1
|
de Vignemont F, Farnè A. Peripersonal space: why so last-second? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230159. [PMID: 39155714 DOI: 10.1098/rstb.2023.0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 08/20/2024] Open
Abstract
A vast range of neurophysiological, neuropsychological and behavioural results in monkeys and humans have shown that the immediate surroundings of the body, also known as peripersonal space (PPS), are processed in a unique way. Three roles have been ascribed to PPS mechanisms: to react to threats, to avoid obstacles and to act on objects. However, in many circumstances, one does not wait for objects or agents to enter PPS to plan these behaviours. Typically, one has more chances to survive if one starts running away from the lion when one sees it in the distance than if it is a few steps away. PPS makes sense in shortsighted creatures but we are not such creatures. The crucial question is thus twofold: (i) why are these adaptive processes triggered only at the last second or even milliseconds? And (ii) what is their exact contribution, especially for defensive and navigational behaviours? Here, we propose that PPS mechanisms correspond to a plan B, useful in unpredictable situations or when other anticipatory mechanisms have failed. Furthermore, we argue that there are energetic, cognitive and behavioural costs to PPS mechanisms, which explain why this plan B is triggered only at the last second. This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
| | - Alessandro Farnè
- Impact Team of the Lyon Neuroscience Research Centre INSERM U1028 CNRS UMR5292 University Claude Bernard Lyon 1 , Lyon, France
| |
Collapse
|
2
|
Chan HH, Mitchell AG, Sandilands E, Balslev D. Gaze and attention: Mechanisms underlying the therapeutic effect of optokinetic stimulation in spatial neglect. Neuropsychologia 2024; 199:108883. [PMID: 38599567 DOI: 10.1016/j.neuropsychologia.2024.108883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Left smooth pursuit eye movement training in response to large-field visual motion (optokinetic stimulation) has become a promising rehabilitation method in left spatial inattention or neglect. The mechanisms underlying the therapeutic effect, however, remain unknown. During optokinetic stimulation, there is an error in visual localisation ahead of the line of sight. This could indicate a change in the brain's estimate of one's own direction of gaze. We hypothesized that optokinetic stimulation changes the brain's estimate of gaze. Because this estimate is critical for coding the locus of attention in the visual space relative to the body and across sensory modalities, its change might underlie the change in spatial attention. Here, we report that in healthy participants optokinetic stimulation causes not only a directional bias in the proprioceptive signal from the extraocular muscles, but also a corresponding shift of the locus of attention. Both changes outlasted the period of stimulation. This result forms a step in investigating a causal link between the adaptation in the sensorimotor gaze signals and the recovery in spatial neglect.
Collapse
Affiliation(s)
- H H Chan
- School of Psychology and Neuroscience, University of St Andrews, South Street, St. Andrews, KY16 9J, United Kingdom
| | - A G Mitchell
- School of Psychology and Neuroscience, University of St Andrews, South Street, St. Andrews, KY16 9J, United Kingdom
| | - E Sandilands
- School of Psychology and Neuroscience, University of St Andrews, South Street, St. Andrews, KY16 9J, United Kingdom
| | - D Balslev
- School of Psychology and Neuroscience, University of St Andrews, South Street, St. Andrews, KY16 9J, United Kingdom.
| |
Collapse
|
3
|
Zafarana A, Lenatti C, Hunt L, Makwiramiti M, Farnè A, Tamè L. Visual perceptual learning is enhanced by training in the illusory far space. Q J Exp Psychol (Hove) 2024:17470218241256870. [PMID: 38785308 DOI: 10.1177/17470218241256870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Visual objects in the peripersonal space (PPS) are perceived faster than farther ones appearing in the extrapersonal space (EPS). This shows preferential processing for visual stimuli near our body. Such an advantage should favour visual perceptual learning occurring near, as compared with far from observers, but opposite evidence has been recently provided from online testing protocols, showing larger perceptual learning in the far space. Here, we ran two laboratory-based experiments investigating whether visual training in PPS and EPS has different effects. We used the horizontal Ponzo Illusion to create a lateralized depth perspective while participants completed a visual search task in which they reported whether or not a specific target object orientation (e.g., a triangle pointing upwards) was present among distractors. This task was completed before and after a training phase in either the (illusory) near or far space for 1 h. In Experiment 1, the near space was in the left hemispace, whereas in Experiment 2, it was in the right. Results showed that, in both experiments, participants were more accurate after training in the far space, whereas training in the near space led to either improvement in the far space (Experiment 1), or no change (Experiment 2). Moreover, we found a larger visual perceptual learning when stimuli were presented in the left compared with the right hemispace. Differently from visual processing, visual perceptual learning is more effective in the far space. We propose that depth is a key dimension that can be used to improve human visual learning.
