1
|
Tetteh DN, Isono K, Hikosaka-Kuniishi M, Yamazaki H. Neural Crest-Derived Mesenchymal Cells Support Thymic Reconstitution After Lethal Irradiation. Eur J Immunol 2024:e202451305. [PMID: 39548921 DOI: 10.1002/eji.202451305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
Reconstitution of the thymus is essential for assessing thymic function following injury. However, the currently employed cytoreductive regimes unvaryingly affect the thymic microenvironment, thereby impeding the recovery of T lymphopoiesis. The thymic stroma is composed of epithelial and mesenchymal cells. Thymic mesenchymal cells originate from the Neural crest (NC) and mesoderm and contribute to thymus organogenesis, yet their role in thymic regeneration is unclear. In this study, using transgenic mice expressing NC-specific Cre and Cre-driven DT receptors, we investigated the role of NC-derived mesenchymal cells in thymic regeneration following total body irradiation. We revealed that NC-derived mesenchymal cells have reduced susceptibility to irradiation and induce the upregulation of hematopoietic factors that promote thymus regeneration after irradiation. Additionally, using adult thymic organ culture and renal capsule transplantation, depletion of NC-derived mesenchymal cells resulted in a reduction of DN1-like early T-cell progenitors (ETP) and impaired thymic regeneration. Furthermore, among the numerous factors upregulated by NC-derived mesenchymal cells, Periostin and Flt3L were markedly increased after irradiation and promoted abundance of DN1-like ETPs during thymic reconstitution. Collectively, these findings highlight the importance of NC-derived mesenchymal cells in thymic regeneration.
Collapse
Affiliation(s)
- Doris Narki Tetteh
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kana Isono
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mari Hikosaka-Kuniishi
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmacological Science, University of Toyama, Toyama, Japan
| | - Hidetoshi Yamazaki
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
2
|
Yamaguchi N, Takakura Y, Akiyama T. Autophagy and proteasomes in thymic epithelial cells: essential bulk protein degradation systems for immune homeostasis maintenance. Front Immunol 2024; 15:1488020. [PMID: 39524450 PMCID: PMC11543444 DOI: 10.3389/fimmu.2024.1488020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
The thymus is a central organ that controls T cell development. Thymic epithelial cells (TECs) create a unique microenvironment essential for the differentiation of major histocompatibility complex (MHC)-restricted and self-tolerant T cells. TECs present a complex of self-peptides and MHC molecules (self-pMHCs) to immature T cells and regulate their survival and differentiation based on their affinity for self-pMHCs. The processing of self-peptides in TECs depends on bulk protein degradation systems, specifically autophagy and proteasomes. Studies using autophagy- and proteasome-deficient mouse models have demonstrated that these degradation systems in TECs are indispensable for maintaining immune homeostasis. Although autophagy and proteasomes are ubiquitous in nearly all eukaryotic cells, TECs exhibit unique characteristics in their autophagy and proteasome functions. Autophagy in TECs is constitutively active and independent of stress responses, while TEC proteasomes contain specialized catalytic subunits. This review summarizes the distinctive characteristics of autophagy and proteasomes in TECs and their roles in immune system regulation.
Collapse
Affiliation(s)
- Noritaka Yamaguchi
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuki Takakura
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
3
|
MacNabb BW, Rothenberg EV. Speed and navigation control of thymocyte development by the fetal T-cell gene regulatory network. Immunol Rev 2023; 315:171-196. [PMID: 36722494 PMCID: PMC10771342 DOI: 10.1111/imr.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell differentiation is a tightly regulated developmental program governed by interactions between transcription factors (TFs) and chromatin landscapes and affected by signals received from the thymic stroma. This process is marked by a series of checkpoints: T-lineage commitment, T-cell receptor (TCR)β selection, and positive and negative selection. Dynamically changing combinations of TFs drive differentiation along the T-lineage trajectory, through mechanisms that have been most extensively dissected in adult mouse T-lineage cells. However, fetal T-cell development differs from adult in ways that suggest that these TF mechanisms are not fully deterministic. The first wave of fetal T-cell differentiation occurs during a unique developmental window during thymic morphogenesis, shows more rapid kinetics of differentiation with fewer rounds of cell division, and gives rise to unique populations of innate lymphoid cells (ILCs) and invariant γδT cells that are not generated in the adult thymus. As the characteristic kinetics and progeny biases are cell-intrinsic properties of thymic progenitors, the differences could be based on distinct TF network circuitry within the progenitors themselves. Here, we review recent single-cell transcriptome data that illuminate the TF networks involved in T-cell differentiation in the fetal and adult mouse thymus.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
4
|
Ultrasound-Guided Intra-thymic Cell Injection. Methods Mol Biol 2023; 2580:283-292. [PMID: 36374464 PMCID: PMC9847244 DOI: 10.1007/978-1-0716-2740-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intra-thymic injection is a powerful tool for adoptive transfer of cells, cellular tag reagents for tracking recent thymic emigrants (RTEs), or other substances directly into the thymus. The traditional approach developed decades ago requires an invasive surgery to open the thoracic cavity and visualize the thymus. Subsequently, a technique was developed requiring only a small skin incision needed to identify the precise injection site. Nevertheless, both techniques require surgical intervention, and this can lead to elevated animal stress levels and pain which necessitates analgesic medication administration. Here we describe a less invasive technique allowing in situ visualization and transfer of cell suspensions or substances into the thymus via an ultrasound-guided intra-thymic injection approach.
Collapse
|
5
|
Herppich S, Beckstette M, Huehn J. The thymic microenvironment gradually modulates the phenotype of thymus-homing peripheral conventional dendritic cells. IMMUNITY INFLAMMATION AND DISEASE 2021; 10:175-188. [PMID: 34748687 PMCID: PMC8767516 DOI: 10.1002/iid3.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Background & Aims Thymic conventional dendritic cells (t‑DCs) are crucial for the development of T cells. A substantial fraction of t‑DCs originates extrathymically and migrates to the thymus. Here, these cells contribute to key processes of central tolerance like the clonal deletion of self‑reactive thymocytes and the generation of regulatory T (Treg) cells. So far, it is only incompletely understood which impact the thymic microenvironment has on thymus‑homing conventional DCs (cDCs), which phenotypic changes occur after the entry of peripheral cDCs into the thymus and which functional properties these modulated cells acquire. Materials & Methods In the present study, we mimicked the thymus‑homing of peripheral cDCs by introducing ex vivo isolated splenic cDCs (sp‑DCs) into reaggregated thymic organ cultures (RTOCs). Results Already after two days of culture, the transcriptomic profile of sp‑DCs was modulated and had acquired certain key signatures of t‑DCs. The regulated genes included immunomodulatory cytokines and chemokines as well as costimulatory molecules. After four days of culture, sp‑DCs appeared to have at least partially acquired the peculiar Treg cell‐inducing capacity characteristic of t‑DCs. Discussion & Conclusion Taken together, our findings indicate that peripheral cDCs possess a high degree of plasticity enabling them to quickly adapt to the thymus‐specific microenvironment. We further provide indirect evidence that thymus‐specific properties such as the efficient induction of Treg cells under homeostatic conditions can be partially transferred to thymus‑homing peripheral cDC subsets.
Collapse
Affiliation(s)
- Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
6
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Gallic and Ellagic Acids Are Promising Adjuvants to Conventional Amphotericin B for the Treatment of Cutaneous Leishmaniasis. Antimicrob Agents Chemother 2020; 64:AAC.00807-20. [PMID: 32928735 DOI: 10.1128/aac.00807-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, we demonstrated the potential associative effect of combining conventional amphotericin B (Amph B) with gallic acid (GA) and with ellagic acid (EA) in topical formulations for the treatment of cutaneous leishmaniasis in BALB/c mice. Preliminary stability tests of the formulations and in vitro drug release studies with Amph B, GA, Amph B plus GA, EA, and Amph B plus EA were carried out, as well as assessment of the in vivo treatment of BALB/c mice infected with Leishmania major After 40 days of infection, the animals were divided into 6 groups and treated twice a day for 21 days with a gel containing Amph B, GA, Amph B plus GA, EA, or Amph B plus EA, and the negative-control group was treated with the vehicle. In the animals that received treatment, there was reduction of the lesion size and reduction of the parasitic load. Histopathological analysis of the treatments with GA, EA, and combinations with Amph B showed circumscribed lesions with the presence of fibroblasts, granulation tissue, and collagen deposition, as well as the presence of activated macrophages. The formulations containing GA and EA activated macrophages in all evaluated parameters, resulting in the activation of cells of the innate immune response, which can generate healing and protection. GA and EA produced an associative effect with Amph B, which makes them promising for use with conventional Amph B in the treatment of cutaneous leishmaniasis.
