1
|
Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022; 79:188. [PMID: 35286508 PMCID: PMC8921109 DOI: 10.1007/s00018-022-04214-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regulation of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Shun-Fan Wu
- College of Plant Protection/Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Chen L, Liu Y, Su P, Hung W, Li H, Wang Y, Yue Z, Ge MH, Wu ZX, Zhang Y, Fei P, Chen LM, Tao L, Mao H, Zhen M, Gao S. Escape steering by cholecystokinin peptidergic signaling. Cell Rep 2022; 38:110330. [PMID: 35139370 DOI: 10.1016/j.celrep.2022.110330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Escape is an evolutionarily conserved and essential avoidance response. Considered to be innate, most studies on escape responses focused on hard-wired circuits. We report here that a neuropeptide NLP-18 and its cholecystokinin receptor CKR-1 enable the escape circuit to execute a full omega (Ω) turn. We demonstrate in vivo NLP-18 is mainly secreted by the gustatory sensory neuron (ASI) to activate CKR-1 in the head motor neuron (SMD) and the turn-initiating interneuron (AIB). Removal of NLP-18 or CKR-1 or specific knockdown of CKR-1 in SMD or AIB neurons leads to shallower turns, hence less robust escape steering. Consistently, elevation of head motor neuron (SMD)'s Ca2+ transients during escape steering is attenuated upon the removal of NLP-18 or CKR-1. In vitro, synthetic NLP-18 directly evokes CKR-1-dependent currents in oocytes and CKR-1-dependent Ca2+ transients in SMD. Thus, cholecystokinin peptidergic signaling modulates an escape circuit to generate robust escape steering.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yuting Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Haiwen Li
- Center for Quantitative Biology, Peking University, Beijing 100871, P.R. China; LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
| | - Ya Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Zhongpu Yue
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Peng Fei
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Louis Tao
- Center for Quantitative Biology, Peking University, Beijing 100871, P.R. China
| | - Heng Mao
- LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China.
| |
Collapse
|
3
|
Maina T, Nock BA. Gamma camera imaging by radiolabeled gastrin/cholecystokinin analogs. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Matsuda K, Yoshida D, Watanabe K, Yokobori E, Konno N, Nakamachi T. Effect of intracerebroventricular administration of two molecular forms of sulfated CCK octapeptide on anxiety-like behavior in the zebrafish danio rerio. Peptides 2020; 130:170330. [PMID: 32445877 DOI: 10.1016/j.peptides.2020.170330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022]
Abstract
Cholecystokinin octapeptide with sulfate (CCK-8s) regulates feeding behavior and psychomotor activity. In rodents and goldfish, intracerebroventricular (ICV) injection of CCK-8s decreases food intake and also induces anxiety-like behavior. The zebrafish has several merits for investigating the psychophysiological roles of neuropeptides. However, little is known about the brain localization of CCK and the behavioral action of CCK-8s in this species. Here we investigated the brain localization of CCK-like immunoreactivity and found that it was distributed throughout the brain. As CCK-like immunoreactivity was particularly evident in the ventral habenular nucleus, the interpeduncular nucleus and superior raphe, we subsequently examined the effect of zebrafish (zf) CCK-8s on psychomotor control. Since the zebrafish possesses two molecular forms of zfCCK-8s (zfCCKA-8s and zfCCKB-8s), two synthetic peptides were administered intracerebroventricularly at 1, 5 and 10 pmol g-1 body weight (BW). As the zebrafish shows a greater preference for the lower area of a tank than for to the upper area, we used this preference for assessment of anxiety-like behavior. ICV administration of zfCCKA-8 s or zfCCKB-8s at 10 pmol g-1 BW significantly shortened the time spent in the upper area. The actions of these peptides mimicked that of the central-type benzodiazepine receptor inverse agonist FG-7142 (an anxiogenic agent) at 10 pmol g-1 BW. The anxiogenic-like action of the two peptides was attenuated by treatment with the CCK receptor antagonist proglumide at 200 pmol g-1 BW. These results indicate that zfCCKA-8s and zfCCKB-8s potently induce anxiety-like behavior via the CCK receptor-signaling pathway in the zebrafish brain.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama 930-8555, Japan.
| | - Daisuke Yoshida
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Eri Yokobori
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
5
|
Endall R, Thompson M, Parameswaran V, Burgess J. The Relationship of Gastrinoma in MEN 1 to Helicobacter pylori infection. J Clin Endocrinol Metab 2020; 105:5699748. [PMID: 31919513 DOI: 10.1210/clinem/dgaa004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
CONTEXT Helicobacter pylori and Multiple Endocrine Neoplasia Type 1 (MEN 1) are risk factors for hypergastrinemia. Gastrin-secreting neoplasms of the foregut mucosa are both a source of, and potentially stimulated by, hypergastrinemia. OBJECTIVE To determine the relationship between H pylori exposure and the prevalence and severity of hypergastrinemia in patients with MEN 1. DESIGN, SETTING & PATIENTS Cross-sectional analysis of patients with a common MEN1 gene mutation managed at a tertiary referral hospital that underwent fasting serum gastrin and H pylori serum IgG measurement. INTERVENTION H pylori IgG and serum gastrin concentration, determined via immunoassay. MAIN OUTCOME MEASURES The prevalence and severity of hypergastrinemia and its relationship to past H pylori exposure. RESULTS Thirty-four of 95 (36%) patients were H pylori IgG seropositive. H pylori seropositive patients were significantly more likely to exhibit hypergastrinemia compared with seronegative patients (relative risk [RR] 1.72, P = .023). H pylori exposure also predicted severe hypergastrinemia (RR 3.52, P = .026 and RR 9.37, P = .031 for patients with gastrin ≥ ×4 and ≥ ×8 the upper limit of normal [ULN], respectively). Gastrin concentrations ≥ ×10 ULN occurred exclusively in H pylori seropositive patients (0/61 vs 6/34, P = .001). Serum gastrin and alpha subunit were positively associated in H pylori-exposed (β = 0.69, P = .001), but not in H pylori-unexposed patients. CONCLUSION Past H pylori exposure was associated with increased prevalence and severity of hypergastrinemia in MEN 1 patients. Past H pylori-related hypergastrinemia may contribute to the pathogenesis of ongoing gastrin hypersecretion by susceptible foregut neuroendocrine tissues.
Collapse
Affiliation(s)
- Ryan Endall
- Department of Diabetes and Endocrinology, Royal Hobart Hospital
| | - Michael Thompson
- Department of Diabetes and Endocrinology, Royal Hobart Hospital
- School of Medicine, University of Tasmania
| | - Venkat Parameswaran
- Department of Diabetes and Endocrinology, Royal Hobart Hospital
- School of Medicine, University of Tasmania
| | - John Burgess
- Department of Diabetes and Endocrinology, Royal Hobart Hospital
- School of Medicine, University of Tasmania
| |
Collapse
|
6
|
Ramos-Álvarez I, Lee L, Jensen RT. Group II p21-activated kinase, PAK4, is needed for activation of focal adhesion kinases, MAPK, GSK3, and β-catenin in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 318:G490-G503. [PMID: 31984786 PMCID: PMC7099487 DOI: 10.1152/ajpgi.00229.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PAK4 is the only member of the Group II p21-activated kinases (PAKs) present in rat pancreatic acinar cells and is activated by gastrointestinal hormones/neurotransmitters stimulating PLC/cAMP and by various pancreatic growth factors. However, little is known of the role of PAK4 activation in cellular signaling cascades in pancreatic acinar cells. In the present study, we examined the role of PAK4's participation in five different cholecystokinin-8 (CCK-8)-stimulated signaling pathways (PI3K/Akt, MAPK, focal adhesion kinase, GSK3, and β-catenin), which mediate many of its physiological acinar-cell effects, as well as effects in pathophysiological conditions. To define PAK4's role, the effect of two different PAK4 inhibitors, PF-3758309 and LCH-7749944, was examined under experimental conditions that only inhibited PAK4 activation and not activation of the other pancreatic PAK, Group I PAK2. The inhibitors' effects on activation of these five signaling cascades by both physiological and pathophysiological concentrations of CCK, as well as by 12-O-tetradecanoylphobol-13-acetate (TPA), a PKC-activator, were examined. CCK/TPA activation of focal adhesion kinases(PYK2/p125FAK) and the accompanying adapter proteins (paxillin/p130CAS), Mek1/2, and p44/42, but not c-Raf or other MAPKs (JNK/p38), were mediated by PAK4. Activation of PI3K/Akt/p70s6K was independent of PAK4, whereas GSK3 and β-catenin stimulation was PAK4-dependent. These results, coupled with recent studies showing PAK4 is important in pancreatic fluid/electrolyte/enzyme secretion and acinar cell growth, show that PAK4 plays an important role in different cellular signaling cascades, which have been shown to mediate numerous physiological and pathophysiological processes in pancreatic acinar cells.NEW & NOTEWORTHY In pancreatic acinar cells, cholecystokinin (CCK) or 12-O-tetradecanoylphobol-13-acetate (TPA) activation of focal adhesion kinases (p125FAK,PYK2) and its accompanying adapter proteins, p130CAS/paxillin; Mek1/2, p44/42, GSK3, and β-catenin are mediated by PAK4. PI3K/Akt/p70s6K, c-Raf, JNK, or p38 pathways are independent of PAK4 activation.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Iinuma N, Shibata H, Yoshida D, Konno N, Nakamachi T, Matsuda K. Intracerebroventricular administration of sulphated cholecystokinin octapeptide induces anxiety-like behaviour in goldfish. J Neuroendocrinol 2019; 31:e12667. [PMID: 30521069 DOI: 10.1111/jne.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 12/01/2022]
Abstract
Sulphated cholecystokinin octapeptide (CCK-8s) is involved in feeding regulation as an anorexigenic neuropeptide in vertebrates. In rodents, i.c.v. administration of CCK-8s has been shown to affect not only feeding behaviour, but also psychomotor activity. However, there is still no information available concerning the psychophysiological effects of CCK-8s in goldfish. Therefore, in the present study, we examined the effect of synthetic goldfish (gf) CCK-8s on psychomotor activity in this species. Intracerebroventricular administration of gfCCK-8s at 0.1, 0.5 and 2.5 pmol g-1 body weight (BW) did not affect swimming distance (locomotor activity). Because goldfish prefer the lower to the upper area of a tank, we used this as a preference test (upper/lower test) to assess anxiety-like behaviour. Intracerebroventricular administration of gfCCK-8s at 2.5 pmol g-1 BW shortened the time spent in the upper area. The action of gfCCK-8s mimicked that of FG-7142 (the central-type benzodiazepine receptor inverse agonist, an anxiogenic agent) at 5 and 10 pmol g-1 BW. The anxiogenic-like effect of gfCCK-8s was abolished by treatment with the CCK receptor antagonist proglumide at 50 pmol g-1 BW. We also investigated the localisation of CCK/gastrin-like immunoreactivity in the goldfish brain. CCK/gastrin-like immunoreactivity was observed in the anxiety-related regions (the nucleus habenularis and the interpeduncular nucleus). These data indicate that gfCCK-8s potently affects psychomotor activity in goldfish, and exerts an anxiogenic-like effect via the CCK receptor-signalling pathway.