Collapse
Affiliation(s)
| | | | - Laura Hunt
- School of Psychology, University of Kent, Canterbury, UK
| | | | - Alessandro Farnè
- Impact Team of the Lyon Neuroscience Research Centre, INSERM U1028, CNRS, UMR5292, University Claude Bernard Lyon I, Lyon, France
| | - Luigi Tamè
- School of Psychology, University of Kent, Canterbury, UK
| |
Collapse
|
4
|
Basile GA, Tatti E, Bertino S, Milardi D, Genovese G, Bruno A, Muscatello MRA, Ciurleo R, Cerasa A, Quartarone A, Cacciola A. Neuroanatomical correlates of peripersonal space: bridging the gap between perception, action, emotion and social cognition. Brain Struct Funct 2024; 229:1047-1072. [PMID: 38683211 PMCID: PMC11147881 DOI: 10.1007/s00429-024-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Peripersonal space (PPS) is a construct referring to the portion of space immediately surrounding our bodies, where most of the interactions between the subject and the environment, including other individuals, take place. Decades of animal and human neuroscience research have revealed that the brain holds a separate representation of this region of space: this distinct spatial representation has evolved to ensure proper relevance to stimuli that are close to the body and prompt an appropriate behavioral response. The neural underpinnings of such construct have been thoroughly investigated by different generations of studies involving anatomical and electrophysiological investigations in animal models, and, recently, neuroimaging experiments in human subjects. Here, we provide a comprehensive anatomical overview of the anatomical circuitry underlying PPS representation in the human brain. Gathering evidence from multiple areas of research, we identified cortical and subcortical regions that are involved in specific aspects of PPS encoding.We show how these regions are part of segregated, yet integrated functional networks within the brain, which are in turn involved in higher-order integration of information. This wide-scale circuitry accounts for the relevance of PPS encoding in multiple brain functions, including not only motor planning and visuospatial attention but also emotional and social cognitive aspects. A complete characterization of these circuits may clarify the derangements of PPS representation observed in different neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, 10031, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Bruno
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Cerasa
- S. Anna Institute, Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
5
|
Monaco S, Menghi N, Crawford JD. Action-specific feature processing in the human cortex: An fMRI study. Neuropsychologia 2024; 194:108773. [PMID: 38142960 DOI: 10.1016/j.neuropsychologia.2023.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Sensorimotor integration involves feedforward and reentrant processing of sensory input. Grasp-related motor activity precedes and is thought to influence visual object processing. Yet, while the importance of reentrant feedback is well established in perception, the top-down modulations for action and the neural circuits involved in this process have received less attention. Do action-specific intentions influence the processing of visual information in the human cortex? Using a cue-separation fMRI paradigm, we found that action-specific instruction processing (manual alignment vs. grasp) became apparent only after the visual presentation of oriented stimuli, and occurred as early as in the primary visual cortex and extended to the dorsal visual stream, motor and premotor areas. Further, dorsal stream area aIPS, known to be involved in object manipulation, and the primary visual cortex showed task-related functional connectivity with frontal, parietal and temporal areas, consistent with the idea that reentrant feedback from dorsal and ventral visual stream areas modifies visual inputs to prepare for action. Importantly, both the task-dependent modulations and connections were linked specifically to the object presentation phase of the task, suggesting a role in processing the action goal. Our results show that intended manual actions have an early, pervasive, and differential influence on the cortical processing of vision.