Collapse
|
8
|
Toshima K, Nagafuku M, Okazaki T, Kobayashi T, Inokuchi JI. Plasma membrane sphingomyelin modulates thymocyte development by inhibiting TCR-induced apoptosis. Int Immunol 2020; 31:211-223. [PMID: 30561621 DOI: 10.1093/intimm/dxy082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Sphingomyelin (SM) in combination with cholesterol forms specialized membrane lipid microdomains in which specific receptors and signaling molecules are localized or recruited to mediate intracellular signaling. SM-microdomain levels in mouse thymus were low in the early CD4+CD8+ double-positive (DP) stage prior to thymic selection and increased >10-fold during late selection. T-cell receptor (TCR) signal strength is a key factor determining whether DP thymocytes undergo positive or negative selection. We examined the role of SM-microdomains in thymocyte development and related TCR signaling, using SM synthase 1 (SMS1)-deficient (SMS1-/-) mice which display low SM expression in all thymocyte populations. SMS1 deficiency caused reduced cell numbers after late DP stages in TCR transgenic models. TCR-dependent apoptosis induced by anti-CD3 treatment was enhanced in SMS1-/- DP thymocytes both in vivo and in vitro. SMS1-/- DP thymocytes, relative to controls, showed increased phosphorylation of TCR-proximal kinase ZAP-70 and increased expression of Bim and Nur77 proteins involved in negative selection following TCR stimulation. Addition of SM to cultured normal DP thymocytes led to greatly increased surface expression of SM-microdomains, with associated reduction of TCR signaling and TCR-induced apoptosis. Our findings indicate that SM-microdomains are increased in late DP stages, function as negative regulators of TCR signaling and modulate the efficiency of TCR-proximal signaling to promote thymic selection events leading to subsequent developmental stages.
Collapse
Affiliation(s)
- Kaoru Toshima
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Toshiro Okazaki
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | | | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
9
|
Postovalova EA, Makarova OV, Kosyreva AM, Michailova LP. [Morphology of the thymus and the specific features of its cellular composition in experimental acute and chronic ulcerative colitis]. Arkh Patol 2019; 81:53-63. [PMID: 31626205 DOI: 10.17116/patol20198105153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate morphological changes in the thymus, the subpopulation composition of lymphocytes and its non-lymphoid cells in dextran-induced experimental acute ulcerative colitis and in different periods of chronic ulcerative colitis. MATERIAL AND METHODS Acute and chronic ulcerative colitis was simulated in C57BL/6 mice, by replacing drinking water with a 1% aqueous dextran sulfate sodium solution. Thymic changes were morphometrically assessed; the number and absolute area of thymic corpuscles and epithelial cells were calculated; and the subpopulation composition of lymphocytes and thymic stromal cells was determined using flow cytofluorimetry; the Kruskal-Wallis test and the Mann-Whitney test were used to compare the groups. RESULTS In acute catarrhal and ulcerative colitis, there was acute accidental thymic involution with devastation of the cortical substance and with a decline in its volume fraction, with an increase in the levels of cells dying through the mechanism of apoptosis, and with a decrease in the absolute number of lymphocytes, T-helper cells, cytotoxic T-cells, regulatory T-lymphocytes, B-lymphocytes, and dendritic cells, with a rise in the index of the area of thymic corpuscles and in the content of late-phase corpuscles among them, and with the appearance of thymic corpuscles as cyst-like cavities. In chronic ulcerative colitis, the cortex was expanded and the area of thymic corpuscles and the count of medullary epithelial cells increased. The cyst-like thymic corpuscles formed clusters, the count of dendritic cells increased in early-stage chronic ulcerative colitis, but the levels of macrophages decreased in both periods of its development. CONCLUSION There is acute accidental involution and thymic hyperplasia with an increase in medullary epithelial cells and thymic corpuscles consisting of cytokeratin 19+ in the epithelial cells in experimental acute and chronic ulcerative colitis, respectively. The more pronounced epithelial cell response found in end-stage experimental chronic ulcerative colitis reflects the enhanced differentiation of regulatory T-lymphocytes and the larger number of which is observed in peripheral blood and in the focus of inflammation in patients with ulcerative colitis, according to the literature.
Collapse
Affiliation(s)
- E A Postovalova
- Research Institute of Human Morphology, Ministry of Science and Higher Education of Russia, Moscow, Russia
| | - O V Makarova
- Research Institute of Human Morphology, Ministry of Science and Higher Education of Russia, Moscow, Russia
| | - A M Kosyreva
- Research Institute of Human Morphology, Ministry of Science and Higher Education of Russia, Moscow, Russia
| | - L P Michailova
- Research Institute of Human Morphology, Ministry of Science and Higher Education of Russia, Moscow, Russia
| |
Collapse
|
10
|
Abstract
Recombination-activating genes (
RAG)
1 and
RAG2 initiate the molecular processes that lead to lymphocyte receptor formation through VDJ recombination. Nonsense mutations in
RAG1/
RAG2 cause the most profound immunodeficiency syndrome, severe combined immunodeficiency (SCID). Other severe and less-severe clinical phenotypes due to mutations in
RAG genes are now recognized. The degree of residual protein function may permit some lymphocyte receptor formation, which confers a less-severe clinical phenotype. Many of the non-SCID phenotypes are associated with autoimmunity. New findings into the effect of mutations in
RAG1/2 on the developing T- and B-lymphocyte receptor give insight into the development of autoimmunity. This article summarizes recent findings and places the genetic and molecular findings in a clinical context.
Collapse
Affiliation(s)
- Andrew Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, UK.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Flinn AM, Gennery AR. Treatment of Pediatric Acute Graft-versus-Host Disease-Lessons from Primary Immunodeficiency? Front Immunol 2017; 8:328. [PMID: 28377772 PMCID: PMC5359217 DOI: 10.3389/fimmu.2017.00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplant (HSCT) is used to treat increasing numbers of malignant and non-malignant disorders. Despite significant advances in improved human leukocyte antigens-typing techniques, less toxic conditioning regimens and better supportive care, resulting in improved clinical outcomes, acute graft-versus-host disease (aGvHD) continues to be a major obstacle and, although it principally involves the skin, gastrointestinal tract, and liver, the thymus is also a primary target. An important aim following HSCT is to achieve complete and durable immunoreconstitution with a diverse T-cell receptor (TCR) repertoire to recognize a broad range of pathogens providing adequate long-term adaptive T-lymphocyte immunity, essential to reduce the risk of infection, disease relapse, and secondary malignancies. Reconstitution of adaptive T-lymphocyte immunity is a lengthy and complex process which requires a functioning and structurally intact thymus responsible for the production of new naïve T-lymphocytes with a broad TCR repertoire. Damage to the thymic microenvironment, secondary to aGvHD and the effect of corticosteroid treatment, disturbs normal signaling required for thymocyte development, resulting in impaired T-lymphopoiesis and reduced thymic export. Primary immunodeficiencies, in which failure of central or peripheral tolerance is a major feature, because of intrinsic defects in hematopoietic stem cells leading to abnormal T-lymphocyte development, or defects in thymic stroma, can give insights into critical processes important for recovery from aGvHD. Extracorporeal photopheresis is a potential alternative therapy for aGvHD, which acts in an immunomodulatory fashion, through the generation of regulatory T-lymphocytes (Tregs), alteration of cytokine patterns and modulation of dendritic cells. Promoting normal central and peripheral immune tolerance, with selective downregulation of immune stimulation, could reduce aGvHD, and enable a reduction in other immunosuppression, facilitating thymic recovery, restoration of normal T-lymphocyte ontogeny, and complete immunoreconstitution with improved clinical outcome as the ability to fight infections improves and risk of secondary malignancy or relapse diminishes.
Collapse
Affiliation(s)
- Aisling M Flinn
- Medical School, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Andrew R Gennery
- Medical School, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
12
|
Zhang Q, Yang K, Yangyang P, He J, Yu S, Cui Y. Age-related changes in the morphology and protein expression of the thymus of healthy yaks (Bos grunniens). Am J Vet Res 2016; 77:567-74. [DOI: 10.2460/ajvr.77.6.567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Ekin A, Gezer C, Taner CE, Solmaz U, Gezer NS, Ozeren M. Prognostic Value of Fetal Thymus Size in Intrauterine Growth Restriction. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:511-517. [PMID: 26860482 DOI: 10.7863/ultra.15.05039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Our aim was to evaluate the size of the fetal thymus by sonography in pregnancies with intrauterine growth restriction (IUGR) and to search for a possible relationship between a small fetal thymus and adverse perinatal outcomes. METHODS The transverse diameter of the fetal thymus was prospectively measured in 150 healthy and 143 IUGR fetuses between 24 and 40 weeks' gestation. The fetuses with IUGR were further divided according to normal or abnormal Doppler assessment of the umbilical and middle cerebral arteries and ductus venosus. Measurements were compared with reference ranges from controls. To determine which perinatal outcomes were independently associated with a small fetal thymus, a multivariate logistic regression analysis was performed. RESULTS Thymus size was significantly lower in IUGR fetuses compared to controls (P < .05). Among IUGR fetuses, thymus size was significantly smaller in IUGR fetuses with abnormal Doppler flow compared to normal flow (P < .05). A small thymus in IUGR fetuses was independently associated with early delivery (odds ratio [OR], 1.24; 95% confidence interval [CI], 1.05-1.49; P= .023), respiratory distress syndrome (OR, 1.36; 95% CI, 1.09-1.78; P= .005), early neonatal sepsis (OR, 1.65; 95% CI, 1.11-2.42; P= .001), and a longer stay in the neonatal intensive care unit (OR, 1.33; 95% CI, 1.08-1.71; P = .017). CONCLUSIONS Intrauterine growth restriction is associated with fetal thymic involution, and a small fetal thymus is an early indicator of adverse perinatal outcomes in pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Atalay Ekin
- Department of Perinatology, Tepecik Training and Research Hospital, Izmir, Turkey (A.E., C.G., C.E.T., U.S., M.O.); and Department of Radiology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey (N.S.G.).
| | - Cenk Gezer
- Department of Perinatology, Tepecik Training and Research Hospital, Izmir, Turkey (A.E., C.G., C.E.T., U.S., M.O.); and Department of Radiology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey (N.S.G.)
