1
|
Song Y, Lu Z, Shu W, Xiang Z, Wang Z, Wei X, Xu X. Arouse potential stemness: Intrinsic and acquired stem cell therapeutic strategies for advanced liver diseases. CELL INSIGHT 2023; 2:100115. [PMID: 37719773 PMCID: PMC10502372 DOI: 10.1016/j.cellin.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Liver diseases are a major health issue, and prolonged liver injury always progresses. Advanced liver disorders impair liver regeneration. Millions of patients die yearly worldwide, even with the available treatments of liver transplantation and artificial liver support system. With its abundant cell resources and significant differentiative potential, stem cell therapy is a viable treatment for various disorders and offers hope to patients waiting for orthotopic liver transplantation. Considering such plight, stem cell therapeutic strategies deliver hope to the patients. Moreover, we conclude intrinsic and acquired perspectives based on stem cell sources. The properties and therapeutic uses of these stem cells' specific types or sources were then reviewed. Owing to the recent investigations of the above cells, a safe and effective therapy will emerge for advanced liver diseases soon.
Collapse
Affiliation(s)
- Yisu Song
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Wenzhi Shu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University Shanghai, 200040, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
2
|
Rissel M, Pohl J, Moosburner S, Gaßner JMGV, Horner R, Hillebrandt KH, Modest DP, Pratschke J, Sauer IM, Raschzok N. Effect of Preoperative Chemotherapy on the Isolation Outcome of Primary Human Hepatocytes. Tissue Eng Part C Methods 2023; 29:63-71. [PMID: 36694452 DOI: 10.1089/ten.tec.2022.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Primary human hepatocytes isolated from surgically resected liver tissue are an essential resource for pharmaceutical and toxicological studies. Patients undergoing partial liver resections have often received preoperative chemotherapy. The aim of our study was to investigate whether preoperative chemotherapy has effects on the outcome of cell isolation or the metabolic function of cultured hepatocytes. Liver specimens from 48 patients were used for hepatocyte isolation. Out of these, 21 patients had prior chemotherapy, with fluoropyrimidine-based regimen in 14 patients. Viability and cell yield as parameter for the outcome of isolation, as well as transaminase levels, urea or albumin secretion to the culture medium were not different between hepatocytes from pretreated and untreated donor. Furthermore, the transcription levels of cytochrome P450 (CYP) 1A2, CYP 2B6, and CYP 3A4 of cultured hepatocytes were not affected by prior chemotherapy of the tissue donors. In conclusion, hepatocytes from tissue donors that underwent fluoropyrimidine-based chemotherapy regimens before isolation seem to perform as well as hepatocytes without preoperative chemotherapy exposure. Our results suggest that hepatocytes from patients who received combination chemotherapy before liver resection are an uncompromised resource for pharmacological and toxicological studies. Impact statement Isolated primary human hepatocytes are an essential resource for pharmacological and toxicological studies. Our results present further evidence that isolated hepatocytes from patients who received combination chemotherapy before liver resection are an uncompromised resource for pharmacological and toxicological studies-especially when fluoropyrimidine-based regimens are used.
Collapse
Affiliation(s)
- Marco Rissel
- Department of Surgery, Experimental Surgery and Oncology, Cancer Immunology (CCM/CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Pohl
- Department of Surgery, Experimental Surgery and Oncology, Cancer Immunology (CCM/CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Experimental Surgery and Oncology, Cancer Immunology (CCM/CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| | - Joseph M G V Gaßner
- Department of Surgery, Experimental Surgery and Oncology, Cancer Immunology (CCM/CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| | - Rosa Horner
- Department of Surgery, Experimental Surgery and Oncology, Cancer Immunology (CCM/CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karl H Hillebrandt
- Department of Surgery, Experimental Surgery and Oncology, Cancer Immunology (CCM/CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| | - Dominik P Modest
- Department of Hematology, Oncology, Cancer Immunology (CCM/CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery and Oncology, Cancer Immunology (CCM/CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Under Germany's Excellence Strategy-EXC 2025, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, Experimental Surgery and Oncology, Cancer Immunology (CCM/CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Under Germany's Excellence Strategy-EXC 2025, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Experimental Surgery and Oncology, Cancer Immunology (CCM/CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
3
|
Preclinical Experience of the Mayo Spheroid Reservoir Bioartificial Liver (SRBAL) in Management of Acute Liver Failure. LIVERS 2022. [DOI: 10.3390/livers2040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Spheroid Reservoir Bioartificial Liver (SRBAL) is an innovative treatment option for acute liver failure (ALF). This extracorporeal support device, which provides detoxification and other liver functions using high-density culture of porcine hepatocyte spheroids, has been reported in three randomized large animal studies. A meta-analysis of these three preclinical studies was performed to establish efficacy of SRBAL treatment in terms of survival benefit and neuroprotective effect. The studies included two hepatotoxic drug models of ALF (D-galactosamine, α-amanitin/lipopolysaccharide) or a liver resection model (85% hepatectomy) in pigs or monkeys. The SRBAL treatment was started in three different settings starting at 12 h, 24 h or 48 h after induction of ALF; comparisons were made with two similar control groups in each model. SRBAL therapy was associated with significant survival and neuroprotective benefits in all three animal models of ALF. The benefits of therapy were dose dependent with the most effective configuration of SRBAL being continuous treatment of 24 h duration and dose of 200 g of porcine hepatic spheroids. Future clinical testing of SRBAL in patients with ALF appears warranted.
Collapse
|
4
|
Pluta KD, Ciezkowska M, Wisniewska M, Wencel A, Pijanowska DG. Cell-based clinical and experimental methods for assisting the function of impaired livers – Present and future of liver support systems. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Catapano G, Unger JK, Zanetti EM, Fragomeni G, Gerlach JC. Kinetic Analysis of Lidocaine Elimination by Pig Liver Cells Cultured in 3D Multi-Compartment Hollow Fiber Membrane Network Perfusion Bioreactors. Bioengineering (Basel) 2021; 8:104. [PMID: 34436107 PMCID: PMC8389311 DOI: 10.3390/bioengineering8080104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Liver cells cultured in 3D bioreactors is an interesting option for temporary extracorporeal liver support in the treatment of acute liver failure and for animal models for preclinical drug screening. Bioreactor capacity to eliminate drugs is generally used for assessing cell metabolic competence in different bioreactors or to scale-up bioreactor design and performance for clinical or preclinical applications. However, drug adsorption and physical transport often disguise the intrinsic drug biotransformation kinetics and cell metabolic state. In this study, we characterized the intrinsic kinetics of lidocaine elimination and adsorption by porcine liver cells cultured in 3D four-compartment hollow fiber membrane network perfusion bioreactors. Models of lidocaine transport and biotransformation were used to extract intrinsic kinetic information from response to lidocaine bolus of bioreactor versus adhesion cultures. Different from 2D adhesion cultures, cells in the bioreactors are organized in liver-like aggregates. Adsorption on bioreactor constituents significantly affected lidocaine elimination and was effectively accounted for in kinetic analysis. Lidocaine elimination and cellular monoethylglicinexylidide biotransformation featured first-order kinetics with near-to-in vivo cell-specific capacity that was retained for times suitable for clinical assist and drug screening. Different from 2D cultures, cells in the 3D bioreactors challenged with lidocaine were exposed to close-to-physiological lidocaine and monoethylglicinexylidide concentration profiles. Kinetic analysis suggests bioreactor technology feasibility for preclinical drug screening and patient assist and that drug adsorption should be accounted for to assess cell state in different cultures and when laboratory bioreactor design and performance is scaled-up to clinical use or toxicological drug screening.
Collapse
Affiliation(s)
- Gerardo Catapano
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Via P. Bucci, I, 87030 Rende, CS, Italy;
| | - Juliane K. Unger
- Department of Experimental Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany;
| | | | - Gionata Fragomeni
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Jörg C. Gerlach
- Department of Surgery, School of Medicine, University of Pittsburgh, & McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA; or
- Department of Bioengineering, School of Medicine, University of Pittsburgh, & McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Li WJ, Zhu XJ, Yuan TJ, Wang ZY, Bian ZQ, Jing HS, Shi X, Chen CY, Fu GB, Huang WJ, Shi YP, Liu Q, Zeng M, Zhang HD, Wu HP, Yu WF, Zhai B, Yan HX. An extracorporeal bioartificial liver embedded with 3D-layered human liver progenitor-like cells relieves acute liver failure in pigs. Sci Transl Med 2021; 12:12/551/eaba5146. [PMID: 32641490 DOI: 10.1126/scitranslmed.aba5146] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Clinical advancement of the bioartificial liver is hampered by the lack of expandable human hepatocytes and appropriate bioreactors and carriers to encourage hepatic cells to function during extracorporeal circulation. We have recently developed an efficient approach for derivation of expandable liver progenitor-like cells from human primary hepatocytes (HepLPCs). Here, we generated immortalized and functionally enhanced HepLPCs by introducing FOXA3, a hepatocyte nuclear factor that enables potentially complete hepatic function. When cultured on macroporous carriers in an air-liquid interactive bioartificial liver (Ali-BAL) support device, the integrated cells were alternately exposed to aeration and nutrition and grew to form high-density three-dimensional constructs. This led to highly efficient mass transfer and supported liver functions such as albumin biosynthesis and ammonia detoxification via ureagenesis. In a porcine model of drug overdose-induced acute liver failure (ALF), extracorporeal Ali-BAL treatment for 3 hours prevented hepatic encephalopathy and led to markedly improved survival (83%, n = 6) compared to ALF control (17%, n = 6, P = 0.02) and device-only (no-cell) therapy (0%, n = 6, P = 0.003). The blood ammonia concentrations, as well as the biochemical and coagulation indices, were reduced in Ali-BAL-treated pigs. Ali-BAL treatment attenuated liver damage, ameliorated inflammation, and enhanced liver regeneration in the ALF porcine model and could be considered as a potential therapeutic avenue for patients with ALF.