Collapse
Affiliation(s)
- Simona Monaco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Rovereto (TN), Italy.
| | - Nicholas Menghi
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - J Douglas Crawford
- Center for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada; Vision: Science to Applications (VISTA) Program, Neuroscience Graduate Diploma Program and Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
6
|
McManus R, Thomas LE. Action does not drive visual biases in peri-tool space. Atten Percept Psychophys 2024; 86:525-535. [PMID: 38127254 DOI: 10.3758/s13414-023-02826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Observers experience visual biases in the area around handheld tools. These biases may occur when active use leads an observer to incorporate a tool into the body schema. However, the visual salience of a handheld tool may instead create an attentional prioritization that is not reliant on body-based representations. We investigated these competing explanations of near-tool visual biases in two experiments during which participants performed a target detection task. Targets could appear near or far from a tool positioned next to a display. In Experiment 1, participants showed facilitation in detecting targets that appeared near a simple handheld rake tool regardless of whether they first used the rake to retrieve objects, but participants who only viewed the tool without holding it were no faster to detect targets appearing near the rake than targets that appeared on the opposite side of the display. In a second experiment, participants who held a novel magnetic tool again showed a near-tool bias even when they refrained from using the tool. Taken together, these results suggest active use is unnecessary, but visual salience is not sufficient, to introduce visual biases in peri-tool space.
Collapse
Affiliation(s)
- Robert McManus
- Center for Visual and Cognitive Neuroscience, Department of Psychology, North Dakota State University, Fargo, ND, USA
| | - Laura E Thomas
- Center for Visual and Cognitive Neuroscience, Department of Psychology, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
7
|
Ricci M, Iavarone A, Ilardi CR, Chieffi S. Influence of hand starting position on radial line bisection. Front Psychol 2023; 14:1293624. [PMID: 38144997 PMCID: PMC10748601 DOI: 10.3389/fpsyg.2023.1293624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
When normal individuals are asked to localize and mark the midpoint of a radial line, they tend to bisect it farther than the true center. It has been suggested that radial misbisection depends on the presence of a visual attentional bias directed toward the far space. The aim of the present study was to investigate whether the localization of the center of radial lines was affected by the starting position of the hand. There were two starting positions: one between the body and the radial line ("near"), the other beyond the radial line ("far"). Thirty-four subjects participated in the experiment. The results showed that (i) participants bisected radial lines farther than the true center, measured with reference to their body, in both near and far condition, and (ii) bisection errors in the near condition were greater than those in the far condition. We suggest that hand starting position and direction of ongoing movement influenced radial line misbisection by modulating visual attentional bias directed to far space.
Collapse
Affiliation(s)
- Mariateresa Ricci
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | | | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
8
|
Ellinghaus R, Janczyk M, Wirth R, Kunde W, Fischer R, Liepelt R. Opposing influences of global and local stimulus-hand proximity on crosstalk interference in dual tasks. Q J Exp Psychol (Hove) 2023; 76:2461-2478. [PMID: 36765279 PMCID: PMC10585940 DOI: 10.1177/17470218231157548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/17/2022] [Accepted: 12/04/2022] [Indexed: 02/12/2023]
Abstract
In contrast to traditional dualistic views of cognition, visual stimulus processing appears not independent of bodily factors such as hand positioning. For example, reduced crosstalk between two temporally overlapping tasks has been observed when the hands are moved into the attentional window alongside their respective stimuli (i.e., establishing global stimulus-hand proximity). This result indicates that hand-specific attentional processing enhancements support a more serial rather than parallel processing of the two tasks. To further elucidate the nature of these processing modulations and their effect on multitasking performance, the present study consisted of three interrelated crosstalk experiments. Experiment 1 manipulated global stimulus-hand proximity and stimulus-effect proximity orthogonally, with results demonstrating that hand proximity rather than effect proximity drives the crosstalk reduction. Experiment 2 manipulated the physical distance between both hands (i.e., varying local stimulus-hand proximity), with results showing weak evidence of increased crosstalk when both hands are close to each other. Experiment 3 tested opposing influences of global and local stimulus-hand proximity as observed in Experiment 1 and 2 rigorously within one experiment, by employing an orthogonal manipulation of these two proximity measures. Again, we observed slightly increased crosstalk for hands close to each other (replicating Experiment 2); however, in contrast to Experiment 1, the effect of global stimulus-hand proximity on the observed crosstalk was not significant this time. Taken together, the experiments support the notion of hand-specific modulations of perception-action coupling, which can either lead to more or less interference in multitasking, depending on the exact arrangement of hands and stimuli.