| | - Cuneyt Eftal Taner
- Department of Perinatology, Tepecik Training and Research Hospital, Izmir, Turkey (A.E., C.G., C.E.T., U.S., M.O.); and Department of Radiology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey (N.S.G.)
| | - Ulas Solmaz
- Department of Perinatology, Tepecik Training and Research Hospital, Izmir, Turkey (A.E., C.G., C.E.T., U.S., M.O.); and Department of Radiology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey (N.S.G.)
| | - Naciye Sinem Gezer
- Department of Perinatology, Tepecik Training and Research Hospital, Izmir, Turkey (A.E., C.G., C.E.T., U.S., M.O.); and Department of Radiology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey (N.S.G.)
| | - Mehmet Ozeren
- Department of Perinatology, Tepecik Training and Research Hospital, Izmir, Turkey (A.E., C.G., C.E.T., U.S., M.O.); and Department of Radiology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey (N.S.G.)
| |
Collapse
|
14
|
Tateishi R, Akiyama N, Miyauchi M, Yoshinaga R, Sasanuma H, Kudo T, Shimbo M, Shinohara M, Obata K, Inoue JI, Shirakawa M, Shiba D, Asahara H, Yoshida N, Takahashi S, Morita H, Akiyama T. Hypergravity Provokes a Temporary Reduction in CD4+CD8+ Thymocyte Number and a Persistent Decrease in Medullary Thymic Epithelial Cell Frequency in Mice. PLoS One 2015; 10:e0141650. [PMID: 26513242 PMCID: PMC4626100 DOI: 10.1371/journal.pone.0141650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Gravity change affects many immunological systems. We investigated the effects of hypergravity (2G) on murine thymic cells. Exposure of mice to 2G for three days reduced the frequency of CD4+CD8+ thymocytes (DP) and mature medullary thymic epithelial cells (mTECs), accompanied by an increment of keratin-5 and keratin-8 double-positive (K5+K8+) TECs that reportedly contain TEC progenitors. Whereas the reduction of DP was recovered by a 14-day exposure to 2G, the reduction of mature mTECs and the increment of K5+K8+ TEC persisted. Interestingly, a surgical lesion of the inner ear’s vestibular apparatus inhibited these hypergravity effects. Quantitative PCR analysis revealed that the gene expression of Aire and RANK that are critical for mTEC function and development were up-regulated by the 3-day exposure and subsequently down-regulated by the 14-day exposure to 2G. Unexpectedly, this dynamic change in mTEC gene expression was independent of the vestibular apparatus. Overall, data suggest that 2G causes a temporary reduction of DP and a persistent reduction of mature mTECs in a vestibular system-dependent manner, and also dysregulates mTEC gene expression without involving the vestibular system. These data might provide insight on the impact of gravity change on thymic functions during spaceflight and living.
Collapse
Affiliation(s)
- Ryosuke Tateishi
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
| | - Nobuko Akiyama
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
| | - Maki Miyauchi
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
| | - Riko Yoshinaga
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
| | - Hiroki Sasanuma
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The University of Tokyo, Tokyo, Japan
| | - Takashi Kudo
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Miki Shimbo
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masahiro Shinohara
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- JST, PRESTO, Kawaguchi, Saitama, Japan
| | - Koji Obata
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Jun-ichiro Inoue
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Shirakawa
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki, Japan
| | - Dai Shiba
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki, Japan
| | - Hiroshi Asahara
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuaki Yoshida
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The University of Tokyo, Tokyo, Japan
| | - Satoru Takahashi
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hironobu Morita
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail: (TA); (HM)
| | - Taishin Akiyama
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mouse epigenetics project, ISS/Kibo experiment, Japan Aerospace Exploration Agency, JAXA, Tsukuba, Japan
- * E-mail: (TA); (HM)
| |
Collapse
|
15
|
Lamas A, Lopez E, Carrio R, Lopez DM. Adipocyte and leptin accumulation in tumor-induced thymic involution. Int J Mol Med 2015; 37:133-8. [PMID: 26530443 DOI: 10.3892/ijmm.2015.2392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Cell-mediated immunity is an important defense mechanism against pathogens and developing tumor cells. The thymus is the main lymphoid organ involved in the formation of the cell-mediated immune response by the maturation and differentiation of lymphocytes that travel from the bone marrow, through the lymphatic ducts, to become T lymphocytes. Thymic involution has been associated with aging; however, other factors such as obesity, viral infection and tumor development have been shown to increase the rate of shrinkage of this organ. The heavy infiltration of adipocyte fat cells has been reported in the involuted thymuses of aged mice. In the present study, the possible accumulation of such cells in the thymus during tumorigenesis was examined by immunohistochemistry. A significant number of adipocytes around and infiltrating the thymuses of tumor-bearing mice was observed. Leptin is a pro-inflammatory adipocytokine that enhances thymopoiesis and modulates T cell immune responses. The levels of leptin and adiponectin, another adipocytokine that has anti-inflammatory properties, were examined by western blot analysis. While no changes were observed in the amounts of adiponectin present in the thymuses of the normal and tumor-bearing mice, significantly higher levels of leptin were detected in the thymocytes of the tumor-bearing mice. This correlated with an increase in the expression of certain cytokines, such as interleukin (IL)-2, interferon (IFN)-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF). The co-culture of thymocytes isolated from normal mice with ex vivo isolated adipocytes from tumor-bearing mice yielded similar results. Our findings suggest that the infiltration and accumulation of adipocytes in the thymuses of tumor-bearing mice play an important role in their altered morphology and functions.
Collapse
Affiliation(s)
- Alejandro Lamas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elena Lopez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roberto Carrio
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Diana M Lopez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
16
|
Murray MA, Chotirmall SH. The Impact of Immunosenescence on Pulmonary Disease. Mediators Inflamm 2015; 2015:692546. [PMID: 26199462 PMCID: PMC4495178 DOI: 10.1155/2015/692546] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/09/2015] [Indexed: 01/09/2023] Open
Abstract
The global population is aging with significant gains in life expectancy particularly in the developed world. Consequently, greater focus on understanding the processes that underlie physiological aging has occurred. Key facets of advancing age include genomic instability, telomere shortening, epigenetic changes, and declines in immune function termed immunosenescence. Immunosenescence and its associated chronic low grade systemic "inflamm-aging" contribute to the development and progression of pulmonary disease in older individuals. These physiological processes predispose to pulmonary infection and confer specific and unique clinical phenotypes observed in chronic respiratory disease including late-onset asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. Emerging concepts of the gut and airway microbiome further complicate the interrelationship between host and microorganism particularly from an immunological perspective and especially so in the setting of immunosenescence. This review focuses on our current understanding of the aging process, immunosenescence, and how it can potentially impact on various pulmonary diseases and the human microbiome.
Collapse
Affiliation(s)
- Michelle A. Murray
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| |
Collapse
|
17
|
Kim KY, Lee G, Yoon M, Cho EH, Park CS, Kim MG. Expression Analyses Revealed Thymic Stromal Co-Transporter/Slc46A2 Is in Stem Cell Populations and Is a Putative Tumor Suppressor. Mol Cells 2015; 38:548-61. [PMID: 26013383 PMCID: PMC4469913 DOI: 10.14348/molcells.2015.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 01/08/2023] Open
Abstract
By combining conventional single cell analysis with flow cytometry and public database searches with bioinformatics tools, we extended the expression profiling of thymic stromal cotransporter (TSCOT), Slc46A2/Ly110, that was shown to be expressed in bipotent precursor and cortical thymic epithelial cells. Genome scale analysis verified TSCOT expression in thymic tissue- and cell type- specific fashion and is also expressed in some other epithelial tissues including skin and lung. Coexpression profiling with genes, Foxn1 and Hoxa3, revealed the role of TSCOT during the organogenesis. TSCOT expression was detected in all thymic epithelial cells (TECs), but not in the CD31(+) endothelial cell lineage in fetal thymus. In addition, ABC transporter-dependent side population and Sca-1(+) fetal TEC populations both contain TSCOT-expressing cells, indicating TEC stem cells express TSCOT. TSCOT expression was identified as early as in differentiating embryonic stem cells. TSCOT expression is not under the control of Foxn1 since TSCOT is present in the thymic rudiment of nude mice. By searching variations in the expression levels, TSCOT is positively associated with Grhl3 and Irf6. Cytokines such as IL1b, IL22 and IL24 are the potential regulators of the TSCOT expression. Surprisingly, we found TSCOT expression in the lung is diminished in lung cancers, suggesting TSCOT may be involved in the suppression of lung tumor development. Based on these results, a model for TEC differentiation from the stem cells was proposed in context of multiple epithelial organ formation.