Collapse
Affiliation(s)
- Wei-Jian Li
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Xue-Jing Zhu
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Tian-Jie Yuan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhen-Yu Wang
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Zheng-Qian Bian
- Training Center, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Hong-Shu Jing
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Xiao Shi
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Cai-Yang Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei-Jian Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yao-Ping Shi
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Min Zeng
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Hong-Ping Wu
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China. .,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.
| | - He-Xin Yan
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China. .,Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China.,Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.,Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
7
|
Chamuleau RAFM, Hoekstra R. End-stage liver failure: filling the treatment gap at the intensive care unit. J Artif Organs 2019; 23:113-123. [PMID: 31535298 PMCID: PMC7228976 DOI: 10.1007/s10047-019-01133-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
End-stage liver failure is a condition of collapsing liver function with mortality rates up to 80. Liver transplantation is the only lifesaving therapy. There is an unmet need for therapy to extend the waiting time for liver transplantation or regeneration of the native liver. Here we review the state-of-the-art of non-cell based and cell-based artificial liver support systems, cell transplantation and plasma exchange, with the first therapy relying on detoxification, while the others aim to correct also other failing liver functions and/or modulate the immune response. Meta-analyses on the effect of non-cell based systems show contradictory outcomes for different types of albumin purification devices. For bioartificial livers proof of concept has been shown in animals with liver failure. However, large clinical trials with two different systems did not show a survival benefit. Two clinical trials with plasma exchange and one with transplantation of mesenchymal stem cells showed positive outcomes on survival. Detoxification therapies lack adequacy for most patients. Correction of additional liver functions, and also modulation of the immune system hold promise for future therapy of liver failure.
Collapse
Affiliation(s)
- Robert A F M Chamuleau
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Academic Medical Center, Meibergdreef 69-71, S1-176, 1105 BK, Amsterdam, The Netherlands.
| | - Ruurdtje Hoekstra
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Academic Medical Center, Meibergdreef 69-71, S1-176, 1105 BK, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Gerlach JC. Extracorporeal Mass Exchange Technology Platform for Temporary Liver Support: A Clinical Feasibility Study on a Device and the Cell Source Primary Human Liver Cells. Surg Case Rep 2019. [DOI: 10.31487/j.scr.2019.03.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinical feasibility phase-I study data are discussed on the use and the safety of a modular mass exchanger for temporary extracorporeal treatment of liver failure; and the use of the cell source primary human liver cells isolated from discarded transplant organs as a metabolic module in this mass exchanger. This technology platform can be compared with the mass exchange functions of a human placenta before giving birth. The "maternal blood side" can be used with various sources/modules of metabolic support including artificial (e.g. absorber) or biological elements (e.g. cells), separated by membrane compartments. These keep the source of metabolic support from contact with the patient, including the immune cells, while allowing exchange of soluble or protein-bound plasma components for therapy. Each of the multiple independent membrane compartments are bundled towards the in/outlets but interwoven to form a decentralized multi-compartment mass exchanger within an effector module compartment. The use of liver cells as a metabolic module in this compartment results in its function as a bioreactor. A combination with further modules outside of the mass exchanger was demonstrated through a continuous SPAD for detoxification. Nine patients (5 m, 4 f) with a median age of 43 years (range 11-55 years) were treated with a total of 11 metabolic modules in 12 sessions, with overall treatment times ranging from 11 to 216 hours. Patients suffered from acute-on-chronic liver failure (AoCLF, n=3), acute liver failure (ALF, n=3) and primary non-function graft after liver transplantation (PNF, n=3). Treatment resulted in a one-year survival of 78%. The results showed a significant decrease in thrombocytes and fibrinogen. No severe adverse effects were found. One patient (AoCLF) recovered without transplantation and remained alive for the one-year follow-up. Six patients (3 ALF, 2 PNF, and 1 AoCLF) were successfully bridged to transplantation, and two (1 AoCLF, 1 PNF) died within ten days after termination of therapy. Total and conjugated bilirubin, ammonia, urea and creatinine were significantly reduced by the end of therapy, compared to baseline. The MELD score decreased significantly, whereas no significant improvements were observed in APACHE-II, APACHE-III, SOFA and Child-Pugh scores.
Conclusion: The mass exchanger technology platform, the Core Module used with primary human liver cells as Metabolic Module, proved to be clinically feasible and safe. Further clinical studies are required to prove the efficacy of such therapies. However, the clinical impact of using human liver cells as a Metabolic Module is limited and a reliable, biocompatible and effective metabolic source is in need.
Collapse
|
9
|
He YT, Qi YN, Zhang BQ, Li JB, Bao J. Bioartificial liver support systems for acute liver failure: A systematic review and meta-analysis of the clinical and preclinical literature. World J Gastroenterol 2019; 25:3634-3648. [PMID: 31367162 PMCID: PMC6658398 DOI: 10.3748/wjg.v25.i27.3634] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/03/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) has a high mortality varying from 80% to 85% with rapid progress in multi-organ system failure. Bioartificial liver (BAL) support systems have the potential to provide temporary support to bridge patients with ALF to liver transplantation or spontaneous recovery. In the past decades, several BAL support systems have been conducted in clinical trials. More recently, concerns have been raised on the renovation of high-quality cell sources and configuration of BAL support systems to provide more benefits to ALF models in preclinical experiments. AIM To investigate the characteristics of studies about BAL support systems for ALF, and to evaluate their effects on mortality. METHODS Eligible clinical trials and preclinical experiments on large animals were identified on Cochrane Library, PubMed, and EMbase up to March 6, 2019. Two reviewers independently extracted the necessary information, including key BAL indicators, survival and indicating outcomes, and adverse events during treatment. Descriptive analysis was used to identify the characteristics of the included studies, and a meta-analysis including only randomized controlled trial (RCT) studies was done to calculate the overall effect of BAL on mortality among humans and large animals, respectively. RESULTS Of the 30 selected studies, 18 were clinical trials and 12 were preclinical experiments. The meta-analysis result suggested that BAL might reduce mortality in ALF in large animals, probably due to the recent improvement of BAL, including the type, cell source, cell mass, and bioreactor, but seemed ineffective for humans [BAL vs control: relative risk (95% confidence interval), 0.27 (0.12-0.62) for animals and 0.72 (0.48-1.08) for humans]. Liver and renal functions, hematologic and coagulative parameters, encephalopathy index, and neurological indicators seemed to improve after BAL, with neither meaningful adverse events nor porcine endogenous retrovirus infection. CONCLUSION BAL may reduce the mortality of ALF by bridging the gap between preclinical experiments and clinical trials. Clinical trials using improved BAL must be designed scientifically and conducted in the future to provide evidence for transformation.
Collapse
Affiliation(s)
- Yu-Ting He
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ya-Na Qi
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing-Qi Zhang
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jian-Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji Bao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
10
|
Abstract
Extracorporeal liver support (ECLS) emerged from the need stabilize high-acuity liver failure patients with the highest risk of death. The goal is to optimize the hemodynamic, neurologic, and biochemical parameters in preparation for transplantation or to facilitate spontaneous recovery. Patients with acute liver failure and acute-on-chronic liver failure stand to benefit from these devices, especially because they have lost many of the primary functions of the liver, including detoxifying the blood of various endogenous and exogenous substances, manufacturing circulating proteins, secreting bile, and storing energy. Existing ECLS devices are designed to mimic some of these functions.
Collapse
Affiliation(s)
- Prem A Kandiah
- Division of Neuro Critical Care & co appt. in 5E Surgical/Transplant Critical Care, Department of Neurosurgery, Emory University Hospital, 1364 Clifton Road Northeast, 2nd Floor, 2D ICU- D264, Atlanta, GA 30322, USA; Department of Neurology, Emory University Hospital, 1364 Clifton Road Northeast, 2nd Floor, 2D ICU- D264, Atlanta, GA 30322, USA
| | - Ram M Subramanian
- Critical Care and Hepatology, Emory University, 1364 Clifton Road Northeast, 2nd Floor, 2D ICU- D264, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
12
|
Shin DS, Seo H, Yang JY, Joo J, Im SH, Kim SS, Kim SK, Bae MA. Quantitative Evaluation of Cytochrome P450 3A4 Inhibition and Hepatotoxicity in HepaRG 3-D Spheroids. Int J Toxicol 2018; 37:393-403. [DOI: 10.1177/1091581818780149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Predicting drug–drug interactions (DDIs) is an important step during drug development to avoid unexpected side effects. Cytochrome P450 (CYP) 3A4 is the most abundant human hepatic phase I enzyme, which metabolizes >50% of therapeutic drugs. Therefore, it is essential to test the potential of a drug candidate to induce CYP3A4 expression or inhibit its activity. Recently, 3-dimensional (3-D) mammalian cell culture models have been adopted in drug discovery research to assess toxicity, DDIs, and pharmacokinetics. In this study, we applied a human 3-D spheroid culture protocol using HepaRG cells combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess its ability to predict CYP3A4 inhibition. Levels of midazolam, a specific substrate of CYP3A4, were used to determine the long-term metabolic capacity of CYP3A4. Midazolam was decreased in the 3-D HepaRG culture system by ∼80% over 7 days, whereas its primary metabolite, 1-hydroxymidazolam, increased by ∼40%. Next, we assessed hepatotoxicity by determining the cytotoxicity of known hepatotoxicants in HepaRG spheroids, HepG2 cells, and primary human hepatocytes. Significant differences in cytotoxicity were detected in the system using 3-D HepaRG spheroids. These results suggest that 3-D HepaRG spheroids are a good model for prediction of CYP inhibition and hepatotoxicity in screening of early drug candidates.