Collapse
Affiliation(s)
- Ruben Ellinghaus
- Department of General Psychology, Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany
| | - Markus Janczyk
- Department of Psychology, University of Bremen, Bremen, Germany
| | - Robert Wirth
- Department of Psychology, Julius-Maximilian-University of Würzburg, Würzburg, Germany
| | - Wilfried Kunde
- Department of Psychology, Julius-Maximilian-University of Würzburg, Würzburg, Germany
| | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Roman Liepelt
- Department of General Psychology, Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany
| |
Collapse
|
9
|
Kimura T, Katayama J. Visual stimuli in the peripersonal space facilitate the spatial prediction of tactile events-A comparison between approach and nearness effects. Front Hum Neurosci 2023; 17:1203100. [PMID: 37900729 PMCID: PMC10602679 DOI: 10.3389/fnhum.2023.1203100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Previous studies reported that an object in one's peripersonal space (PPS) attracts attention and facilitates subsequent processing of stimuli. Recent studies showed that visual stimuli approaching the body facilitated the spatial prediction of subsequent tactile events, even if these stimuli were task-irrelevant. However, it is unclear whether the approach is important for facilitating this prediction or if the simple existence of stimuli within the PPS is what matters. The present study aimed to scrutinize the predictive function of visuo-tactile interaction in the PPS by examining the effects of visual stimuli approaching the hand and of visual stimuli near the hand. For this purpose, we examined electroencephalograms (EEGs) during a simple reaction time task for tactile stimuli when visual stimuli were presented approaching the hand or were presented near the hand, and we analyzed event-related spectral perturbation (ERSP) as an index of prediction and event-related brain potentials (ERPs) as an index of attention and prediction error. The tactile stimulus was presented to the left (or right) wrist with a high probability (80%) and to the opposite wrist with a low probability (20%). In the approach condition, three visual stimuli were presented approaching the hand to which the high-probability tactile stimulus was presented; in the near condition, three visual stimuli were presented repeatedly near the hand with the high-probability tactile stimulus. Beta-band activity at the C3 and C4 electrodes, around the primary somatosensory area, was suppressed before the onset of the tactile stimulus, and this suppression was larger in the approach condition than in the near condition. The P3 amplitude for high-probability stimuli in the approach condition was larger than that in the near condition. These results revealed that the approach of visual stimuli facilitates spatial prediction and processing of subsequent tactile stimuli compared to situations in which visual stimuli just exist within the PPS. This study indicated that approaching visual stimuli facilitates the prediction of subsequent tactile events, even if they are task-irrelevant.
Collapse
Affiliation(s)
- Tsukasa Kimura
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Jun'ichi Katayama
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya, Japan
- Center for Applied Psychological Science (CAPS), Kwansei Gakuin University, Nishinomiya, Japan
| |
Collapse
|
10
|
Hoffmann S, Fischer R, Liepelt R. Valence moderates the effect of stimulus-hand proximity on conflict processing and gaze-cueing. PeerJ 2023; 11:e15286. [PMID: 37223118 PMCID: PMC10202105 DOI: 10.7717/peerj.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
An effective interaction with the environment requires adaptation of one's own behaviour to environmental demands. We do so by using cues from our environment and relating these cues to our body to predict the outcomes of events. The recent literature on embodied cognition suggests that task-relevant stimuli, presented near the hands, receive more attentional capacity and are processed differently than stimuli, presented spatially more distant to our body. It has also been proposed that near-hand processing is beneficial to conflict resolution. In the current study, we tested the assumption of an attentional bias towards the near hand space in the context of our previous work by combining a cueing paradigm (allocation of visual attention) with a conflict processing paradigm (Simon task) in the near vs far hand space. In addition, the relevance of processing was manipulated by using affective (angry vs neutral smileys) gaze cues (i.e., varying the valence of the cues). Our results indicate that (a) the interaction of valence × cue congruency × hand proximity was significant, indicating that the cueing effect was larger for negative valence in the proximal condition. (b) The interaction of valence × Simon compatibility × stimulus-hand proximity interaction was significant, indicating that for negative valence processing, the Simon effect was smaller in the proximal than in the distal stimulus-hand condition. This effect was at least numerically but not significantly reversed in the neutral valence condition. (c) Overall, cue congruency, indicating the correct vs incorrect attention allocation to the target stimulus onset, did not reveal any effect on Simon compatibility × stimulus-hand proximity. Our results suggest that valence, the allocation of attention, and conflict, seem to be decisive factors determining the direction and strength of hand proximity effects.