Collapse
Affiliation(s)
- Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| | - Gwanghee Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110,
USA
| | - Minsang Yoon
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| | - Chan-Sik Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736,
Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 402-720,
Korea
| |
Collapse
|
18
|
A novel aspect of the structure of the avian thymic medulla. Cell Tissue Res 2014; 359:489-501. [DOI: 10.1007/s00441-014-2027-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 10/07/2014] [Indexed: 12/19/2022]
|
19
|
Drennan MB, Govindarajan S, De Wilde K, Schlenner SM, Ware C, Nedospasov S, Rodewald HR, Elewaut D. The thymic microenvironment differentially regulates development and trafficking of invariant NKT cell sublineages. THE JOURNAL OF IMMUNOLOGY 2014; 193:5960-72. [PMID: 25381434 DOI: 10.4049/jimmunol.1401601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The regulatory role of the thymic microenvironment during trafficking and differentiation of the invariant NKT (iNKT) cell lineage remains poorly understood. In this study, we show that fractalkine receptor expression marks emigrating subpopulations of the NKT1, NKT2, and NKT17 sublineages in the thymus and peripheral organs of naive mice. Moreover, NKT1 sublineage cells can be subdivided into two subsets, namely NKT1(a) and NKT1(b), which exhibit distinct developmental and tissue-specific distribution profiles. More specifically, development and trafficking of the NKT1(a) subset are selectively dependent upon lymphotoxin (LT)α1β2-LTβ receptor-dependent differentiation of thymic stroma, whereas the NKT1(b), NKT2, and NKT17 sublineages are not. Furthermore, we identify a potential cellular source for LTα1β2 during thymic organogenesis, marked by expression of IL-7Rα, which promotes differentiation of the NKT1(a) subset in a noncell-autonomous manner. Collectively, we propose a mechanism by which thymic differentiation and retention of the NKT1 sublineage are developmentally coupled to LTα1β2-LTβ receptor-dependent thymic organogenesis.
Collapse
Affiliation(s)
- Michael B Drennan
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital, Ghent B-9000, Belgium;
| | - Srinath Govindarajan
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital, Ghent B-9000, Belgium
| | - Katelijne De Wilde
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital, Ghent B-9000, Belgium
| | - Susan M Schlenner
- Department of Microbiology and Immunology, University of Leuven, Leuven 3000, Belgium
| | - Carl Ware
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Sergei Nedospasov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; and
| | - Hans-Reimer Rodewald
- Department for Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Dirk Elewaut
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital, Ghent B-9000, Belgium;
| |
Collapse
|
20
|
The role of the thymus in T-cell immune reconstitution after umbilical cord blood transplantation. Blood 2014; 124:3201-11. [PMID: 25287708 DOI: 10.1182/blood-2014-07-589176] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord blood (UCB) is an alternative source of hematopoietic stem cells for patients without HLA-matched adult donors. UCB contains a low number of nucleated cells and mostly naive T cells, resulting in prolonged time to engraftment and lack of transferred T-cell memory. Although the first phase of T-cell reconstitution after UCB transplantation (UCBT) depends on peripheral expansion of transferred T cells, permanent T-cell reconstitution is mediated via a central mechanism, which depends on de novo production of naive T lymphocytes by the recipient's thymus from donor-derived lymphoid-myeloid progenitors (LMPs). Thymopoiesis can be assessed by quantification of recent thymic emigrants, T-cell receptor excision circle levels, and T-cell receptor repertoire diversity. These assays are valuable tools for monitoring posttransplantation thymic recovery, but more importantly they have shown the significant prognostic value of thymic reconstitution for clinical outcomes after UCBT, including opportunistic infections, disease relapse, and overall survival. Strategies to improve thymic entry and differentiation of LMPs and to accelerate recovery of the thymic stromal microenvironment may improve thymic lymphopoiesis. Here, we discuss the mechanisms and clinical implications of thymic recovery and new approaches to improve reconstitution of the T-cell repertoire after UCBT.
Collapse
|
21
|
Buscone S, Garavello W, Pagni F, Gaini RM, Cattoretti G. Nasopharyngeal tonsils (adenoids) contain extrathymic corticothymocytes. PLoS One 2014; 9:e98222. [PMID: 24858437 PMCID: PMC4032319 DOI: 10.1371/journal.pone.0098222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/29/2014] [Indexed: 11/19/2022] Open
Abstract
Adenoidal tissue (also known as nasopharyngeal tonsils) of 58% of humans in the pediatric age group contains immature T-lymphoid cells with the phenotype of thymocytes (TdT+,CD1abc+, cytoplasmic CD3+, coexpressing CD4 and CD8, lacking an Intraepithelial Lymphocyte-associated phenotype). The notable difference in comparison to palatine tonsils is the clustering in groups and sheets, comprising hundreds or thousands of cells (1.7%±0.2 of total T cells). The thymic epithelium is morphologically and phenotypically absent. Adenoids share with tonsils and lymph nodes the presence of immature B cell precursors (TdT+, CD1a-, Pax5+, Surrogate light chain±), however in these latter the presence of TdT+, CD1a+, Pax5- precursors is absent or limited to individual cells. Human adenoids are distinct among the Waldeyer's ring lymphoid tissue because of the known embryogenic derivation from the third pharyngeal pouch, from which the thymus develops; in addition, they may display phenotypic incomplete features of a vestigial thymus.
Collapse
Affiliation(s)
- Serena Buscone
- Anatomic Pathology, Department of Surgery and Translational Medicine, Universitá degli Studi di Milano-Bicocca, Milano, Italy
| | - Werner Garavello
- Otolaryngology, Department of Surgery and Translational Medicine, Universitá degli Studi di Milano-Bicocca, Milano, Italy
| | - Fabio Pagni
- Anatomic Pathology, Department of Surgery and Translational Medicine, Universitá degli Studi di Milano-Bicocca, Milano, Italy
- Pathology, Azienda Ospedaliera San Gerardo, Monza, Italy
| | - Renato Maria Gaini
- Otolaryngology, Department of Surgery and Translational Medicine, Universitá degli Studi di Milano-Bicocca, Milano, Italy
| | - Giorgio Cattoretti
- Anatomic Pathology, Department of Surgery and Translational Medicine, Universitá degli Studi di Milano-Bicocca, Milano, Italy
- Pathology, Azienda Ospedaliera San Gerardo, Monza, Italy
- * E-mail:
| |
Collapse
|
22
|
Al-Alawi M, Hassan T, Chotirmall SH. Advances in the diagnosis and management of asthma in older adults. Am J Med 2014; 127:370-8. [PMID: 24380710 DOI: 10.1016/j.amjmed.2013.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/25/2022]
Abstract
Global estimates on aging predict an increased burden of asthma in the older population. Consequently, its recognition, diagnosis, and management in clinical practice require optimization. This review aims to provide an update for clinicians, highlighting advances in the understanding of the aging process and immunosenescence together with their applicability to asthma from a diagnostic and therapeutic perspective. Aging impacts airway responses and immune function, and influences efficacy of emerging phenotype-specific therapies when applied to the elderly patient. Differentiating eosinophilic and neutrophilic disease accounts for atopic illness and distinguishes long-standing from late-onset asthma. Therapeutic challenges in drug delivery, treatment adherence, and side-effect profiles persist in the older patient, while novel recording devices developed to aid detection of an adequate inhalation evaluate treatment effectiveness and compliance more accurately than previously attainable. Anticytokine therapies improve control of brittle asthma, while bronchial thermoplasty is an option in refractory cases. Multidimensional intervention strategies prove best in the management of asthma in the older adult, which remains a condition that is not rare but rarely diagnosed in this patient population.
Collapse
Affiliation(s)
- Mazen Al-Alawi
- Department of Medicine, Our Lady of Lourdes Hospital, Navan, Republic of Ireland
| | - Tidi Hassan
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Republic of Ireland
| | - Sanjay H Chotirmall
- Department of Medicine, St James's Hospital, James's Street, Dublin 8, Republic of Ireland.
| |
Collapse
|
23
|
Lee CN, Lew AM, Wu L. The potential role of dendritic cells in the therapy of Type 1 diabetes. Immunotherapy 2014; 5:591-606. [PMID: 23725283 DOI: 10.2217/imt.13.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is the result of T-cell mediated autoimmune destruction of pancreatic islet β-cells. The two current treatments for T1D are based on insulin or islet-cell replacement rather than the pathogenesis of T1D and remain problematic. Islet/pancreas transplantation does not cater for the majority of sufferers due to the lack of supply of organs and the need for continuous immunosuppression regimens. The mainstay treatment is insulin replacement, but this is disruptive to lifestyle and does not protect against severe long-term complications. An early vaccination and long-term restoration of immune tolerance to self-antigens in T1D patients (reversing the immunopathogenesis of the disease) would be preferable. Dendritic cells (DCs) are potent APCs and play an important role in inducing and maintaining immune tolerance. Targeting DCs through different DC surface molecules shows effective modulation of immune responses. Their feasibility for immunotherapy to prolong transplant survival and cancer immunotherapy has been demonstrated. Therefore, DCs could potentially be used in the treatment of autoimmune diseases. This review summarizes new insights into DCs as a potential therapeutic target for the treatment of T1D.
Collapse
Affiliation(s)
- Chin-Nien Lee
- Molecular Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | | | | |
Collapse
|
24
|
Hakim FT, Gress RE. Immunosenescence: immune deficits in the elderly and therapeutic strategies to enhance immune competence. Expert Rev Clin Immunol 2014; 1:443-58. [DOI: 10.1586/1744666x.1.3.443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Davies EG. Immunodeficiency in DiGeorge Syndrome and Options for Treating Cases with Complete Athymia. Front Immunol 2013; 4:322. [PMID: 24198816 PMCID: PMC3814041 DOI: 10.3389/fimmu.2013.00322] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 11/13/2022] Open
Abstract
The commonest association of thymic stromal deficiency resulting in T-cell immunodeficiency is the DiGeorge syndrome (DGS). This results from abnormal development of the third and fourth pharyngeal arches and is most commonly associated with a microdeletion at chromosome 22q11 though other genetic and non-genetic causes have been described. The immunological competence of affected individuals is highly variable, ranging from normal to a severe combined immunodeficiency when there is complete athymia. In the most severe group, correction of the immunodeficiency can be achieved using thymus allografts which can support thymopoiesis even in the absence of donor-recipient matching at the major histocompatibility loci. This review focuses on the causes of DGS, the immunological features of the disorder, and the approaches to correction of the immunodeficiency including the use of thymus transplantation.