Collapse
Affiliation(s)
- Naoto Iinuma
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Haruki Shibata
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Daisuke Yoshida
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
8
|
DALLAS DAVIDC, SANCTUARY MEGANR, QU YUNYAO, KHAJAVI SHABNAMHAGHIGHAT, VAN ZANDT ALEXANDRIAE, DYANDRA MELISSA, FRESE STEVENA, BARILE DANIELA, GERMAN JBRUCE. Personalizing protein nourishment. Crit Rev Food Sci Nutr 2017; 57:3313-3331. [PMID: 26713355 PMCID: PMC4927412 DOI: 10.1080/10408398.2015.1117412] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins are not equally digestible-their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources, and processing methods must be tailored to the consumer's digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health.
Collapse
Affiliation(s)
- DAVID C. DALLAS
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - MEGAN R. SANCTUARY
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - YUNYAO QU
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - SHABNAM HAGHIGHAT KHAJAVI
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - ALEXANDRIA E. VAN ZANDT
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - MELISSA DYANDRA
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - STEVEN A. FRESE
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - DANIELA BARILE
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - J. BRUCE GERMAN
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
9
|
Changes in small intestinal motility and related hormones by acupuncture stimulation at Zusanli (ST 36) in mice. Chin J Integr Med 2016; 23:215-220. [PMID: 27586472 DOI: 10.1007/s11655-016-2609-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To clarify the effects of acupuncture stimulation at Zusanli (ST 36) on the hormonal changes. METHODS Eight-week-old male C57BL/6 mice received acupuncture stimulation at acupoint ST 36 or Quchi (LI 11) once a day for 3 or 5 days in the acupuncture-stimulated groups, but not received in the normal group (n=6 in each group). On day 3 or 5, animals were given 0.1 mL of charcoal orally with a bulbed steel needle, 30 min after the last acupuncture stimulation. Ten minutes later, mice were anesthetized, and the intestinal transit and the concentrations of vasoactive intestinal peptide (VIP), motilin, ghrelin and gastrin in the serum were measured. RESULTS Compared to no acupuncture stimulation, acupuncture stimulation at ST 36 for 5 days increased the intestinal transit and down-regulated the concentration of VIP and up-regulated the concentrations of motilin, ghrelin and gastrin (P<0.05 or 0.01), whereas acupuncture stimulation at LI 11 did not change them signifificantly (P>0.05). CONCLUSION Acupuncture stimulation at ST 36 for 5 days enhances the small intestinal motility and regulates the secretion of hormones related to small intestinal motility.
Collapse
|
10
|
Nuche-Berenguer B, Ramos-Álvarez I, Jensen RT. The p21-activated kinase, PAK2, is important in the activation of numerous pancreatic acinar cell signaling cascades and in the onset of early pancreatitis events. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1122-36. [PMID: 26912410 DOI: 10.1016/j.bbadis.2016.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022]
Abstract
In a recent study we explored Group-1-p21-activated kinases (GP.1-PAKs) in rat pancreatic acini. Only PAK2 was present; it was activated by gastrointestinal-hormones/neurotransmitters and growth factors in a PKC-, Src- and small-GTPase-mediated manner. PAK2 was required for enzyme-secretion and ERK/1-2-activation. In the present study we examined PAK2's role in CCK and TPA-activation of important distal signaling cascades mediating their physiological/pathophysiological effects and analyzed its role in pathophysiological processes important in early pancreatitis. In rat pancreatic acini, PAK2-inhibition by the specific, GP.1.PAK-inhibitor, IPA-3-suppressed cholecystokinin (CCK)/TPA-stimulated activation of focal-adhesion kinases and mitogen-activated protein-kinases. PAK2-inhibition reversed the dual stimulatory/inhibitory effect of CCK/TPA on the PI3K/Akt/GSK-3β pathway. However, its inhibition did not affect PKC activation. PAK2-inhibition protected acini from CCK-induced ROS-generation; caspase/trypsin-activation, important in early pancreatitis; as well as from cell-necrosis. Furthermore, PAK2-inhibition reduced proteolytic-activation of PAK-2p34, which is involved in programmed-cell-death. To ensure that the study did not only rely in the specificity of IPA-3 as a PAK inhibitor, we used two other approaches for PAK inhibition, FRAX597 a ATP-competitive-GP.1-PAKs-inhibitor and infection with a PAK2-dominant negative(DN)-Advirus. Those two approaches confirmed the results obtained with IPA-3. This study demonstrates that PAK2 is important in mediating CCK's effect on the activation of signaling-pathways known to mediate its physiological/pathophysiological responses including several cellular processes linked to the onset of pancreatitis. Our results suggest that PAK2 could be a new, important therapeutic target to consider for the treatment of diseases involving deregulation of pancreatic acinar cells.
Collapse
Affiliation(s)
- Bernardo Nuche-Berenguer
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA.
| |
Collapse
|
11
|
Gastrointestinal hormones/neurotransmitters and growth factors can activate P21 activated kinase 2 in pancreatic acinar cells by novel mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2371-82. [PMID: 25979836 DOI: 10.1016/j.bbamcr.2015.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/28/2015] [Accepted: 05/07/2015] [Indexed: 12/15/2022]
Abstract
P-21-activated kinases (PAKs) are serine/threonine kinases comprising six isoforms divided in two groups, group-I (PAK1-3)/group-II (PAK4-6) which play important roles in cell cytoskeletal dynamics, survival, secretion and proliferation and are activated by diverse stimuli. However, little is known about PAKs ability to be activated by gastrointestinal (GI) hormones/neurotransmitters/growth-factors. We used rat pancreatic acini to explore the ability of GI-hormones/neurotransmitters/growth-factors to activate Group-I-PAKs and the signaling cascades involved. Only PAK2 was present in acini. PAK2 was activated by some pancreatic growth-factors [EGF, PDGF, bFGF], by secretagogues activating phospholipase-C (PLC) [CCK, carbachol, bombesin] and by post-receptor stimulants activating PKC [TPA], but not agents only mobilizing cellular calcium or increasing cyclic AMP. CCK-activation of PAK2 required both high- and low-affinity-CCK1-receptor-state activation. It was partially reduced by PKC- or Src-inhibition, but not with PI3K-inhibitors (wortmannin, LY294002) or thapsigargin. IPA-3, which prevents PAK2 binding to small-GTPases partially inhibited PAK2-activation, as well as reduced CCK-induced ERK1/2 activation and amylase release induced by CCK or bombesin. This study demonstrates pancreatic acini, possess only one Group-I-PAK, PAK2. CCK and other GI-hormones/neurotransmitters/growth-factors activate PAK2 via small GTPases (CDC42/Rac1), PKC and SFK but not cytosolic calcium or PI3K. CCK-activation of PAK2 showed several novel features being dependent on both receptor-activation states, having PLC- and PKC-dependent/independent components and small-GTPase-dependent/independent components. These results show that PAK2 is important in signaling cascades activated by numerous pancreatic stimuli which mediate their various physiological/pathophysiological responses and thus could be a promising target for the development of therapies in some pancreatic disorders such as pancreatitis.
Collapse
|
12
|
Dacha S, Razvi M, Massaad J, Cai Q, Wehbi M. Hypergastrinemia. Gastroenterol Rep (Oxf) 2015; 3:201-8. [PMID: 25698559 PMCID: PMC4527266 DOI: 10.1093/gastro/gov004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/08/2015] [Indexed: 12/26/2022] Open
Abstract
Gastrin is an important hormone of the digestive system, which assists gastric acid secretion. It may be pathologically elevated in conditions such as Zollinger-Ellison syndrome, or due to common medications such as proton pump inhibitors. In this review we provide an overview of the pathophysiology and medical causes of hypergastrinemia, diagnostic testing and clinical consequences of chronic hypergastrinemia.
Collapse
Affiliation(s)
- Sunil Dacha
- Internal Medicine, Emory University, Atlanta, GA, USA
| | | | - Julia Massaad
- Internal Medicine, Emory University, Atlanta, GA, USA
| | - Qiang Cai
- Internal Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
13
|
Trevaskis JL, Sun C, Athanacio J, D'Souza L, Samant M, Tatarkiewicz K, Griffin PS, Wittmer C, Wang Y, Teng CH, Forood B, Parkes DG, Roth JD. Synergistic metabolic benefits of an exenatide analogue and cholecystokinin in diet-induced obese and leptin-deficient rodents. Diabetes Obes Metab 2015; 17:61-73. [PMID: 25204356 DOI: 10.1111/dom.12390] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Abstract
AIM To test the impact of cholecystokinin (CCK) plus either amylin or a glucagon-like peptide-1 receptor (GLP-1R) agonist on metabolic variables in diet-induced obese (DIO) rodents. METHODS A stabilized acetylated version of CCK-8 (Ac-Y*-CCK-8), selective CCK1 receptor (CCK1R) or CCK2 receptor (CCK2R) agonists, amylin or the GLP-1R agonist and exenatide analogue AC3174 were administered in select combinations via continuous subcutaneous infusion to DIO rats for 14 days, or Lep(ob) /Lep(ob) mice for 28 days, and metabolic variables were assessed. RESULTS Combined administration of Ac-Y*-CCK-8 with either amylin or AC3174 induced greater than additive weight loss in DIO rats, with the overall magnitude of effect being greater with AC3174 + Ac-Y*-CCK-8 treatment. Co-infusion of AC3174 with a specific CCK1R agonist, but not a CCK2R agonist, recapitulated the weight loss mediated by AC3174 + Ac-Y*-CCK-8 in DIO rats, suggesting that synergy is mediated by CCK1R activation. In a 4 × 4 full-factorial response surface methodology study in DIO rats, a synergistic interaction between AC3174 and the CCK1R-selective agonist on body weight and food intake was noted. Co-administration of AC3174 and the CCK1R-selective agonist to obese diabetic Lep(ob) /Lep(ob) mice elicited a significantly greater reduction in percentage of glycated haemoglobin and food intake relative to the sum effects of monotherapy groups. CONCLUSIONS The anti-obesity and antidiabetic potential of combined GLP-1R and CCK1R agonism is an approach that warrants further investigation.