Collapse
Affiliation(s)
- Sven Hoffmann
- Department of General Psychology, Judgement, Decision Making, Action, University of Hagen, Hagen, Germany
- Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Rico Fischer
- Department of General Psychology, Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Roman Liepelt
- Department of General Psychology, Judgement, Decision Making, Action, University of Hagen, Hagen, Germany
| |
Collapse
|
11
|
Saneyoshi A, Takayama R, Michimata C. Tool use moves the peri-personal space from the hand to the tip of the tool. Front Psychol 2023; 14:1142850. [PMID: 37251033 PMCID: PMC10213688 DOI: 10.3389/fpsyg.2023.1142850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In this study, we used a visual target detection task to investigate three hypotheses about how the peri-personal space is extended after tool-use training: Addition, Extension, and Projection hypotheses. We compared the target detection performance before and after tool-use training. In both conditions, the participants held a hockey stick-like tool in their hands during the detection task. Furthermore, we added the no-tool-holding condition to the experimental design. In the no-tool-holding condition, a peri-hand space advantage in the visual target detection task was observed. When the participants held the tool with their hands, this peri-hand space advantage was lost. Furthermore, there was no peri-tool space advantage before tool training. After tool training, the peri-tool space advantage was observed. However, after tool training, the advantage of the peri-hand space was not observed. This result suggested that the peri-hand advantage was reduced by simply holding the tool because the participants lost the functionality of their hands. Furthermore, tool-use training improved detection performance only in the peri-tool space. Thus, these results supported the projection hypothesis that the peri-personal space advantage would move from the body to the functional part of the tool.
Collapse
Affiliation(s)
- Ayako Saneyoshi
- Department of Psychology, Teikyo University, Hachioji-shi, Tokyo, Japan
| | - Ryota Takayama
- Department of Psychology, Sophia University, Chiyoda-ku, Tokyo, Japan
| | - Chikashi Michimata
- Department of Psychology, Teikyo University, Hachioji-shi, Tokyo, Japan
- Department of Psychology, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
12
|
Effect of peri-hand space among users of a familiar tool: more attention enhancement in space near palm than dorsal side of hand. CURRENT PSYCHOLOGY 2023. [DOI: 10.1007/s12144-023-04282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Nakayama K, Moher J, Song JH. Rethinking Vision and Action. Annu Rev Psychol 2023; 74:59-86. [PMID: 36652303 DOI: 10.1146/annurev-psych-021422-043229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Action is an important arbitrator as to whether an individual or a species will survive. Yet, action has not been well integrated into the study of psychology. Action or motor behavior is a field apart. This is traditional science with its need for specialization. The sequence in a typical laboratory experiment of see → decide → act provides the rationale for broad disciplinary categorizations. With renewed interest in action itself, surprising and exciting anomalous findings at odds with this simplified caricature have emerged. They reveal a much more intimate coupling of vision and action, which we describe. In turn, this prompts us to identify and dwell on three pertinent theories deserving of greater notice.
Collapse
Affiliation(s)
- Ken Nakayama
- Department of Psychology, University of California, Berkeley, California, USA;
| | - Jeff Moher
- Department of Psychology, Connecticut College, New London, Connecticut, USA;
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island, USA;
| |
Collapse
|
14
|
Galbraith F, Ginns P. Does the size of tracing actions affect learning outcomes? EDUCATIONAL AND DEVELOPMENTAL PSYCHOLOGIST 2023. [DOI: 10.1080/20590776.2022.2161879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Felicity Galbraith
- Sydney School of Education and Social Work, The University of Sydney, Sydney, NSW, Australia
| | - Paul Ginns
- Sydney School of Education and Social Work, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Reed CL, Garza JP, Bush WS, Parikh N, Nagar N, Vecera SP. Does hand position affect orienting when no action is required? An electrophysiological study. Front Neurosci 2023; 16:982005. [PMID: 36685236 PMCID: PMC9853295 DOI: 10.3389/fnins.2022.982005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Previous research has shown that attention can be biased to targets appearing near the hand that require action responses, arguing that attention to the hand facilitates upcoming action. It is unclear whether attention orients to non-targets near the hand not requiring responses. Using electroencephalography/event-related potentials (EEG/ERP), this study investigated whether hand position affected visual orienting to non-targets under conditions that manipulated the distribution of attention. We modified an attention paradigm in which stimuli were presented briefly and rapidly on either side of fixation; participants responded to infrequent targets (15%) but not standard non-targets and either a hand or a block was placed next to one stimulus location. In Experiment 1, attention was distributed across left and right stimulus locations to determine whether P1 or N1 ERP amplitudes to non-target standards were differentially influenced by hand location. In Experiment 2, attention was narrowed to only one stimulus location to determine whether attentional focus affected orienting to non-target locations near the hand. When attention was distributed across both stimulus locations, the hand increased overall N1 amplitudes relative to the block but not selectively to stimuli appearing near the hand. However, when attention was focused on one location, amplitudes were affected by the location of attentional focus and the stimulus, but not by hand or block location. Thus, hand position appears to contribute only a non-location-specific input to standards during visual orienting, but only in cases when attention is distributed across stimulus locations.
