1
|
Abstract
The appalling toll on the populations of developing countries as a result of the HIV epidemic shows no signs of abatement. While costly drug therapies are effective in developed nations, the sheer scale of the epidemic elsewhere makes the need for a vaccine an ever more urgent goal. The prevalent DNA prime-viral boost strategy aims to elicit cytotoxic lymphocytes (CTL) against HIV, but this approach is undermined by the rapid mutation of HIV, which thereby escapes CTL control. Alloimmunity has been found to be protective in vertical transmission from infected mothers to their babies, in alloimmunization of women with their partners’ mononuclear cells, and in monkeys immunized with SIV grown in human T-cells. Vaginal mucosal immunization, as a result of unprotected sex with a regular partner, induced in vitro protection against HIV infection, and this was confirmed in macaques. The second type of natural protection is found in persons with the homozygous Δ32 CCR5 mutation, a 32-base-pair deletion of the CCR5 gene, which results in a lack of cell-surface expression of CCR5, which is associated with an increase in CC chemokines and the development of CCR5 antibodies. These two ‘experiments of nature’ have been used to develop vaccine strategies—first, in vaginal immunization of macaques with CCR5 peptides, in addition to HIV envelope (env) and SIV core (gag) antigens, all of which were linked to the 70-kD heat-shock protein (HSP70); and second, in mucosal allo-immunization of macaques, which also gave rise to in vitro protection from infection. Immunization with this vaccine elicited serum and vaginal IgG and IgA antibodies, IFNγ- and IL-12-producing cells, and increased concentrations of CCL-3 and CCL-4. Vaginal challenge with a simian immunodeficiency virus engineered to carry a human envelope protein (SHIV 89.6) showed significant clearance of SHIV in the immunized macaques. This platform strategy will now be developed to activate the co-stimulatory pathways with the aim of enhancing the primary allogeneic and CCR5-directed responses which are involved in natural protection against HIV infection. Abbreviations: IFN-γ, gamma interferon; IL-12, interleukin 12; MIP-1 α,β, Macrophage inflammatory protein-1; RANTES, Regulated on activation normal T-cell expressed and secreted; SDF-1, stromal-derived factor 1; SIV, simian immunodeficiency virus; and SHIV, engineered SIV carrying a human envelope protein.
Collapse
Affiliation(s)
- L A Bergmeier
- Mucosal Immunology Unit, Guy's King's and St Thomas' Medical and Dental School, Kings College London, London SE1 9RT, UK.
| | | |
Collapse
|
2
|
Balzarini J, Andrei G, Balestra E, Huskens D, Vanpouille C, Introini A, Zicari S, Liekens S, Snoeck R, Holý A, Perno CF, Margolis L, Schols D. A multi-targeted drug candidate with dual anti-HIV and anti-HSV activity. PLoS Pathog 2013; 9:e1003456. [PMID: 23935482 PMCID: PMC3723632 DOI: 10.1371/journal.ppat.1003456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is often accompanied by infection with other pathogens, in particular herpes simplex virus type 2 (HSV-2). The resulting coinfection is involved in a vicious circle of mutual facilitations. Therefore, an important task is to develop a compound that is highly potent against both viruses to suppress their transmission and replication. Here, we report on the discovery of such a compound, designated PMEO-DAPym. We compared its properties with those of the structurally related and clinically used acyclic nucleoside phosphonates (ANPs) tenofovir and adefovir. We demonstrated the potent anti-HIV and -HSV activity of this drug in a diverse set of clinically relevant in vitro, ex vivo, and in vivo systems including (i) CD4+ T-lymphocyte (CEM) cell cultures, (ii) embryonic lung (HEL) cell cultures, (iii) organotypic epithelial raft cultures of primary human keratinocytes (PHKs), (iv) primary human monocyte/macrophage (M/M) cell cultures, (v) human ex vivo lymphoid tissue, and (vi) athymic nude mice. Upon conversion to its diphosphate metabolite, PMEO-DAPym markedly inhibits both HIV-1 reverse transcriptase (RT) and HSV DNA polymerase. However, in striking contrast to tenofovir and adefovir, it also acts as an efficient immunomodulator, inducing β-chemokines in PBMC cultures, in particular the CCR5 agonists MIP-1β, MIP-1α and RANTES but not the CXCR4 agonist SDF-1, without the need to be intracellularly metabolized. Such specific β-chemokine upregulation required new mRNA synthesis. The upregulation of β-chemokines was shown to be associated with a pronounced downmodulation of the HIV-1 coreceptor CCR5 which may