1
|
Lefèbre J, Falk T, Ning Y, Rademacher C. Secondary Sites of the C-type Lectin-Like Fold. Chemistry 2024; 30:e202400660. [PMID: 38527187 DOI: 10.1002/chem.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.
Collapse
Affiliation(s)
- Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Torben Falk
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Yunzhan Ning
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| |
Collapse
|
2
|
Mendes-Aguiar CDO, Kitahara-Oliveira MY, de Almeida ACO, Pereira-Oliveira M, de Oliveira Neto MP, Pirmez C, Sampaio EP, Gomes-Silva A, Da-Cruz AM. DC-SIGN receptor is expressed by cells from cutaneous leishmaniasis lesions and differentially binds to Leishmania (Viannia) braziliensis and L. (Leishmania) amazonensis promastigotes. Mem Inst Oswaldo Cruz 2023; 118:e220044. [PMID: 36995847 PMCID: PMC10042235 DOI: 10.1590/0074-02760220044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) specific intercellular adhesion molecule (ICAM)-3-grabbing non integrin receptor (DC-SIGN) binds to subgenera Leishmania promastigotes mediating its interaction with DC and neutrophils, potentially influencing the infection outcome. OBJECTIVES In this work, we investigated whether DC-SIGN receptor is expressed in cells from cutaneous leishmaniasis (CL) lesions as well as the in vitro binding pattern of Leishmania (Viannia) braziliensis (Lb) and L. (L.) amazonensis (La) promastigotes. METHODS DC-SIGN receptor was labeled by immunohistochemistry in cryopreserved CL tissue fragments. In vitro binding assay with CFSE-labeled Lb or La promastigotes and RAJI-transfecting cells expressing DC-SIGN (DC-SIGNPOS) or mock-transfected (DC-SIGNNEG) were monitored by flow cytometry at 2 h, 24 h and 48 h in co-culture. RESULTS In CL lesion infiltrate, DC-SIGNPOS cells were present in the dermis and near the epidermis. Both Lb and La bind to DC-SIGNPOS cells, while binding to DC-SIGNNEG was low. La showed precocious and higher affinity to DC-SIGNhi population than to DC-SIGNlow, while Lb binding was similar in these populations. CONCLUSION Our results demonstrate that DC-SIGN receptor is present in L. braziliensis CL lesions and interact with Lb promastigotes. Moreover, the differences in the binding pattern to Lb and La suggest DC-SIGN can influence in a difference way the intake of the parasites at the first hours after Leishmania infection. These results raise the hypothesis that DC-SIGN receptor could participate in the immunopathogenesis of American tegumentary leishmaniasis accounting for the differences in the outcome of the Leishmania spp. infection.
Collapse
Affiliation(s)
- Carolina de O Mendes-Aguiar
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio Grande do Norte, Instituto de Medicina Tropical do Rio Grande do Norte, Natal, RN, Brasil
| | - Milene Yoko Kitahara-Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Ana Cristina Oliveira de Almeida
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Marcia Pereira-Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Manoel Paes de Oliveira Neto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em Micobacterioses, Rio de Janeiro, RJ, Brasil
| | - Claude Pirmez
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Elizabeth Pereira Sampaio
- National Institute of Allergy and Infectious Diseases, Laboratory of Clinical Immunology and Microbiology, Bethesda, MD, USA
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Hanseníase, Rio de Janeiro, RJ, Brasil
| | - Adriano Gomes-Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em Micobacterioses, Rio de Janeiro, RJ, Brasil
| | - Alda Maria Da-Cruz
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Olejnik B, Ferens-Sieczkowska M. Seminal Plasma Glycoproteins as Potential Ligands of Lectins Engaged in Immunity Regulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10489. [PMID: 36078205 PMCID: PMC9518496 DOI: 10.3390/ijerph191710489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution, chronic stress, and unhealthy lifestyle are factors that negatively affect reproductive potential. Currently, 15-20% of couples in industrialized countries face the problem of infertility. This growing health and social problem prompts researchers to explore the regulatory mechanisms that may be important for successful fertilization. In recent years, more attention has been paid to male infertility factors, including the impact of seminal plasma components on regulation of the female immune response to allogenic sperm, embryo and fetal antigens. Directing this response to the tolerogenic pathway is crucial to achieve a healthy pregnancy. According to the fetoembryonic defense hypothesis, the regulatory mechanism may be associated with the interaction of lectins and immunomodulatory glycoepitopes. Such interactions may involve lectins of dendritic cells and macrophages, recruited to the cervical region immediately after intercourse. Carbohydrate binding receptors include C type lectins, such as DC-SIGN and MGL, as well as galectins and siglecs among others. In this article we discuss the expression of the possible lectin ligands, highly fucosylated and high mannose structures, which may be recognized by DC-SIGN, glycans of varying degrees of sialylation, which may differ in their interaction with siglecs, as well as T and Tn antigens in O-glycans.
Collapse
|
4
|
Srivastava AD, Unione L, Bunyatov M, Gagarinov IA, Delgado S, Abrescia NGA, Ardá A, Boons GJ. Chemoenzymatic Synthesis of Complex N-Glycans of the Parasite S. mansoni to Examine the Importance of Epitope Presentation on DC-SIGN recognition. Angew Chem Int Ed Engl 2021; 60:19287-19296. [PMID: 34124805 PMCID: PMC8456914 DOI: 10.1002/anie.202105647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Indexed: 12/14/2022]
Abstract
The importance of multivalency for N-glycan-protein interactions has primarily been studied by attachment of minimal epitopes to artificial multivalent scaffold and not in the context of multi-antennary glycans. N-glycans can be modified by bisecting GlcNAc, core xylosides and fucosides, and extended N-acetyl lactosamine moieties. The impact of such modifications on glycan recognition are also not well understood. We describe here a chemoenzymatic methodology that can provide N-glycans expressed by the parasitic worm S. mansoni having unique epitopes at each antenna and containing core xyloside. NMR, computational and electron microscopy were employed to investigate recognition of the glycans by the human lectin DC-SIGN. It revealed that core xyloside does not influence terminal epitope recognition. The multi-antennary glycans bound with higher affinity to DC-SIGN compared to mono-valent counterparts, which was attributed to proximity-induced effective concentration. The multi-antennary glycans cross-linked DC-SIGN into a dense network, which likely is relevant for antigen uptake and intracellular routing.
Collapse
Affiliation(s)
- Apoorva D Srivastava
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Mehman Bunyatov
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Ivan A Gagarinov
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sandra Delgado
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain
| | - Nicola G A Abrescia
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Bizkaia, Spain
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Bizkaia, Spain
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.,Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
5
|
Srivastava AD, Unione L, Bunyatov M, Gagarinov IA, Delgado S, Abrescia NGA, Ardá A, Boons G. Chemoenzymatic Synthesis of Complex
N
‐Glycans of the Parasite
S. mansoni
to Examine the Importance of Epitope Presentation on DC‐SIGN recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Apoorva D. Srivastava
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Mehman Bunyatov
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Ivan A. Gagarinov
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Sandra Delgado
- Molecular Recognition and Host-Pathogen Interactions CIC bioGUNE, Basque Research and Technology Alliance, BRTA Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - Nicola G. A. Abrescia
- Molecular Recognition and Host-Pathogen Interactions CIC bioGUNE, Basque Research and Technology Alliance, BRTA Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Bizkaia Spain
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions CIC bioGUNE, Basque Research and Technology Alliance, BRTA Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Bizkaia Spain
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Bijvoet Center for Biomolecular Research Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
- Department of Chemistry University of Georgia Athens GA 30602 USA
| |
Collapse
|
6
|
Porkolab V, Pifferi C, Sutkeviciute I, Ordanini S, Taouai M, Thépaut M, Vivès C, Benazza M, Bernardi A, Renaudet O, Fieschi F. Development of C-type lectin-oriented surfaces for high avidity glycoconjugates: towards mimicking multivalent interactions on the cell surface. Org Biomol Chem 2020; 18:4763-4772. [DOI: 10.1039/d0ob00781a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here we described C-type lectin-oriented surfaces for SPR analysis. They allow the preservation of receptor topology, accessibility of binding sites, better evaluation of high avidity compounds and assessment of multivalent effect at cell surface.
Collapse
|
7
|
Jo E, Elvitigala DAS, Wan Q, Oh M, Oh C, Lee J. Identification and molecular profiling of DC-SIGN-like from big belly seahorse (Hippocampus abdominalis) inferring its potential relevancy in host immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:270-279. [PMID: 28867209 DOI: 10.1016/j.dci.2017.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Dendritic-cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is a C-type lectin that functions as a pattern recognition receptor by recognizing pathogen-associated molecular patterns (PAMPs). It is also involved in various events of the dendritic cell (DC) life cycle, such as DC migration, antigen capture and presentation, and T cell priming. In this study, a DC-SIGN-like gene from the big belly seahorse Hippocampus abdominalis (designated as ShDCS-like) was identified and molecularly characterized. The putative, complete ORF was found to be 1368 bp in length, encoding a protein of 462 amino acids with a molecular mass of 52.6 kDa and a theoretical isoelectric point of 8.26. The deduced amino acid sequence contains a single carbohydrate recognition domain (CRD), in which six conserved cysteine residues and two Ca2+-binding site motifs (QPN, WND) were identified. Based on pairwise sequence analysis, ShDCS-like exhibits the highest amino acid identity (94.6%) and similarity (97.4%) with DC-SIGN-like counterpart from tiger tail seahorse Hippocampus comes. Quantitative real-time PCR revealed that ShDCS-like mRNA is transcribed universally in all tissues examined, but with abundance in kidney and gill tissues. The basal mRNA expression of ShDCS-like was modulated in blood cell, kidney, gill and liver tissues in response to the stimulation of healthy fish with lipopolysaccharides (LPS), Edwardsiella tarda, or Streptococcus iniae. Moreover, recombinant ShDCS-like-CRD domain exhibited detectable agglutination activity against different bacteria. Collectively, these results suggest that ShDCS-like may potentially involve in immune function in big belly seahorses.