Collapse
Affiliation(s)
- Catherine L. Reed
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States,*Correspondence: Catherine L. Reed,
| | - John P. Garza
- BUILDing SCHOLARS Center, The University of Texas, El Paso, TX, United States
| | - William S. Bush
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| | - Natasha Parikh
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States
| | - Niti Nagar
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States
| | - Shaun P. Vecera
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
16
|
Does hand proximity enhance letter identification? PLoS One 2023; 18:e0280991. [PMID: 36706115 PMCID: PMC9882917 DOI: 10.1371/journal.pone.0280991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Adam et al. (2012) found that letters were identified more accurately when presented near, compared to away from, the hands. Participants performed the task in two conditions: with their hands held stationary and with their hands moving towards and away from the target letters. The near-hands effect included the contribution of both static and dynamic trials. Further studies showed that accuracy in letter discrimination was higher when hands were away from a target (a far-hands effect) and moving toward it, suggesting an interaction between hand position and movement direction. The present study aimed to test whether hand proximity affects letter identification when the hands are stationary, as it remains unclear if this effect can be reliably observed. Participants viewed strings of three consonants, briefly presented and masked, and had to verbally report their identity. Stimuli were presented under two different hand conditions: proximal and distal. The predicted effects of letter position and stimulus duration were all statistically significant and robust; however, we did not observe a hand proximity effect.
Collapse
|
17
|
Fossataro C, Galigani M, Rossi Sebastiano A, Bruno V, Ronga I, Garbarini F. Spatial proximity to others induces plastic changes in the neural representation of the peripersonal space. iScience 2022; 26:105879. [PMID: 36654859 PMCID: PMC9840938 DOI: 10.1016/j.isci.2022.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Peripersonal space (PPS) is a highly plastic "invisible bubble" surrounding the body whose boundaries are mapped through multisensory integration. Yet, it is unclear how the spatial proximity to others alters PPS boundaries. Across five experiments (N = 80), by recording behavioral and electrophysiological responses to visuo-tactile stimuli, we demonstrate that the proximity to others induces plastic changes in the neural PPS representation. The spatial proximity to someone else's hand shrinks the portion of space within which multisensory responses occur, thus reducing the PPS boundaries. This suggests that PPS representation, built from bodily and multisensory signals, plastically adapts to the presence of conspecifics to define the self-other boundaries, so that what is usually coded as "my space" is recoded as "your space". When the space is shared with conspecifics, it seems adaptive to move the other-space away from the self-space to discriminate whether external events pertain to the self-body or to other-bodies.
Collapse
Affiliation(s)
- Carlotta Fossataro
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Mattia Galigani
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | | | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Irene Ronga
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy,Neuroscience Institute of Turin (NIT), Turin 10123, Italy,Corresponding author
| |
Collapse
|
18
|
Segil JL, Roldan LM, Graczyk EL. Measuring embodiment: A review of methods for prosthetic devices. Front Neurorobot 2022; 16:902162. [PMID: 36590084 PMCID: PMC9797051 DOI: 10.3389/fnbot.2022.902162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The development of neural interfaces to provide improved control and somatosensory feedback from prosthetic limbs has initiated a new ability to probe the various dimensions of embodiment. Scientists in the field of neuroprosthetics require dependable measures of ownership, body representation, and agency to quantify the sense of embodiment felt by patients for their prosthetic limbs. These measures are critical to perform generalizable experiments and compare the utility of the new technologies being developed. Here, we review outcome measures used in the literature to evaluate the senses of ownership, body-representation, and agency. We categorize these existing measures based on the fundamental psychometric property measured and whether it is a behavioral or physiological measure. We present arguments for the efficacy and pitfalls of each measure to guide better experimental designs and future outcome measure development. The purpose of this review is to aid prosthesis researchers and technology developers in understanding the concept of embodiment and selecting metrics to assess embodiment in their research. Advances in the ability to measure the embodiment of prosthetic devices have far-reaching implications in the improvement of prosthetic limbs as well as promoting a broader understanding of ourselves as embodied agents.