Collapse
MESH Headings
- Acetylation
- Animals
- Anti-Obesity Agents/administration & dosage
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/therapeutic use
- Cholecystokinin/administration & dosage
- Cholecystokinin/adverse effects
- Cholecystokinin/analogs & derivatives
- Cholecystokinin/therapeutic use
- Diabetes Mellitus/drug therapy
- Diabetes Mellitus/metabolism
- Diet, High-Fat/adverse effects
- Drug Synergism
- Drug Therapy, Combination/adverse effects
- Energy Intake/drug effects
- Glucagon-Like Peptide-1 Receptor
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/therapeutic use
- Infusions, Subcutaneous
- Islet Amyloid Polypeptide/administration & dosage
- Islet Amyloid Polypeptide/adverse effects
- Islet Amyloid Polypeptide/therapeutic use
- Male
- Mice, Mutant Strains
- Obesity/complications
- Obesity/drug therapy
- Obesity/etiology
- Obesity/metabolism
- Peptides/administration & dosage
- Peptides/adverse effects
- Peptides/therapeutic use
- Random Allocation
- Rats, Sprague-Dawley
- Receptor, Cholecystokinin A/agonists
- Receptor, Cholecystokinin A/metabolism
- Receptor, Cholecystokinin B/agonists
- Receptor, Cholecystokinin B/metabolism
- Receptors, Glucagon/agonists
- Receptors, Glucagon/metabolism
- Weight Loss/drug effects
Collapse
|
14
|
Yu N, Smagghe G. CCK(-like) and receptors: structure and phylogeny in a comparative perspective. Gen Comp Endocrinol 2014; 209:74-81. [PMID: 24842717 DOI: 10.1016/j.ygcen.2014.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 02/07/2023]
Abstract
Cholecystokinin (CCK) and gastrin are regulatory peptides in vertebrates. Their homologues are widely present in metazoan animals, in form of cionin in tunicates, neuropeptide-like protein 12 in nematodes and sulfakinin (SK) in arthropods. CCK(-like) peptides exert diverse physiological effects through binding their corresponding receptors, which are important members of the hormone-binding G-protein-coupled receptors. In this paper, CCK(-like) peptides and receptors are reviewed in a comparative way at levels of molecular structure, physiological functions and phylogeny. CCK signalling system is widely involved in the regulation of satiety, gastric acid secretion, pancreatic secretion, anxiety and memory processes in vertebrates. Its counterpart SK in arthropods is also found with similar functions on regulation of satiety and gastrointestinal motility. Co-evolution of peptide and receptor has been recognized through metazoans. The CCK(-like) receptors seem to be evolved from a common ancestor based on the phylogenetic analysis, with species-specific events in arthropods. In addition, tetraploidization has been brought up to study the evolution of receptors. There are 2 receptors in chordates and nematodes, whereas, the number of sulfakinin receptor varies in arthropods from 0 to 2. We discussed here that the presence or absence of the SK signalling system is likely to be related to feeding behaviour.
Collapse
Affiliation(s)
- Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
15
|
A network map of the gastrin signaling pathway. J Cell Commun Signal 2014; 8:165-70. [PMID: 24584707 DOI: 10.1007/s12079-014-0224-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
|
16
|
Nässel DR, Williams MJ. Cholecystokinin-Like Peptide (DSK) in Drosophila, Not Only for Satiety Signaling. Front Endocrinol (Lausanne) 2014; 5:219. [PMID: 25566191 PMCID: PMC4270250 DOI: 10.3389/fendo.2014.00219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023] Open
Abstract
Cholecystokinin (CCK) signaling appears well conserved over evolution. In Drosophila, the CCK-like sulfakinins (DSKs) regulate aspects of gut function, satiety and food ingestion, hyperactivity and aggression, as well as escape-related locomotion and synaptic plasticity during neuromuscular junction development. Activity in the DSK-producing neurons is regulated by octopamine. We discuss mechanisms behind CCK function in satiety, aggression, and locomotion in some detail and highlight similarities to mammalian CCK signaling.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
- *Correspondence:
| | - Michael J. Williams
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Sancho V, Nuche-Berenguer B, Jensen RT. The Src kinase Yes is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters, but not pancreatic growth factors, which stimulate its association with numerous other signaling molecules. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1285-94. [PMID: 22617836 PMCID: PMC3404614 DOI: 10.1016/j.bbamcr.2012.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/25/2012] [Accepted: 05/14/2012] [Indexed: 12/13/2022]
Abstract
For growth factors, cytokines, G-protein-coupled receptors and numerous other stimuli, the Src Family of kinases (SFK) play a central signaling role. SFKs also play an important role in pancreatic acinar cell function including metabolism, secretion, endocytosis, growth and cytoskeletal integrity, although the specific SFKs involved are not fully known. In the present study we used specific antibodies for the SFK, Yes, to determine its presence, activation by pancreatic secretagogues or growth factors, and interaction with cellular signaling cascades mediated by CCK in which Yes participates in to cause acinar cell responses. Yes was identified in acini and secretagogues known to activate phospholipase C (PLC) [CCK, carbachol, bombesin] as well as post-receptor stimulants activating PKC [TPA] or mobilizing cellular calcium [thapsigargin/calcium ionophore (A23187)] each activated Yes. Secretin, which activates adenylate cyclase did not stimulate Yes, nor did pancreatic growth factors. CCK activation of Yes required both high- and low-affinity CCK(1)-receptor states. TPA-/CCK-stimulated Yes activation was completely inhibited by thapsigargin and the PKC inhibitor, GF109203X. CCK/TPA stimulated the association of Yes with focal adhesion kinases (Pyk2, FAK) and its autophosphorylated forms (pY397FAK, pY402Pyk2). Moreover, CCK/TPA stimulated Yes interacted with a number of other signaling proteins, including Shc, PKD, p130(Cas), PI3K and PTEN. This study demonstrates that in rat pancreatic acini, the SFK member Yes is expressed and activated by CCK and other gastrointestinal hormones/neurotransmitters. Because its activation results in the direct activation of many cellular signaling cascades that have been shown to mediate CCK's effect in acinar cell function our results suggest that it is one of the important pancreatic SFKs mediating these effects.
Collapse
Affiliation(s)
- Veronica Sancho
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - R. T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| |
Collapse
|
18
|
Sharma K, Police A, Kumar A, Pawar GV, Giri S, Rajagopal S, Mullangi R. Development and validation of an LC-MS/MS-ESI method for the determination of lorglumide, a CCK-1 antagonist in mouse plasma: application to a pharmacokinetic study. Biomed Chromatogr 2011; 26:833-8. [PMID: 22052726 DOI: 10.1002/bmc.1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/17/2011] [Indexed: 11/06/2022]
Abstract
A highly sensitive, rapid assay method was developed and validated for the estimation of lorglumide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in positive-ion mode. The assay procedure involves extraction of lorglumide and phenacetin (internal standard, IS) from mouse plasma with simple protein precipitation. Chromatographic separation was achieved using an isocratic mobile (0.2% formic acid solution-acetonitrile, 20:80, v/v) at a flow-rate of 0.5 mL/min on an Atlantis dC₁₈ column maintained at 40 °C with a total run time of 4.0 min. The MS/MS ion transitions monitored were 459.2 → 158.4 for lorglumide and 180.1 → 110.1 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.42 ng/mL and the linearity range extended from 0.42 to 500 ng/mL. The intra- and inter-day precisions were in the ranges of 1.47-10.9 and 3.56-7.53, respectively.
Collapse
Affiliation(s)
- Kuldeep Sharma
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd, Industrial Suburb, Yeshwanthpur, Bangalore 560022, India
| | | | | | | | | | | | | |
Collapse
|
19
|
Sancho V, Berna MJ, Thill M, Jensen RT. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2145-56. [PMID: 21810446 DOI: 10.1016/j.bbamcr.2011.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 02/08/2023]
Abstract
The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).
Collapse
Affiliation(s)
- Veronica Sancho
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | | | | | | |
Collapse
|
20
|
Ojeaburu JV, Ito T, Crafa P, Bordi C, Jensen RT. Mechanism of acid hypersecretion post curative gastrinoma resection. Dig Dis Sci 2011; 56:139-54. [PMID: 20725788 PMCID: PMC2990801 DOI: 10.1007/s10620-010-1234-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/30/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND Some patients with Zollinger-Ellison syndrome post curative gastrinoma resection continue to show gastric acid hypersecretion; however, the mechanism is unknown. AIM The aim of this study was to prospectively study acid secretion following curative gastrinoma resection and analyze factors contributing in patients with Zollinger-Ellison syndrome. METHODS Fifty patients cured post gastrinoma resection were studied with serial assessments of acid secretory status, cure status and ECL-cell status/activity (with serial biopsies, CgA, urinary N-MIAA). Correlative analysis was performed to determine predictive factors. RESULTS Hypersecretion occurred in 31 patients (62%) and 14 had extreme-hypersecretion. There was an initial decline (3-6 months) in BAO/MAO, which then remained stable for eight years. Preoperative BAO correlated with the postoperative secretion, but not other clinical, tumoral, laboratory variables, the degree of postoperative acid suppression or type of antisecretory drug needed. Hypersecretors had greater postoperative ECL changes (P=0.005), serum CGA (P=0.009) and 24-h urinary N-MIAA (P=0.0038). CONCLUSIONS Post curative resection, gastric hypersecretion persists long term (mean 8 years) in 62% of patients and in 28% it is extreme, despite normogastrinemia. No preoperative variable except BAO correlates with postresection hypersecretion. The persistent increased ECL-cell extent post curative resection suggests prolonged hypergastrinemia can lead to changes in ECL-cells that are either irreversible in humans or sustained by unknown mechanisms not involving fasting hypergastrinemia and which can result in hypersecretion, in a proportion of which it can be extreme. Whether similar findings may occur in patients with idiopathic GERD treated for prolonged periods (>10 years) with PPIs, at present, is unknown.