Collapse
Affiliation(s)
- E Graham Davies
- Centre for Immunodeficiency, Institute of Child Health, University College London and Great Ormond Street Hospital , London , UK
| |
Collapse
|
26
|
Akiyama T, Shinzawa M, Qin J, Akiyama N. Regulations of gene expression in medullary thymic epithelial cells required for preventing the onset of autoimmune diseases. Front Immunol 2013; 4:249. [PMID: 23986760 PMCID: PMC3752772 DOI: 10.3389/fimmu.2013.00249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/09/2013] [Indexed: 11/13/2022] Open
Abstract
Elimination of potential self-reactive T cells in the thymus is crucial for preventing the onset of autoimmune diseases. Epithelial cell subsets localized in thymic medulla [medullary thymic epithelial cells (mTECs)] contribute to this process by supplying a wide range of self-antigens that are otherwise expressed in a tissue-specific manner (TSAs). Expression of some TSAs in mTECs is controlled by the autoimmune regulator (AIRE) protein, of which dysfunctional mutations are the causative factor of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). In addition to the elimination of self-reactive T cells, recent studies indicated roles of mTECs in the development of Foxp3-positive regulatory T cells, which suppress autoimmunity and excess immune reactions in peripheral tissues. The TNF family cytokines, RANK ligand, CD40 ligand, and lymphotoxin were found to promote the differentiation of AIRE- and TSA-expressing mTECs. Furthermore, activation of NF-κB is essential for mTEC differentiation. In this mini-review, we focus on molecular mechanisms that regulate induction of AIRE and TSA expression and discuss possible contributions of these mechanisms to prevent the onset of autoimmune diseases.
Collapse
Affiliation(s)
- Taishin Akiyama
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | | | | | | |
Collapse
|
27
|
Odiere MR, Scott ME, Leroux LP, Dzierszinski FS, Koski KG. Maternal protein deficiency during a gastrointestinal nematode infection alters developmental profile of lymphocyte populations and selected cytokines in neonatal mice. J Nutr 2013; 143:100-7. [PMID: 23190758 DOI: 10.3945/jn.112.160457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neonatal immune development begins in pregnancy and continues into lactation and may be affected by maternal diet. We investigated the possibility that maternal protein deficiency (PD) during a chronic gastrointestinal (GI) nematode infection could impair neonatal immune development. Beginning on d 14 of pregnancy, mice were fed protein-sufficient (PS; 24%) or protein-deficient (PD; 6%) isoenergetic diets and were infected weekly with either 0 (sham) or 100 Heligmosomoides bakeri larvae. Pups were killed on d 2, 7, 14, and d 21 and dams on d 20 of lactation. Lymphoid organs were weighed. Cytokine concentration in maternal and pup serum and in milk from pup stomachs and lymphoid cell populations in pup spleen and thymus were determined using luminex and flow cytometry, respectively. GI nematode infection increased Th2 cytokines (IL-4, IL-5, IL-13), IL-2, IL-10, and eotaxin in serum of dams whereas PD reduced IL-4 and IL-13. The lower IL-13 in PD dams was associated with increased fecal egg output and worm burdens. Maternal PD increased vascular endothelial growth factor in pup milk and eotaxin in pup serum. Maternal infection increased eotaxin in pup serum. Evidence of impaired neonatal immune development included reduced lymphoid organ mass in pups associated with both maternal infection and PD and increased percentage of T cells and T:B cell ratio in the spleen associated with maternal PD. Findings suggest that increases in specific proinflammatory cytokines as a result of the combination of infection and dietary PD in dams can impair splenic immune development in offspring.
Collapse
Affiliation(s)
- Maurice R Odiere
- Institute of Parasitology, McGill University (Macdonald Campus), Ste-Anne de Bellevue, Quebec, Canada
| | | | | | | | | |
Collapse
|
28
|
Irla M, Guenot J, Sealy G, Reith W, Imhof BA, Sergé A. Three-dimensional visualization of the mouse thymus organization in health and immunodeficiency. THE JOURNAL OF IMMUNOLOGY 2012; 190:586-96. [PMID: 23248258 DOI: 10.4049/jimmunol.1200119] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lymphoid organs exhibit complex structures tightly related to their function. Surprisingly, although the thymic medulla constitutes a specialized microenvironment dedicated to the induction of T cell tolerance, its three-dimensional topology remains largely elusive because it has been studied mainly in two dimensions using thymic sections. To overcome this limitation, we have developed an automated method for full organ reconstruction in three dimensions, allowing visualization of intact mouse lymphoid organs from a collection of immunolabeled slices. We validated full organ reconstruction in three dimensions by reconstructing the well-characterized structure of skin-draining lymph nodes, before revisiting the complex and poorly described corticomedullary organization of the thymus. Wild-type thymi contain ~200 small medullae that are connected to or separated from a major medullary compartment. In contrast, thymi of immunodeficient Rag2(-/-) mice exhibit only ~20 small, unconnected medullary islets. Upon total body irradiation, medullary complexity was partially reduced and then recovered upon bone marrow transplantation. This intricate topology presents fractal properties, resulting in a considerable corticomedullary area. This feature ensures short distances between cortex and medulla, hence efficient thymocyte migration, as assessed by mathematical models. Remarkably, this junction is enriched, particularly in neonates, in medullary thymic epithelial cells expressing the autoimmune regulator. The emergence of a major medullary compartment is induced by CD4(+) thymocytes via CD80/86 and lymphotoxin-α signals. This comprehensive three-dimensional view of the medulla emphasizes a complex topology favoring efficient interactions between developing T cells and autoimmune regulator-positive medullary thymic epithelial cells, a key process for central tolerance induction.
Collapse
Affiliation(s)
- Magali Irla
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
29
|
Chinn IK, Blackburn CC, Manley NR, Sempowski GD. Changes in primary lymphoid organs with aging. Semin Immunol 2012; 24:309-20. [PMID: 22559987 PMCID: PMC3415579 DOI: 10.1016/j.smim.2012.04.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/30/2012] [Accepted: 04/09/2012] [Indexed: 12/13/2022]
Abstract
Aging is associated with decreased immune function that leads to increased morbidity and mortality in the elderly. Immune senescence is accompanied by age-related changes in two primary lymphoid organs, bone marrow and thymus, that result in decreased production and function of B and T lymphocytes. In bone marrow, hematopoietic stem cells exhibit reduced self-renewal potential, increased skewing toward myelopoiesis, and decreased production of lymphocytes with aging. These functional sequelae of aging are caused in part by increased oxidative stress, inflammation, adipocyte differentiation, and disruption of hypoxic osteoblastic niches. In thymus, aging is associated with tissue involution, exhibited by a disorganization of the thymic epithelial cell architecture and increased adiposity. This dysregulation correlates with a loss of stroma-thymocyte 'cross-talk', resulting in decreased export of naïve T cells. Mounting evidence argues that with aging, thymic inflammation, systemic stress, local Foxn1 and keratinocyte growth factor expression, and sex steroid levels play critical roles in actively driving thymic involution and overall adaptive immune senescence across the lifespan. With a better understanding of the complex mechanisms and pathways that mediate bone marrow and thymus involution with aging, potential increases for the development of safe and effective interventions to prevent or restore loss of immune function with aging.
Collapse
Affiliation(s)
- Ivan K. Chinn
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, 27710 USA
- Duke Human Vaccine Institute, Box 103020, Duke University Medical Center, Durham, North Carolina, 27710 USA
| | - Clare C. Blackburn
- MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, SCRM Building, 5 Little France Drive, Edinburgh, United Kingdom EH16 4UU
| | - Nancy R. Manley
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, S270B Coverdell Building, Athens, Georgia, 30602 USA
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Box 103020, Duke University Medical Center, Durham, North Carolina, 27710 USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710 USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, 27710 USA
| |
Collapse
|
30
|
Akiyama T, Shinzawa M, Akiyama N. RANKL-RANK interaction in immune regulatory systems. World J Orthop 2012; 3:142-50. [PMID: 23173110 PMCID: PMC3502610 DOI: 10.5312/wjo.v3.i9.142] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/21/2012] [Accepted: 09/15/2012] [Indexed: 02/06/2023] Open
Abstract
The interaction between the receptor activator of NF-κB ligand (RANKL) and its receptor RANK plays a critical role in the development and function of diverse tissues. This review summarizes the studies regarding the functions of RANKL signaling in immune regulatory systems. Previous in vitro and in vivo studies have indicated that the RANKL signal promotes the survival of dendritic cells (DCs), thereby activating the immune response. In addition, RANKL signaling to DCs in the body surface barriers controls self-tolerance and oral-tolerance through regulatory T cell functions. In addition to regulating DC functions, the RANKL and RANK interaction is critical for the development and organization of several lymphoid organs. The RANKL signal initiates the formation of clusters of lymphoid tissue inducer cells, which is crucial for lymph node organogenesis. Moreover, the RANKL-RANK interaction controls the differentiation of M cells, specialized epithelial cells in mucosal tissues, that take up and transcytose antigen particles to control the immune response to pathogens or commensal bacterium. The development of epithelial cells localized in the thymic medulla (mTECs) is also regulated by the RANKL-RANK signal. Given that the unique property of mTECs to express a wide variety of tissue-specific self-antigens is critical for the elimination of self-antigen reactive T cells in the thymus, the RANKL-RANK interaction contributes to the suppression of autoimmunity. Future studies on the roles of the RANKL-RANK system in immune regulatory functions would be informative for the development and application of inhibitors of RANKL signaling for disease treatment.