Collapse
Affiliation(s)
- Jacob L. Segil
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, United States
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Leah Marie Roldan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Emily L. Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
19
|
Aizu N, Oouchida Y, Yamada K, Nishii K, Shin-Ichi I. Use-dependent increase in attention to the prosthetic foot in patients with lower limb amputation. Sci Rep 2022; 12:12624. [PMID: 35871204 PMCID: PMC9308804 DOI: 10.1038/s41598-022-16732-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPatients with lower limb amputation experience “embodiment” while using a prosthesis, perceiving it as part of their body. Humans control their biological body parts and receive appropriate information by directing attention toward them, which is called body-specific attention. This study investigated whether patients with lower limb amputation similarly direct attention to prosthetic limbs. The participants were 11 patients with lower limb amputation who started training to walk with a prosthesis. Attention to the prosthetic foot was measured longitudinally by a visual detection task. In the initial stage of walking rehabilitation, the index of attention to the prosthetic foot was lower than that to the healthy foot. In the final stage, however, there was no significant difference between the two indexes of attention. Correlation analysis revealed that the longer the duration of prosthetic foot use, the greater the attention directed toward it. These findings indicate that using a prosthesis focuses attention akin to that of an individual’s biological limb. Moreover, they expressed that the prosthesis felt like a part of their body when they could walk independently. These findings suggest that the use of prostheses causes integration of visual information and movement about the prosthesis, resulting in its subjective embodiment.
Collapse
|
20
|
Catch the star! Spatial information activates the manual motor system. PLoS One 2022; 17:e0262510. [PMID: 35802609 PMCID: PMC9269453 DOI: 10.1371/journal.pone.0262510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Previous research demonstrated a close bidirectional relationship between spatial attention and the manual motor system. However, it is unclear whether an explicit hand movement is necessary for this relationship to appear. A novel method with high temporal resolution–bimanual grip force registration–sheds light on this issue. Participants held two grip force sensors while being presented with lateralized stimuli (exogenous attentional shifts, Experiment 1), left- or right-pointing central arrows (endogenous attentional shifts, Experiment 2), or the words "left" or "right" (endogenous attentional shifts, Experiment 3). There was an early interaction between the presentation side or arrow direction and grip force: lateralized objects and central arrows led to a larger increase of the ipsilateral force and a smaller increase of the contralateral force. Surprisingly, words led to the opposite pattern: larger force increase in the contralateral hand and smaller force increase in the ipsilateral hand. The effect was stronger and appeared earlier for lateralized objects (60 ms after stimulus presentation) than for arrows (100 ms) or words (250 ms). Thus, processing visuospatial information automatically activates the manual motor system, but the timing and direction of this effect vary depending on the type of stimulus.
Collapse
|
21
|
Forster B. Book Review: Handbook of Embodied Psychology: Thinking, Feeling and Acting by Michael D., Robinson, & Laura E., Thomas. Perception 2022. [PMCID: PMC9434204 DOI: 10.1177/03010066221109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Bettina Forster
- School of Health and Psychological Sciences, Cognitive Neuroscience Research Unit, City, University of London, London, UK
| |
Collapse
|
22
|
Gherri E, Xu A, Ambron E, Sedda A. Peripersonal space around the upper and the lower limbs. Exp Brain Res 2022; 240:2039-2050. [PMID: 35727366 PMCID: PMC9288357 DOI: 10.1007/s00221-022-06387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Peripersonal space (PPS), the space closely surrounding the body, is typically characterised by enhanced multisensory integration. Neurophysiological and behavioural studies have consistently shown stronger visuo-tactile integration when a visual stimulus is presented close to the tactually stimulate body part in near space (within PPS) than in far space. However, in the majority of these studies, tactile stimuli were delivered to the upper limbs, torso and face. Therefore, it is not known whether the space surrounding the lower limbs is characterised by similar multisensory properties. To address this question, we asked participants to complete two versions of the classic visuo-tactile crossmodal congruency task in which they had to perform speeded elevation judgements of tactile stimuli presented to the dorsum of the hand and foot while a simultaneous visual distractor was presented at spatially congruent or incongruent locations either in near or far space. In line with existing evidence, when the tactile target was presented to the hand, the size of the crossmodal congruency effect (CCE) decreased in far as compared to near space, suggesting stronger visuo-tactile multisensory integration within PPS. In contrast, when the tactile target was presented to the foot, the CCE decreased for visual distractors in near than far space. These findings show systematic differences between the representation of PPS around upper and lower limbs, suggesting that the multisensory properties of the different body part-centred representations of PPS are likely to depend on the potential actions performed by the different body parts.