Collapse
Affiliation(s)
- Eunyoung Jo
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju Special Self-Governing Province, 63349, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Chemistry, University of Colombo, Colombo 03, 00300, Sri Lanka
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Minyoung Oh
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Chulhong Oh
- Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju Special Self-Governing Province, 63349, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
8
|
PPAR-γ agonist pioglitazone regulates dendritic cells immunogenicity mediated by DC-SIGN via the MAPK and NF-κB pathways. Int Immunopharmacol 2016; 41:24-34. [PMID: 27792919 DOI: 10.1016/j.intimp.2016.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) is a dendritic cell-specific lectin which participates in dendritic cell (DC) trafficking, antigen uptake and DC-T cell interactions at the initiation of immune responses. This study investigated whether peroxisome proliferator-activated receptor-gamma (PPAR-γ) activation in human DCs regulates the immunogenicity of DCs mediated by DC-SIGN and exploited the possible molecular mechanisms, especially focused on the signaling pathways of mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB). Here, we show that the PPAR-γ agonist pioglitazone decreased DC adhesion and transmigration, and DC stimulation of T cell proliferation mediated by DC-SIGN dependent on activation of PPAR-γ, although it increased DC endocytosis independent of PPAR-γ activation. Furthermore, PPAR-γ activation by pioglitazone in DCs down-regulated the expression of DC-SIGN, which was mediated by modulating the balance of the signaling pathways of extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB, but not p38 MAPK. Therefore, we conclude that PPAR-γ activation in human DCs regulates the immunogenicity of DCs mediated by DC-SIGN via the pathways of MAPK and NF-κB. These findings may support the important role of these mediators in the regulation of DC-mediated inflammatory and immunologic processes.
Collapse
|
9
|
Herrero R, Pineda JA, Rivero-Juarez A, Echbarthi M, Real LM, Camacho A, Macias J, Fibla J, Rivero A, Caruz A. Common haplotypes in CD209 promoter and susceptibility to HIV-1 infection in intravenous drug users. INFECTION GENETICS AND EVOLUTION 2016; 45:20-25. [PMID: 27539513 DOI: 10.1016/j.meegid.2016.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 12/30/2022]
Abstract
INTRODUCTION CD209 is a receptor expressed in the dendritic cells involved in recognition of oligosaccharides present in several pathogens with a relevant impact on human health. SNPs located in the promoter region have been associated with HIV-1 susceptibility, although this finding has not been replicated in other populations. The objective of this study is to evaluate the association of CD209 promoter haplotypes with risk of HIV-1 infection in a cohort of Spanish male intravenous drug users (IDU) infected with hepatitis C virus (HCV) and to characterize the phenotypic effects of the associated variants. METHODS We genotyped 4 SNPs of CD209 promoter in 295 HCV males exposed to HIV-1 infection by IDU, 165 HIV-1-infected and 130 exposed uninfected (EUI) and 142 healthy controls (HC). We have cloned the promoter variants in a reporter vector and evaluated the promoter activities in a cell culture model. CD209 mRNAs were measured in PBMC. RESULTS Single-marker analysis revealed no significant allelic association with the risk of HIV-1 infection by parenteral route. Nevertheless, one haplotype was significantly overrepresented in EUI compared with HIV-1 positive patients and was associated with HIV-1 status (P=0.0008; OR: 0.43). Functional experiments suggested that the protective haplotype displayed lower transcriptional activity in vitro (P<0.05) and this was correlated with lower CD209 mRNA expression in PBMC (P=0.014). CONCLUSIONS This study suggests that the promoter haplotypes of CD209 influence the risk of HIV-1 acquisition in IDU and that this association is correlated with the mRNA expression level.
Collapse
Affiliation(s)
- Rocio Herrero
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, 23071 Jaén, Spain.
| | - Juan A Pineda
- Infectious Diseases and Microbiology Clinical Unit, Valme Hospital, 41014 Seville, Spain.
| | - Antonio Rivero-Juarez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, 14004 Cordoba, Spain.
| | - Meriem Echbarthi
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, 23071 Jaén, Spain.
| | - Luis-Miguel Real
- Infectious Diseases and Microbiology Clinical Unit, Valme Hospital, 41014 Seville, Spain.
| | - Angela Camacho
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, 14004 Cordoba, Spain.
| | - Juan Macias
- Infectious Diseases and Microbiology Clinical Unit, Valme Hospital, 41014 Seville, Spain.
| | - Joan Fibla
- Human Genetics Unit, Department of Basic Medical Sciences, University of Lleida IRBLleida, 25003, Lleida, Catalonia, Spain.
| | - Antonio Rivero
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, 14004 Cordoba, Spain.
| | - Antonio Caruz
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, 23071 Jaén, Spain.
| |
Collapse
|
10
|
Elizondo DM, Andargie TE, Marshall KM, Zariwala AM, Lipscomb MW. Dendritic cell expression of ADAM23 governs T cell proliferation and cytokine production through the α(v)β(3) integrin receptor. J Leukoc Biol 2016; 100:855-864. [PMID: 27317750 DOI: 10.1189/jlb.2hi1115-525r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/22/2016] [Indexed: 12/30/2022] Open
Abstract
ADAM23 is a member of the brain macrophage-derived chemokine family. Structural homology of ADAM proteins suggests their function as integrin receptors. Previous studies have linked ADAM23 as a dominant contributor to brain development and cancer metastasis. The present studies now show that ADAM23 expression on DCs partially governs antigen-presentation capacities to responder CD4+ T cells. With the use of RNAi approaches, knockdown of ADAM23 in murine BMDCs resulted in impaired T cell activation, proliferation, and cytokine production. Knockdown did not alter the maturation profile of DCs (i.e., costimulatory molecule expression or production of proinflammatory cytokines) but markedly impaired cognate T cell responses. There was a significant decrease in antigen-specific clonal expansion coupled with a global decrease in Th cytokine production. Impaired early activation and proliferation did not alter/skew the balance of Th polarization but significantly depressed total levels of IL-2, IFN-γ, IL-4, and IL-17 cytokine production in CD4+ T cells primed by ADAM23 knockdown versus control DCs. Finally, neutralizing antibodies targeting the α(v)β(3) integrin receptors resulted in similar phenotypes of impaired CD4+ T cell responses. Taken together, these studies show a novel role of ADAM23 in governing DC antigen presentation to cognate CD4+ T cells.
Collapse
Affiliation(s)
- D M Elizondo
- Department of Biology, Howard University, Washington, DC, USA
| | - T E Andargie
- Department of Biology, Howard University, Washington, DC, USA
| | - K M Marshall
- Department of Biology, Howard University, Washington, DC, USA
| | - A M Zariwala
- Department of Biology, Howard University, Washington, DC, USA
| | - M W Lipscomb
- Department of Biology, Howard University, Washington, DC, USA
| |
Collapse
|
11
|
Epithelium-Specific Ets-Like Transcription Factor 1, ESE-1, Regulates ICAM-1 Expression in Cultured Lung Epithelial Cell Lines. Mediators Inflamm 2015; 2015:547928. [PMID: 26185364 PMCID: PMC4491396 DOI: 10.1155/2015/547928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) patients suffer from chronic airway inflammation with excessive neutrophil infiltration. Migration of neutrophils to the lung requires chemokine and cytokine signaling as well as cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), which plays an important role in mediating adhesive interactions between effector and target cells in the immune system. In this study, we investigated the relationship between ICAM-1 and epithelium-specific ETS-like transcription factor 1 (ESE-1) and found that ICAM-1 expression is upregulated in cell lines of CF (IB3-1) as well as non-CF (BEAS-2B and A549) epithelial origin in response to inflammatory cytokine stimulation. Since ESE-1 is highly expressed in A549 cells without stimulation, we examined the effect of ESE-1 knockdown on ICAM-1 expression in these cells. We found that ICAM-1 expression was downregulated when ESE-1 was knocked down in A549 cells. We also tested the effect of ESE-1 knockdown on cell-cell interactions and demonstrate that the knocking down ESE-1 in A549 cells reduce their interactions with HL-60 cells (human promyelocytic leukemia cell line). These results suggest that ESE-1 may play a role in regulating airway inflammation by regulating ICAM-1 expression.