Collapse
Affiliation(s)
- Jeremiah V. Ojeaburu
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804
| | - Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Pellegrino Crafa
- Department of Pathology and Laboratory Medicine, Section of Pathological Anatomy University of Parma, Parma, Italy
| | - Cesare Bordi
- Department of Pathology and Laboratory Medicine, Section of Pathological Anatomy University of Parma, Parma, Italy
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804
| |
Collapse
|
21
|
Copps J, Murphy RF, Lovas S. The production and role of gastrin-17 and gastrin-17-gly in gastrointestinal cancers. Protein Pept Lett 2010; 16:1504-18. [PMID: 20001914 DOI: 10.2174/092986609789839269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal peptide hormone gastrin is responsible for initiating the release of gastric acid in the stomach in response to the presence of food and/or humoral factors such as gastrin releasing peptide. However, it has a role in the growth and maintenance of the gastric epithelium, and has been implicated in the formation and growth of gastric cancers. Hypergastrinemia resulting from atrophic gastritis and pernicious anemia leads to hyperplasia and carcinoid formation in rats, and contributes to tumor formation in humans. Additionally, gastrin has been suspected to play a role in the formation and growth of cancers of the colon, but recent studies have instead implicated gastrin processing intermediates, such as gastrin-17-Gly, acting upon a putative, non-cholecystokinin receptor. This review summarizes the production and chemical structures of gastrin and of the processing intermediate gastrin-17-Gly, as well as their activities in the gastrointestinal tract, particularly the promotion of colon cancers.
Collapse
Affiliation(s)
- Jeffrey Copps
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
22
|
Abstract
The aim of the present review is to synthesise and summarise our recent knowledge on the involvement of cholecystokinin (CCK) and gastrin peptides and their receptors in the control of digestive functions and more generally their role in the field of nutrition in mammals. First, we examined the release of these peptides from the gut, focusing on their molecular forms, the factors regulating their release and the signalling pathways mediating their effects. Second, general physiological effects of CCK and gastrin peptides are described with regard to their specific receptors and the role of CCK on vagal mucosal afferent nerve activities. Local effects of CCK and gastrin in the gut are also reported, including gut development, gastrointestinal motility and control of pancreatic functions through vagal afferent pathways, including NO. Third, some examples of the intervention of the CCK and gastrin peptides are exposed in diseases, taking into account intervention of the classical receptor subtypes (CCK1 and CCK2 receptors) and their heterodimerisation as well as CCK-C receptor subtype. Finally, applications and future challenges are suggested in the nutritional field (performances) and in therapy with regards to the molecular forms or in relation with the type of receptor as well as new techniques to be utilised in detection or in therapy of disease. In conclusion, the present review underlines recent developments in this field: CCK and gastrin peptides and their receptors are the key factor of nutritional aspects; a better understanding of the mechanisms involved may increase the efficiency of the nutritional functions and the treatment of abnormalities under pathological conditions.
Collapse
|
23
|
Körner M, Waser B, Reubi JC, Miller LJ. CCK(2) receptor splice variant with intron 4 retention in human gastrointestinal and lung tumours. J Cell Mol Med 2009; 14:933-43. [PMID: 19627395 PMCID: PMC2888751 DOI: 10.1111/j.1582-4934.2009.00859.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The wild-type cholecystokinin type 2 (CCK2) receptor is expressed in many gastrointestinal and lung tumours. A splice variant of the CCK2 receptor with retention of intron 4 (CCK2Ri4sv) showing constitutive activity associated with increased tumour growth was described in few colorectal, pancreatic and gastric cancers. Given the potential functional and clinical importance of this spliceoform, its occurrence was quantitatively characterized in a broad collection of 81 gastrointestinal and lung tumours, including insulinomas, ileal carcinoids, gastrointestinal stromal tumours (GIST), gastric, colorectal and pancreatic ductal adenocarcinomas, cholangiocellular and hepatocellular carcinomas, small cell lung cancers (SCLC), non-SCLC (nSCLC) and bronchopulmonary carcinoids, as well as 21 samples of corresponding normal tissues. These samples were assessed for transcript expression of total CCK2 receptor, wild-type CCK2 receptor and CCK2Ri4sv with end-point and real-time RT-PCR, and for total CCK2 receptor protein expression on the basis of receptor binding with in vitro receptor autoradiography. Wild-type CCK2 receptor transcripts were found in the vast majority of tumours and normal tissues. CCK2Ri4sv mRNA expression was present predominantly in insulinomas (incidence 100%), GIST (100%) and SCLC (67%), but rarely in pancreatic, colorectal and gastric carcinomas and nSCLC. It was not found in wild-type CCK2 receptor negative tumours or any normal tissues tested. CCK2Ri4sv transcript levels in individual tumours were low, ranging from 0.02% to 0.14% of total CCK2 receptor transcripts. In conclusion, the CCK2Ri4sv is a marker of specific gastrointestinal and lung tumours. With its high selectivity for and high incidence in SCLC and GIST, it may represent an attractive clinical target.
Collapse
Affiliation(s)
- Meike Körner
- Mayo Clinic, Cancer Center and Department of Molecular Pharmacology and Experimental Therapeutics, Scottsdale, Arizona, USA.
| | | | | | | |
Collapse
|
24
|
Berna MJ, Tapia JA, Sancho V, Thill M, Pace A, Hoffmann KM, Gonzalez-Fernandez L, Jensen RT. Gastrointestinal growth factors and hormones have divergent effects on Akt activation. Cell Signal 2009; 21:622-38. [PMID: 19166928 PMCID: PMC2677382 DOI: 10.1016/j.cellsig.2009.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/16/2008] [Accepted: 01/02/2009] [Indexed: 12/11/2022]
Abstract
Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigated in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters [CCK, bombesin, carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations (pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations (nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory effects can be seen, which are mediated by different mechanisms.
Collapse
Affiliation(s)
- Marc J. Berna
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
- Universitätsklinikum Eppendorf, Medizinische Klinik I, 20246 Hamburg, Germany
| | - Jose A. Tapia
- Departamento de Fisiologia, Universidad de Extremadura, Cáceres 10071, Spain
| | - Veronica Sancho
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Michelle Thill
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- Universitätsklinikum Eppendorf, Klinik und Poliklinik für Augenheilkunde, 20246 Hamburg, Germany
| | - Andrea Pace
- Universitätsklinikum Eppendorf, Medizinische Klinik I, 20246 Hamburg, Germany
| | - K. Martin Hoffmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 30, A-8036 Graz, Austria
| | | | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| |
Collapse
|
25
|
Murphy JA, Criddle DN, Sherwood M, Chvanov M, Mukherjee R, McLaughlin E, Booth D, Gerasimenko JV, Raraty MGT, Ghaneh P, Neoptolemos JP, Gerasimenko OV, Tepikin AV, Green GM, Reeve JR, Petersen OH, Sutton R. Direct activation of cytosolic Ca2+ signaling and enzyme secretion by cholecystokinin in human pancreatic acinar cells. Gastroenterology 2008; 135:632-41. [PMID: 18555802 DOI: 10.1053/j.gastro.2008.05.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 03/05/2008] [Accepted: 05/01/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Cholecystokinin (CCK) has been thought to act only indirectly on human pancreatic acinar cells via vagal nerve stimulation, rather than by direct CCK receptor activation as on rodent pancreatic acinar cells. We tested whether CCK (CCK-8 and human CCK-58) can act directly on human pancreatic acinar cells. METHODS Human acinar cells were freshly isolated from pancreatic transection line samples, loaded with Fluo4-AM or quinacrine, and examined for Ca(2+), metabolic and secretory responses to CCK-8, human CCK-58, or acetylcholine with confocal microscopy. RESULTS CCK-8 and human CCK-58 at physiologic concentrations (1-20 pmol/L) elicited rapid, robust, oscillatory increases of the cytosolic Ca(2+) ion concentration, showing apical to basal progression, in acinar cells from 14 patients with unobstructed pancreata. The cytosolic Ca(2+) ion concentration increases were followed by increases in mitochondrial adenosine triphosphate production and secretion. CCK-elicited Ca(2+) signals and exocytosis were not inhibited by atropine (1 mumol/L) or tetrodotoxin (100 nmol/L), showing that CCK was unlikely to have acted via neurotransmitter release. CCK-elicited Ca(2+) signals were inhibited reversibly by caffeine (5-20 mmol/L), indicating involvement of intracellular inositol trisphosphate receptor Ca(2+) release channels. Acetylcholine (50 nmol/L) elicited similar Ca(2+) signals. CONCLUSIONS CCK at physiologic concentrations in the presence of atropine and tetrodotoxin elicits cytosolic Ca(2+) signaling, activates mitochondrial function, and stimulates enzyme secretion in isolated human pancreatic acinar cells. We conclude that CCK acts directly on acinar cells in the human pancreas.
Collapse
Affiliation(s)
- John A Murphy
- Physiological Laboratory, Medical Research Council Secretory Control Research Group, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Karplus G, Ruiz R, Thomas DG, Ehrlich PF. Cholecystokinin receptor positivity in children with chronic acalculous gallbladder dysfunction: a pilot study to investigate the etiology of chronic acalculous gallbladder dysfunction. J Pediatr Surg 2008; 43:850-3. [PMID: 18485951 DOI: 10.1016/j.jpedsurg.2007.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 12/03/2007] [Indexed: 11/17/2022]
Abstract
BACKGROUND The etiology of chronic acalculous gallbladder dysfunction (CAGD) is unknown. However, cholecystectomy is being performed as treatment, based on gallbladder (GB) ejection fraction studies. The aim of this study was to examine the pathology and immunohistology of GBs from children with CAGD. METHODS Children with a diagnosis of CAGD were identified. Control patients had their GB removed for nonbiliary indications. Immunoperoxidase staining was performed using rabbit antihuman cholecystokinin receptor (CCK-R) antibody. The pathologist was blinded to the study and controls. RESULTS Fifteen children were evaluated: 6 children with CAGD and 9 controls. All children with CAGD had abnormal cholecystokinin-stimulated nuclear imaging. Ejection fractions ranged from 8% to 30%. All patients reported resolution of symptoms on follow-up at 6 months. Histopathology of the GB was normal for both the controls and children with CAGD. Both control and CAGD GBs demonstrated positive staining for CCK-R in the vascular endothelium and smooth muscle. Mucosal epithelial staining was only observed in 5 of 6 of GBs of children with CAGD. In the sixth GB, the epithelium was too necrotic to assess. CONCLUSIONS In this pilot study, expression of CCK-Rs in the epithelial cells is noted in children with CAGD compared with controls. The significance of this finding requires further investigation.