Collapse
Affiliation(s)
- Dae-Seop Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Hyewon Seo
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Jung Yoon Yang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Jeongmin Joo
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - So Hee Im
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
13
|
Patel P, Okoronkwo N, Pyrsopoulos NT. Future Approaches and Therapeutic Modalities for Acute Liver Failure. Clin Liver Dis 2018; 22:419-427. [PMID: 29605076 DOI: 10.1016/j.cld.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The current gold standard for the management of acute liver failure is liver transplantation. However, because of organ shortages, other modalities of therapy are necessary as a possible bridge. This article discusses the current modalities as well as the future management of acute liver failure. Liver assist devices, hepatocyte transplantation, stem cell transplant, organogenesis, and repopulation of decellularized organs are discussed.
Collapse
Affiliation(s)
- Pavan Patel
- Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB H-538, Newark, NJ 07103, USA
| | - Nneoma Okoronkwo
- Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB H-538, Newark, NJ 07103, USA
| | - Nikolaos T Pyrsopoulos
- Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB H-538, Newark, NJ 07103, USA.
| |
Collapse
|
14
|
3D in vitro models of liver fibrosis. Adv Drug Deliv Rev 2017; 121:133-146. [PMID: 28697953 DOI: 10.1016/j.addr.2017.07.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Animal testing is still the most popular preclinical assessment model for liver fibrosis. To develop efficient anti-fibrotic therapies, robust and representative in vitro models are urgently needed. The most widely used in vitro fibrosis model is the culture-induced activation of primary rodent hepatic stellate cells. While these cultures have contributed greatly to the current understanding of hepatic stellate cell activation, they seem to be inadequate to cover the complexity of this regenerative response. This review summarizes recent progress towards the development of 3D culture models of liver fibrosis. Thus far, only a few hepatic culture systems have successfully implemented hepatic stellate cells (or other non-parenchymal cells) into hepatocyte cultures. Recent advances in bioprinting, spheroid- and precision-cut liver slice cultures and the use of microfluidic bioreactors will surely lead to valid 3D in vitro models of liver fibrosis in the near future.
Collapse
|
15
|
Schmelzer E, Foka HG, Thompson RL, Luca A, Gridelli B, Gerlach JC. Response of Human Fetal Liver Progenitor Cell Types to Temperature and pH Stresses In Vitro. Rejuvenation Res 2017; 21:257-269. [PMID: 28891399 DOI: 10.1089/rej.2016.1890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prolonged physiological stresses, including abnormal pH and temperature, are deleterious. However, human hepatic progenitors have been shown to be quite tolerant of temporary temperature stress such as in cold ischemia. We aimed at identifying how various stresses affect liver progenitors, and at determining whether distinct effects exist on different progenitor cells of the human liver. Total fetal liver cells were exposed to low (25°C), normal (37°C), or high (40°C) temperatures, or low (6.76), normal (7.35), or high (7.88) pH in vitro. Culture at 25°C increased cell numbers and percentages of proliferation marker Ki67+ total cells. In total cell cultures, percentages of CD326+ hepatic progenitors co-expressing DLK1 (delta-like 1 homolog), SSEA4, or CD90 increased, as well as proliferation of SSEA4+ and CD235a+ progenitors. Analyses of presorted hepatic progenitors revealed that culture at 25°C increased cell numbers of CD326+ hepatic stem/progenitor cells but not DLK+ hepatoblasts. The expression of several mesenchymal genes was reduced, and distinct hepatic stem/progenitor cell colonies emerged. At 40°C, numbers of adherent hepatic cells decreased but those of hematopoietic nonadherent cells increased. High pH did not cause major effects. Acidic pH resulted in decreased total cell numbers and affected hematopoietic cells. Percentages of DLK1+ hepatoblasts were increased, but those of hematopoietic mature CD45+ cells were decreased. In particular, proliferation of adherent hepatic CD326+, SSEA4+ progenitors, and hematopoietic CD45+ cells and CD235a+ erythroblasts was reduced. Conclusively, our data indicate that low-temperature stress stimulates hepatic progenitor and erythroblast proliferation, whereas acidic pH promotes hepatic maturation and reduces hematopoietic cells.
Collapse
Affiliation(s)
- Eva Schmelzer
- 1 Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Hubert G Foka
- 2 University of Pittsburgh Medical Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Robert L Thompson
- 2 University of Pittsburgh Medical Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Angelo Luca
- 3 Department of Surgery, ISMETT-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione , UPMC Italy, Palermo, Italy
| | - Bruno Gridelli
- 2 University of Pittsburgh Medical Center, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Surgery, ISMETT-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione , UPMC Italy, Palermo, Italy
| | - Jörg C Gerlach
- 1 Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Fukuda J, Okamura K, Ishihara K, Mizumoto H, Nakazawa K, Ijima H, Kajiwara T, Funatsu K. Differentiation Effects by the Combination of Spheroid Formation and Sodium Butyrate Treatment in Human Hepatoblastoma Cell Line (Hep G2): A Possible Cell Source for Hybrid Artificial Liver. Cell Transplant 2017; 14:819-27. [PMID: 16454356 DOI: 10.3727/000000005783982503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to investigate the feasibility of human hepatoblastoma cell line (Hep G2), which differentiates by spheroid formation, and treatment with sodium butyrate (SB) as a cell source for hybrid artificial liver (HAL). Hep G2 spontaneously formed spheroids in polyurethane foam (PUF) within 3 days of culture and restored weak ammonia removal activity. Treatment with SB, which is a histone deacetylase inhibitor, further increased the ammonia removal activity of Hep G2 spheroids in a concentration-dependent manner. The activation of ornithine transcarbamylase—a urea cycle enzyme—was significantly related to the upregulation of ammonia removal by spheroid formation, but scarcely contributed to the further upregulation following SB treatment. In contrast with ammonia removal, treatment with SB reduced the albumin secretion of Hep G2 spheroids in a concentration-dependent manner. In the PUF-HAL module in a circulation culture, the ammonia removal rate and albumin secretion rate (per unit volume of the module) of Hep G2 spheroids treated with 5 mM SB were almost the same as those of primary porcine hepatocyte spheroids. These results suggest that simultaneous use of spheroid formation and SB treatment in Hep G2 is beneficial in enhancing the functions of human hepatocytes with potential applications in regenerative medicine and drug screening.
Collapse
Affiliation(s)
- J Fukuda
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Takahashi M, Sakurai M, Enosawa S, Omasa T, Tsuruoka S, Matsumura T. Double-Compartment Cell Culture Apparatus: Construction and Biochemical Evaluation for Bioartificial Liver Support. Cell Transplant 2017; 15:945-52. [PMID: 17300000 DOI: 10.3727/000000006783981341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Functional demands on a bioartificial liver support (BAL) device are not limited to biosynthetic activities, but must also encompass metabolic removal of potentially toxic substances. For most BALs, however, the concept and design are exclusively directed to biosynthetic support. To add the ability to metabolize and remove toxic substances, we designed a double-compartment cell culture apparatus (DCCA). Two compartments are separated from each other by a compact epithelial cell sheet spread over a synthetic microporous membrane. When a renal proximal convoluted tubular cell line that had been transduced with the human multidrug-resistant (MDR) gene, PCTL-MDR, was introduced into one of the compartments (hereafter referred to as the “inner” compartment) of the DCCA, a compact cellular monolayer was formed on the membrane. Ammonium ions passed across the membrane, but glucose and its metabolite lactate could not, indicating that the DCCA allowed selective transportation of cellular metabolites. In addition to PCTL-MDR, HepG2, a cell line of hepatic-origin, transduced with CYP3A4 (designated GS-3A4-HepG2), was seeded on the opposite side of the membrane, and the metabolism and transportation of lidocaine were studied. The lidocaine metabolite, monoethylglycinexylidide, was detected in the inner compartment across the PCTL-MDR cell layered membrane, indicating that metabolism and the selective transportation of metabolites between the two compartments occurred by cooperation of renal and hepatic cells. These results suggest that this type of DCCA represents a novel BAL that possesses biotransporting activities, as well as biosynthetic and metabolic activities.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Calcium/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Culture Techniques/instrumentation
- Cell Culture Techniques/methods
- Cell Line, Tumor
- Chromatography, High Pressure Liquid
- Glucose/metabolism
- Humans
- Lactic Acid/metabolism
- Liver, Artificial
- Membranes, Artificial
- Models, Theoretical
- Quaternary Ammonium Compounds/metabolism
- Transfection
Collapse
Affiliation(s)
- Masahiro Takahashi
- Cell Technology Center, Roman Industries Co. Ltd., Yokohama 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Extracorporeal liver support systems (ELSS), encompassing artificial and bioartificial devices, have been used for decades, with the aim of supporting patients with acute liver failure and acute-on chronic liver failure, as a bridge to recovery (acute liver failure only) or liver transplantation, in an era of organ donation shortage. Although biochemical efficacy has been consistently demonstrated by these devices, translation into clinical and survival benefits has been unclear, due to study limitations and lack of reliable prognostic scoring in liver failure. Consequently, extracorporeal devices are not widely accepted as routine therapy in adult liver failure. Recent large multicentre trials using artificial liver systems have not revealed beneficial outcomes associated with albumin dialysis but plasma exchange practices have shown some potential. In paediatric liver failure, data on extracorporeal systems is scarce, comprising few reports on albumin dialysis (namely, Molecular Adsorbent Recirculating System; MARS) and plasma exchange. When extrapolating data from adult studies differences in disease presentation, aetiology, prognosis and the suitability, and safety of such devices in children must be considered. The aim of this review is to critically appraise current practices of extracorporeal liver support systems to help determine efficacy in paediatric liver failure.