Collapse
|
12
|
Krasnov A, Kileng Ø, Skugor S, Jørgensen SM, Afanasyev S, Timmerhaus G, Sommer AI, Jensen I. Genomic analysis of the host response to nervous necrosis virus in Atlantic cod (Gadus morhua) brain. Mol Immunol 2013; 54:443-52. [DOI: 10.1016/j.molimm.2013.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/17/2013] [Indexed: 01/04/2023]
|
13
|
Scott DW, Patel RP. Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology 2013; 23:622-33. [PMID: 23445551 DOI: 10.1093/glycob/cwt014] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a major contributing element to a host of diseases with the interaction between leukocytes and the endothelium being key in this process. Much is understood about the nature of the adhesion molecule proteins expressed on any given leukocyte and endothelial cell that modulates adhesive interactions. Although it is appreciated that these proteins are heavily glycosylated, relatively little is known about the roles of these posttranslational modifications and whether they are regulated, and if so how during inflammation. Herein, we suggest that a paucity in this understanding is one major reason for the lack of successful therapies to date for modulating leukocyte-endothelial interactions in human inflammatory disease and discuss developing paradigms of (i) how endothelial adhesion molecule glycosylation (with a focus on N-glycosylation) maybe a critical element in understanding endothelial heterogeneity between different vascular beds and species, (ii) how adhesion molecule N-glycosylation may be under distinct, and as yet, unknown modes of regulation during inflammatory stress to affect the inflammatory response in a vascular bed- and disease-specific manner (analogous to a "zip code" for inflammation) and finally (iii) to underscore the concept that a fuller appreciation of the role of adhesion molecule glycoforms is needed to provide foundations for disease and tissue-specific targeting of inflammation.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, 901 19th St. South, BMRII 532, Birmingham, AL 35294, USA
| | | |
Collapse
|
14
|
Ma WY, Zhuang L, Qi QC, Sun Q. Expression of dendritic cell lysosome-associated membrane protein and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin in condyloma acuminatum lesions. J Int Med Res 2013; 41:138-45. [PMID: 23569139 DOI: 10.1177/0300060513476991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Retrospective, observational study to explore the role of dendritic cells (DCs) in condyloma acuminatum lesions (genital warts) and their relationship with duration of the disease. METHODS Condyloma acuminatum lesion samples were collected from male patients with the condition and compared with normal foreskin samples from male volunteers. Cellular locations of dendritic cell lysosome-associated membrane protein (DC-LAMP) and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) were detected using immunohistochemistry. Levels of both proteins were determined using Western blot analysis; levels of their corresponding mRNAs were measured using reverse transcription-polymerase chain reaction. RESULTS The mRNA and protein levels of DC-LAMP and DC-SIGN were both significantly higher in condyloma acuminatum lesions (n = 30 samples) compared with normal skin samples (n = 13). Levels of DC-LAMP and DC-SIGN protein and duration of disease were inversely correlated. CONCLUSIONS DC-LAMP and DC-SIGN may be involved in the pathogenesis of condyloma acuminatum. Their levels were inversely correlated with the duration of disease, suggesting that DCs might be involved in human papillomavirus clearance.
Collapse
Affiliation(s)
- Wei-Yuan Ma
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | | | | | | |
Collapse
|
15
|
Chen Q, He F, Kwang J, Chan JKY, Chen J. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. THE JOURNAL OF IMMUNOLOGY 2012; 189:5223-9. [PMID: 23089398 DOI: 10.4049/jimmunol.1201789] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Engraftment of human hematopoietic stem cells into immunodeficient mice that lack T cells, B cells, and NK cells results in reconstitution of human blood lineage cells, especially B cells, in the recipient mice. However, these humanized mice do not make any significant level of IgG Ab in response to Ag stimulation. In this study, we show that in humanized mice, B cells are immature, and there is a complete deficiency of CD209(+) (DC-SIGN) human dendritic cells. These defects can be corrected by expression of human GM-CSF and IL-4 in humanized mice. As a result, these cytokine-treated humanized mice produced significant levels of Ag-specific IgG after immunization, including the production of neutralizing Abs specific for H5N1 avian influenza virus. A significant level of Ag-specific CD4 T cell response was also induced. Thus, we have identified defects in humanized mice and devised approaches to correct these defects such that the platform can be used for studying Ab responses and to generate novel human Abs against virulent pathogens and other clinically relevant targets.
Collapse
Affiliation(s)
- Qingfeng Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | | | | | | | | |
Collapse
|
16
|
Tantakitti F, Burk-Rafel J, Cheng F, Egnatchik R, Owen T, Hoffman M, Weiss DN, Ratner DM. Nanoscale clustering of carbohydrate thiols in mixed self-assembled monolayers on gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6950-9. [PMID: 22435511 PMCID: PMC3350752 DOI: 10.1021/la300444h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Self-assembled monolayers (SAMs) bearing pendant carbohydrate functionality are frequently employed to tailor glycan-specific bioactivity onto gold substrates. The resulting glycoSAMs are valuable for interrogating glycan-mediated biological interactions via surface analytical techniques, microarrays, and label-free biosensors. GlycoSAM composition can be readily modified during assembly by using mixed solutions containing thiolated species, including carbohydrates, oligo(ethylene glycol) (OEG), and other inert moieties. This intrinsic tunability of the self-assembled system is frequently used to optimize bioavailability and antibiofouling properties of the resulting SAM. However, until now, our nanoscale understanding of the behavior of these mixed glycoSAMs has lacked detail. In this study, we examined the time-dependent clustering of mixed sugar + OEG glycoSAMs on ultraflat gold substrates. Composition and surface morphologic changes in the monolayers were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. We provide evidence that the observed clustering is consistent with a phase separation process in which surface-bound glycans self-associate to form dense glycoclusters within the monolayer. These observations have significant implications for the construction of mixed glycoSAMs for use in biosensing and glycomics applications.
Collapse
Affiliation(s)
- Faifan Tantakitti
- Department of Bioengineering, University of Washington, 3720 15th AVE NE, Seattle, WA, 98195, USA. (Faifan Tantakitti); (Jesse Burk-Rafel); (Fang Cheng); (Robert Egnatchik); (Tate Owen); (Daniel M. Ratner)
| | - Jesse Burk-Rafel
- Department of Bioengineering, University of Washington, 3720 15th AVE NE, Seattle, WA, 98195, USA. (Faifan Tantakitti); (Jesse Burk-Rafel); (Fang Cheng); (Robert Egnatchik); (Tate Owen); (Daniel M. Ratner)
| | - Fang Cheng
- Department of Bioengineering, University of Washington, 3720 15th AVE NE, Seattle, WA, 98195, USA. (Faifan Tantakitti); (Jesse Burk-Rafel); (Fang Cheng); (Robert Egnatchik); (Tate Owen); (Daniel M. Ratner)
| | - Robert Egnatchik
- Department of Bioengineering, University of Washington, 3720 15th AVE NE, Seattle, WA, 98195, USA. (Faifan Tantakitti); (Jesse Burk-Rafel); (Fang Cheng); (Robert Egnatchik); (Tate Owen); (Daniel M. Ratner)
| | - Tate Owen
- Department of Bioengineering, University of Washington, 3720 15th AVE NE, Seattle, WA, 98195, USA. (Faifan Tantakitti); (Jesse Burk-Rafel); (Fang Cheng); (Robert Egnatchik); (Tate Owen); (Daniel M. Ratner)
| | - Matt Hoffman
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA, 98195, USA. (Matt Hoffman)
| | - Dirk N. Weiss
- Washington Technology Center, 135 Fluke Hall, M/S 352140, Seattle, WA 98195, USA. (Dirk N. Weiss)
| | - Daniel M. Ratner
- Department of Bioengineering, University of Washington, 3720 15th AVE NE, Seattle, WA, 98195, USA. (Faifan Tantakitti); (Jesse Burk-Rafel); (Fang Cheng); (Robert Egnatchik); (Tate Owen); (Daniel M. Ratner)
- Corresponding author. . Tel: +1 206 543 1071. Fax: +1 206 685 3925. Address: Department of Bioengineering, University of Washington, 3720 15th AVE NE, Seattle, WA, 98195, USA
| |
Collapse
|
17
|
Sagar D, Foss C, El Baz R, Pomper MG, Khan ZK, Jain P. Mechanisms of dendritic cell trafficking across the blood-brain barrier. J Neuroimmune Pharmacol 2012; 7:74-94. [PMID: 21822588 PMCID: PMC3276728 DOI: 10.1007/s11481-011-9302-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/14/2022]
Abstract
Although the central nervous system (CNS) is considered to be an immunoprivileged site, it is susceptible to a host of autoimmune as well as neuroinflammatory disorders owing to recruitment of immune cells across the blood-brain barrier into perivascular and parenchymal spaces. Dendritic cells (DCs), which are involved in both primary and secondary immune responses, are the most potent immune cells in terms of antigen uptake and processing as well as presentation to T cells. In light of the emerging importance of DC traficking into the CNS, these cells represent good candidates for targeted immunotherapy against various neuroinflammatory diseases. This review focuses on potential physiological events and receptor interactions between DCs and the microvascular endothelial cells of the brain as they transmigrate into the CNS during degeneration and injury. A clear understanding of the underlying mechanisms involved in DC migration may advance the development of new therapies that manipulate these mechanistic properties via pharmacologic intervention. Furthermore, therapeutic validation should be in concurrence with the molecular imaging techniques that can detect migration of these cells in vivo. Since the use of noninvasive methods to image migration of DCs into CNS has barely been explored, we highlighted potential molecular imaging techniques to achieve this goal. Overall, information provided will bring this important leukocyte population to the forefront as key players in the immune cascade in the light of the emerging contribution of DCs to CNS health and disease.
Collapse
Affiliation(s)
- Divya Sagar
- Drexel Institute for Biotechnology and Virology Research, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Catherine Foss
- Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Rasha El Baz
- Drexel Institute for Biotechnology and Virology Research, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Martin G. Pomper
- Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Zafar K. Khan
- Drexel Institute for Biotechnology and Virology Research, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Pooja Jain
- Drexel Institute for Biotechnology and Virology Research, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Department of Microbiology & Immunology, Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| |
Collapse
|
18
|
Abstract
In the immune system, C-type lectins and CTLDs have been shown to act both as adhesion and as pathogen recognition receptors. The Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) and its homologs in human and mouse represent an important C-type lectin family. DC-SIGN contains a lectin domain that recognizes in a Ca2+-dependent manner carbohydrates such as mannose-containing structures present on glycoproteins such as ICAM-2 and ICAM-3. DC-SIGN is a prototype C-type lectin organized in microdomains, which have their role as pathogen recognition receptors in sensing microbes. Although the integrin LFA-1 is a counter-receptor for both ICAM-2 and ICAM-3 on DC, DC-SIGN is the high affinity adhesion receptor for ICAM-2/-3. While cell–cell contact is a primary function of selectins, collectins are specialized in recognition of pathogens. Interestingly, DC-SIGN is a cell adhesion receptor as well as a pathogen recognition receptor. As adhesion receptor, DC-SIGN mediates the contact between dendritic cells (DCs) and T lymphocytes, by binding to ICAM-3, and mediates rolling of DCs on endothelium, by interacting with ICAM-2. As pathogen receptor, DC-SIGN recognizes a variety of microorganisms, including viruses, bacteria, fungi and several parasites (Cambi et al. 2005). The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. In this chapter, we shall focus on the structure and functions of DC-SIGN and related CTLDs in the recognition of pathogens, the molecular and structural determinants that regulate the interaction with pathogen-associated molecular patterns. The heterogeneity of carbohydrate residues exposed on cellular proteins and pathogens regulates specific binding of DC-expressed C-type lectins that contribute to the diversity of immune responses created by DCs (van Kooyk et al. 2003a; Cambi et al. 2005).