Collapse
Affiliation(s)
- G Karplus
- Department of Pediatric Surgery, University of Michigan Ann Arbor Michigan, MI 48109, USA
| | | | | | | |
Collapse
|
27
|
Ari C, Kálmán M. Evolutionary changes of astroglia in Elasmobranchii comparing to amniotes: a study based on three immunohistochemical markers (GFAP, S-100, and glutamine synthetase). BRAIN, BEHAVIOR AND EVOLUTION 2008; 71:305-24. [PMID: 18446022 DOI: 10.1159/000129654] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 01/23/2008] [Indexed: 11/19/2022]
Abstract
This paper supplements former studies on elasmobranch species with an immunohistochemical investigation into glutamine synthetase and S-100 protein, in addition to GFAP, and extends its scope to the representatives of almost every group of Elasmobranchii: squalomorph sharks, galeomorph sharks, skates (Rajiformes) and rays (Torpediniformes and Myliobatifomes). More glial elements were labeled by S-100 protein, and even more so by using glutamine synthetase immunostaining than by GFAP: more astrocytes (mainly non-perivascular ones) were detected in the telencephalon of sharks, skates and rays. Only the markers S-100 and glutamine synthetase, but not GFAP, characterized the Bergmann-glia of skates and rays and astrocyte-like non-ependymal cells in Squalus acanthias. Another squalomorph shark species, Pristiophorus cirratus, however, had GFAP immunopositive astrocytes. Of all the species studied, the greatest number of GFAP positive astrocytes could be observed in Mobula japanica (order Myliobatiformes), in each major brain part. According to anatomical location, perivascular glia comprised varied types, including even a location in Mobula, which can also be found in mammals. Remnants of radial glia were found in confined areas of skates, less so in rays. In the rhombencephalon and in the spinal cord modified ependymoglia predominated in every group. In conclusion, there was no meaningful difference between the astroglial architectures of squalomorph and galeomorph sharks. The difference in the astroglial structure between sharks and batoids, however, was confined to the telencephalon and mesencephalon, and did not take place in the rhombencephalon, the latter structure being quite similar in all the species studied. The appearance of astrocytes in the relatively thin-walled shark telencephalon, however, indicates that the brain thickening promoted the preponderance of astrocytes rather than their appearance itself. Although the evolutionary changes of astroglia had some similarities in Elasmobranchii and Amniota, there was one meaningful difference: in Elasmobranchii astrocytes did not prevail in conservative brain regions as they did in the progressive brain regions.
Collapse
Affiliation(s)
- Csilla Ari
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
28
|
Abstract
Pancreatic cancer kills more than 250,000 people each year worldwide and has a poor prognosis. The aim of this article is to critically review the epidemiologic evidence for exposures that may either increase or decrease the risk. A Medline search was performed for epidemiologic studies and reviews published up to April 2007. Consistent evidence of a positive association was found for family history and cigarette smoking. Many studies documented a positive association with diabetes mellitus and chronic pancreatitis, although the etiologic mechanisms are unclear. Other associations were detected, but the results were either inconsistent or from few studies. These included positive associations with red meat, sugar, fat, body mass index, gallstones, and Helicobacter pylori, and protective effects of increasing parity, dietary folate, aspirin, and statins. There was no evidence linking alcohol or coffee consumption with an increased risk of pancreatic cancer. The associations with many exposures need to be clarified from further epidemiologic work in which there is both precise measurement of risk factors, adjustment for potential confounders, and, for dietary studies, information recorded on the method of food preparation and pattern of consumption. Such work is important to reduce the incidence of this fatal disease.
Collapse
|
29
|
Wu CL, Doong ML, Wang PS. Involvement of cholecystokinin receptor in the inhibition of gastrointestinal motility by oxytocin in ovariectomized rats. Eur J Pharmacol 2007; 580:407-15. [PMID: 18078924 DOI: 10.1016/j.ejphar.2007.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/29/2007] [Accepted: 11/10/2007] [Indexed: 01/04/2023]
Abstract
The effects of oxytocin on gastric emptying, gastrointestinal transit, and plasma levels of cholecystokinin (CCK) were studied in ovariectomized rats. Gastrointestinal motility was assessed in rats 15 min after intragastric instillation of a test meal containing charcoal and Na2 51CrO4. Gastric emptying was determined by measuring the amount of radiolabeled chromium contained in the small intestine as a percentage of the initial amount received. Gastrointestinal transit was evaluated by calculating the geometric center of distribution of the radiolabeled marker. Blood samples were collected for CCK radioimmunoassay. After administration of oxytocin (0.2-0.8 mg/kg), gastric emptying and gastrointestinal transit were inhibited, whereas plasma concentration of CCK was increased in a dose-dependent manner. Atosiban, an oxytocin receptor antagonist, effectively attenuated the oxytocin-induced inhibition of gastric emptying and gastrointestinal transit. However, administration of atosiban alone had no effect on gastric emptying and gastrointestinal transit. The selective CCK1 receptor antagonists, devazepide and lorglumide, effectively attenuated the oxytocin-induced inhibition of gastric emptying and gastrointestinal transit. L-365, 260, a selective CCK2 receptor antagonist, did not alter the oxytocin-induced inhibition of gastric emptying and gastrointestinal transit. These results suggest that oxytocin inhibits gastric emptying and gastrointestinal transit in ovariectomized rats via a mechanism involving the stimulation of CCK release and CCK1 receptor activation.
Collapse
Affiliation(s)
- Chiu-Lung Wu
- Department of Basic Medical Science, Hung-Kuang University, Taiwan, ROC.
| | | | | |
Collapse
|
30
|
Progress in developing cholecystokinin (CCK)/gastrin receptor ligands that have therapeutic potential. Curr Opin Pharmacol 2007; 7:583-92. [PMID: 17997137 DOI: 10.1016/j.coph.2007.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 09/28/2007] [Indexed: 01/09/2023]
Abstract
Gastrin and cholecystokinin (CCK) are two of the oldest hormones and within the past 15 years there has been an exponential increase in knowledge of their pharmacology, cell biology, receptors (CCK1R and CCK2R), and roles in physiology and pathological conditions. Despite these advances there is no approved disease indication for CCK receptor antagonists and only a minor use of agonists. In this review, the important factors determining this slow therapeutic development are reviewed. To assess this it is necessary to briefly review what is known about the roles of CCK receptors (CCK1R and CCK2R) in normal human physiology, their role in pathologic conditions, the selectivity of available potent CCKR agonists/antagonists as well as to review their use in human conditions to date and the results. Despite extensive studies in animals and in humans, recent studies suggest that monotherapy with CCK1R agonists will not be effective in obesity, nor CCK2R antagonists in panic disorders or CCK2R antagonists to inhibit growth of pancreatic cancer. Areas that require more study include the use of CCK2R agonists for imaging tumors and radiotherapy, CCK2R antagonists in hypergastrinemic states especially with long-term PPI use and for potentiation of analgesia as well as use of CCK1R antagonists for a number of gastrointestinal disorders [motility disorders (irritable bowel syndrome, dyspepsia, and constipation) and pancreatitis (acute and chronic)].
Collapse
|
31
|
Scarpignato C. New drugs to suppress acid secretion: current and future developments. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ddstr.2007.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Jordan J, Greenway FL, Leiter LA, Li Z, Jacobson P, Murphy K, Hill J, Kler L, Aftring RP. Stimulation of cholecystokinin-A receptors with GI181771X does not cause weight loss in overweight or obese patients. Clin Pharmacol Ther 2007; 83:281-7. [PMID: 17597711 DOI: 10.1038/sj.clpt.6100272] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cholecystokinin (CCK) decreases meal size through activation of CCK-A receptors on vagal afferents. We tested the hypothesis that the selective CCK-A agonist GI181771X induces weight loss in obese patients. Patients with body mass index > or = 30 or > or = 27 kg/m2 with concomitant risk factors were randomized to 24-week, double-blind treatment with different GI181771X doses or matching placebo together with a hypocaloric diet. The primary efficacy end point was the absolute change in body weight. To monitor pancreatic and gallbladder effects, patients underwent abdominal ultrasound and magnetic resonance imaging before and after treatment. We randomized 701 patients to double-blind treatment. GI181771X did not reduce body weight and had no effect on waist circumference or other cardiometabolic risk markers. Gastrointestinal side effects were more common with GI181771X than with placebo treatment, whereas hepatobiliary or pancreatic abnormalities did not occur. CCK-A by itself does not have a central role in long-term energy balance.
Collapse
Affiliation(s)
- J Jordan
- Franz-Volhard Clinical Research Center, Helios Klinikum and Medical Faculty of the Charité, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The gastric epithelium is a complex structure formed into tubular branched gastric glands. The glands contain a wide variety of cell types concerned with the secretion of hydrochloric acid, proteases, mucus and a range of signalling molecules. All cell types originate from stem cells in the neck region of the gland, before migrating and differentiating to assume their characteristic positions and functions. Endocrine and local paracrine mediators are of crucial importance for maintaining structural and functional integrity of the epithelium, in the face of a hostile luminal environment. The first such mediator to be recognized, the hormone gastrin, was identified over a century ago and is now established as the major physiological stimulant of gastric acid secretion. Recent studies, including those using mice that overexpress or lack the gastrin gene, suggest a number of previously unrecognized roles for this hormone in the regulation of cellular proliferation, migration and differentiation. This review focuses on the identification of hitherto unsuspected gastrin-regulated genes and discusses the paracrine cascades that contribute to the maintenance of gastric epithelial architecture and secretory function. Helicobacter infection is also considered in cases where it shares targets and signalling mechanisms with gastrin.