Collapse
|
19
|
Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells 2017; 35:42-50. [PMID: 27641427 PMCID: PMC5529050 DOI: 10.1002/stem.2500] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Donor organ shortage is the main limitation to liver transplantation as a treatment for end-stage liver disease and acute liver failure. Liver regenerative medicine may in the future offer an alternative form of therapy for these diseases, be it through cell transplantation, bioartificial liver (BAL) devices, or bioengineered whole organ liver transplantation. All three strategies have shown promising results in the past decade. However, before they are incorporated into widespread clinical practice, the ideal cell type for each treatment modality must be found, and an adequate amount of metabolically active, functional cells must be able to be produced. Research is ongoing in hepatocyte expansion techniques, use of xenogeneic cells, and differentiation of stem cell-derived hepatocyte-like cells (HLCs). HLCs are a few steps away from clinical application, but may be very useful in individualized drug development and toxicity testing, as well as disease modeling. Finally, safety concerns including tumorigenicity and xenozoonosis must also be addressed before cell transplantation, BAL devices, and bioengineered livers occupy their clinical niche. This review aims to highlight the most recent advances and provide an updated view of the current state of affairs in the field of liver regenerative medicine. Stem Cells 2017;35:42-50.
Collapse
Affiliation(s)
- Clara T Nicolas
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymond D Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Manuela Lopera Higuita
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujia Wang
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott L Nyberg
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Pitkin Z. New Phase of Growth for Xenogeneic-Based Bioartificial Organs. Int J Mol Sci 2016; 17:E1593. [PMID: 27657057 PMCID: PMC5037858 DOI: 10.3390/ijms17091593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
In this article, we examine the advanced clinical development of bioartificial organs and describe the challenges to implementing such systems into patient care. The case for bioartificial organs is evident: they are meant to reduce patient morbidity and mortality caused by the persistent shortage of organs available for allotransplantation. The widespread introduction and adoption of bioengineered organs, incorporating cells and tissues derived from either human or animal sources, would help address this shortage. Despite the decades of development, the variety of organs studied and bioengineered, and continuous progress in the field, only two bioengineered systems are currently commercially available: Apligraf® and Dermagraft® are both approved by the FDA to treat diabetic foot ulcers, and Apligraf® is approved to treat venous leg ulcers. Currently, no products based on xenotransplantation have been approved by the FDA. Risk factors include immunological barriers and the potential infectivity of porcine endogenous retrovirus (PERV), which is unique to xenotransplantation. Recent breakthroughs in gene editing may, however, mitigate risks related to PERV. Because of its primary role in interrupting progress in xenotransplantation, we present a risk assessment for PERV infection, and conclude that the formerly high risk has been reduced to a moderate level. Advances in gene editing, and more broadly in the field, may make it more likely than ever before that bioartificial organs will alleviate the suffering of patients with organ failure.
Collapse
Affiliation(s)
- Zorina Pitkin
- Organogenesis Inc., 150 Dan Road, Canton, MA 02021, USA.
| |
Collapse
|
21
|
Abstract
Liver disease is a leading cause of morbidity and mortality. Liver transplantation remains the only proven treatment for end-stage liver failure but is limited by the availability of donor organs. Hepatocyte cell therapy, either with bioartificial liver devices or hepatocyte transplantation, may help address this by delaying or preventing liver transplantation. Early clinical studies have shown promising results, however in most cases, the benefit has been short lived and so further research into these therapies is required. Alternative sources of hepatocytes, including stem cell-derived hepatocytes, are being investigated as the isolation of primary human hepatocytes is limited by the same shortage of donor organs. This review summarises the current clinical experience of hepatocyte cell therapy together with an overview of possible alternative sources of hepatocytes. Current and future areas for research that might lead towards the realisation of the full potential of hepatocyte cell therapy are discussed.
Collapse
Affiliation(s)
- David Christopher Bartlett
- a NIHR Centre for Liver Research and Biomedical Research Unit, University of Birmingham, Birmingham, UK.,b Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Philip N Newsome
- a NIHR Centre for Liver Research and Biomedical Research Unit, University of Birmingham, Birmingham, UK.,b Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
22
|
Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6040146. [PMID: 27403430 PMCID: PMC4925947 DOI: 10.1155/2016/6040146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/25/2016] [Indexed: 11/17/2022]
Abstract
Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.
Collapse
|
23
|
Aron J, Agarwal B, Davenport A. Extracorporeal support for patients with acute and acute on chronic liver failure. Expert Rev Med Devices 2016; 13:367-80. [PMID: 26894968 DOI: 10.1586/17434440.2016.1154455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The number of patients developing liver failure; acute on chronic liver failure and acute liver failure continues to increase, along with the demand for donor livers for transplantation. As such there is a clinical need to develop effective extracorporeal devices to support patients with acute liver failure or acute-on-chronic liver failure to allow time for hepatocyte regeneration, and so avoiding the need for liver transplantation, or to bridge the patient to liver transplantation, and also potentially to provide symptomatic relief for patients with cirrhosis not suitable for transplantation. Currently devices can be divided into those designed to remove toxins, including plasma exchange, high permeability dialyzers and adsorption columns or membranes, coupled with replacement of plasma proteins; albumin dialysis systems; and bioartificial devices which may provide some of the biological functions of the liver. In the future we expect combinations of these devices in clinical practice, due to the developments in bioartificial scaffolds.
Collapse
Affiliation(s)
- Jonathan Aron
- a King's College Hospital , London , United Kingdom of Great Britain and Northern Ireland
| | - Banwari Agarwal
- b Intensive Care Unit , Royal Free Hospital , London , United Kingdom of Great Britain and Northern Ireland
| | - Andrew Davenport
- c UCL Centre for Nephrology , Royal free Hospital , London , United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
24
|
Richter M, Fairhall EA, Hoffmann SA, Tröbs S, Knöspel F, Probert PME, Oakley F, Stroux A, Wright MC, Zeilinger K. Pancreatic progenitor-derived hepatocytes are viable and functional in a 3D high density bioreactor culture system. Toxicol Res (Camb) 2016; 5:278-290. [PMID: 30090344 PMCID: PMC6062372 DOI: 10.1039/c5tx00187k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/12/2015] [Indexed: 01/15/2023] Open
Abstract
The rat pancreatic progenitor cell line B-13 is of interest for research on drug metabolism and toxicity since the cells trans-differentiate into functional hepatocyte-like cells (B-13/H) when treated with glucocorticoids. In this study we investigated the trans-differentiation and liver-specific functions of B-13/H cells in a three-dimensional (3D) multi-compartment bioreactor, which has already been successfully used for primary liver cell culture. Undifferentiated B-13 cells were inoculated into the bioreactor system and exposed to dexamethasone to promote hepatic trans-differentiation (B-13/HT). In a second approach, pre-differentiated B-13 cells were cultured in bioreactors for 15 days to evaluate the maintenance of liver-typical functions (B-13/HP). During trans-differentiation of B-13 cells into hepatocyte-like cells in the 3D bioreactor system (approach B-13/HT), an increase in glucose metabolism and in liver-specific functions (urea and albumin synthesis; cytochrome P450 [CYP] enzyme activity) was observed, whereas amylase - characteristic for exocrine pancreas and undifferentiated B-13 cells - decreased over time. In bioreactors with pre-differentiated cells (approach B-13/HP), the above liver-specific functions were maintained over the whole culture period. Results were confirmed by gene expression and protein analysis showing increased expression of carbamoyl-phosphate synthase 1 (CPS-1), albumin, CYP2E1, CYP2C11 and CYP3A1 with simultaneous loss of amylase. Immunohistochemical studies showed the formation of 3D structures with expression of liver-specific markers, including albumin, cytokeratin (CK) 18, CCAAT/enhancer-binding protein beta (CEBP-β), CYP2E1 and multidrug resistance protein 2 (MRP2). In conclusion, successful culture and trans-differentiation of B-13 cells in the 3D bioreactor was demonstrated. The requirement for only one hormone and simple culture conditions to generate liver-like cells makes this cell type useful for in vitro research using 3D high-density culture systems.