Collapse
|
19
|
Stromal activation and formation of lymphoid-like stroma in chronic lung allograft dysfunction. Transplantation 2011; 91:1398-405. [PMID: 21512432 DOI: 10.1097/tp.0b013e31821b2f7a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Lymphoid neogenesis is associated with the development of chronic lung allograft dysfunction (CLAD). Activation of stromal resident cells may be an important mechanism of lymphoid neogenesis. METHODS Twenty CLAD lungs explanted for retransplantation were immunohistochemically examined for lymphoid neogenesis, ectopic lymphoid chemokines, and dendritic cells (DCs). Formation of peripheral lymph node addressin (PNAd)+ high endothelial venule (HEV)-like vessels was examined in 134 transbronchial biopsies taken over 2 years posttransplant from 20 consecutive lung transplant recipients. RESULTS CLAD lungs were characterized by higher grades of CXCL12 in alveolar (P=0.002) and airway epithelial cells (P=0.001), CCL21+ lymph vessels (P=0.01), and infiltration of DC-specific intercellular adhesion molecule-grabbing nonintegrin+ immature DCs (P=0.056) than normal control lungs. Activation of stromal resident cells in CLAD lungs was highlighted by formation of lymphoid-like stroma including expression of CCL21 and CXCL13, fibroblastic reticular-like cells and DC-specific lysosome-associated membrane protein+ mature DCs in association with a significantly larger number of lymphoid aggregates (P<0.001) with lymphangitc distribution compared with normal lungs. A larger number of PNAd+ HEV-like vessels were also observed outside of lymphoid aggregates with a lymphangitic distribution (P<0.001). HEV-like vessels in transbronchial biopsies were more graded in lungs that eventually developed CLAD (n=7) than those that did not (n=13) by 3 years after transplantation (P=0.001). CONCLUSION Lymphoid neogenesis associated with CLAD accompanies activation of stromal resident cells and formation of lymphoid-like stroma. Induction of PNAd+ HEV-like vessels occurs before the manifestation of CLAD.
Collapse
|
20
|
Sun P, Zhang W, Zhu W, Yan H, Zhu J. Expression of renin-angiotensin system on dendritic cells of patients with coronary artery disease. Inflammation 2010; 32:347-56. [PMID: 19669395 DOI: 10.1007/s10753-009-9141-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dendritic cells (DCs) and renin-angiotensin system (RAS) have both been reported to contribute to the pathogenesis of atherosclerosis. Recently researches find the RAS expression on DCs and its effect on DCs' differentiation and proinflammatory function. The pattern of RAS expression on DCs derived from normal monocytes vs that on DCs derived from cornoary artery diease was investigated. In 82 coronary artery disease (CAD) patients and healthy controls (CTL), expressions of angiotensin I-converting enzyme (ACE), angiotensin AT1 receptor and DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) on DCs were measured by western-blot: CAD patients had an increased expression of ACE, AT1 receptor and DC-SIGN compared to controls especially in acute myocardial infarction (AMI). Cardiovascular risk factors of cardiovascular disease and circulating anigotensin II (Ang II) were assessed and found increased in AMI compared with CTL. The DC-SIGN and high-sensitivity C-reactive protein (hsCRP) also had significant correlations with RAS expression on DCs. Our research demonstrated the RAS expressions on DCs and their increase in CAD especially AMI. The RAS activation on DCs may cause a series of changes such as enhancing recruitment of DCs, activating the T cells and increasing their proinflammtory functions. The recruitment and T cells contact ability of DCs increases through DC-SIGN may be one of pathogenesis of atherosclerosis and this function may promoted by tissue RAS. CRP may also have some effect to the local RAS exprssion on DCs.
Collapse
Affiliation(s)
- Peiyu Sun
- Department of Cardiology, School of Medicine, the First Affiliated Hospital of Zhejiang University, No 79, Qin chun Road, Hangzhou 310003, Zhejiang Province, China
| | | | | | | | | |
Collapse
|
21
|
García-Vallejo JJ, van Kooyk Y. Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis. Immunol Rev 2009; 230:22-37. [PMID: 19594627 DOI: 10.1111/j.1600-065x.2009.00786.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C-type lectin receptors (CLRs) have long been known as pattern-recognition receptors implicated in the recognition of pathogens by the innate immune system. However, evidence is accumulating that many CLRs are also able to recognize endogenous 'self' ligands and that this recognition event often plays an important role in immune homeostasis. In the present review, we focus on the human and mouse CLRs for which endogenous ligands have been described. Special attention is given to the signaling events initiated upon recognition of the self ligand and the regulation of glycosylation as a switch modulating CLR recognition, and therefore, immune homeostasis.
Collapse
Affiliation(s)
- Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
22
|
Toebak MJ, Gibbs S, Bruynzeel DP, Scheper RJ, Rustemeyer T. Dendritic cells: biology of the skin. Contact Dermatitis 2009; 60:2-20. [PMID: 19125717 DOI: 10.1111/j.1600-0536.2008.01443.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Allergic contact dermatitis results from a T-cell-mediated, delayed-type hypersensitivity immune response induced by allergens. Skin dendritic cells (DCs) play a central role in the initiation of allergic skin responses. Following encounter with an allergen, DCs become activated and undergo maturation and differentiate into immunostimulatory DCs and are able to present antigens effectively to T cells. The frequency of allergic skin disorders has increased in the past decades. Therefore, the identification of potential sensitizing chemicals is important for skin safety. Traditionally, predictive testing for allergenicity has been conducted in animal models. For regulatory reasons, animal use for sensitization testing of compounds for cosmetic purposes is shortly to be prohibited in Europe. Therefore, new non-animal-based test methods need to be developed. Several DC-based assays have been described to discriminate allergens from irritants. Unfortunately, current in vitro methods are not sufficiently resilient to identify allergens and therefore need refinement. Here, we review the immunobiology of skin DCs (Langerhans' cells and dermal dendritic cells) and their role in allergic and irritant contact dermatitis and then explore the possible use of DC-based models for discriminating between allergens and irritants.
Collapse
Affiliation(s)
- Mascha J Toebak
- Department of Dermatology, VU University Medical Centre, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Grolleau-Julius A, Harning EK, Abernathy LM, Yung RL. Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res 2008; 68:6341-9. [PMID: 18676859 DOI: 10.1158/0008-5472.can-07-5769] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently reported that bone marrow-derived dendritic cells (DC) from aged miced are less effective than their young counterparts in inducing the regression of B16-ovalbumin (OVA) melanomas. To examine the underlying mechanisms, we investigated the effect of aging on DC tumor antigen presentation and migration. Although aging does not affect the ability of DCs to present OVA peptide((257-264)), DCs from aged mice are less efficient than those from young mice in stimulating OVA-specific T cells in vitro. Phenotypic analysis revealed a selective decrease in DC-specific/intracellular adhesion molecule type-3-grabbing nonintegrin (DC-SIGN) level in aged DCs. Adoptive transfer experiments showed defective in vivo DC trafficking in aging. This correlates with impaired in vitro migration and defective CCR7 signaling in response to CCL21 in aged DCs. Interestingly, vaccination of young mice using old OVA peptide((257-264))-pulsed DCs (OVA PP-DC) resulted in impaired activation of OVA-specific CD8(+) T cells in vivo. Effector functions of these T cells, as determined by IFN-gamma production and cytotoxic activity, were similar to those obtained from mice vaccinated with young OVA PP-DCs. A decreased influx of intratumor CD8(+) T cells was also observed. Importantly, although defective in vivo migration could be restored by increasing the number of old DCs injected, the aging defect in DC tumor surveillance and OVA-specific CD8(+) T-cell induction remained. Taken together, our findings suggest that defective T-cell stimulation contributes to the observed impaired DC tumor immunotherapeutic response in aging.
Collapse
Affiliation(s)
- Annabelle Grolleau-Julius
- Department of Internal Medicine, Division of Geriatric Medicine, University of Michigan and Geriatric Research Education and Clinical Centers, Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
24
|
Kofler S, Petrakopoulou P, Grimm C, Kaczmarek I, Meiser BM, Weis M. Graft-infiltrating dendritic cells and coronary endothelial dysfunction after human heart transplantation. J Heart Lung Transplant 2008; 27:387-93. [PMID: 18374874 DOI: 10.1016/j.healun.2008.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/20/2007] [Accepted: 01/02/2008] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Indirect allorecognition is involved in chronic transplant rejection. We prospectively characterized graft-infiltrating dendritic cells (DCs) in sequential myocardial biopsies (n = 64; 1 to 24 months after transplantation) from 16 patients after heart transplantation (HTx) and analyzed the relation between graft immune activation and structural and functional coronary changes during follow-up. METHODS DC invasion (immunostaining) in the human myocardium was detectable early after HTx, increased further during the first year, and decreased constantly thereafter. Also, graft-infiltrating DCs expressed markers of immaturity and maturity and were time-dependently clustered with CD3-positive T cells. RESULTS Both epicardial and microvascular endothelial dysfunction were associated with elevated CD209-positive DCs at 12 months. CD209 positivity early after HTx was an independent marker for coronary endothelial dysfunction during follow-up. Intimal hyperplasia or angiographic disease during follow-up was not associated with myocardial DC infiltration. CONCLUSIONS DCs frequently infiltrate the cardiac allograft with a peak during the first post-operative year and time-dependently cluster with T cells. Migratory active graft-infiltrating DCs may serve as a predictor for allograft coronary endothelial dysfunction.