Collapse
Affiliation(s)
- Rod Dimaline
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | |
Collapse
|
34
|
Varro A, Kenny S, Hemers E, McCaig C, Przemeck S, Wang TC, Bodger K, Pritchard DM. Increased gastric expression of MMP-7 in hypergastrinemia and significance for epithelial-mesenchymal signaling. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1133-40. [PMID: 17218472 DOI: 10.1152/ajpgi.00526.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic hypergastrinemia is associated with enterochromaffin-like (ECL) cell hyperplasia, which may progress to gastric carcinoid tumors. The latter consists of epithelial cells and stroma, and both compartments usually regress after normalization of hypergastrinemia. We previously showed that matrix metalloproteinase (MMP)-7 in gastric epithelial cells was upregulated by Helicobacter pylori and described MMP-7-dependent reciprocal signaling between the epithelium and a key stromal cell type, the myofibroblast. Here, we describe the regulation of gastric MMP-7 by gastrin and the potential significance for recruiting and maintaining myofibroblast populations. Biopsies of the gastric corpus and ECL cell carcinoid tumors were obtained from hypergastrinemic patients. Western blot analysis, ELISA, immunohistochemistry, and promoter-luciferase (luc) reporter assays were used to study MMP-7 expression. Gastric myofibroblasts were identified by alpha-smooth muscle actin (alpha-SMA) expression, and the effects of MMP-7 on myofibroblast proliferation were investigated. In hypergastrinemic patients, there was an increased abundance of MMP-7 and alpha-SMA in gastric corpus biopsies and ECL cell carcinoid tumors. In the latter, MMP-7 was localized to ECL cells but not stromal cells, which were nevertheless well represented. Gastrin stimulated MMP-7-luc expression in both AGS-G(R) and primary human gastric epithelial cells. Conditioned medium from gastrin-treated human gastric glands stimulated myofibroblast proliferation, which was inhibited by neutralizing antibodies to MMP-7. MMP-7 increased the proliferation of myofibroblasts via the MAPK and phosphatidylinositol 3-kinase (PI3K) pathways. In conclusion, stimulation of gastric MMP-7 by elevated plasma gastrin may activate epithelial-mesenchymal signaling pathways regulating myofibroblast function via MAPK and PI3K pathways and contribute to stromal deposition in ECL cell carcinoid tumors.
Collapse
Affiliation(s)
- Andrea Varro
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown St., Liverpool L69 3BX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jiang CP, Kong C, Ding YT. Expression of gastrin receptor in tumors and its application as a molecular target for cancer diagnosis and therapy. Shijie Huaren Xiaohua Zazhi 2007; 15:980-985. [DOI: 10.11569/wcjd.v15.i9.980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrin is widely distributed in gastrointestinal tract and pancreatic tissues, and it plays important roles in the modulation of physiological functions and pathogenic mechanism of some diseases. Recent studies showed that gastrin might promote the pathogenesis and growth of tumors, especially digestive tumors such as gastric cancer and colorectal cancer. The biological effect of gastrin is mainly mediated by cholecystokinin (CCK) receptors. Gastrin mRNA has been found in CCK-receptor positive small-cell lung carcinoma, breast cancer, ovarian cancer and cancer stem cells of various origins and it may serve as the indicator of self-secretive regulation. The tumors with over-expressed gastin receptor can be diagnosed and treated by radiolabelling or linking to the cytotoxic agents with gastin peptide and analogs, and scintigraphy was used to visualize the image in vivo.
Collapse
|
36
|
Berna MJ, Jensen RT. Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases. Curr Top Med Chem 2007; 7:1211-31. [PMID: 17584143 PMCID: PMC2718729 DOI: 10.2174/156802607780960519] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this paper, the established and possible roles of CCK1 and CCK2 receptors in gastrointestinal (GI) and metabolic diseases are reviewed and available results from human agonist/antagonist studies are discussed. While there is evidence for the involvement of CCK1R in numerous diseases including pancreatic disorders, motility disorders, tumor growth, regulation of satiety and a number of CCK-deficient states, the role of CCK1R in these conditions is not clearly defined. There are encouraging data from several clinical studies of CCK1R antagonists in some of these conditions, but their role as therapeutic agents remains unclear. The role of CCK2R in physiological (atrophic gastritis, pernicious anemia) and pathological (Zollinger-Ellison syndrome) hypergastrinemic states, its effects on the gastric mucosa (ECL cell hyperplasia, carcinoids, parietal cell mass) and its role in acid-peptic disorders are clearly defined. Furthermore, recent studies point to a possible role for CCK2R in a number of GI malignancies. Current data from human studies of CCK2R antagonists are presented and their potential role in the treatment of these conditions reviewed. Furthermore, the role of CCK2 receptors as targets for medical imaging is discussed.
Collapse
Affiliation(s)
- Marc J. Berna
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
37
|
Hoffmann KM, Tapia JA, Berna MJ, Thill M, Braunschweig T, Mantey SA, Moody TW, Jensen RT. Gastrointestinal Hormones Cause Rapid c-Met Receptor Down-regulation by a Novel Mechanism Involving Clathrin-mediated Endocytosis and a Lysosome-dependent Mechanism. J Biol Chem 2006; 281:37705-19. [PMID: 17035232 DOI: 10.1074/jbc.m602583200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The activated c-Met receptor has potent effects on normal tissues and tumors. c-Met levels are regulated by hepatocyte growth factor (HGF); however, it is unknown if they can be regulated by gastrointestinal (GI) hormones. c-Met is found in many GI tissues/tumors that possess GI hormone receptors. We studied the effect of GI hormones on c-Met in rat pancreatic acini, which possess both receptors. CCK-8, carbachol, and bombesin, but not VIP/secretin, decreased c-Met. CCK-8 caused rapid and potent c-Met down-regulation and abolished HGF-induced c-Met and Gab1 tyrosine phosphorylation, while stimulating c-Met serine phosphorylation. The effect of cholecystokinin (CCK) was also seen in intact acini using immunofluorescence, in a biotinylated fraction representing membrane proteins, in single acinar cells, in Panc-1 tumor cells, and in vivo in rats injected with CCK. CCK-8 did not decrease cell viability or overall responsiveness. GF109203X, thapsigargin, or their combination partially reversed the effect of CCK-8. In contrast to HGF-induced c-Met down-regulation, the effect of CCK was decreased by a lysosome inhibitor (concanamycin) but not the proteasome inhibitor lactacystin. Inhibitors of clathrin-mediated endocytosis blocked the effect of CCK. HGF but not CCK-8 caused c-Met ubiquitination. These results show CCK and other GI hormones can cause rapid c-Met down-regulation, which occurs by a novel mechanism. These results could be important for c-Met regulation in normal as well as in neoplastic tissue in the GI tract.
Collapse
Affiliation(s)
- K Martin Hoffmann
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Berna MJ, Hoffmann KM, Long SH, Serrano J, Gibril F, Jensen RT. Serum gastrin in Zollinger-Ellison syndrome: II. Prospective study of gastrin provocative testing in 293 patients from the National Institutes of Health and comparison with 537 cases from the literature. evaluation of diagnostic criteria, proposal of new criteria, and correlations with clinical and tumoral features. Medicine (Baltimore) 2006; 85:331-364. [PMID: 17108779 PMCID: PMC9817094 DOI: 10.1097/md.0b013e31802b518c] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In two-thirds of patients with Zollinger-Ellison syndrome (ZES), fasting serum gastrin (FSG) levels overlap with values seen in other conditions. In these patients, gastrin provocative tests are needed to establish the diagnosis of ZES. Whereas numerous gastrin provocative tests have been proposed, only the secretin, calcium, and meal tests are widely used today. Many studies have analyzed gastrin provocative test results in ZES, but they are limited by small patient numbers and methodologic differences. To address this issue, we report the results of a prospective National Institutes of Health (NIH) study of gastrin provocative tests in 293 patients with ZES and compare these data with those from 537 ZES and 462 non-ZES patients from the literature. In 97%-99% of gastrinoma patients, an increase in serum gastrin post secretin (Delta secretin) or post calcium (Delta calcium) occurred. In NIH ZES patients with <10-fold increase in FSG, the sensitivity/specificity of the widely used criteria were as follows: Delta secretin > or =200 pg/mL (83%/100%), Delta secretin >50% (86%/93%), Delta calcium > or =395 pg/mL (54%/100%), and Delta calcium >50% (78%/83%). A systematic analysis of the sensitivity and specificity of other possible criteria for a positive secretin or calcium test allowed us to identify a new criterion for secretin testing (Delta > or =120 pg/mL) with the highest sensitivity/specificity (94%/100%) and to confirm the commonly used criterion for calcium tests (Delta > or =395 pg/mL) (62%/100%). This analysis further showed that the secretin test was more sensitive than the calcium test (94% vs. 62%). Our results suggest that secretin stimulation should be used as the first-line provocative test because of its greater sensitivity and simplicity and lack of side effects. In ZES patients with a negative secretin test, 38%-50% have a positive calcium test. Therefore the calcium test should be considered in patients with a strong clinical suspicion of ZES but a negative secretin test. Furthermore, we found that some clinical (diarrhea, duration of medical treatment), laboratory (basal acid output), and tumoral (size, extent) characteristics correlate with the serum gastrin increase post secretin and post calcium. However, using the proposed criteria, the result of these provocative tests (that is, positive or negative) is minimally influenced by these factors, so secretin and calcium provocative tests are reliable in patients with different clinical, laboratory, and tumor characteristics. A systematic analysis of meal testing showed that 54%-77% of ZES patients have a <50% postprandial serum gastrin increase. However, 9%-20% of ZES patients had a >100% increase post meal, causing significant overlap with antral syndromes. Furthermore, we could not confirm the usefulness of meal tests for localization of duodenal gastrinomas. We conclude that the secretin test is a crucial element in the diagnosis of most ZES patients, the calcium test may be useful in selected patients, but the meal test is not helpful in the management of ZES. For secretin testing, the criterion with the highest sensitivity and specificity is an increase of > or =120 pg/mL, which should replace other criteria commonly used today.
Collapse
Affiliation(s)
- Marc J Berna
- From Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
39
|
Berna MJ, Hoffmann KM, Serrano J, Gibril F, Jensen RT. Serum gastrin in Zollinger-Ellison syndrome: I. Prospective study of fasting serum gastrin in 309 patients from the National Institutes of Health and comparison with 2229 cases from the literature. Medicine (Baltimore) 2006; 85:295-330. [PMID: 17108778 PMCID: PMC9806863 DOI: 10.1097/01.md.0000236956.74128.76] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The assessment of fasting serum gastrin (FSG) is essential for the diagnosis and management of patients with the Zollinger-Ellison syndrome (ZES). Although many studies have analyzed FSG levels in patients with gastrinoma, limited information has resulted from these studies because of their small size, different methodologies, and lack of correlations of FSG levels with clinical, laboratory, or tumor features in ZES patients. To address this issue, we report the results of a prospective National Institutes of Health (NIH) study of 309 patients with ZES and compare our results with those of 2229 ZES patients in 513 small series and case reports in the literature. In the NIH and literature ZES patients, normal FSG values were uncommon (0.3%-3%), as were very high FSG levels >100-fold normal (4.9%-9%). Two-thirds of gastrinoma patients had FSG values <10-fold normal that overlap with gastrin levels seen in more common conditions, like Helicobacter pylori infection or antral G-cell hyperplasia/hyperfunction. In these patients, FSG levels are not diagnostic of ZES, and gastrin provocative tests are needed to establish the diagnosis. Most clinical variables (multiple endocrine neoplasia type 1 status, presence or absence of the most common symptoms, prior medical treatment) are not correlated with FSG levels, while a good correlation of FSG values was found with other clinical features (prior gastric surgery, diarrhea, duration from onset to diagnosis). Increasing basal acid output, but not maximal acid output correlated closely with increasing FSG. Numerous tumoral features correlated with the magnitude of FSG in our study, including tumor location (pancreatic > duodenal), primary size (larger > smaller) and extent (liver metastases > local disease). In conclusion, this detailed analysis of FSG in a large number of patients with ZES allowed us to identify important clinical guidelines that should contribute to improved diagnosis and management of patients with ZES.