Collapse
Affiliation(s)
- M Richter
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - E A Fairhall
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - S A Hoffmann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - S Tröbs
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - F Knöspel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - P M E Probert
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - F Oakley
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - A Stroux
- Institute for Biometry and Clinical Epidemiology , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | - M C Wright
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - K Zeilinger
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| |
Collapse
|
25
|
Schmelzer E, Gerlach JC. Multicompartmental Hollow-Fiber-Based Bioreactors for Dynamic Three-Dimensional Perfusion Culture. Methods Mol Biol 2016; 1502:1-19. [PMID: 27075977 DOI: 10.1007/7651_2016_335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The creation of larger-scale three-dimensional tissue constructs depends on proper medium mass and gas exchange, as well as removal of metabolites, which cannot be achieved in conventional static two-dimensional petri dish culture. In cultures of tissue-density this problem can be addressed by decentral perfusion through artificial micro-capillaries. While the static medium exchange in petri dishes leads to metabolite peaks, perfusion culture provides a dynamic medium supply, thereby preventing non-physiological peaks. To overcome the limitations of conventional static two-dimensional culture, a three-dimensional perfusion bioreactor technology has been developed, providing decentral and high-performance mass exchange as well as integral oxygenation. Similar to organ systems in vivo, the perfusion with medium provides nutrition and removes waste metabolites, and the perfusion with gas delivers oxygen and carbon dioxide for pH regulation. Such bioreactors are available at various dimensions ranging from 0.2 to 800 mL cell compartment volumes (manufactured by StemCell Systems, Berlin, Germany). Here, we describe in detail the setup and maintenance of a small-scale 4-chamber bioreactor with its tubing circuit and perfusion system.
Collapse
Affiliation(s)
- Eva Schmelzer
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 3025 E. Carson St., Pittsburgh, PA, 15203, USA.
| | - Jörg C Gerlach
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 3025 E. Carson St., Pittsburgh, PA, 15203, USA
| |
Collapse
|
26
|
Han B, Shi XL, Zhang Y, Gu ZZ, Yuan XW, Ren HZ, Qiu Y, Ding YT. No transmission of porcine endogenous retrovirus in an acute liver failure model treated by a novel hybrid bioartificial liver containing porcine hepatocytes. Hepatobiliary Pancreat Dis Int 2015; 14:492-501. [PMID: 26459725 DOI: 10.1016/s1499-3872(15)60401-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND A novel hybrid bioartificial liver (HBAL) was constructed using an anionic resin adsorption column and a multi-layer flat-plate bioreactor containing porcine hepatocytes co-cultured with bone marrow mesenchymal stem cells (MSCs). This study aimed to evaluate the microbiological safety of the HBAL by detecting the transmission of porcine endogenous retroviruses (PERVs) into canines with acute liver failure (ALF) undergoing HBAL. METHODS Eight dogs with ALF received a 6-hour HBAL treatment on the first day after the modeling by D-galactosamine administration. The plasma in the HBAL and the whole blood in the dogs were collected for PERV detection at regular intervals until one year later when the dogs were sacrificed to retrieve the tissues of several organs for immunohistochemistry and Western blotting for the investigation of PERV capsid protein gag p30 in the tissue. Furthermore, HEK293 cells were incubated to determine the in vitro infectivity. RESULTS PERV RNA and reverse transcriptase activity were observed in the plasma of circuit 3, suggesting that PERV particles released in circuit 3. No positive PERV RNA and reverse transcriptase activity were detected in other plasma. No HEK293 cells were infected by the plasma in vitro. In addition, all PERV-related analyses in peripheral blood mononuclear cells and tissues were negative. CONCLUSION No transmission of PERVs into ALF canines suggested a reliable microbiological safety of HBAL based on porcine hepatocytes.
Collapse
Affiliation(s)
- Bing Han
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gerlach JC, Over P, Foka HG, Turner ME, Thompson RL, Gridelli B, Schmelzer E. Role of transcription factor CCAAT/enhancer-binding protein alpha in human fetal liver cell types in vitro. Hepatol Res 2015; 45:919-32. [PMID: 25195540 DOI: 10.1111/hepr.12420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/15/2022]
Abstract
AIM The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) has been shown to play an important role in liver development, cell proliferation and differentiation. It is, however, largely unknown if C/EBPα regulates cell differentiation and proliferation differently in the diverse cell types of the human liver. We investigated the role of C/EBPα in primary human fetal liver cells and liver cell subpopulations in vitro using a 3-D perfusion bioreactor as an advanced in vivo-like human organ culture model. METHODS Human fetal liver cells were investigated in vitro. C/EBPα gene expression was knocked down using siRNA or overexpressed by plasmid transfection. Cell type-specific gene expression was studied, cell populations and their proliferation were investigated, and metabolic parameters were analyzed. RESULTS When C/EBPα gene expression was knocked down, we observed a significantly reduced expression of typical endothelial, hematopoietic and mesenchymal genes such as CD31, vWF, CD90, CD45 and α-smooth muscle actin in fetal cells. The intracellular expression of hepatic proteins and genes for liver-specific serum proteins α-fetoprotein and albumin were reduced, their protein secretion was increased. Fetal endothelial cell numbers were reduced and hepatoblast numbers were increased. C/EBPα overexpression in fetal cells resulted in increased endothelial numbers, but did not affect mesenchymal cell types or hepatoblasts. CONCLUSION We demonstrated that the effects of C/EBPα are specific for the different human fetal liver cell types, using an advanced 3-D perfusion bioreactor as a human in vivo-like model.
Collapse
Affiliation(s)
- Jörg C Gerlach
- Department of Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick Over
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hubert G Foka
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Morris E Turner
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Robert L Thompson
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bruno Gridelli
- Department of Surgery, ISMETT - Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Palermo, Italy
| | - Eva Schmelzer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Glorioso JM, Mao SA, Rodysill B, Mounajjed T, Kremers WK, Elgilani F, Hickey RD, Haugaa H, Rose CF, Amiot B, Nyberg SL. Pivotal preclinical trial of the spheroid reservoir bioartificial liver. J Hepatol 2015; 63:388-98. [PMID: 25817557 PMCID: PMC4508211 DOI: 10.1016/j.jhep.2015.03.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The neuroprotective effect of the spheroid reservoir bioartificial liver (SRBAL) was evaluated in a porcine model of drug-overdose acute liver failure (ALF). METHODS Healthy pigs were randomized into three groups (standard therapy (ST) alone, ST+No-cell device, ST+SRBAL device) before placement of an implantable intracranial pressure (ICP) monitor and a tunneled central venous catheter. One week later, pigs received bolus infusion of the hepatotoxin D-galactosamine and were followed for up to 90h. RESULTS At 48h, all animals had developed encephalopathy and biochemical changes confirming ALF; extracorporeal treatment was initiated and pigs were observed up to 90h after drug infusion. Pigs treated with the SRBAL, loaded with porcine hepatocyte spheroids, had improved survival (83%, n=6) compared to ST alone (0%, n=6, p=0.003) and No-cell device therapy (17%, n=6, p=0.02). Ammonia detoxification, peak levels of serum ammonia and peak ICP, and pig survival were influenced by hepatocyte cell dose, membrane pore size and duration of SRBAL treatment. Hepatocyte spheroids remained highly functional with no decline in mean oxygen consumption from initiation to completion of treatment. CONCLUSIONS The SRBAL improved survival in an allogeneic model of drug-overdose ALF. Survival correlated with ammonia detoxification and ICP lowering indicating that hepatocyte spheroids prevented the cerebral manifestations of ALF (brain swelling, herniation, death). Further investigation of SRBAL therapy in a clinical setting is warranted.
Collapse
Affiliation(s)
| | - S. A. Mao
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - B. Rodysill
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - T. Mounajjed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - W. K. Kremers
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - F. Elgilani
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - R. D. Hickey
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - H. Haugaa
- Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo
| | - C. F. Rose
- Hepato-Neuro Laboratory, CRCHUM, Universite de Montreal, Quebec, Canada
| | - B. Amiot
- Brami Biomedical, Inc. Minneapolis, MN, USA
| | - S. L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, USA,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA,Corresponding address: Scott L. Nyberg, MD, PhD, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, 200 First Street, Rochester, MN 55905
| |
Collapse
|
29
|
Lee JG, Bak SY, Nahm JH, Lee SW, Min SO, Kim KS. Toward angiogenesis of implanted bio-artificial liver using scaffolds with type I collagen and adipose tissue-derived stem cells. KOREAN JOURNAL OF HEPATO-BILIARY-PANCREATIC SURGERY 2015; 19:47-58. [PMID: 26155277 PMCID: PMC4494077 DOI: 10.14701/kjhbps.2015.19.2.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 12/01/2022]
Abstract
Backgrounds/Aims Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the possibility of angiogenesis of implanted bio-artificial liver using scaffolds. Methods This study used adipose tissue-derived stem cells that were collected from adult patients with liver diseases with conditions similar to the liver parenchyma. Specifically, microfilaments were used to create an artificial membrane and maintain the structure of an artificial organ. After scratching the stomach surface of severe combined immunocompromised (SCID) mice (n=4), artificial scaffolds with adipose tissue-derived stem cells and type I collagen were implanted. Expression levels of angiogenesis markers including vascular endothelial growth factor (VEGF), CD34, and CD105 were immunohistochemically assessed after 30 days. Results Grossly, the artificial scaffolds showed adhesion to the stomach and surrounding organs; however, there was no evidence of angiogenesis within the scaffolds; and VEGF, CD34, and CD105 expressions were not detected after 30 days. Conclusions Although implantation of cells into artificial scaffolds did not facilitate angiogenesis, the artificial scaffolds made with type I collagen helped maintain implanted cells, and surrounding tissue reactions were rare. Our findings indicate that type I collagen artificial scaffolds can be considered as a possible implantable biomaterial.