Collapse
Affiliation(s)
- Sieglinde Kofler
- Medizinische Klinik und Poliklinik I, University Medical Center Munich-Grosshadern, Ludwig-Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Wessels JM, Linton NF, Croy BA, Tayade C. A review of molecular contrasts between arresting and viable porcine attachment sites. Am J Reprod Immunol 2008; 58:470-80. [PMID: 17997745 DOI: 10.1111/j.1600-0897.2007.00534.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Significant spontaneous fetal loss of unknown cause occurs in North American commercial swine. About 30% of conceptuses, thought to be genetically normal, are lost during the peri-attachment period. An additional 20% are lost at mid-pregnancy. Littermate endometrial and trophoblast biopsies were studied by quantitative real-time PCR for gene expression, and immunohistochemistry for protein expression at gestation day (gd)15-23 and 50. RNA analyses were also conducted on endometrial lymphocytes and arterial endothelial cells removed from biopsies by laser capture microdissection. Genes were selected for study from human literature and cloned as required. As in humans, angiogenic, cytokine, chemokine and chemokine decoy receptor gene expression occurs at the porcine maternal-fetal interface. In each tissue studied, distinct patterns of expression are found between early and mid-pregnancy, as well as between viable and arresting conceptus attachment sites. These changes involve both endometrial lymphocytes and dendritic cells. Restriction in endometrial angiogenesis, reduction in expression of the chemokine decoy receptor D6, and reduction in dendritic cell numbers contribute to fetal arrest. In peri-attachment loss, interferon-gamma is more abundantly transcribed than tumor necrosis factor-alpha, but this ratio is reversed during midgestation failure. Further characterization of spontaneous fetal loss in pigs will identify targets for modification by hog producers and may provide a model for identification of antecedents to fetal loss in humans.
Collapse
Affiliation(s)
- Jocelyn M Wessels
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
26
|
Kim YG, Shin DS, Yang YH, Gil GC, Park CG, Mimura Y, Cooper DK, Rudd PM, Dwek RA, Lee YS, Kim BG. High-Throughput Screening of Glycan-Binding Proteins Using Miniature Pig Kidney N-Glycan-Immobilized Beads. ACTA ACUST UNITED AC 2008; 15:215-23. [DOI: 10.1016/j.chembiol.2008.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 01/27/2008] [Accepted: 02/05/2008] [Indexed: 12/14/2022]
|
27
|
Marchal-Sommé J, Uzunhan Y, Marchand-Adam S, Kambouchner M, Valeyre D, Crestani B, Soler P. Dendritic Cells Accumulate in Human Fibrotic Interstitial Lung Disease. Am J Respir Crit Care Med 2007; 176:1007-14. [PMID: 17717200 DOI: 10.1164/rccm.200609-1347oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE There is growing evidence that resident cells, such as fibroblasts and epithelial cells, can drive the persistent accumulation of dendritic cells (DCs) in chronically inflamed tissue, leading to the organization and the maintenance of ectopic lymphoid aggregates. This phenomenon, occurring through a chemokine-mediated retention mechanism, has been documented in various disorders, but not in fibrotic interstitial lung disorders in which the presence of organized lymphoid follicles has been documented. OBJECTIVES To characterize the distribution of DCs in fibrotic lung, and to analyze the expression of the main chemokines known to regulate DC recruitment. METHODS Lung resection tissue (lungs with idiopathic pulmonary fibrosis; n = 12; lungs with nonspecific interstitial pneumonia, n = 5; control lungs, n = 5) was snap-frozen for subsequent immunohistochemical techniques on serial sections and reverse transcriptase-polymerase chain reaction analysis. MEASUREMENTS AND MAIN RESULTS Results were similar in idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia lungs, which were heavily infiltrated by immature DCs in established fibrosis and in areas of epithelial hyperplasia. Altered epithelial cells and fibroblasts, particularly in fibroblastic foci, frankly expressed all chemokines (CCL19, CCL20, CCL22, and CXCL12) susceptible to favor the recruitment of immune cells. Lymphoid follicles were infiltrated by maturing DCs, which could originate from the pool of DCs accumulating in their vicinity. CONCLUSIONS These findings suggest that resident cells in pulmonary fibrosis can sustain chronic inflammation by driving the accumulation of DCs with the potential to mature locally within ectopic lymphoid follicles. Future strategies should consider DCs or chemokines as therapeutic targets in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Joëlle Marchal-Sommé
- Inserm, U 700, and Faculté de Médecine Paris-Nord, site Bichat, Université Paris 7, Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Hui G, Hashimoto C. The requirement of CD80, CD86, and ICAM-1 on the ability of adjuvant formulations to potentiate antibody responses to a Plasmodium falciparum blood-stage vaccine. Vaccine 2007; 25:8549-56. [PMID: 18006124 DOI: 10.1016/j.vaccine.2007.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/18/2007] [Accepted: 10/01/2007] [Indexed: 01/04/2023]
Abstract
Many adjuvants are known to enhance expression of co-stimulatory and adhesion molecules secondarily to the activation of immune cells. Whether interactions via these molecules are obligatory in adjuvants' ability to potentiation vaccine immunogenicity is less clear. We investigated the ability of eight adjuvant formulations to potentiate the immunogenicity of a malaria vaccine in mice deficient in the prominent co-stimulatory molecules, CD80 and CD86; and the adhesion ligand, ICAM-1. While no adjuvants could bypass co-stimulatory requirements, more formulations exhibited dependency for CD86 than for CD80. In CD80 or CD86 KO mice, formulations with the saponin derivative, QS21 could efficiently default to the other B7 molecule. This effect was dominant over other adjuvant constituents. The requirement for ICAM-1 could be readily bypassed using adjuvant formulations containing immunomodulators; whereas this was not the case with emulsion-type adjuvants in which reduction in adjuvanticity was associated with decreases in antigen-specific IFN-gamma responses. These studies may help to guide the formulation of vaccine adjuvants to maintain effectiveness in hosts with altered immunological environment that often result from infections.
Collapse
Affiliation(s)
- George Hui
- Department of Tropical Medicine and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, HI 96813, United States.
| | | |
Collapse
|
29
|
Chan KYK, Ching JCY, Xu MS, Cheung ANY, Yip SP, Yam LYC, Lai ST, Chu CM, Wong ATY, Song YQ, Huang FP, Liu W, Chung PH, Leung GM, Chow EYD, Chan EYT, Chan JCK, Ngan H, Tam P, Chan LC, Sham P, Chan VSF, Peiris M, Lin SCL, Khoo US. Association of ICAM3 genetic variant with severe acute respiratory syndrome. J Infect Dis 2007; 196:271-80. [PMID: 17570115 PMCID: PMC7202406 DOI: 10.1086/518892] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 02/16/2007] [Indexed: 12/12/2022] Open
Abstract
Genetic polymorphisms have been demonstrated to be associated with vulnerability to human infection. ICAM3, an intercellular adhesion molecule important for T cell activation, and FCER2 (CD23), an immune response gene, both located on chromosome 19p13.3 were investigated for host genetic susceptibility and association with clinical outcome. A case-control study based on 817 patients with confirmed severe acute respiratory syndrome (SARS), 307 health care worker control subjects, 290 outpatient control subjects, and 309 household control subjects unaffected by SARS from Hong Kong was conducted to test for genetic association. No significant association to susceptibility to SARS-CoV infection was found for the FCER2 and the ICAM3 single nucleotide polymorphisms. However, patients with SARS homozygous for ICAM3 Gly143 showed significant association with higher lactate dehydrogenase levels (P=.0067; odds ratio [OR], 4.31 [95% confidence interval [CI], 1.37–13.56]) and lower total white blood cell counts (P=.022; OR, 0.30 [95% CI, 0.10–0.89]) on admission. These findings support the role of ICAM3 in the immunopathogenesis of SARS.
Collapse
Affiliation(s)
- Kelvin Y. K. Chan
- Department of Pathology, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Johannes C. Y. Ching
- Department of Pathology, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - M. S. Xu
- Department of Pathology, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Annie N. Y. Cheung
- Department of Pathology, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Shea-Ping Yip
- Department of Health Technology and Informatics, Hong Kong Polytechnic UniversityHong Kong
| | | | | | | | | | - You-Qiang Song
- Department of Biochemistry, Hong Kong Jockey Club Clinical Research CentreHong Kong
- Genome Research Center, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Fang-Ping Huang
- Department of Pathology, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Wei Liu
- Department of Pathology, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | | | - G. M. Leung
- Department of Community Medicine, Li Ka Shing Faculty of Medicine, University of Hong KongHong Kong
| | | | - Eric Y. T. Chan
- Department of Pathology, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Jane C. K. Chan
- Hospital Authority Severe Acute Respiratory Syndrome Collaborative Group, Hong Kong Hospital Authority Head OfficeHong Kong
| | - Hextan Ngan
- Department of Obstetrics and Gynecology, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Paul Tam
- Department of Surgery, Hong Kong Jockey Club Clinical Research CentreHong Kong
- Genome Research Center, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Li-Chong Chan
- Department of Pathology, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Pak Sham
- Department of Psychiatry, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Vera S. F. Chan
- Department of Biosurgery and Surgical Technology, Imperial College LondonLondon, United Kingdom
| | - Malik Peiris
- Department of Microbiology, Hong Kong Jockey Club Clinical Research CentreHong Kong
| | - Steve C. L. Lin
- Department of Biosurgery and Surgical Technology, Imperial College LondonLondon, United Kingdom
| | - Ui-Soon Khoo
- Department of Pathology, Hong Kong Jockey Club Clinical Research CentreHong Kong
- Reprints or correspondence: Dr. Ui-Soon Khoo, Rm. 324, 3/F, University Pathology Bldg., Dept. of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam Rd., Hong Kong ()
| |
Collapse
|
30
|
Korbelik M, Sun J, Payne PW. Activation of Poly(adenosine diphosphate-ribose) Polymerase in Mouse Tumors Treated by Photodynamic Therapy¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780400aopdpi2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Biggins JE, Biesinger T, Yu Kimata MT, Arora R, Kimata JT. ICAM-3 influences human immunodeficiency virus type 1 replication in CD4(+) T cells independent of DC-SIGN-mediated transmission. Virology 2007; 364:383-94. [PMID: 17434553 PMCID: PMC1973158 DOI: 10.1016/j.virol.2007.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/08/2007] [Accepted: 03/12/2007] [Indexed: 11/18/2022]
Abstract
We investigated the role of ICAM-3 in DC-SIGN-mediated human immunodeficiency virus (HIV) infection of CD4(+) T cells. Our results demonstrate that ICAM-3 does not appear to play a role in DC-SIGN-mediated infection of CD4(+) T cells as virus is transmitted equally to ICAM-3(+) or ICAM-3(-) Jurkat T cells. However, HIV-1 replication is enhanced in ICAM-3(-) cells, suggesting that ICAM-3 may limit HIV-1 replication. Similar results were obtained when SIV replication was examined in ICAM-3(+) and ICAM-3(-) CEMx174 cells. Furthermore, while ICAM-3 has been proposed to play a co-stimulatory role in T cell activation, DC-SIGN expression on antigen presenting cells did not enhance antigen-dependent activation of T cells. Together, these data indicate that while ICAM-3 may influence HIV-1 replication, it does so independent of DC-SIGN-mediated virus transmission or activation of CD4(+) T cells.