Collapse
Affiliation(s)
- Marc J Berna
- From Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
40
|
Nousia-Arvanitakis S, Fotoulaki M, Tendzidou K, Vassilaki C, Agguridaki C, Karamouzis M. Subclinical exocrine pancreatic dysfunction resulting from decreased cholecystokinin secretion in the presence of intestinal villous atrophy. J Pediatr Gastroenterol Nutr 2006; 43:307-12. [PMID: 16954951 DOI: 10.1097/01.mpg.0000228098.66583.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED The aim of this study was to evaluate the concept that pancreatic dysfunction in patients having gluten sensitivity (celiac disease [CD]) or cow's milk protein enteropathy (CMPE) may result from the lack of pancreatic enzyme stimulation in the absence or decrease of cholecystokinin (CCK) secretion caused by villous atrophy. PATIENTS AND METHODS The following parameters were measured: plasma CCK in response to a fatty meal and human pancreatic fecal elastase in 24 patients with CD while on gluten-free diet and after gluten provocation and in 12 patients with CMPE at diagnosis and after a 6-month period of cow's milk-free diet. Intestinal mucosa morphology was examined by small bowel biopsy. Sixty-three controls having no organic gastrointestinal problems were investigated once at the time of diagnostic evaluation. RESULTS Fasting CCK, obtained at a time when patients with CD or CMPE had normal intestinal mucosa, was significantly different from postprandial and comparable to that of the control group. Fasting CCK obtained from patients with villous atrophy was also statistically different, but not significantly, from the postprandial. Fasting and postprandial plasma CCK and fecal pancreatic elastase values from patients having normal intestinal mucosa were significantly higher than those obtained from patients with villous atrophy. Significant correlation of intestinal mucosa morphology and CCK with fecal elastase concentration was documented. CONCLUSION Exocrine pancreatic dysfunction in individuals having villous atrophy may be the consequence of decreased CCK secretion. Cholecystokinin and pancreatic secretion is restored to normal, with intestinal mucosa regeneration.
Collapse
|
41
|
Jensen RT. Consequences of long-term proton pump blockade: insights from studies of patients with gastrinomas. Basic Clin Pharmacol Toxicol 2006; 98:4-19. [PMID: 16433886 DOI: 10.1111/j.1742-7843.2006.pto_378.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proton pump inhibitors are being increasingly used and for longer periods of time, especially in patients with gastroesophageal reflux disease. Each of these trends has led to numerous studies and reviews of the potential risk-benefit ratio of the long-term use of proton pump inhibitors. Both long-term effects of hypergastrinaemia due to the profound acid suppression caused by proton pump inhibitors as well as the effects of hypo-/achlorhydria per se have been raised and studied. Potential areas of concern that have been raised in the long-term use of proton pump inhibitors, which could alter this risk-benefit ratio include: gastric carcinoid formation; the development of rebound acid hypersecretion when proton pump inhibitor treatment is stopped; the development of tolerance; increased oxyntic gastritis in H. pylori patients and the possibility of increasing the risk of gastric cancer; the possible stimulation of growth of non-gastric tumours due to hypergastrinaemia; and the possible effect of the hypo/achlorhydria on nutrient absorption, particularly iron and vitamin B12. Because few patients with idiopathic gastro-oesophageal reflux disease/peptic ulcer disease have been treated long-term (i.e., >10 years), there is little known to address the above areas of potential concern. Most patients with gastrinomas with Zollinger-Ellison syndrome have life-long hypergastrinaemia, require continuous proton pump inhibitors treatment and a number of studies report results of >5-10 years of tratment and follow-up. Therefore, an analysis of Zollinger-Ellison syndrome patients can provide important insights into some of the safety concerns raised above. In this paper, results from studies of Zollinger-Ellison syndrome patients and other recent studies dealing with the safety concerns above, are briefly reviewed.
Collapse
Affiliation(s)
- Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804, USA.
| |
Collapse
|
42
|
Si XM, Huang L, Lv P, Xia H, Luo HS. Effects of cholecystokinin-8 induced gastric dysmotility on bile regurgitation during stress and molecular mechanisms. ACTA ACUST UNITED AC 2006; 136:64-71. [PMID: 16814406 DOI: 10.1016/j.regpep.2006.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/22/2006] [Accepted: 04/28/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To illustrate the existence of bile regurgitation under stress condition, and explore the possible effects and related mechanism of changes of plasma cholecystokinin octapeptide (CCK-8) and intragastric pH on stress-induced bile regurgitation in rats. METHODS (1) Changes in plasma CCK-8 and gastric bile concentration were respectively measured by using radioimmunoassay (RIA) method while simultaneously calculating gastric ulcer index (UI) and intragastric pH; (2) Each isolated gastric strips were suspended in a tissue chamber to record the contractile responses by polyphysiograph; (3) The responsiveness of gastric smooth muscle cells (SMCs) to sulfated cholecystokinin octapeptide (CCK-8S) were examined using fura-2-loaded microfluorimetric measurement of intracellular calcium concentration ([Ca(2+)]i); (4) The current of L-type calcium channels (I(CaL)) of SMCs were recorded by patch clamp techniques. RESULTS (1) Compared with the normal control group, plasma CCK-8 and gastric bile concentration significantly increased during stress (p<0.01) and both simultaneously reached the peak at the time point of 2 h after stress; UI and intragastric pH apparently increased (p<0.01); (2) Significant changes to CCK-8S were found in the mean contractile amplitude and frequency of circular muscle (CM) and longitudinal muscle (LM) of gastric antrum and pylorus; (3) CCK-8S-evoked significant increase in [Ca(2+)]i (p<0.01) could be suppressed by CCK-A receptor (CCK-AR) antagonist; whereas a small but significant increase was still elicited by CCK-8S under condition of the removal of extracellular calcium or by given nifidipine; (4) CCK-8S-intensified calcium current (I(CaL)) apparently inhibited by respective administration of nifidipine, Ca(2+)-ATPase inhibitors or calcium dependent chloride channel (I(Cl-Ca)) blocker (p<0.01). CONCLUSION Gastric mucosal damage induced by bile regurgitation is closely connected with gastric antrum and pylorus dysmotility evoked by CCK-8 during the stress. CCK-8S-evoked [Ca(2+)]i increase in gastric antrum and pylorus SMC depends on the release of intracellular calcium stores which activates L-type voltage-dependent calcium channels (VDCC) through the activation of calcium dependent chloride channels.
Collapse
Affiliation(s)
- Xin-Min Si
- Department of Digestive Medicine, RenMin Hospital of WuHan University, HuBei, 430060, China
| | | | | | | | | |
Collapse
|
43
|
Pace A, Tapia JA, Garcia-Marin LJ, Jensen RT. The Src family kinase, Lyn, is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors which stimulate its association with numerous other signaling molecules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:356-65. [PMID: 16713446 DOI: 10.1016/j.bbamcr.2006.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/16/2022]
Abstract
Src family kinases (SFK) play a central signaling role for growth factors, cytokines, G-protein-coupled receptors and other stimuli. SFKs play important roles in pancreatic acinar cell secretion, endocytosis, growth, cytoskeletal integrity and apoptosis, although little is known of the specific SFKs involved. In this study we demonstrate the SFK, Lyn, is present in rat pancreatic acini and investigate its activation/signaling. Ca(2+)-mobilizing agents, cAMP-mobilizing agents and pancreatic growth factors activated Lyn. CCK, a physiological regulator of pancreatic function, rapidly activated Lyn. The specific SFK inhibitor, PP2, decreased Lyn activation; however, the inactive analogue, PP3, had no effect. Inhibition of CCK-stimulated changes in [Ca(2+)](i) decreased Lyn activation by 55%; GFX, a PKC inhibitor by 36%; and the combination by 95%. CCK activation of Lyn required stimulation of high and low affinity CCK(A) receptor states. CCK stimulated an association of Lyn with PKC-delta, Shc, p125(FAK) and PYK2 as well as with their autophosphorylated forms, but not with Cbl, p85, p130(CAS) or ERK 1/2. These results show Lyn is activated by diverse pancreatic stimulants. CCK's activation of Lyn is likely an important mediator of its ability to cause tyrosine phosphorylation of numerous important cellular mediators such as p125(FAK), PYK2, PKC-delta and Shc, which play central roles in CCK's effects on acinar cell function.
Collapse
Affiliation(s)
- Andrea Pace
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | | | |
Collapse
|
44
|
Low CMR, Buck IM, Cooke T, Cushnir JR, Kalindjian SB, Kotecha A, Pether MJ, Shankley NP, Vinter JG, Wright L. Scaffold hopping with molecular field points: identification of a cholecystokinin-2 (CCK2) receptor pharmacophore and its use in the design of a prototypical series of pyrrole- and imidazole-based CCK2 antagonists. J Med Chem 2005; 48:6790-802. [PMID: 16250638 DOI: 10.1021/jm049069y] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new molecular modeling approach has been used to derive a pharmacophore of the potent and selective cholecystokinin-2 (CCK(2)) receptor antagonist 5 (JB93182), based on features shared with two related series. The technique uses "field points" as simple and effective descriptions of the electrostatic and van der Waals maxima and minima surrounding a molecule equipped with XED (extended electron distribution) charges. Problems associated with the high levels of biliary elimination of 5 in vivo required us to design a compound with significantly lower molecular weight without sacrificing its nanomolar levels of in vitro activity. Two new series of compounds were designed to mimic the arrangement of field points present in the pharmacophore rather than its structural elements. In a formal sense, two of the three amides in 5 were replaced with either a simple pyrrole or imidazole, while some features thought to be essential for the high levels of in vitro activity of the parent compounds were retained and others deleted. These compounds maintained activity and selectivity for this receptor over CCK(1). In addition, the reduction in molecular weight coupled with lower polarities greatly reduced levels of biliary elimination associated with 5. This makes them good lead compounds for development of drug candidates whose structures are not obviously related to those of the parents and represents the first example of scaffold hopping using molecular field points.