result in prevention of HIV entry. PMEO-DAPym belongs conceptually to a new class of efficient multitargeted antivirals for concomitant dual-viral (HSV/HIV) infection therapy through inhibition of virus-specific pathways (i.e. the viral polymerases) and HIV transmission prevention through interference with host pathways (i.e. CCR5 receptor down regulation). To contain the HIV-1 epidemic, it is necessary to develop antivirals that prevent HIV-1 transmission. It is well known that HIV infection might be accompanied by other pathogens, which often are engaged with HIV-1 in a vicious circle of mutual facilitation. One of the most common of these pathogens is herpes simplex virus (HSV) type 2. Since there is an urgent need for a next generation antivirals that are multi-targeted, we can now report on the development of the first antiviral of this new generation that efficiently suppresses both HIV-1 and HSV-2. We found that the dual-targeted antiviral drug affects several targets for viral replication. It uniquely combines in one molecule three important abilities: (i) to efficiently suppress HSV-encoded DNA polymerase, (ii) to efficiently suppress HIV-1-encoded reverse transcriptase, and (iii) to stimulate secretion of CC-chemokines that downregulate the HIV-1 coreceptor CCR5. The compound suppresses both viruses in a wide-range of in vitro, ex vivo, and in vivo experimental models. The ability of one molecule to suppress HIV-1 and HSV-2 by combining direct activity against their two key enzymes and indirect immunomodulatory effects is unique in the antiviral field.
Collapse
MESH Headings
- Animals
- Anti-HIV Agents/pharmacology
- Anti-HIV Agents/therapeutic use
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cells, Cultured
- Female
- HIV/drug effects
- HIV/enzymology
- HIV/immunology
- Herpes Simplex/drug therapy
- Herpes Simplex/immunology
- Herpes Simplex/metabolism
- Herpes Simplex/virology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/enzymology
- Herpesvirus 1, Human/immunology
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/enzymology
- Herpesvirus 2, Human/immunology
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Lymphoid Tissue/drug effects
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/virology
- Mice
- Mice, Hairless
- Mice, Nude
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Nucleic Acid Synthesis Inhibitors/therapeutic use
- Organophosphonates/pharmacology
- Organophosphonates/therapeutic use
- Prodrugs/pharmacology
- Prodrugs/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Reverse Transcriptase Inhibitors/pharmacology
- Reverse Transcriptase Inhibitors/therapeutic use
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Jasny E, Geer S, Frank I, Vagenas P, Aravantinou M, Salazar A, Lifson J, Piatak M, Gettie A, Blanchard J, Robbiani M. Characterization of peripheral and mucosal immune responses in rhesus macaques on long-term tenofovir and emtricitabine combination antiretroviral therapy. J Acquir Immune Defic Syndr 2012; 61:425-35. [PMID: 22820802 PMCID: PMC3494791 DOI: 10.1097/qai.0b013e318266be53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The goal of antiretroviral therapy (ART) is to suppress virus replication to limit immune system damage. Some have proposed combining ART with immune therapies to boost antiviral immunity. For this to be successful, ART must not impair physiological immune function. METHODS We studied the impact of ART (tenofovir and emtricitabine) on systemic and mucosal immunity in uninfected and simian immunodeficiency (SIV)-infected Chinese rhesus macaques. Subcutaneous ART was initiated 2 weeks after tonsillar inoculation with SIVmac239. RESULTS There was no evidence of immune dysregulation as a result of ART in either infected or uninfected animals. Early virus-induced alterations in circulating immune cell populations (decreased central memory T cells and myeloid dendritic cells) were detected, but normalized shortly after ART initiation. ART-treated animals showed marginal SIV-specific T-cell responses during treatment, which increased after ART discontinuation. Elevated expression of CXCL10 in oral, rectal, and blood samples and APOBEC3G mRNA in oral and rectal tissues was observed during acute infection and was down regulated after starting ART. ART did not impact the ability of the animals to respond to tonsillar application of polyICLC with increased CXCL10 expression in oral fluids and CD80 expression on blood myeloid dendritic cells. CONCLUSION Early initiation of ART prevented virus-induced damage and did not impede mucosal or systemic immune functions.