Collapse
Affiliation(s)
| | | | | | | | - Jason T. Kimata
- *Corresponding Author: Department of Molecular Virology and Microbiology, BCM385, Room 811D, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Tel: 713-798-4536, FAX: 713-798-4435,
| |
Collapse
|
32
|
Furmonaviciene R, Ghaemmaghami AM, Boyd SE, Jones NS, Bailey K, Willis AC, Sewell HF, Mitchell DA, Shakib F. The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses. Clin Exp Allergy 2007; 37:231-42. [PMID: 17250696 DOI: 10.1111/j.1365-2222.2007.02651.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The cysteine protease Der p 1 from the house dust mite Dermatophagoides pteronyssinus is one of the most potent allergens known. An attractive mechanism for a component of Der p 1 allergenicity lies in its ability to cleave key regulatory molecules from leucocyte surfaces, subverting cellular function and driving abnormal immunoglobulin E (IgE) responses. OBJECTIVE Although CD23, CD25 and CD40 have already been identified as major Der p 1 targets, other significant substrates may also exist. METHODS To investigate this, knowledge of the proteolytic properties of Der p 1 was used to perform in silico digestion of human dendritic cell surface proteins, using the prediction of protease specificity (PoPS) bioinformatics tool, in conjunction with cellular in vitro analysis and cleavage site determination. RESULTS Targets identified included DC-SIGN and DC-SIGNR, two C-type lectins implicated mostly in pathogen trafficking. Treatment of positively expressing cells with Der p 1 led to loss of detectable surface DC-SIGN and DC-SIGNR. Digestion of purified soluble recombinant DC-SIGN and DC-SIGNR, followed by N-terminal sequencing and MALDI mass spectrometry, indicated in each case one major cleavage site and several minor sites, the former correlating well with Der p 1 enzymology and the folded state of the substrate proteins. Loss of DC-SIGN from the cell surface led to reduced binding of intracellular adhesion molecule-3, an endogenous DC-SIGN ligand expressed on naïve T cells which is thought to be involved in T-helper type 1 cytokine signalling. CONCLUSION These data provide evidence of lectin involvement in the initiation of the allergic response and the value of using genome-wide in silico digestion tools.
Collapse
Affiliation(s)
- R Furmonaviciene
- Institute of Infection, Immunity and Inflammation, School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Antibodies to the C-type lectin, L-SIGN, as tentative therapeutic agents for induction of antigen-specific tolerance. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.2.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y, Dewan MZ, Yu Z, Ito M, Morio T, Shimizu N, Honda M, Yamamoto N. Hematopoietic stem cell–engrafted NOD/SCID/IL2Rγnull mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 2006; 109:212-8. [PMID: 16954502 DOI: 10.1182/blood-2006-04-017681] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCritical to the development of an effective HIV/AIDS model is the production of an animal model that reproduces long-lasting active replication of HIV-1 followed by elicitation of virus-specific immune responses. In this study, we constructed humanized nonobese diabetic/severe combined immunodeficiency (NOD/SCID)/interleukin-2 receptor γ-chain knockout (IL2Rγnull) (hNOG) mice by transplanting human cord blood–derived hematopoietic stem cells that eventually developed into human B cells, T cells, and other monocytes/macrophages and 4 dendritic cells associated with the generation of lymphoid follicle–like structures in lymphoid tissues. Expressions of CXCR4 and CCR5 antigens were recognized on CD4+ cells in peripheral blood, the spleen, and bone marrow, while CCR5 was not detected on thymic CD4+ T cells. The hNOG mice showed marked, long-lasting viremia after infection with both CCR5- and CXCR4-tropic HIV-1 isolates for more than the 40 days examined, with R5 virus–infected animals showing high levels of HIV-DNA copies in the spleen and bone marrow, and X4 virus–infected animals showing high levels of HIV-DNA copies in the thymus and spleen. Furthermore, we detected both anti–HIV-1 Env gp120– and Gag p24–specific antibodies in animals showing a high rate of viral infection. Thus, the hNOG mice mirror human systemic HIV infection by developing specific antibodies, suggesting that they may have potential as an HIV/AIDS animal model for the study of HIV pathogenesis and immune responses.
Collapse
MESH Headings
- Animals
- Bone Marrow/pathology
- Bone Marrow/virology
- CD4-Positive T-Lymphocytes/virology
- Cell Lineage
- Cord Blood Stem Cell Transplantation
- DNA, Viral/analysis
- Disease Models, Animal
- Disease Susceptibility
- Female
- HIV Antibodies/biosynthesis
- HIV Antibodies/blood
- HIV Infections/immunology
- Humans
- Interleukin Receptor Common gamma Subunit/deficiency
- Interleukin Receptor Common gamma Subunit/genetics
- Lymphocyte Subsets/pathology
- Lymphoid Tissue/pathology
- Lymphoid Tissue/virology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Receptors, CXCR4/analysis
- Receptors, CXCR4/genetics
- Receptors, CXCR5
- Receptors, Chemokine/analysis
- Receptors, Chemokine/genetics
- Spleen/pathology
- Spleen/virology
- Thymus Gland/pathology
- Thymus Gland/virology
- Transplantation, Heterologous
- Viremia/immunology
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Virology, Division of Medical Science, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sorrentino C, Scarinci A, D'Antuono T, Piccirilli M, Di Nicola M, Pasquale M, Di Iorio C, Di Carlo E. Endomyocardial infiltration by B and NK cells foreshadows the recurrence of cardiac allograft rejection. J Pathol 2006; 209:400-10. [PMID: 16583358 DOI: 10.1002/path.1980] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heart allograft outcome is unpredictable and acute rejection episodes still occur despite the improvement of immunosuppressive regimens. We therefore investigated whether the immunopathological profile of endomyocardial biopsies might underlie the variations in the clinical course of a graft. Biopsies from transplanted patients were analysed by histology, immunohistochemistry (associated with digital image analysis), confocal and electron microscopy to determine the type and the functional state of leukocytes infiltrating the myocardium, together with their ultrastructural features and those of the graft itself. In comparison with biopsies with grade 0R or grade 1R rejection, those from patients with grade 2R rejection displayed significant infiltration of macrophages, T lymphocytes, and CD83+ and DC-SIGN+ dendritic cells. Fifty-seven per cent were invaded by CD20+B lymphocytes, most of which expressed CD69 activation marker and cooperated in interleukin-12 production, and by CD69+CD94+NK cells expressing interferon-gamma. Ultrastructural signs of myocyte degeneration and microvessel rupture by NK cells were frequent. These patients developed recurrent episodes of acute allograft rejection. Endomyocardial B and NK infiltrates are involved in the dynamics of allograft rejection and are associated with a high risk of its recurrence. Immunopathological assessment of endomyocardial biopsies may thus serve to forecast the probable outcome of a heart allograft.
Collapse
Affiliation(s)
- C Sorrentino
- Department of Oncology and Neurosciences, Surgical Pathology Section, G. d'Annunzio University, Medical and Surgical Department of Cardiology, SS Annunziata Hospital, Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Aloysius MM, Takhar A, Robins A, Eremin O. Dendritic cell biology, dysfunction and immunotherapy in gastrointestinal cancers. Surgeon 2006; 4:195-210. [PMID: 16892837 DOI: 10.1016/s1479-666x(06)80061-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gastrointestinal (GI) cancers make up a significant proportion of newly diagnosed malignant disease. The five-year survival for these GI cancers is poor. Anti-cancer host defences are thought to play a role in these cancers, albeit they are suboptimal. Novel immunotherapies are being introduced to treat such patients. This review describes basic cell biology of dendritic cells, as they are thoughtto play a key role in generating effective anti-tumour responses. Dendritic cell dysfunction in patients with various cancers is documented and immunotherapy using dendritic cells in a range of GI cancers is described and discussed
Collapse
Affiliation(s)
- M M Aloysius
- Section of Surgery, University Hospital Nottingham, Queen's Medical Centre, Nottingham UK.
| | | | | | | |
Collapse
|
37
|
Ceccaldi PE, Delebecque F, Prevost MC, Moris A, Abastado JP, Gessain A, Schwartz O, Ozden S. DC-SIGN facilitates fusion of dendritic cells with human T-cell leukemia virus type 1-infected cells. J Virol 2006; 80:4771-80. [PMID: 16641270 PMCID: PMC1472089 DOI: 10.1128/jvi.80.10.4771-4780.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between the oncogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) and dendritic cells (DCs) are poorly characterized. We show here that monocyte-derived DCs form syncytia and are infected upon coculture with HTLV-1-infected lymphocytes. We examined the role of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a C-type lectin expressed in DCs, in HTLV-1-induced syncytium formation. DC-SIGN is known to bind with high affinity to various viral envelope glycoproteins, including human immunodeficiency virus (HIV) and hepatitis C virus, as well as to the cellular receptors ICAM-2 and ICAM-3. After cocultivating DCs and HTLV-1-infected cells, we found that anti-DC-SIGN monoclonal antibodies (MAbs) were able to decrease the number and size of HTLV-1-induced syncytia. Moreover, expression of the lectin in epithelial-cell lines dramatically enhanced the ability to fuse with HTLV-1-positive cells. Interestingly, in contrast to the envelope (Env) glycoproteins of HIV and other viruses, that of HTLV-1 does not bind directly to DC-SIGN. The facilitating role of the lectin in HTLV-1 syncytium formation is mediated by its interaction with ICAM-2 and ICAM-3, as demonstrated by use of MAbs directed against these adhesion molecules. Altogether, our results indicate that DC-SIGN facilitates HTLV-1 infection and fusion of DCs through an ICAM-dependent mechanism.