Collapse
Affiliation(s)
- Jae Geun Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seon Young Bak
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
| | - Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Woo Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea. ; Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
| | - Seon Ok Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea. ; Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
| | - Kyung Sik Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea. ; Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea. ; Cell Therapy Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
30
|
Raschzok N, Sallmon H, Pratschke J, Sauer IM. MicroRNAs in liver tissue engineering - New promises for failing organs. Adv Drug Deliv Rev 2015; 88:67-77. [PMID: 26116880 DOI: 10.1016/j.addr.2015.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
miRNA-based technologies provide attractive tools for several liver tissue engineering approaches. Herein, we review the current state of miRNA applications in liver tissue engineering. Several miRNAs have been implicated in hepatic disease and proper hepatocyte function. However, the clinical translation of these findings into tissue engineering has just begun. miRNAs have been successfully used to induce proliferation of mature hepatocytes and improve the differentiation of hepatic precursor cells. Nonetheless, miRNA-based approaches beyond cell generation have not yet entered preclinical or clinical investigations. Moreover, miRNA-based concepts for the biliary tree have yet to be developed. Further research on miRNA based modifications, however, holds the promise of enabling significant improvements to liver tissue engineering approaches due to their ability to regulate and fine-tune all biological processes relevant to hepatic tissue engineering, such as proliferation, differentiation, growth, and cell function.
Collapse
Affiliation(s)
- Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Hannes Sallmon
- Neonatology, Charité - Universitätsmedizin Berlin, Germany
| | - Johann Pratschke
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Igor M Sauer
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
31
|
Lee SY, Kim HJ, Choi D. Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells 2015; 8:36-47. [PMID: 26019753 PMCID: PMC4445708 DOI: 10.15283/ijsc.2015.8.1.36] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022] Open
Abstract
The liver is the largest organ in the body; it has a complex architecture, wide range of functions and unique regenerative capacity. The growing incidence of liver diseases worldwide requires increased numbers of liver transplant and leads to an ongoing shortage of donor livers. To meet the huge demand, various alternative approaches are being investigated including, hepatic cell transplantation, artificial devices and bioprinting of the organ itself. Adult hepatocytes are the preferred cell sources, but they have limited availability, are difficult to isolate, propagate poor and undergo rapid functional deterioration in vitro. There have been efforts to overcome these drawbacks; by improving culture condition for hepatocytes, providing adequate extracellular matrix, co-culturing with extra-parenchymal cells and identifying other cell sources. Differentiation of human stem cells to hepatocytes has become a major interest in the field of stem cell research and has progressed greatly. At the same time, use of decellularized organ matrices and 3 D printing are emerging cutting-edge technologies for tissue engineering, opening up new paths for liver regenerative medicine. This review provides a compact summary of the issues, and the locations of liver support systems and tissue engineering, with an emphasis on reproducible and useful sources of hepatocytes including various candidates formed by differentiation from stem cells.
Collapse
Affiliation(s)
- Soo Young Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Han Joon Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Michel SG, Madariaga MLL, Villani V, Shanmugarajah K. Current progress in xenotransplantation and organ bioengineering. Int J Surg 2014; 13:239-244. [PMID: 25496853 DOI: 10.1016/j.ijsu.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/30/2014] [Accepted: 12/07/2014] [Indexed: 12/25/2022]
Abstract
Organ transplantation represents a unique method of treatment to cure people with end-stage organ failure. Since the first successful organ transplant in 1954, the field of transplantation has made great strides forward. However, despite the ability to transform and save lives, transplant surgery is still faced with a fundamental problem the number of people requiring organ transplants is simply higher than the number of organs available. To put this in stark perspective, because of this critical organ shortage 18 people every day in the United States alone die on a transplant waiting list (U.S. Department of Health & Human Services, http://organdonor.gov/about/data.html). To address this problem, attempts have been made to increase the organ supply through xenotransplantation and more recently, bioengineering. Here we trace the development of both fields, discuss their current status and highlight limitations going forward. Ultimately, lessons learned in each field may prove widely applicable and lead to the successful development of xenografts, bioengineered constructs, and bioengineered xeno-organs, thereby increasing the supply of organs for transplantation.
Collapse
Affiliation(s)
- Sebastian G Michel
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA; Department of Cardiac Surgery, Ludwig-Maximilians-Universität München, Munich D-81377, Germany.
| | - Maria Lucia L Madariaga
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02129, USA
| | - Vincenzo Villani
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA
| | - Kumaran Shanmugarajah
- Transplantation Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Boston, MA 02114, USA; Division of Surgery, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
33
|
Abstract
Effective utilization of three-dimensional printing for tissue and organ engineering remains nontrivial. Here, Jordan Miller identifies key challenges and discusses conceptual targets on the horizon. How structure relates to function—across spatial scales, from the single molecule to the whole organism—is a central theme in biology. Bioengineers, however, wrestle with the converse question: will function follow form? That is, we struggle to approximate the architecture of living tissues experimentally, hoping that the structure we create will lead to the function we desire. A new means to explore the relationship between form and function in living tissue has arrived with three-dimensional printing, but the technology is not without limitations.
Collapse
Affiliation(s)
- Jordan S. Miller
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Hilal-Alnaqbi A, Mourad AHI, Yousef BF. Effect of membranes on oxygen transfer rate and consumption within a newly developed three-compartment bioartificial liver device: Advanced experimental and theoretical studies. Biotechnol Appl Biochem 2014; 61:304-15. [PMID: 24164246 DOI: 10.1002/bab.1173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/15/2013] [Indexed: 01/27/2023]
Abstract
A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length.
Collapse
Affiliation(s)
- Ali Hilal-Alnaqbi
- Mechanical Engineering Department, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates; Renal Division, BWH, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
35
|
LaMattina JC, Burdorf L, Zhang T, Rybak E, Cheng X, Munivenkatappa R, Salles II, Broos K, Sievert E, McCormick B, Decarlo M, Ayares D, Deckmyn H, Azimzadeh AM, Pierson RN, Barth RN. Pig-to-baboon liver xenoperfusion utilizing GalTKO.hCD46 pigs and glycoprotein Ib blockade. Xenotransplantation 2014; 21:274-86. [PMID: 24628649 DOI: 10.1111/xen.12093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 02/05/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although transplantation of genetically modified porcine livers into baboons has yielded recipient survival for up to 7 days, survival is limited by profound thrombocytopenia, which becomes manifest almost immediately after revascularization, and by subsequent coagulopathy. Porcine von Willebrand's factor (VWF), a glycoprotein that adheres to activated platelets to initiate thrombus formation, has been shown to constitutively activate human platelets via their glycoprotein Ib (GPIb) receptors. Here, we report our pig-to-primate liver xenoperfusion model and evaluate whether targeting the GPIb-VWF axis prevents platelet sequestration. METHODS Twelve baboons underwent cross-circulation with the following extracorporeal livers: one allogeneic control with a baboon liver, 4 xenogeneic controls with a GalTKO.hCD46 pig liver, 3 GalTKO.hCD46 pig livers in recipients treated with αGPIb antibody during perfusion, and 4 GalTKO.hCD46 pig livers pre-treated with D-arginine vasopressin (DDAVP) in recipients treated with αGPIb antibody during perfusion. RESULTS All perfused livers appeared grossly and macroscopically normal and produced bile. Xenograft liver perfusion experiments treated with αGPIb antibody may show less platelet sequestration during the initial 2 h of perfusion. Portal venous resistance remained constant in all perfusion experiments. Platelet activation studies demonstrated platelet activation in all xenoperfusions, but not in the allogeneic perfusion. CONCLUSION These observations suggest that primate platelet sequestration by porcine liver and the associated thrombocytopenia are multifactorial and perhaps partially mediated by a constitutive interaction between porcine VWF and the primate GPIb receptor. Control of platelet sequestration and consumptive coagulopathy in liver xenotransplantation will likely require a multifaceted approach in our clinically relevant perfusion model.
Collapse
Affiliation(s)
- John C LaMattina
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The treatment of end-stage liver disease and acute liver failure remains a clinically relevant issue. Although orthotopic liver transplantation is a well-established procedure, whole-organ transplantation is invasive and increasingly limited by the unavailability of suitable donor organs. Artificial and bioartificial liver support systems have been developed to provide an alternative to whole organ transplantation, but despite three decades of scientific efforts, the results are still not convincing with respect to clinical outcome. In this Review, conceptual limitations of clinically available liver support therapy systems are discussed. Furthermore, alternative concepts, such as hepatocyte transplantation, and cutting-edge developments in the field of liver support strategies, including the repopulation of decellularized organs and the biofabrication of entirely new organs by printing techniques or induced organogenesis are analysed with respect to clinical relevance. Whereas hepatocyte transplantation shows promising clinical results, at least for the temporary treatment of inborn metabolic diseases, so far data regarding implantation of engineered hepatic tissue have only emerged from preclinical experiments. However, the evolving techniques presented here raise hope for bioengineered liver support therapies in the future.