Collapse
|
31
|
Akiyama T, Shinzawa M, Akiyama N. TNF receptor family signaling in the development and functions of medullary thymic epithelial cells. Front Immunol 2012; 3:278. [PMID: 22969770 PMCID: PMC3432834 DOI: 10.3389/fimmu.2012.00278] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/16/2012] [Indexed: 11/25/2022] Open
Abstract
Thymic epithelial cells (TECs) provide the microenvironment required for the development of T cells in the thymus. A unique property of medullary thymic epithelial cells (mTECs) is their expression of a wide range of tissue-restricted self-antigens, critically regulated by the nuclear protein AIRE, which contributes to the selection of the self-tolerant T cell repertoire, thereby suppressing the onset of autoimmune diseases. The TNF receptor family (TNFRF) protein receptor activator of NF-κB (RANK), CD40 and lymphotoxin β receptor (LtβR) regulate the development and functions of mTECs. The engagement of these receptors with their specific ligands results in the activation of the NF-κB family of transcription factors. Two NF-κB activation pathways, the classical and non-classical pathways, promote the development of mature mTECs induced by these receptors. Consistently, TNF receptor-associated factor (TRAF6), the signal transducer of the classical pathway, and NF-κB inducing kinase (NIK), the signal transducer of the non-classical pathway, are essential for the development of mature mTECs. This review summarizes the current understanding of how the signaling by the TNF receptor family controls the development and functions of mTEC.
Collapse
Affiliation(s)
- Taishin Akiyama
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | | | | |
Collapse
|
32
|
Stoeckle C, Quecke P, Rückrich T, Burster T, Reich M, Weber E, Kalbacher H, Driessen C, Melms A, Tolosa E. Cathepsin S dominates autoantigen processing in human thymic dendritic cells. J Autoimmun 2012; 38:332-43. [PMID: 22424724 DOI: 10.1016/j.jaut.2012.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
The interaction of developing thymocytes with peptide-MHC complexes on thymic antigen presenting cells (APC) is crucial for T cell development, both for positive selection of "useful" thymocytes as well as negative selection of autoreactive thymocytes to prevent autoimmunity. The peptides presented on MHC II molecules are generated by lysosomal proteases such as the cathepsins. At the same time, lysosomal proteases will also destroy other potential T cell epitopes from self-antigens. This will lead to a lack of presentation on negatively selecting thymic antigen presenting cells and consequently, escape of autoreactive T cells recognizing these epitopes. In order to understand the processes that govern generation or destruction of self-epitopes in thymic APC, we studied the antigen processing machinery and epitope processing in the human thymus. We find that each type of thymic APC expresses a different signature of lysosomal proteases, providing indirect evidence that positive and negative selection of CD4(+) T cells might occur on different sets of peptides, in analogy to what has been proposed for CD8(+) T cells. We also find that myeloid dendritic cells (DC) are more efficient in processing autoantigen than plasmacytoid DC. In addition, we observed that cathepsin S plays a central role in processing of the autoantigens myelin basic protein and proinsulin in thymic dendritic cells. Cathepsin S destroyed a number of known T cell epitopes, which would be expected to result in lack of presentation and consequently, escape of autoreactive T cells. Cathepsin S therefore appears to be an important factor that influences selection of autoreactive T cells.
Collapse
Affiliation(s)
- Christina Stoeckle
- Hertie Institute for Clinical Brain Research, University of Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
CD4⁺T cells: differentiation and functions. Clin Dev Immunol 2012; 2012:925135. [PMID: 22474485 PMCID: PMC3312336 DOI: 10.1155/2012/925135] [Citation(s) in RCA: 844] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/12/2011] [Accepted: 12/26/2011] [Indexed: 12/13/2022]
Abstract
CD4⁺T cells are crucial in achieving a regulated effective immune response to pathogens. Naive CD4⁺T cells are activated after interaction with antigen-MHC complex and differentiate into specific subtypes depending mainly on the cytokine milieu of the microenvironment. Besides the classical T-helper 1 and T-helper 2, other subsets have been identified, including T-helper 17, regulatory T cell, follicular helper T cell, and T-helper 9, each with a characteristic cytokine profile. For a particular phenotype to be differentiated, a set of cytokine signaling pathways coupled with activation of lineage-specific transcription factors and epigenetic modifications at appropriate genes are required. The effector functions of these cells are mediated by the cytokines secreted by the differentiated cells. This paper will focus on the cytokine-signaling and the network of transcription factors responsible for the differentiation of naive CD4⁺T cells.
Collapse
|
34
|
Gennery AR. Immunological aspects of 22q11.2 deletion syndrome. Cell Mol Life Sci 2012; 69:17-27. [PMID: 21984609 PMCID: PMC11114664 DOI: 10.1007/s00018-011-0842-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 12/16/2022]
Abstract
Chromosome 22q11 deletion is the most common chromosomal deletion syndrome and is found in the majority of patients with DiGeorge syndrome and velo-cardio-facial syndrome. Patients with CHARGE syndrome may share similar features. Cardiac malformations, speech delay, and immunodeficiency are the most common manifestations. The immunological phenotype may vary widely between patients. Severe T lymphocyte immunodeficiency is rare-thymic transplantation offers a new approach to treatment, as well as insights into thymic physiology and central tolerance. Combined partial immunodeficiency is more common, leading to recurrent sinopulmonary infection in early childhood. Autoimmunity is an increasingly recognized complication. New insights into pathophysiology are reviewed.
Collapse
Affiliation(s)
- A R Gennery
- Institute of Cellular Medicine, Old Children's Outpatients, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
35
|
Dzhagalov I, Phee H. How to find your way through the thymus: a practical guide for aspiring T cells. Cell Mol Life Sci 2011; 69:663-82. [PMID: 21842411 DOI: 10.1007/s00018-011-0791-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/25/2011] [Accepted: 07/25/2011] [Indexed: 01/16/2023]
Abstract
Thymocytes must complete an elaborate developmental program in the thymus to ultimately generate T cells that express functional but neither harmful nor useless TCRs. Each developmental step coincides with dynamic relocation of the thymocytes between anatomically discrete thymic microenvironments, suggesting that thymocytes' migration is tightly regulated by their developmental status. Chemokines produced by thymic stromal cells and chemokine receptors on the thymocytes play an indispensable role in guiding developing thymocytes into the different microenvironments. In addition to long-range migration, chemokines increase the thymocytes' motility, enhancing their interaction with stromal cells. During the past several years, much progress has been made to determine the various signals that guide thymocytes on their journey within the thymus. In this review, we summarize the progress in identifying chemokines and other chemoattractant signals that direct intrathymic migration. Furthermore, we discuss the recent advances of two-photon microscopy in determining dynamic motility and interaction behavior of thymocytes within distinct compartments to provide a better understanding of the relationship between thymocyte motility and development.
Collapse
Affiliation(s)
- Ivan Dzhagalov
- LSA, Room 479, Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California Berkeley, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
36
|
Leposavić G, Pilipović I, Perišić M. Age-associated remodeling of neural and nonneural thymic catecholaminergic network affects thymopoietic productivity. Neuroimmunomodulation 2011; 18:290-308. [PMID: 21952681 DOI: 10.1159/000329499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ageing is associated with a progressive decline in thymic cytoarchitecture followed by a less efficient T cell development and decreased emigration of naïve T cells to the periphery. These thymic changes are linked to increased morbidity and mortality from infectious, malignant and autoimmune diseases in old age. Therefore, it is of paramount importance to understand the thymic homeostatic processes across the life span, as well as to identify factors and elucidate mechanisms driving or contributing to the thymic involution. Catecholamines (CAs) derived from sympathetic nerves and produced locally by thymic cells represent an important component of the thymic microenvironment. In young rats, they provide a subtle tonic suppressive influence on T cell development acting via β(2)- and α(1)-adrenoceptors (ARs) expressed on thymic nonlymphoid cells and thymocytes. In the face of thymic involution, a progressive increase in the thymic noradrenaline level, reflecting a rise in the density of noradrenergic nerve fibers and CA-synthesizing cells, occurs. In addition, the density of β(2)- and α(1)-AR-expressing thymic nonlymphoid cells and the α(1)-AR thymocyte surface density also exhibit a pronounced increase with age. The data obtained from studies investigating effects of AR blockade on T cell development indicated that age-related changes in CA-mediated thymic communications, certainly those involving α(1)-ARs, may contribute to diminished thymopoietic efficiency in the elderly. Having in mind thymic plasticity in the course of ageing, and broadening possibilities for pharmacological modulation of CA signaling, we here present and discuss the progress in research related to a role of CAs in thymic homeostasis and age-related decay in the thymic naïve T cell output.