Collapse
Affiliation(s)
- Pierre-Emmanuel Ceccaldi
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Werling D, Piercy J, Coffey TJ. Expression of TOLL-like receptors (TLR) by bovine antigen-presenting cells-potential role in pathogen discrimination? Vet Immunol Immunopathol 2006; 112:2-11. [PMID: 16701904 DOI: 10.1016/j.vetimm.2006.03.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Invading pathogens are controlled by the innate and adaptive arms of the immune system. Adaptive immunity, mediated by B and T lymphocytes, recognises pathogens via high affinity receptors. However, the establishment of a primary adaptive immune response is not rapid enough to eradicate invading microorganisms as it involves cell proliferation, gene activation and protein synthesis. More rapid defence mechanisms are provided by innate immunity, which recognises invading pathogens by germ-line-encoded pattern recognition receptors. Recent evidence shows that this recognition can mainly be attributed to the family of TOLL-like receptors (TLR). Binding of pathogen-associated molecular patterns to TLR induces the production of reactive oxygen and nitrogen intermediates, pro-inflammatory cytokines, and up-regulates expression of co-stimulatory molecules, subsequently initiating the adaptive immunity. In this paper, we will discuss the current knowledge with regards to the TLR, and in particular the bovine family of TLR. In addition, we will show the expression of TLR mRNA in bovine antigen-presenting cell subsets, summarise the discovery and the critical roles of TLR2 in host defence against Mycobacteria, and provide evidence for a mycobacteria species-specific response of bovine macrophages.
Collapse
Affiliation(s)
- Dirk Werling
- Royal Veterinary College, Department of Pathology and Infectious Diseases, Hawkshead Lane, Hatfield AL9 7TA, UK.
| | | | | |
Collapse
|
39
|
Bonkobara M, Hoshino M, Yagihara H, Tamura K, Isotani M, Tanaka Y, Washizu T, Ariizumi K. Identification and gene expression of bovine C-type lectin dectin-2. Vet Immunol Immunopathol 2006; 110:179-86. [PMID: 16213030 DOI: 10.1016/j.vetimm.2005.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/08/2005] [Accepted: 08/19/2005] [Indexed: 11/28/2022]
Abstract
The C-type lectin receptor has been shown to recognize carbohydrate moieties of self and non-self antigens, thus serving as an innate immune receptor. Using bioinformatics and molecular cloning techniques, we isolated a bovine gene that encodes a polypeptide of 206 amino acids with structural features shared by mouse and human dectin-2, including a high homology with mouse dectin-2 (66%), a type II configuration, a short cytoplasmic domain without tyrosine-based signal motifs, a carbohydrate recognition domain, a putative N-glycosylation site, and an EPN motif involved in the Ca(2+)-dependent binding of hexose carbohydrates. These results reveal this bovine gene to be a counterpart of mouse dectin-2. Moreover, the bovine dectin-2 gene showed heterogeneity in mRNA (the generation of alternatively spliced transcript) and segmentation into six exons, which are also observed in mouse dectin-2. Inconsistent with mouse dectin-2 mRNA, the bovine counterpart is abundantly expressed by Langerhans cells compared to macrophages; however, lymph nodes showed the highest expression level of bovine dectin-2, while spleen and lung showed the highest expression levels of mouse and human dectin-2. In cattle, dectin-2 expressed by dendritic cells may be clinically involved in the recognition of invading antigens in lymph nodes.
Collapse
Affiliation(s)
- M Bonkobara
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Animal Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Caparrós E, Serrano D, Puig-Kröger A, Riol L, Lasala F, Martinez I, Vidal-Vanaclocha F, Delgado R, Rodríguez-Fernández JL, Rivas L, Corbí AL, Colmenares M. Role of the C-type lectins DC-SIGN and L-SIGN in Leishmania interaction with host phagocytes. Immunobiology 2005; 210:185-93. [PMID: 16164025 PMCID: PMC7114652 DOI: 10.1016/j.imbio.2005.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Leishmaniasis is a parasitic disease that courses with cutaneous or visceral clinical manifestations. The amastigote stage of the parasite infects phagocytes and modulates the effector function of the host cells. Our group has described that the interaction between Leishmania and immature monocyte-derived dendritic cells (DCs) takes place through dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a C-type lectin that specifically recognizes fungal, viral and bacterial pathogens. The DC-SIGN-mediated recognition of Leishmania amastigotes does not induce DC maturation, and the DC-SIGN ligand/s on Leishmania parasites is/are still unknown. We have also found that the DC-SIGN-related molecule L-SIGN, specifically expressed in lymph node and liver sinusoidal endothelial cells, acts as a receptor for L. infantum, the parasite responsible for visceral leishmaniasis, but does not recognize L. pifanoi, which causes the cutaneous form of the disease. Therefore, DC-SIGN and L-SIGN differ in their ability to interact with Leishmania species responsible for either visceral or cutaneous leishmaniasis. A deeper knowledge of the parasite-C-type lectin interaction may be helpful for the design of new DC-based therapeutic vaccines against Leishmania infections.
Collapse
Affiliation(s)
- Esther Caparrós
- Centro de Investigaciones Biológicas (CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Multiple sclerosis (MS) develops in young adults with a complex predisposing genetic trait and probably requires an inciting environmental insult such as a viral infection to trigger the disease. The activation of CD4+ autoreactive T cells and their differentiation into a Th1 phenotype are a crucial events in the initial steps, and these cells are probably also important players in the long-term evolution of the disease. Damage of the target tissue, the central nervous system, is, however, most likely mediated by other components of the immune system, such as antibodies, complement, CD8+ T cells, and factors produced by innate immune cells. Perturbations in immunomodulatory networks that include Th2 cells, regulatory CD4+ T cells, NK cells, and others may in part be responsible for the relapsing-remitting or chronic progressive nature of the disease. However, an important paradigmatic shift in the study of MS has occurred in the past decade. It is now clear that MS is not just a disease of the immune system, but that factors contributed by the central nervous system are equally important and must be considered in the future.
Collapse
Affiliation(s)
- Mireia Sospedra
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1400, USA.
| | | |
Collapse
|
42
|
Gurney KB, Elliott J, Nassanian H, Song C, Soilleux E, McGowan I, Anton PA, Lee B. Binding and transfer of human immunodeficiency virus by DC-SIGN+ cells in human rectal mucosa. J Virol 2005; 79:5762-73. [PMID: 15827191 PMCID: PMC1082722 DOI: 10.1128/jvi.79.9.5762-5773.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of DC-SIGN on human rectal mucosal dendritic cells is unknown. Using highly purified human rectal mucosal DC-SIGN+ cells and an ultrasensitive real-time reverse transcription-PCR assay to quantify virus binding, we found that HLA-DR+/DC-SIGN+ cells can bind and transfer more virus than the HLA-DR+/DC-SIGN- cells. Greater than 90% of the virus bound to total mucosal mononuclear cells (MMCs) was accounted for by the DC-SIGN+ cells, which comprise only 1 to 5% of total MMCs. Significantly, anti-DC-SIGN antibodies blocked 90% of the virus binding when more-physiologic amounts of virus inoculum were used. DC-SIGN expression in the rectal mucosa was significantly correlated with the interleukin-10 (IL-10)/IL-12 ratio (r = 0.58, P < 0.002; n = 26) among human immunodeficiency virus (HIV)-positive patients. Ex vivo and in vitro data implicate the role of IL-10 in upregulating DC-SIGN expression and downregulating expression of the costimulatory molecules CD80/CD86. Dendritic cells derived from monocytes (MDDCs) in the presence of IL-10 render the MDDCs less responsive to maturation stimuli, such as lipopolysaccharide and tumor necrosis factor alpha, and migration to the CCR7 ligand macrophage inflammatory protein 3beta. Thus, an increased IL-10 environment could render DC-SIGN(+) cells less immunostimulatory and migratory, thereby dampening an effective immune response. DC-SIGN and the IL-10/IL-12 axis may play significant roles in the mucosal transmission and pathogenesis of HIV type 1.