Collapse
|
37
|
Mueller D, Krämer L, Hoffmann E, Klein S, Noor F. 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies. Toxicol In Vitro 2014; 28:104-12. [DOI: 10.1016/j.tiv.2013.06.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 12/25/2022]
|
38
|
Farzaneh Z, Pakzad M, Vosough M, Pournasr B, Baharvand H. Differentiation of human embryonic stem cells to hepatocyte-like cells on a new developed xeno-free extracellular matrix. Histochem Cell Biol 2014; 142:217-26. [PMID: 24477550 DOI: 10.1007/s00418-014-1183-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 12/29/2022]
Abstract
Human embryonic stem cells (hESCs) provide a new source for hepatocyte production in translational medicine and cell replacement therapy. The reported hESC-derived hepatocyte-like cells (HLCs) were commonly generated on Matrigel, a mouse cell line-derived extracellular matrix (ECM). Here, we performed the hepatic lineage differentiation of hESCs following a stepwise application of growth factors on a newly developed serum- and xeno-free, simple and cost-benefit ECM, designated "RoGel," which generated from a modified conditioned medium of human fibroblasts. In comparison with Matrigel, the differentiated HLCs on both ECMs expressed similar levels of hepatocyte-specific genes, secreted α-fetoprotein, and metabolized ammonia, showed glycogen storage activity as well as low-density lipoprotein and indocyanine green uptake. The transplantation of hESC-HLCs into the carbon tetrachloride-injured liver demonstrated incorporation of the cells into the host mouse liver and the expression of albumin. The results suggest that the xeno-free and cost-benefit matrix may be applicable in bioartificial livers and also may facilitating a clinical application of human pluripotent stem cell-derived hepatocytes in the future.
Collapse
Affiliation(s)
- Zahra Farzaneh
- Department of Stem Cells and Developmental Biology at the Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, PO Box 19395-4644, Tehran, Iran
| | | | | | | | | |
Collapse
|
39
|
Morabito V, Novelli G, Jalan R. When to use renal replacement therapy and bioartificial support for renal failure in patients with cirrhosis. Clin Liver Dis (Hoboken) 2013; 2:116-119. [PMID: 30992840 PMCID: PMC6448631 DOI: 10.1002/cld.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Vincenzo Morabito
- Liver Failure Group, Institute of Liver and Digestive Health, University College London Medical School, London, United Kingdom
| | - Gilnardo Novelli
- P. Stefanini Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Rajiv Jalan
- Liver Failure Group, Institute of Liver and Digestive Health, University College London Medical School, London, United Kingdom
| |
Collapse
|
40
|
Al-Chalabi A, Matevossian E, V Thaden AK, Luppa P, Neiss A, Schuster T, Yang Z, Schreiber C, Schimmel P, Nairz E, Perren A, Radermacher P, Huber W, Schmid RM, Kreymann B. Evaluation of the Hepa Wash® treatment in pigs with acute liver failure. BMC Gastroenterol 2013; 13:83. [PMID: 23668774 PMCID: PMC3659067 DOI: 10.1186/1471-230x-13-83] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 05/10/2013] [Indexed: 12/12/2022] Open
Abstract
Background Mortality of patients with acute liver failure (ALF) is still unacceptably high. Available liver support systems are still of limited success at improving survival. A new type of albumin dialysis, the Hepa Wash® system, was newly introduced. We evaluated the new liver support system as well as the Molecular Adsorbent Recycling System (MARS) in an ischemic porcine model of ALF. Methods In the first study animals were randomly allocated to control (n=5) and Hepa Wash (n=6) groups. In a further pilot study, two animals were treated with the MARS-system. All animals received the same medical and surgical procedures. An intraparenchymal intracranial pressure was inserted. Hemodynamic monitoring and goal-directed fluid therapy using the PiCCO system was done. Animals underwent functional end-to-side portacaval shunt and ligation of hepatic arteries. Treatment with albumin dialysis was started after fall of cerebral perfusion pressure to 45 mmHg and continued for 8 h. Results All animals in the Hepa Wash group survived the 13-hour observation period, except for one that died after stopping treatment. Four of the control animals died within this period (p=0.03). Hepa Wash significantly reduced impairment of cerebral perfusion pressure (23±2 vs. 10±3 mmHg, p=0.006) and mean arterial pressure (37±1 vs. 24±2 mmHg, p=0.006) but had no effect on intracranial pressure (14±1 vs. 15±1 mmHg, p=0.72). Hepa Wash also enhanced cardiac index (4.94±0.32 vs. 3.36±0.25 l/min/m2, p=0.006) and renal function (urine production, 1850 ± 570 vs. 420 ± 180 ml, p=0.045) and eliminated water soluble (creatinine, 1.3±0.2 vs. 3.2±0.3 mg/dl, p=0.01; ammonia 562±124 vs. 1382±92 μg/dl, p=0.006) and protein-bound toxins (nitrate/nitrite 5.54±1.57 vs. 49.82±13.27 μmol/l, p=0.01). No adverse events that could be attributed to the Hepa Wash treatment were observed. Conclusions Hepa Wash was a safe procedure and improved multiorgan system failure in pigs with ALF. The survival benefit could be the result of ameliorating different organ functions in association with the detoxification capacity of water soluble and protein-bound toxins.
Collapse
Affiliation(s)
- Ahmed Al-Chalabi
- II Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, München 81675, Gremany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Liver failure is associated with a high morbidity and mortality rate and is the seventh leading cause of death worldwide. Orthotopic liver transplantation remains the definitive treatment; however, because of the limited number of available organs many patients expire while on the transplant list. Currently, there are no established means for providing liver support as a means of bridging patients to transplantation or allowing for recovery from liver injury. Analogous to the clinical situation of renal failure, there is great interest in developing liver support systems that replace the metabolic and waste removal functions of the liver. These support systems are of two general types: artificial and bioartificial livers. In this review, based on a presentation from the 57th American Society of Artificial Internal Organs Annual Meeting (Washington, D.C., June 2011), we review the current status of liver support systems.
Collapse
|
42
|
Sharma AD, Iacob R, Cantz T, Manns MP, Ott M. Liver. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
43
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | |
Collapse
|
44
|
Abstract
The fact that liver failure constitutes a life-threatening condition and can, in most cases, only be overcome by orthotopic liver transplantation, lead to the development of various artificial and bioartificial liver support devices. While artificial systems are based on the principles of adsorption and filtration, the more complex concept of bioartificial devices includes the provision of liver cells. Instead of solely focussing on detoxification, these concepts also support the failing organ concerning synthetic and regulative functions.The systems were evaluated in a variety of clinical studies, demonstrating their safety and investigating the impact on the patient's clinical condition. This review gives an overview over the most common artificial and bioartificial liver support devices and summarizes the results of the clinical studies.
Collapse
|
45
|
Gu J, Shi X, Ren H, Xu Q, Wang J, Xiao J, Ding Y. Systematic review: extracorporeal bio-artificial liver-support system for liver failure. Hepatol Int 2012; 6:670-683. [PMID: 26201519 DOI: 10.1007/s12072-012-9352-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 02/21/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only effective long-term treatment for liver failure by now. However, it is not yet a perfect choice due to donor-organ shortage and the need of a lifelong immunosuppressive therapy. Therefore, it is necessary to find a new approach to fighting the disease. Several published clinical trials have reported the therapeutic effect of bio-artificial liver (BAL) for liver failure. OBJECTIVE To overview and evaluate the current clinical application and outcomes of extracorporeal BAL support system during the past 15 years. METHODS Relevant studies were retrieved from PubMed and Cochrane Library databases. Independent assessments and the final consensus decision were performed by three independent reviewers. Acceptable study designs included randomized controlled trials, controlled clinical trials, and case reports. A total of 31 studies were tabulated and critically appraised in terms of characteristics, methods, and outcomes. RESULTS There was a trend of falling into the normal ranges with the clinical and biochemical parameters after the BAL treatment. The neurological status of most patients was improved or stabilized during BAL treatment as well. No significant effect on survival could be seen after the BAL treatment. CONCLUSIONS Although BAL system proved to be a success in some clinical cases reported, it still needs to be improved greatly.
Collapse
Affiliation(s)
- Jinyang Gu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
- Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
- Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
| | - Qingxiang Xu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
- Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Jun Wang
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jiangqiang Xiao
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China.
- Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China.
| |
Collapse
|
46
|
Zhao LF, Pan XP, Li LJ. Key challenges to the development of extracorporeal bioartificial liver support systems. Hepatobiliary Pancreat Dis Int 2012; 11:243-9. [PMID: 22672816 DOI: 10.1016/s1499-3872(12)60155-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND For nearly three decades, extracorporeal bioartificial liver (BAL) support systems have been anticipated as promising tools for the treatment of liver failure. However, these systems are still far from clinical application. This review aimed to analyze the key challenges to the development of BALs. DATA SOURCE We carried out a PubMed search of English-language articles relevant to extracorporeal BAL support systems and liver failure. RESULTS Extracorporeal BALs face a series of challenges. First, an appropriate cell source for BAL is not readily available. Second, existing bioreactors do not provide in vivo-like oxygenation and bile secretion. Third, emergency needs cannot be met by current BALs. Finally, the effectiveness of BALs, either in animals or in patients, has been difficult to document. CONCLUSIONS Extracorporeal BAL support systems are mainly challenged by incompetent cell sources and flawed bioreactors. To advance this technology, future research is needed to provide more insights into interpreting the conditions for hepatocyte differentiation and liver microstructure formation.