Collapse
Affiliation(s)
- E. Jasny
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - S. Geer
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - I. Frank
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - P. Vagenas
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - M. Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, USA
| | | | - J.D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Frederick, Maryland, USA
| | - M Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Frederick, Maryland, USA
| | - A. Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, USA
| | - J. Blanchard
- Tulane National Primate Research Center (TNPRC), Tulane University, Covington, Louisiana, USA
| | - M. Robbiani
- Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
4
|
Protection of macaques against vaginal SHIV challenge by systemic or mucosal and systemic vaccinations with HIV-envelope. AIDS 2008; 22:339-48. [PMID: 18195560 DOI: 10.1097/qad.0b013e3282f3ca57] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Worldwide, the majority of human immunodeficiency virus (HIV) infections occur by heterosexual transmission. Thus, the development of a vaccine that can prevent intravaginal HIV infection is an important goal of AIDS vaccine research. OBJECTIVES To determine which single or combination of systemic and mucosal routes of immunizations of female rhesus macaques with an HIV-1 SF162 envelope protein vaccine induced protection against intravaginal challenge with SHIV. DESIGN Female rhesus macaques were immunized with an HIV-1 SF162 envelope protein vaccine administered systemically (intramuscularly), or mucosally (intranasally), or as a sequential combination of both routes. The macaques were then challenged intravaginally with SHIV SF162P4, expressing an envelope that is closely matched (homologous) to the vaccine. RESULTS Macaques receiving intramuscular immunizations, alone or in combination with intranasal immunizations, were protected from infection, with no detectable plasma viral RNA, provirus, or seroconversion to nonvaccine viral proteins, and better preservation of intestinal CD4+ T cells. Serum neutralizing antibodies against the challenge virus appeared to correlate with protection. CONCLUSIONS The results of this study demonstrate that, in the nonhuman primate model, it is possible for vaccine-elicited immune responses to prevent infection after intravaginal administration of virus.
Collapse
|
5
|
Nesburn AB, Bettahi I, Zhang X, Zhu X, Chamberlain W, Afifi RE, Wechsler SL, BenMohamed L. Topical/mucosal delivery of sub-unit vaccines that stimulate the ocular mucosal immune system. Ocul Surf 2007; 4:178-87. [PMID: 17146573 DOI: 10.1016/s1542-0124(12)70164-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mucosal vaccination is proving to be one of the greatest challenges in modern vaccine development. Although ocular mucosal immunity is highly beneficial for achieving protective immunity, the induction of ocular mucosal immunity against ocular infectious pathogens, particularly herpes simplex virus type 1 (HSV-1), which is the leading cause of infectious corneal blindness, remains difficult. Recent developments in cellular and molecular immunology of the ocular mucosal immune system (OMIS) may help in the design of more effective and optimal immunization strategies against ocular pathogens. In this review, we highlight ocular mucosal immunoprophylactic and immunotherapeutic vaccine strategies that have been evaluated to control the many pathogens that attack the surface of the eye. Next, we describe the current understandings of the OMIS and elucidate the structure and the function of the humoral and cellular immune system that protects the surface of the eye. Results from our recent experiments using topical ocular delivery of peptides-CpG and lipopeptide-based vaccines against HSV-1 infection are presented. The future challenges and issues related to the ocular mucosal delivery of molecularly defined sub-unit vaccines are discussed.