Collapse
Affiliation(s)
- Kevin B Gurney
- Dept. of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, 2734 MRL, 675 Charles E. Young Dr. South, Los Angeles, CA 90095-7019, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tsuge K, Takeda H, Kawada S, Maeda K, Yamakawa M. Characterization of dendritic cells in differentiated thyroid cancer. J Pathol 2005; 205:565-76. [PMID: 15714595 DOI: 10.1002/path.1731] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, the types and localization pattern of dendritic cells (DCs), the expression of chemokines on carcinoma cells and of the relevant receptors on DCs, and the adhesion molecules expressed on vascular endothelial cells and DCs were examined in thyroid carcinomas. Papillary carcinoma had a higher frequency of CD1a(+) immature DCs than other thyroid tumours. Macrophage inflammatory protein (MIP)-3 alpha was expressed strongly on the majority of papillary carcinoma cells and weakly on a minority of follicular carcinoma cells. DCs positive for chemokine receptor-6 (CCR-6) were densely accumulated in papillary carcinoma. DC-SIGN(+) DCs were accumulated in papillary carcinoma but rarely in follicular carcinoma. A binding assay for DC-SIGN-mediated adhesion of isolated DCs revealed significant inhibition of DC adhesion to papillary carcinoma tissues by neutralizing antibodies against intercellular adhesion molecule-2 or DC-SIGN. These results clearly indicated marked differences between papillary carcinoma and follicular carcinoma in the accumulation of immature DCs, in MIP-3 alpha expression on carcinoma cells, and in the frequency of CCR-6(+) DCs and DC-SIGN(+) DCs.
Collapse
Affiliation(s)
- Kaori Tsuge
- Department of Pathology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | | | | | | | | |
Collapse
|
44
|
Reed DG, Nopo-Olazabal LH, Funk V, Woffenden BJ, Reidy MJ, Dolan MC, Cramer CL, Medina-Bolivar F. Expression of functional hexahistidine-tagged ricin B in tobacco. PLANT CELL REPORTS 2005; 24:15-24. [PMID: 15599751 DOI: 10.1007/s00299-004-0901-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/30/2004] [Accepted: 11/01/2004] [Indexed: 05/24/2023]
Abstract
Ricin B (RTB), the lectin subunit of ricin, shows promise as an effective mucosal adjuvant and carrier for use in humans. In order to obtain a recombinant plant source of RTB that is devoid of the toxic ricin A subunit, we expressed RTB in Nicotiana tabacum. RTB was engineered with an N-terminal hexahistidine tag (His-RTB), which may affect protein stability. Lactose-affinity purification of His-RTB from leaves yielded three major glycosylated products of 32, 33.5 and 35 kDa. Their identity as RTB was verified by mass spectrometry and immunoblotting with anti-ricin antibodies. Functionality of His-RTB was confirmed by binding to asialofetuin, lactose and galactose.
Collapse
Affiliation(s)
- Deborah G Reed
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0331, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sato K, Imai Y, Higashi N, Kumamoto Y, Onami TM, Hedrick SM, Irimura T. Lack of antigen-specific tissue remodeling in mice deficient in the macrophage galactose-type calcium-type lectin 1/CD301a. Blood 2005; 106:207-15. [PMID: 15784728 DOI: 10.1182/blood-2004-12-4943] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Macrophage galactose-type C-type lectins (MGLs), which were recently named CD301, have 2 homologues in mice: MGL1 and MGL2. MGLs are expressed on macrophages and immature dendritic cells. The persistent presence of granulation tissue induced by a protein antigen was observed in wild-type mice but not in mice lacking an endogenous, macrophage-specific, galactose-type calcium-type lectin 1 (MGL1) in an air pouch model. The anti-MGL1 antibody suppressed the granulation tissue formation in wild-type mice. A large number of cells, present only in the pouch of MGL1-deficient mice, were not myeloid or lymphoid lineage cells and the number significantly declined after administration of interleukin 1 alpha (IL-1alpha) into the pouch of MGL1-deficient mice. Furthermore, granulation tissue was restored by this treatment and the cells obtained from the pouch of MGL1-deficient mice were incorporated into the granulation tissue when injected with IL-1alpha. Taken together, MGL1 expressed on a specific subpopulation of macrophages that secrete IL-1alpha was proposed to regulate specific cellular interactions crucial to granulation tissue formation.
Collapse
Affiliation(s)
- Kayoko Sato
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Della Bella S, Nicola S, Timofeeva I, Villa ML, Santoro A, Berardi AC. Are interleukin-16 and thrombopoietin new tools for the in vitro generation of dendritic cells? Blood 2004; 104:4020-8. [PMID: 15304384 DOI: 10.1182/blood-2004-03-0885] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The effects of interleukin 16 (IL-16) on dendritic cell (DC) generation from human CD34+ progenitor cells are not known. Here, we show that IL-16 added to a basal cocktail comprised of granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-4, Flt-3 ligand (Flt3L), and tumor necrosis factor α (TNF-α) does induce the CD34+ hematopoietic cells to proliferate in vitro and to differentiate into phenotypically and functionally mature DCs. IL-16 exerts this function more efficiently than stem cell factor (SCF) as a control, thrombopoietin (TPO), or IL-16 plus TPO. Moreover, we show that the combination of IL-16 plus TPO induces the generation of tolerogenic DCs, able to induce an anergic state in T cells that persists when T cells are rechallenged with immunogenic DCs. An altered pattern of cytokine production, a reduced expression of the C-type lectin DC-SIGN, and an increased surface expression of the inhibitory molecules immunoglobulin-like transcript 2 (ILT-2), ILT-3, and ILT-4 may all contribute to confer the tolerogenic properties of these DCs. Generation of tolerogenic DCs may aid the exploration of new therapeutic strategies to promote tolerance to autoantigens and prevent disease development. (Blood. 2004;104:4020-4028)
Collapse
Affiliation(s)
- Silvia Della Bella
- Dipartimento di Scienze e Tecnologie Biomediche, Laboratorio di Immunologia, Università di Milano, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 2004; 101:17033-8. [PMID: 15563589 PMCID: PMC534418 DOI: 10.1073/pnas.0407902101] [Citation(s) in RCA: 882] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Here we describe a glycan microarray constructed by using standard robotic microarray printing technology to couple amine functionalized glycans to an amino-reactive glass slide. The array comprises 200 synthetic and natural glycan sequences representing major glycan structures of glycoproteins and glycolipids. The array has remarkable utility for profiling the specificity of a diverse range of glycan binding proteins, including C-type lectins, siglecs, galectins, anticarbohydrate antibodies, lectins from plants and microbes, and intact viruses.
Collapse
Affiliation(s)
- Ola Blixt
- Glycan Synthesis and Protein Expression Core-D, Consortium for Functional Glycomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Leeb T, Müller M. Comparative human–mouse–rat sequence analysis of the ICAM gene cluster on HSA 19p13.2 and a 185-kb porcine region from SSC 2q. Gene 2004; 343:239-44. [PMID: 15588578 DOI: 10.1016/j.gene.2004.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 09/10/2004] [Accepted: 10/05/2004] [Indexed: 11/30/2022]
Abstract
The human intercellular adhesion molecule gene (ICAM) cluster is located in a GC-rich and gene-rich region on HSA 19p13.2. We determined the complete DNA sequence of a 185-kb porcine bacterial artificial chromosome (BAC) clone containing parts of the ICAM gene cluster. We used the porcine sequence for a detailed comparative analysis between human, pig, mouse and rat. The 185 kb of porcine sequence covered 220 kb of homologous sequence in the human genome, which adds to the growing evidence that the porcine genome is somewhat smaller than the human genome. The genomic sequences of the four species showed a high level of conserved synteny and no rearrangements in gene order were observed. During evolution, the ICAM3 gene was inactivated by mutation in the mouse and rat genome, whereas it is still present in the human and pig genome. The loss of Icam3 in rodent genomes might be relevant for rodent-specific properties of the T-cell-mediated immune response. All the other investigated genes are conserved across all four investigated sequences.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Animal Breeding and Genetics, School of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany.
| | | |
Collapse
|
49
|
Tsoutsou PG, Gourgoulianis KI, Petinaki E, Mpaka M, Efremidou S, Maniatis A, Molyvdas PA. ICAM-1, ICAM-2 and ICAM-3 in the Sera of Patients with Idiopathic Pulmonary Fibrosis. Inflammation 2004; 28:359-64. [PMID: 16245079 DOI: 10.1007/s10753-004-6647-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In order to test the serum levels of ICAM-1, ICAM-2 and ICAM-3 in patients with idiopathic pulmonary fibrosis (IPF), twenty patients with IPF and eleven with secondary interstitial fibrosis (SIF), as well as forty healthy volunteers (HV) were studied. Serum intracellular adhesion molecules (ICAM) 1, 2 and 3 were assessed by ELISA. Functional respiratory tests, which included spirometry and lung diffusing capacity were simultaneously performed. Median values of serum ICAM-1 and ICAM-2 were higher in the patients' than in the healthy volunteers' (HV) group: IPF group: 946.60 ng/ml and 400.14 ng/ml; SIF group: 901.58 ng/ml and 378.27 ng/ml; HV group: 308.40 ng/ml and 217.55 ng/ml, respectively (p<0.05). ICAM-3 serum levels were equal between the three groups. ICAM-2 negatively correlated to DLCO values. (p<0.005). It can be concluded that ICAM 1 and 2 are elevated in the sera of patients with pulmonary fibrosis. ICAM-2 might be associated with a more impaired clinical status.
Collapse
|
50
|
Abstract
Integrin receptors mediate adhesive events that are critical for a specific and effective immune response to foreign pathogens. Integrin-dependent interactions of lymphocytes and antigen-presenting cells (APCs) to endothelium regulate the efficiency and specificity of trafficking into secondary lymphoid organs and peripheral tissue. Within these sites, integrins facilitate cell movement via interactions with the extracellular matrix, and promote and stabilize antigen-specific interactions between T lymphocytes and APCs that are critical for initiating T cell-activation events. In this review, we discuss the role of integrins in T cell-mediated immunity, with a focus on how these receptors participate in lymphocyte recirculation and T cell activation, how antigen stimulation regulates integrin activity, and how integrins define functionally unique subsets of T cells and APCs.
Collapse
Affiliation(s)
- Jonathan T Pribila
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|