Collapse
Affiliation(s)
- Gordana Leposavić
- Immunology Research Centre 'Branislav Janković', Institute of Virology, Vaccines and Sera 'Torlak', Belgrade, Serbia. Gordana.Leposavic @ pharmacy.bg.ac.rs
| | | | | |
Collapse
|
37
|
Stoeckle C, Tolosa E. Antigen processing and presentation in multiple sclerosis. Results Probl Cell Differ 2010; 51:149-72. [PMID: 19582405 DOI: 10.1007/400_2009_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CD4(+) T cells play a central role in the pathogenesis of multiple sclerosis (MS). Generation, activation and effector function of these cells crucially depends on their interaction with MHC II-peptide complexes displayed by antigen presenting cells (APC). Processing and presentation of self antigens by different APC therefore influences the disease course at all stages. Selection by thymic APC leads to the generation of autoreactive T cells, which can be activated by peripheral APC. Reactivation by central nervous system APC leads to the initiation of the inflammatory response resulting in demyelination. In this review we will focus on how MHC class II antigenic epitopes are created by different APC from the thymus, the periphery and from the brain, and will discuss the relevance of the balance between creation and destruction of such epitopes in the context of MS. A solid understanding of these processes offers the possibility for designing future therapeutic strategies.
Collapse
Affiliation(s)
- Christina Stoeckle
- Department of General Neurology, Hertie Institute for Clinical Brain Research, Otfried-Mueller-Str. 27, 72076, Tuebingen, Germany.
| | | |
Collapse
|
38
|
De Ravin SS, Cowen EW, Zarember KA, Whiting-Theobald NL, Kuhns DB, Sandler NG, Douek DC, Pittaluga S, Poliani PL, Lee YN, Notarangelo LD, Wang L, Alt FW, Kang EM, Milner JD, Niemela JE, Fontana-Penn M, Sinal SH, Malech HL. Hypomorphic Rag mutations can cause destructive midline granulomatous disease. Blood 2010; 116:1263-71. [PMID: 20489056 PMCID: PMC2938237 DOI: 10.1182/blood-2010-02-267583] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/17/2010] [Indexed: 01/08/2023] Open
Abstract
Destructive midline granulomatous disease characterized by necrotizing granulomas of the head and neck is most commonly caused by Wegener granulomatosis, natural killer/T-cell lymphomas, cocaine abuse, or infections. An adolescent patient with myasthenia gravis treated with thymectomy subsequently developed extensive granulomatous destruction of midface structures, palate, nasal septum, airways, and epiglottis. His lymphocyte numbers, total immunoglobulin G level, and T-cell receptor (TCR) repertoire appeared normal. Sequencing of Recombination activating gene-1 (Rag1) showed compound heterozygous Rag1 mutations; a novel deletion with no recombinase activity and a missense mutation resulting in 50% Rag activity. His thymus was dysplastic and, although not depleted of T cells, showed a notable absence of autoimmune regulator (AIRE) and Foxp3(+) regulatory T cells. This distinct Rag-deficient phenotype characterized by immune dysregulation with granulomatous hyperinflammation and autoimmunity, with relatively normal T and B lymphocyte numbers and a diverse TCR repertoire expands the spectrum of presentation in Rag deficiency. This study was registered at www.clinicaltrials.gov as #NCT00128973.
Collapse
Affiliation(s)
- Suk See De Ravin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rejuvenation of the aging thymus: growth hormone-mediated and ghrelin-mediated signaling pathways. Curr Opin Pharmacol 2010; 10:408-24. [PMID: 20595009 DOI: 10.1016/j.coph.2010.04.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 12/20/2022]
Abstract
One of the major fundamental causes for the aging of the immune system is the structural and functional involution of the thymus, and the associated decline in de novo naïve T-lymphocyte output. This loss of naïve T-cell production weakens the ability of the adaptive immune system to respond to new antigenic stimuli and eventually leads to a peripheral T-cell bias to the memory phenotype. While the precise mechanisms responsible for age-associated thymic involution remain unknown, a variety of theories have been forwarded including the loss of expression of various growth factors and hormones that influence the lymphoid compartment and promote thymic function. Extensive studies examining two hormones, namely growth hormone (GH) and ghrelin (GRL), have demonstrated their contributions to thymus biology. In the current review, we discuss the literature supporting a role for these hormones in thymic physiology and age-associated thymic involution and their potential use in the restoration of thymic function in aged and immunocompromised individuals.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Severe combined immunodeficiencies represent a heterogeneous group of genetic disorders affecting genes of both early and late steps in lymphocytes development, a process tightly controlled by thymic epithelial cells. Detailed analysis of thymic morphology aids to the assessment of the severity of the immune disorder and may be critical to the understanding of the role of the genetic defects in the pathophysiology of these diseases. In this review, we highlight recent advancements in the characterization of the thymic microenvironment in primary immunodeficiencies. RECENT FINDINGS Crosstalk between thymocytes and thymic epithelial cells is essential to preserve thymic architecture and function, and therefore to promote T-cell maturation and development of self-tolerance. Early severe defects in T-cell development result in profound abnormalities of thymic epithelial cells differentiation with loss of AIRE expression and severe reduction of thymic dendritic and T-regulatory cells. Differently, later defects in T-cell development that are permissive for normal thymocytes development allow cortico-medullary differentiation with partially preserved AIRE expression and dendritic/T-regulatory cells distribution. Hypomorphic mutations in the same genes partially permissive to T-cell development may result in a more complex phenotype with immunodysreactivity and peculiar thymic alterations. SUMMARY Although the molecular and genetic bases of primary immunodeficiencies directly aid to both diagnosis and management of the patients, the detailed analysis of thymic morphology critically contributes to unveil the pathophysiology of these diseases.
Collapse
|
41
|
Vroegindeweij E, Crobach S, Itoi M, Satoh R, Zuklys S, Happe C, Germeraad WT, Cornelissen JJ, Cupedo T, Holländer GA, Kawamoto H, van Ewijk W. Thymic cysts originate from Foxn1 positive thymic medullary epithelium. Mol Immunol 2010; 47:1106-13. [DOI: 10.1016/j.molimm.2009.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 01/15/2023]
|
42
|
Kenins L, Gill JW, Holländer GA, Wodnar-Filipowicz A. Flt3 ligand-receptor interaction is important for maintenance of early thymic progenitor numbers in steady-state thymopoiesis. Eur J Immunol 2010; 40:81-90. [PMID: 19830725 DOI: 10.1002/eji.200839213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
T-cell production throughout life depends on efficient colonization and intrathymic expansion of BM-derived hematopoietic precursors. After irradiation-induced thymic damage, thymic recovery is facilitated by Flt3 ligand (FL), expressed by perivascular fibroblasts surrounding the thymic entry site of Flt3 receptor-positive progenitor cells. Whether intrathymic FL-Flt3 interactions play a role in steady-state replenishment of T cells remains unknown. Here, using competitive BM transplantation studies and fetal thymic organ cultures we demonstrated the continued numerical advantage of Flt3+ intrathymic T-cell precursors. Sub-kidney capsule thymic transplantation experiments, in which WT and FL-/- thymic lobes were grafted into FL-/- recipients, revealed that FL expression by the thymic microenvironment plays a role in steady-state thymopoiesis. The deficiency of the most immature thymic T-cell precursors correlated to upregulation of FL by thymic MTS15+ fibroblasts, suggesting that the number of Flt3+ progenitor cells may regulate the thymic expression of this cytokine. Together, these results show that FL expression by thymic stromal fibroblasts interacting with Flt3+ T-cell progenitors is important for the physiological maintenance of early T-cell development.
Collapse
Affiliation(s)
- Linda Kenins
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
43
|
Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:103-20. [PMID: 20800818 DOI: 10.1016/s1877-1173(10)92005-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional regulatory networks are the central regulatory mechanisms that control organ identity, patterning, and differentiation. In the case of the thymus, several key transcription factors have been identified that are critical for various aspects of thymus organogenesis and thymic epithelial cell (TEC) differentiation. The thymus forms from the third pharyngeal pouch endoderm during embryogenesis. Organ development progresses from initial thymus cell fate specification, through multiple stages of TEC differentiation and cortical (cTEC) and medullary (mTEC) formation. Transcription factors have been identified for each of these stages: a Hoxa3-dependent cascade at initial fate specification, Foxn1 for early (and later) TEC differentiation, and NF-kappaB for mTEC differentiation. As important as these factors are, their interrelationships are not understood, and many more transcription factors are likely required for complete thymus organogenesis to occur. In this chapter, we review the literature on these known genes, as well as identify gaps in our knowledge for future studies.
Collapse
|
44
|
Mello Coelho VD, Bunbury A, Rangel LB, Giri B, Weeraratna A, Morin PJ, Bernier M, Taub DD. Fat-storing multilocular cells expressing CCR5 increase in the thymus with advancing age: potential role for CCR5 ligands on the differentiation and migration of preadipocytes. Int J Med Sci 2009; 7:1-14. [PMID: 20046229 PMCID: PMC2792732 DOI: 10.7150/ijms.7.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/03/2009] [Indexed: 12/25/2022] Open
Abstract
Age-associated thymic involution is characterized by decreased thymopoiesis, adipocyte deposition and changes in the expression of various thymic microenvironmental factors. In this work, we characterized the distribution of fat-storing cells within the aging thymus. We found an increase of unilocular adipocytes, ERTR7(+) and CCR5(+ )fat-storing multilocular cells in the thymic septa and parenchymal regions, thus suggesting that mesenchymal cells could be immigrating and differentiating in the aging thymus. We verified that the expression of CCR5 and its ligands, CCL3, CCL4 and CCL5, were increased in the thymus with age. Hypothesizing that the increased expression of chemokines and the CCR5 receptor may play a role in adipocyte recruitment and/or differentiation within the aging thymus, we examined the potential role for CCR5 signaling on adipocyte physiology using 3T3-L1 pre-adipocyte cell line. Increased expression of the adipocyte differentiation markers, PPARgamma2 and aP2 in 3T3-L1 cells was observed under treatment with CCR5 ligands. Moreover, 3T3-L1 cells demonstrated an ability to migrate in vitro in response to CCR5 ligands. We believe that the increased presence of fat-storing cells expressing CCR5 within the aging thymus strongly suggests that these cells may be an active component of the thymic stromal cell compartment in the physiology of thymic aging. Moreover, we found that adipocyte differentiation appear to be influenced by the proinflammatory chemokines, CCL3, CCL4 and CCL5.