Collapse
Affiliation(s)
- Anthony B Nesburn
- Laboratory of Cellular and Molecular Immunology, Department of Ophthalmology, University of California Irvine, Irvine, California 92868-4380, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lim JK, Lu W, Hartley O, DeVico AL. N-terminal proteolytic processing by cathepsin G converts RANTES/CCL5 and related analogs into a truncated 4-68 variant. J Leukoc Biol 2006; 80:1395-404. [PMID: 16963625 DOI: 10.1189/jlb.0406290] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
N-terminal proteolytic processing modulates the biological activity and receptor specificity of RANTES/CCL5. Previously, we showed that an unidentified protease associated with monocytes and neutrophils digests RANTES into a variant lacking three N-terminal residues (4-68 RANTES). This variant binds CCR5 but exhibits lower chemotactic and antiviral activities than unprocessed RANTES. In this study, we characterize cathepsin G as the enzyme responsible for this processing. Cell-mediated production of the 4-68 variant was abrogated by Eglin C, a leukocyte elastase and cathepsin G inhibitor, but not by the elastase inhibitor elastatinal. Further, anti-cathepsin G antibodies abrogated RANTES digestion in neutrophil cultures. In accordance, reagent cathepsin G specifically digested recombinant RANTES into the 4-68 variant. AOP-RANTES and Met-RANTES were also converted into the 4-68 variant upon exposure to cathepsin G or neutrophils, while PSC-RANTES was resistant to such cleavage. Similarly, macaque cervicovaginal lavage samples digested Met-RANTES and AOP-RANTES, but not PSC-RANTES, into the 4-68 variant and this processing was also inhibited by anti-cathepsin G antibodies. These findings suggest that cathepsin G mediates a novel pathway for regulating RANTES activity and may be relevant to the role of RANTES and its analogs in preventing HIV infection.
Collapse
Affiliation(s)
- Jean K Lim
- Institute of Human Virology, University of Maryland, Baltimore, 725 W. Lombard Street, 6th fl., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
7
|
Rees DGC, Gates AJ, Green M, Eastaugh L, Lukaszewski RA, Griffin KF, Krieg AM, Titball RW. CpG-DNA protects against a lethal orthopoxvirus infection in a murine model. Antiviral Res 2005; 65:87-95. [PMID: 15708635 DOI: 10.1016/j.antiviral.2004.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
CpG-DNA has been described as a potent activator of the innate immune system, with potential to protect against infection caused by a range of pathogens in a non-specific manner. Here two classes of CpG-DNA (CpG-A and CpG-B) have been investigated for their abilities to protect mice from infection with an orthopoxvirus (vaccinia virus). Dosing with either CpG-A or B by the intraperitonal or intranasal route protected mice against a subsequent intranasal challenge with vaccinia virus. To our knowledge, this is the first time CpG-mediated protection has been demonstrated at the lung surface. The level of protection was greater when CpG-DNA was administered intranasally demonstrating a clear relationship between the route of CpG dosing and infection route. Treatment with CpG-B reduced viral titer in the lung by 10,000-fold at day 3 post-infection. The CC chemokines RANTES and MIP-1beta were elevated in the broncho-alveolar lavage from animals treated intranasally with CpG-B compared to untreated and intraperitoneally dosed controls, and it is possible that these chemokines play a role in the clearance of intranasally delivered vaccinia virus.
Collapse
Affiliation(s)
- D G Cerys Rees
- Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lehner T, Bergmeier LA. Mucosal Infection and Immune Responses to Simian Immunodeficiency Virus. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50070-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Abstract
Debates are still being waged over what is the best strategy for developing a potent AIDS vaccine. All the obvious approaches to making AIDS vaccines have been tried in the past two decades without much success. It is clear that new thinking and a revision of prevailing dogmas needs to be in place if we really want a vaccine. Conventional envelope-based antibody-inducing vaccines do not appear to hold promise, and broadly-neutralizing antibodies are now being searched as an alternative to the failed approach with subunit vaccines. The current consensus is that cellular immune responses, especially those mediated by CD8 cytotoxic/suppressor (CTL) and CD4 helper T lymphocytes, are needed to control HIV. Vaccines capable of inducing cell-mediated responses are, therefore, considered critical for controlling the spread of HIV. DNA-based vaccines triggering CTL reaction are currently thought to be an answer, but will they fulfill the promise? In the following paragraphs, a critical assessment of the state of the art will be provided in an attempt to analyze what we know and still don't know. The focus of this review is primarily on mucosal vaccines-a relatively new area in AIDS research. The update on V-1 Immunitor, the first mucosal AIDS vaccine available commercially, is provided within this context. Some of the reviewed concepts may be disputable, but without departure from the uninspiring consensus no substantial progress in the AIDS vaccine field can be envisioned.
Collapse
|