Collapse
Affiliation(s)
- Caroline M R Low
- James Black Foundation, 68 Half Moon Lane, London SE24 9JE, U.K.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Burdyga G, Varro A, Dimaline R, Thompson DG, Dockray GJ. Feeding-dependent depression of melanin-concentrating hormone and melanin-concentrating hormone receptor-1 expression in vagal afferent neurones. Neuroscience 2005; 137:1405-15. [PMID: 16359819 DOI: 10.1016/j.neuroscience.2005.10.057] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 10/10/2005] [Accepted: 10/14/2005] [Indexed: 11/28/2022]
Abstract
Food intake is regulated by signals from the gastrointestinal tract. Both stimulation and inhibition of food intake may be mediated by upper gastrointestinal tract hormones, e.g. ghrelin and cholecystokinin that act at least partly via vagal afferent neurones. We now report that vagal afferent neurones in both rat and man express melanin-concentrating hormone and its receptor, melanin-concentrating hormone-1R. In nodose ganglia from rats fasted for 24 h, RT-PCR revealed the expression of both melanin-concentrating hormone and melanin-concentrating hormone-1R, whereas in ganglia from animals fed ad libitum expression was virtually undetectable. Immunohistochemical studies also revealed expression of melanin-concentrating hormone and melanin-concentrating hormone-1R in nodose ganglion neurones of fasted rats, but signals were weak in rats fed ad libitum. Melanin-concentrating hormone and melanin-concentrating hormone-1R were expressed in the same neurones, a high proportion of which also expressed the cholecystokinin-1 receptor. When fasted rats were refed, there was down-regulation of melanin-concentrating hormone and melanin-concentrating hormone-1R expression over a period of 5 h. Similar effects were produced by administration of cholecystokinin to fasted rats. The cholecystokinin-1 receptor antagonist lorglumide inhibited food-induced down-regulation of melanin-concentrating hormone and melanin-concentrating hormone-1R. We conclude that the satiety hormone cholecystokinin acts on vagal afferent neurones to inhibit expression of melanin-concentrating hormone and its receptor. Since the melanin-concentrating hormone system is associated with stimulation of food intake this effect of cholecystokinin may contribute to its action as a satiety hormone.
Collapse
Affiliation(s)
- G Burdyga
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | | | |
Collapse
|
46
|
Abstract
Ulcerative colitis is associated with altered contractile activity and transit time of colon. On the other hand, cholecystokinin (CCK) has been shown to play an important role in regulation of gastrointestinal motor function including colonic contraction and transit. In the present study, an attempt was made to study the effect of proglumide, a CCK receptor antagonist on experimental colitis in rats. Experimental colitis was induced in male Sprague-Dawley rats by instilling 1 ml of 4% acetic acid followed by flushing with 0.5 ml air. The rats were kept in a head-down position for 30s. Finally, each rat received 1.5 ml colonic wash with 1.5 ml saline. Four groups of rats received proglumide orally (0, 250, 500 and 1000mg/kg). The first dose of proglumide was given 1 h before acetic acid challenge, whereas the second dose of proglumide was given 25 h after the first dose. Sham control rats received an equal volume of saline instead of acetic acid. Forty-eight hours after the acetic acid challenge, the colon was removed, weighed and split longitudinally and scored for injury. Part of the colon was used for histopathological study as well as analysis of myeloperoxidase (MPO) activity (as a marker of neutrophil activity). Acetic acid produced severe diarrhea and exfoliation of the colonic epithelium accompanied by extensive destruction of the mucosal interstitium. Proglumide dose dependently protected rats against acetic acid-induced increase in colon weight, diarrhea, MPO activity and colonic injury. Inhibition of CCK exerts a beneficial effect in experimental colitis. Further studies are warranted to determine the mechanism of protection and the therapeutic potential of CCK inhibitors.
Collapse
Affiliation(s)
- Ahmed Al Moutaery
- Department of Pathology, Armed Forces Hospital, Riyadh 11159, Saudi Arabia.
| |
Collapse
|
47
|
Leclerc D, Deng L, Trasler J, Rozen R. ApcMin/+ mouse model of colon cancer: gene expression profiling in tumors. J Cell Biochem 2005; 93:1242-54. [PMID: 15486983 DOI: 10.1002/jcb.20236] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Apc(Min/+) mouse is a popular animal model for studies of human colon cancer, but the molecular changes associated with neoplasia in this system have only been partially characterized. Our aim was to identify novel genes involved in tumorigenesis in this model. RNA from intestinal adenomas and from pre-neoplastic small intestine were prepared from six Apc(Min/+) mice. The tumor transcriptomes were analyzed with high-density oligonucleotide microarrays representing approximately 12,000 probe sets; we compared their profiles with those of matched pre-neoplastic intestine. Stringent analysis revealed reproducible changes for 98 probe sets representing 90 genes, including novel observations regarding 50 genes whose involvement in this mouse model has never been reported. In addition to the expected changes in growth regulatory genes, the altered gene products could be assigned to four functional groupings that should enhance tumorigenesis: metabolic changes that would result in a high rate of glycolysis, alterations in enzymes involved in reactive oxygen species or carcinogen metabolism, cytoskeletal elements, and proteins involved in tumor invasion or angiogenesis. A fifth group consisted of expression changes that might restrict tumor progression, suggesting that the adenomatous state reflects a balance of pro- and anti-tumorigenic factors. Since many of the altered genes had not previously been reported to be involved in any tumorigenic processes, our observations provide a host of new candidates for potential modulation to prevent or treat intestinal neoplasia.
Collapse
Affiliation(s)
- Daniel Leclerc
- Department of Human Genetics, McGill University--Montreal Children's Hospital, Montreal, Quebec, Canada H3H 1P3
| | | | | | | |
Collapse
|
48
|
Abstract
The gastric hormone gastrin stimulates gastric acid secretion and epithelial cell proliferation. Multiple active products are generated from the precursor, preprogastrin, including the well-characterized amidated gastrins acting at the cholecystokinin-2 (CCK-2, or gastrin-CCK(B)) receptor, and others that may be growth factors in a range of cancers. Plasma concentrations of the amidated gastrins are elevated as a consequence of gastrin-secreting tumours (gastrinomas) and in conditions in which the normal inhibition of the antral G-cell by acid is depressed, for example chronic atrophic gastritis and prolonged treatment with proton pump inhibitors. There may also be increased gastrin release in Helicobacter pylori infection. Provocative tests for the diagnosis of gastrinoma include the secretin and calcium infusion tests. Hypergastrinaemia is associated with enterochromaffin-like (ECL) cell proliferation; the factors that determine progression to ECL cell dysplasia and gastric ECL cell carcinoid tumours are discussed. Several strategies for inhibiting the effects of gastrin are under evaluation, and their potential application is discussed.
Collapse
Affiliation(s)
- Graham J Dockray
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
49
|
Dockray G, Dimaline R, Varro A. Gastrin: old hormone, new functions. Pflugers Arch 2004; 449:344-55. [PMID: 15480747 DOI: 10.1007/s00424-004-1347-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
It is exactly a century since the gastric hormone gastrin was first described as a blood-borne regulator of gastric acid secretion. The identities of the main active forms of the hormone (the "classical gastrins") and their cellular and molecular sites of action in regulating acid secretion have all attracted sustained attention. However, recent work on peptides derived from the gastrin precursor that do not stimulate acid secretion ("non-classical gastrins"), together with studies on mice over-expressing the gene, or in which the gastrin gene has been deleted, suggest hitherto unsuspected roles in regulating cell proliferation, migration, and differentiation. Moreover, microarray and proteomic studies have identified previously unsuspected target genes of the classical gastrins. Some of the newer actions have implications for our understanding of the progression to cancer in oesophagus, stomach, pancreas and colon, all of which have recently been linked in one way or another to dysfunctional signalling involving products of the gastrin gene. The present review focuses on recent progress in understanding the biology of both classical and non-classical gastrins.
Collapse
Affiliation(s)
- Graham Dockray
- Physiological Laboratory, University of Liverpool, Liverpool, UK.
| | | | | |
Collapse
|
50
|
Zhou JJ, Chen ML, Zhang QZ, Hu JK, Wang WL. Coexpression of cholecystokinin-B/gastrin receptor and gastrin gene in human gastric tissues and gastric cancer cell line. World J Gastroenterol 2004; 10:791-4. [PMID: 15040018 PMCID: PMC4727015 DOI: 10.3748/wjg.v10.i6.791] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To compare the expression patterns of cholecystokinin-B (CCK-B)/gastrin receptor genes in matched human gastric carcinoma and adjacent non-neoplastic mucosa of patients with gastric cancer, inflammatory gastric mucosa from patients with gastritis, normal stomachs from 2 autopsied patients and a gastric carcinoma cell line (SGC-7901), and to explore their relationship with progression to malignancy of human gastric carcinomas.
METHODS: RT-PCR and sequencing were employed to detect the mRNA expression levels of CCK-B receptor and gastrin gene in specimens from 30 patients with gastric carcinoma and healthy bordering non-cancerous mucosa, 10 gastritis patients and normal stomachs from 2 autopsied patients as well as SGC-7901. The results were semi-quantified by normalizing it to the mRNA level of β-actin gene using Lab Image software. The sequences were analyzed by BLAST program.
RESULTS: CCK-B receptor transcripts were detected in all of human gastric tissues in this study, including normal, inflammatory and malignant tissues and SGC-7901. However, the expression levels of CCK-B receptor in normal gastric tissues were higher than those in other groups (P < 0.05), and its expressions did not correlate with the differentiation and metastasis of gastric cancer (P > 0.05). On the other hand, gastrin mRNA was detected in SGC-7901 and in specimens obtained from gastric cancer patients (22/30) but not in other gastric tissues, and its expression was highly correlated with the metastases of gastric cancer (P < 0.05).
CONCLUSION: Human gastric carcinomas and gastric cancer cell line SGC-7901 cells coexpress CCK-B receptor and gastrin mRNA. Gastrin/CCK-B receptor autocrine or paracrine pathway may possibly play an important role in the progression of gastric cancer.
Collapse
Affiliation(s)
- Jian-Jiang Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, West China Medical Center, Sichuan University, Chengdu, Sichuan Province, China.
| | | | | | | | | |
Collapse
|