Collapse
Affiliation(s)
- Li-Fu Zhao
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
47
|
Han B, Shi XL, Zhang Y, Chu XH, Gu JY, Xiao JQ, Ren HZ, Tan JJ, Gu ZZ, Ding YT. Microbiological safety of a novel bio-artificial liver support system based on porcine hepatocytes: a experimental study. Eur J Med Res 2012; 17:13. [PMID: 22632261 PMCID: PMC3419623 DOI: 10.1186/2047-783x-17-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/25/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Our institute has developed a novel bio-artificial liver (BAL) support system, based on a multi-layer radial-flow bioreactor carrying porcine hepatocytes and mesenchymal stem cells. It has been shown that porcine hepatocytes are capable of carrying infectious porcine endogenous retroviruses (PERVs) into human cells, thus the microbiological safety of any such system must be confirmed before clinical trials can be performed. In this study, we focused on assessing the status of PERV infection in beagles treated with the novel BAL. METHODS Five normal beagles were treated with the novel BAL for 6 hours. The study was conducted for 6 months, during which plasma was collected from the BAL and whole blood from the beagles at regular intervals. DNA and RNA in both the collected peripheral blood mononuclear cells (PBMCs) and plasma samples were extracted for conventional PCR and reverse transcriptase (RT)-PCR with PERV-specific primers and the porcine-specific primer Sus scrofa cytochrome B. Meanwhile, the RT activity and the in vitro infectivity of the plasma were measured. RESULTS Positive PERV RNA and RT activity were detected only in the plasma samples taken from the third circuit of the BAL system. All other samples including PBMCs and other plasma samples were negative for PERV RNA, PERV DNA, and RT activity. In the in vitro infection experiment, no infection was found in HEK293 cells treated with plasma. CONCLUSIONS No infective PERV was detected in the experimental animals, thus the novel BAL had a reliable microbiological safety profile.
Collapse
Affiliation(s)
- Bing Han
- Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Number 321 Zhongshan Road, Nanjing 210008, China
- Department of Hepatobiliary Surgery, DrumTower Clinical Medical College of Nanjing Medical University, Number 321 Zhongshan Road, Nanjing 210008, China
| | - Xiao-lei Shi
- Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Number 321 Zhongshan Road, Nanjing 210008, China
- Department of Hepatobiliary Surgery, DrumTower Clinical Medical College of Nanjing Medical University, Number 321 Zhongshan Road, Nanjing 210008, China
| | - Yue Zhang
- Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Number 321 Zhongshan Road, Nanjing 210008, China
- Department of Hepatobiliary Surgery, DrumTower Clinical Medical College of Nanjing Medical University, Number 321 Zhongshan Road, Nanjing 210008, China
| | - Xue-hui Chu
- Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Number 321 Zhongshan Road, Nanjing 210008, China
- Department of Hepatobiliary Surgery, DrumTower Clinical Medical College of Nanjing Medical University, Number 321 Zhongshan Road, Nanjing 210008, China
| | - Jin-yang Gu
- Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Number 321 Zhongshan Road, Nanjing 210008, China
- Department of Hepatobiliary Surgery, DrumTower Clinical Medical College of Nanjing Medical University, Number 321 Zhongshan Road, Nanjing 210008, China
| | - Jiang-qiang Xiao
- Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Number 321 Zhongshan Road, Nanjing 210008, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Number 321 Zhongshan Road, Nanjing 210008, China
| | - Jia-jun Tan
- Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Number 321 Zhongshan Road, Nanjing 210008, China
| | - Zhong-ze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210008, China
| | - Yi-tao Ding
- Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Number 321 Zhongshan Road, Nanjing 210008, China
- Department of Hepatobiliary Surgery, DrumTower Clinical Medical College of Nanjing Medical University, Number 321 Zhongshan Road, Nanjing 210008, China
| |
Collapse
|
48
|
Tang N, Wang Y, Wang X, Zhou L, Zhang F, Li X, Chen Y. Stable overexpression of arginase I and ornithine transcarbamylase in HepG2 cells improves its ammonia detoxification. J Cell Biochem 2012; 113:518-27. [PMID: 21938740 DOI: 10.1002/jcb.23375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HepG2 is an immortalized human hepatoma cell line that has been used for research into bioartificial liver systems. However, a low level of ammonia detoxification is its biggest drawback. In this work, a recombinant HepG2 cell line with stable overexpression of human arginase I (hArgI) and human ornithine transcarbamylase (hOTC), HepG2/(hArgI + hOTC)4, was developed using a eukaryotic dual gene expression vector pBudCE4.1. (1) The hArgI and hOTC enzymatic activity in HepG2/(hArgI + hOTC)4 cells were higher than in the control cells. (2) The ammonia tolerance capacity of HepG2/(hArgI + hOTC)4 cells was three times that of HepG2 cells and 37.5% of that of primary human hepatocytes in cultivation. In the experiment of ammonia detoxification, HepG2/(hArgI + hOTC)4 cells produced 3.1 times more urea (at 180 mM NH(4) Cl) and 3.1 times more glutamine (at 120 mM NH(4) Cl and 15 mM glutamate) than HepG2 cells, reaching 63.1% and 36.0% that of primary human hepatocytes, respectively. (3) The hArgI and hOTC overexpression did not influence the growth of HepG2 cells and also promoted the expression of other ammonia detoxification associated proteins including glutamine synthetase (GS), arginase II (ArgII), arginosuccinate synthase (ASS) and arginosuccinate lyase (ASL) in HepG2 cells. This work illustrates that the modification reported here made significant progress in the improvement of HepG2 cell function and the HepG2/(hArgI + hOTC)4 cells will provide a better selection for the application of bioartificial liver system.
Collapse
Affiliation(s)
- Nanhong Tang
- Fujian Institute of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Factors Influencing the Transfer of Porcine Endogenous Retroviruses across the Membrane in Bioartificial Livers. Int J Artif Organs 2012; 35:385-91. [PMID: 22505203 DOI: 10.5301/ijao.5000093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2011] [Indexed: 11/20/2022]
Abstract
Objectives: to investigate the factors influencing the transfer of porcine endogenous retroviruses (PERVs) across the membrane in a new bioartificial liver (BAL). Methods: A new BAL containing 2 circuits was constructed using plasma component separators with membrane pore sizes of 10 nm, 20 nm, 30 nm, and 35 nm, or a plasma filter with a membrane pore size of 500 nm. Cocultured cells of porcine hepatocytes and mesenchymal stem cells or single porcine hepatocytes were incubated in the bioreactors, and the BAL worked for 72 hours, with supernatant samples in internal and external circuits collected every 12 hours. PERV RNA, reverse transcriptase (RT) activity, and in vitro infectivity of the supernatant were detected. Results: With the plasma filters, the results of PERV detection were the same in both circuits. With plasma component separators, PERV RNA was found in the external circuits, but no positive RT activity or HEK293 cell infection was found. The time at which the PERV RNA was first detected varied with the pore size of membrane; the larger the membrane pore size was, the earlier the RNA was detected. The PERV RNA level in the external circuits was reduced significantly compared with that in the internal circuits at any detecting time. Conclusions: The plasma component separators with membrane pore size ≤35 nm could significantly reduce the passage of infectious PERVs. And the membrane pore size, the treatment duration, and the viral level in the internal circuit were potential factors influencing the transfer of PERVs across the membrane in a BAL. In addition, a low risk of PERV transmission from porcine hepatocytes to human cells was found.
Collapse
|
50
|
Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 2012; 25:318-43. [PMID: 22491774 PMCID: PMC3346299 DOI: 10.1128/cmr.05011-11] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Xenotransplantation may be a solution to overcome the shortage of organs for the treatment of patients with organ failure, but it may be associated with the transmission of porcine microorganisms and the development of xenozoonoses. Whereas most microorganisms may be eliminated by pathogen-free breeding of the donor animals, porcine endogenous retroviruses (PERVs) cannot be eliminated, since these are integrated into the genomes of all pigs. Human-tropic PERV-A and -B are present in all pigs and are able to infect human cells. Infection of ecotropic PERV-C is limited to pig cells. PERVs may adapt to host cells by varying the number of LTR-binding transcription factor binding sites. Like all retroviruses, they may induce tumors and/or immunodeficiencies. To date, all experimental, preclinical, and clinical xenotransplantations using pig cells, tissues, and organs have not shown transmission of PERV. Highly sensitive and specific methods have been developed to analyze the PERV status of donor pigs and to monitor recipients for PERV infection. Strategies have been developed to prevent PERV transmission, including selection of PERV-C-negative, low-producer pigs, generation of an effective vaccine, selection of effective antiretrovirals, and generation of animals transgenic for a PERV-specific short hairpin RNA inhibiting PERV expression by RNA interference.
Collapse
|