Collapse
Affiliation(s)
- Valeria de Mello Coelho
- Laboratories of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Carrio R, Altman NH, Lopez DM. Downregulation of interleukin-7 and hepatocyte growth factor in the thymic microenvironment is associated with thymus involution in tumor-bearing mice. Cancer Immunol Immunother 2009; 58:2059-72. [PMID: 19421751 PMCID: PMC11030654 DOI: 10.1007/s00262-009-0714-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 04/17/2009] [Indexed: 12/18/2022]
Abstract
During mammary tumorigenesis, there is a profound thymic involution associated with severe depletion of the most abundant subset of thymocytes, CD4(+)CD8(+) immature cells, and an early arrest in at least two steps of T cell differentiation. Thymic atrophy that is normally related with aging has been observed in other model systems, including graft-vs-host disease (GVHD) and tumor development. However, the mechanisms involved in this phenomenon remain to be elucidated. Vascular endothelial growth factor (VEGF) has been associated with thymic involution, when expressed at high levels systemically. In thymuses of D1-DMBA-3 tumor-bearing mice, this growth factor is diminished relative to the level of normal thymuses. Interestingly, the expression of hepatocyte growth factor (HGF), which has been associated with proliferation, cell survival, angiogenesis and B-cell differentiation, is profoundly down-regulated in thymuses of tumor bearers. In parallel, IL-7 and IL-15 mRNA, crucial cytokines involved in thymocytes development and cellular homeostasis, respectively, are also down-regulated in the thymuses of tumor hosts as compared to those of normal mice. Injection of HGF into mice implanted with mammary tumors resulted in normalization of thymic volume and levels of VEGF, IL-7 and IL-15. While, injections of IL-7 partially restored the thymic involution observed in the thymuses of tumor-bearing mice, injection of IL-15 did not have any significant effects. Our data suggest that the downregulation of HGF and IL-7 may play an important role in the thymic involution observed in tumor-bearing hosts.
Collapse
Affiliation(s)
- Roberto Carrio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, P.O. Box 016960, Miami, FL 33101 USA
| | - Norman H. Altman
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Diana M. Lopez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, P.O. Box 016960, Miami, FL 33101 USA
| |
Collapse
|
46
|
Kuhnt LA, Jennings RN, Brawner WR, Hathcock JT, Carreno AD, Johnson CM. Magnetic resonance imaging of radiation-induced thymic atrophy as a model for pathologic changes in acute feline immunodeficiency virus infection. J Feline Med Surg 2009; 11:977-84. [PMID: 19540785 PMCID: PMC11318762 DOI: 10.1016/j.jfms.2009.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2009] [Indexed: 01/26/2023]
Abstract
The development of a protocol to reproducibly induce thymic atrophy, as occurs in feline immunodeficiency virus (FIV) infection and other immunosuppressive diseases, and to consistently estimate thymic volume, provides a valuable tool in the search of innovative and novel therapeutic strategies. Magnetic resonance imaging (MRI) using the short tau inversion recovery (STIR) technique, with fat suppression properties, was determined to provide an optimized means of locating, defining, and quantitatively estimating thymus volume in young cats. Thymic atrophy was induced in four, 8-10-week-old kittens with a single, directed 500 cGy dose of 6 MV X-rays from a clinical linear accelerator, and sequential MR images of the cranial mediastinum were collected at 2, 7, 14, and 21 days post irradiation (PI). Irradiation induced a severe reduction in thymic volume, which was decreased, on average, to 47% that of normal, by 7 days PI. Histopathology confirmed marked, diffuse thymic atrophy, characterized by reduced thymic volume, decreased overall cellularity, increased apoptosis, histiocytosis, and reduced distinction of the corticomedullary junction, comparable to that seen in acute FIV infection. Beginning on day 7 PI, thymic volumes rebounded slightly and continued to increase over the following 14 days, regaining 3-35% of original volume. These findings demonstrate the feasibility and advantages of using this non-invasive, in vivo imaging technique to measure and evaluate changes in thymic volume in physiologic and experimental situations. All experimental protocols in this study were approved by the Institutional Animal Care and Use Committee (IACUC) at Auburn University.
Collapse
Affiliation(s)
- Leah A Kuhnt
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Fernández MN. Improving the outcome of cord blood transplantation: use of mobilized HSC and other cells from third party donors. Br J Haematol 2009; 147:161-76. [DOI: 10.1111/j.1365-2141.2009.07766.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Shikama N, Nusspaumer G, Holländer GA. Clearing the AIRE: on the pathophysiological basis of the autoimmune polyendocrinopathy syndrome type-1. Endocrinol Metab Clin North Am 2009; 38:273-88, vii. [PMID: 19328411 DOI: 10.1016/j.ecl.2009.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autoimmune polyendocrine syndrome type-1 clinically manifests as the triad of hypoparathyroidism, primary adrenocortical insufficiency, and chronic mucocutaneous candidiasis. Mutations in the gene that encodes the autoimmune regulator protein, AIRE, have been identified as the cause of the autoimmune polyendocrine syndrome type-1. The loss of immunologic tolerance to tissue-restricted antigens consequent to an absence of AIRE expression in the thymus results in the thymic export of autoreactive T cells that initiate autoimmunity. In this article, we discuss the role of AIRE in autoimmune polyendocrine syndrome type-1 and identify issues that still need to be addressed to fully understand the molecular pathophysiology of this complex syndrome.
Collapse
Affiliation(s)
- Noriko Shikama
- Laboratory of Pediatric Immunology, Department of Biomedicine, University of Basel and The University Children's Hospital (UKBB), Basel, Switzerland
| | | | | |
Collapse
|
49
|
Dudakov JA, Goldberg GL, Reiseger JJ, Chidgey AP, Boyd RL. Withdrawal of sex steroids reverses age- and chemotherapy-related defects in bone marrow lymphopoiesis. THE JOURNAL OF IMMUNOLOGY 2009; 182:6247-60. [PMID: 19414778 DOI: 10.4049/jimmunol.0802446] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A significant decline in immune function is characteristic of aging. Along with the involution of the thymus and associated impaired architecture, which contributes to profound loss of naive T cell production, there are also significant declines in B cell development and the progenitors that support lymphopoiesis. These collectively lead to a reduced peripheral immune repertoire, increase in opportunistic infections, and limited recovery following cytoablation through chemo- or radiotherapy. We have previously shown that sex steroid ablation (SSA) causes a major reversal of age-related thymic atrophy and improves recovery from hematopoietic stem cell transplant. This study focused on the impact of SSA on the B cell compartment and their progenitors in middle-aged and cyclophosphamide-treated mice. In both models, SSA enhanced the number of lymphoid progenitors and developing B cells in the bone marrow (BM) as well as reversing age-related defects in the cycling kinetics of these cells. Enhanced BM lymphopoiesis was reflected in the periphery by an increase in recent BM emigrants as well as immature and mature plasma cells, leading to an enhanced humoral response to challenge by hepatitis B vaccine. In conclusion, SSA improves lymphoid progenitor and B cell recovery from age- and chemotherapy-induced immunodepletion, complimenting the effects on T cells. Since SSA has been achieved clinically for over 25 years, this provides a novel, rational basis for approaching the need for immune recovery in many clinical conditions.
Collapse
Affiliation(s)
- Jarrod A Dudakov
- Immune Regeneration Laboratory, Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Australia.
| | | | | | | | | |
Collapse
|
50
|
Zuklys S, Gill J, Keller MP, Hauri-Hohl M, Zhanybekova S, Balciunaite G, Na KJ, Jeker LT, Hafen K, Tsukamoto N, Amagai T, Taketo MM, Krenger W, Holländer GA. Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function. THE JOURNAL OF IMMUNOLOGY 2009; 182:2997-3007. [PMID: 19234195 DOI: 10.4049/jimmunol.0713723] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thymic T cell development is dependent on a specialized epithelial microenvironment mainly composed of cortical and medullary thymic epithelial cells (TECs). The molecular programs governing the differentiation and maintenance of TECs remain largely unknown. Wnt signaling is central to the development and maintenance of several organ systems but a specific role of this pathway for thymus organogenesis has not yet been ascertained. In this report, we demonstrate that activation of the canonical Wnt signaling pathway by a stabilizing mutation of beta-catenin targeted exclusively to TECs changes the initial commitment of endodermal epithelia to a thymic cell fate. Consequently, the formation of a correctly composed and organized thymic microenvironment is prevented, thymic immigration of hematopoietic precursors is restricted, and intrathymic T cell differentiation is arrested at a very early developmental stage causing severe immunodeficiency. These results suggest that a precise regulation of canonical Wnt signaling in thymic epithelia is essential for normal thymus development and function.
Collapse
Affiliation(s)
- Saulius Zuklys
- Department of Clinical-Biological Sciences, Laboratory of Pediatric Immunology, University of Basel, and Basel University Children's Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|