxide production nearly completely but also enhances killing by peroxide added to cells.
Collapse
Affiliation(s)
- Jiangyun Sheng
- Department of Microbiology & Immunology and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, NY 14642-8672, USA
| | | | | |
Collapse
|
30
|
Takahashi N. Acid-neutralizing activity during amino acid fermentation by Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. ORAL MICROBIOLOGY AND IMMUNOLOGY 2003; 18:109-13. [PMID: 12654101 DOI: 10.1034/j.1399-302x.2003.00054.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acid-neutralizing activity during amino acid fermentation by washed cells of Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum was studied. When the washed cells of these strains were anaerobically incubated in the presence of aspartylaspartic acid or glutamylglutamic acid for P. gingivalis, aspartic acid for P. intermedia and glutamic acid for F. nucleatum at an initial pH of 5.0 or 5.5, the pH of the incubation mixtures rose toward neutral. F. nucleatum had the highest acid-neutralizing activity, followed by P. intermedia and P. gingivalis. The P. intermedia and F. nucleatum cells were used to measure the amounts of base produced at a fixed pH of 5.0. These cells generated significant amounts of base at pH 5.0 along with the production of organic acids and ammonia from aspartic or glutamic acid. Acid-base balance theoretically calculated from the amounts of consumed substrate and end products implies that the acid-neutralizing activity was derived from the decrease in acidity during the fermentation of amino acid into organic acids and ammonia.
Collapse
Affiliation(s)
- N Takahashi
- Division of Oral Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| |
Collapse
|
31
|
Takahashi N, Sato T. Dipeptide utilization by the periodontal pathogens Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Fusobacterium nucleatum. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:50-4. [PMID: 11860556 DOI: 10.1046/j.0902-0055.2001.00089.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Fusobacterium nucleatum, which can frequently be isolated from periodontal pockets, preferentially utilize proteins and peptides as growth substrates. In this study, we determined the size of peptide that is preferentially utilized as a source of energy and material for cell growth by P. gingivalis, P. intermedia, P. nigrescens and F. nucleatum using various sizes of poly amino acids consisting of two to approximately 100 molecules of aspartate or glutamate. Resting cells of P. gingivalis, P. intermedia and P. nigrescens utilized aspartylaspartate, while cells of P. gingivalis and F. nucleatum utilized glutamylglutamate. The addition of aspartylaspartate to the culture medium increased the growth of P. gingivalis, P. intermedia and P. nigrescens, while the addition of glutamylglutamate promoted the growth of P. gingivalis and F. nucleatum. These results clearly indicate that dipeptides such as aspartylaspartate and glutamylglutamate can be utilized as growth substrates for P. gingivalis, P. intermedia, P. nigrescens and F. nucleatum.
Collapse
Affiliation(s)
- Nobuhiro Takahashi
- Division of Oral Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | |
Collapse
|
32
|
Abstract
Although Porphyromonas gingivalis is known to utilize peptides preferentially, instead of free amino acids, as the source of energy and cell material, there is only limited information on what sizes and kinds of peptide this bacterium preferentially utilizes. In this study, therefore, we tested aspartate or glutamate monopolymers consisting of from 2 to 100 amino acids as metabolic substrates for P. gingivalis. The washed cells of P. gingivalis consumed aspartylaspartate and glutamylglutamate, and produced large amounts of ammonia and organic acids such as propionate and butyrate, while the cells formed only small amounts of end-products from aspartate, glutamate, and other peptides longer than a dipeptide. P. gingivalis also metabolized valylvaline and leucylleucine and produced isobutyrate and isovalerate, respectively, only in the presence of aspartylaspartate or glutamylglutamate. This suggests a metabolic linkage between these dipeptides. These results clearly indicate that P. gingivalis utilizes dipeptides preferentially as its metabolic substrates.
Collapse
Affiliation(s)
- N Takahashi
- Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | |
Collapse
|
33
|
Takahashi N, Sato T, Yamada T. Metabolic pathways for cytotoxic end product formation from glutamate- and aspartate-containing peptides by Porphyromonas gingivalis. J Bacteriol 2000; 182:4704-10. [PMID: 10940008 PMCID: PMC111344 DOI: 10.1128/jb.182.17.4704-4710.2000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metabolic pathways involved in the formation of cytotoxic end products by Porphyromonas gingivalis were studied. The washed cells of P. gingivalis ATCC 33277 utilized peptides but not single amino acids. Since glutamate and aspartate moieties in the peptides were consumed most intensively, a dipeptide of glutamate or aspartate was then tested as a metabolic substrate of P. gingivalis. P. gingivalis cells metabolized glutamylglutamate to butyrate, propionate, acetate, and ammonia, and they metabolized aspartylaspartate to butyrate, succinate, acetate, and ammonia. Based on the detection of metabolic enzymes in the cell extracts and stoichiometric calculations (carbon recovery and oxidation/reduction ratio) during dipeptide degradation, the following metabolic pathways were proposed. Incorporated glutamylglutamate and aspartylaspartate are hydrolyzed to glutamate and aspartate, respectively, by dipeptidase. Glutamate is deaminated and oxidized to succinyl-coenzyme A (CoA) by glutamate dehydrogenase and 2-oxoglutarate oxidoreductase. Aspartate is deaminated into fumarate by aspartate ammonia-lyase and then reduced to succinyl-CoA by fumarate reductase and acyl-CoA:acetate CoA-transferase or oxidized to acetyl-CoA by a sequential reaction of fumarase, malate dehydrogenase, oxaloacetate decarboxylase, and pyruvate oxidoreductase. The succinyl-CoA is reduced to butyryl-CoA by a series of enzymes, including succinate-semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, and butyryl-CoA oxidoreductase. A part of succinyl-CoA could be converted to propionyl-CoA through the reactions initiated by methylmalonyl-CoA mutase. The butyryl- and propionyl-CoAs thus formed could then be converted into acetyl-CoA by acyl-CoA:acetate CoA-transferase with the formation of corresponding cytotoxic end products, butyrate and propionate. The formed acetyl-CoA could then be metabolized further to acetate.
Collapse
Affiliation(s)
- N Takahashi
- Department of Oral Biochemistry, Tohoku University School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | | | | |
Collapse
|
34
|
Takahashi N, Yamada T. Glucose metabolism by Prevotella intermedia and Prevotella nigrescens. ORAL MICROBIOLOGY AND IMMUNOLOGY 2000; 15:188-95. [PMID: 11154402 DOI: 10.1034/j.1399-302x.2000.150307.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glucose metabolism by Prevotella intermedia and Prevotella nigrescens were investigated. Glucose increased the anaerobic growth of these bacteria and promoted the accumulation of intracellular polysaccharide. The polysaccharide was confirmed to be glycogen-like glucan by the absorption spectrum of iodinepolysaccharide complex and the sugar composition. The washed cells consumed glucose anaerobically and converted a part of glucose into the metabolic end-products acetate, formate and succinate. The rest of glucose was confirmed to be accumulated as intracellular polysaccharide. The cells grown in the presence of glucose produced acetate, formate and succinate without exogenous glucose along with the consumption of intracellular polysaccharide. The metabolism of glucose and intracellular polysaccharide required bicarbonate. Prevotella cells had hexokinase and a set of the usual enzymes of the Embden-Meyerhof-Parnas pathway except that phosphofructokinase was pyrophosphate-dependent. A series of enzymes, including phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarase and fumarate reductase, was found for succinate formation. Another series of enzymes, pyruvate oxidoreductase, pyruvate formate-lyase, phosphotransacetylase and acetate kinase was found for acetate and formate formation. Glucose 1,6-bisphosphate-dependent phosphoglucomutase and fructose 1,6-bisphosphate-activated UDP-glucose pyrophosphorylase were detected for glycogen synthesis, while glycogen phosphorylase was for glycogen degradation. The capacity of intracellular polysaccharide formation in addition to glucose fermentation could be advantageous for survival in the supragingival area as well as in the subgingival area.
Collapse
Affiliation(s)
- N Takahashi
- Department of Oral Biochemistry, Tohoku University School of Dentistry, Sendai, Japan
| | | |
Collapse
|