Collapse
Affiliation(s)
- Elena Gherri
- Department of Philosophy and Communication, University of Bologna, Via Azzo Gardino 23, 40122, Bologna, Italy. .,Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK.
| | - Aolong Xu
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Elisabetta Ambron
- Laboratory for Cognition and Neural Stimulation, Neurology Department, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Sedda
- Department of Psychology, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
23
|
Direction-selective modulation of visual motion rivalry by collocated tactile motion. Atten Percept Psychophys 2022; 84:899-914. [PMID: 35194773 PMCID: PMC9001558 DOI: 10.3758/s13414-022-02453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/03/2022]
Abstract
Early models of multisensory integration posited that cross-modal signals only converged in higher-order association cortices and that vision automatically dominates. However, recent studies have challenged this view. In this study, the significance of the alignment of motion axes and spatial alignment across visual and tactile stimuli, as well as the effect of hand visibility on visuo-tactile interactions were examined. Using binocular rivalry, opposed motions were presented to each eye and participants were required to track the perceived visual direction. A tactile motion that was either a leftward or rightward sweep across the fingerpad was intermittently presented. Results showed that tactile effects on visual percepts were dependent on the alignment of motion axes: rivalry between up/down visual motions was not modulated at all by left/right tactile motion. On the other hand, visual percepts could be altered by tactile motion signals when both modalities shared a common axis of motion: a tactile stimulus could maintain the dominance duration of a congruent visual stimulus and shorten its suppression period. The effects were also conditional on the spatial alignment of the visual and tactile stimuli, being eliminated when the tactile device was displaced 15 cm away to the right of the visual stimulus. In contrast, visibility of the hand touching the tactile stimulus facilitated congruent switches relative to a visual-only baseline but did not present a significant advantage overall. In sum, these results show a low-level sensory interaction that is conditional on visual and tactile stimuli sharing a common motion axis and location in space.
Collapse
|
24
|
Müsseler J, von Salm-Hoogstraeten S, Böffel C. Perspective Taking and Avatar-Self Merging. Front Psychol 2022; 13:714464. [PMID: 35369185 PMCID: PMC8971368 DOI: 10.3389/fpsyg.2022.714464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Today, avatars often represent users in digital worlds such as in video games or workplace applications. Avatars embody the user and perform their actions in these artificial environments. As a result, users sometimes develop the feeling that their self merges with their avatar. The user realizes that they are the avatar, but the avatar is also the user-meaning that avatar's appearance, character, and actions also affect their self. In the present paper, we first introduce the event-coding approach of the self and then argue based on the reviewed literature on human-avatar interaction that a self-controlled avatar can lead to avatar-self merging: the user sets their own goals in the virtual environment, plans and executes the avatar's actions, and compares the predicted with the actual motion outcomes of the avatar. This makes the user feel body ownership and agency over the avatar's action. Following the event-coding account, avatar-self merging should not be seen as an all-or-nothing process, but rather as a continuous process to which various factors contribute, including successfully taking the perspective of the avatar. Against this background, we discuss affective, cognitive, and visuo-spatial perspective taking of the avatar. As evidence for avatar-self merging, we present findings showing that when users take the avatar's perspective, they can show spontaneous behavioral tendencies that run counter to their own.
Collapse
Affiliation(s)
- Jochen Müsseler
- Institute of Psychology, Work and Engineering Psychology, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
25
|
Otaki R, Oouchida Y, Aizu N, Sudo T, Sasahara H, Saito Y, Takemura S, Izumi SI. Relationship Between Body-Specific Attention to a Paretic Limb and Real-World Arm Use in Stroke Patients: A Longitudinal Study. Front Syst Neurosci 2022; 15:806257. [PMID: 35273480 PMCID: PMC8902799 DOI: 10.3389/fnsys.2021.806257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Learned nonuse is a major problem in upper limb (UL) rehabilitation after stroke. Among the various factors that contribute to learned nonuse, recent studies have focused on body representation of the paretic limb in the brain. We previously developed a method to measure body-specific attention, as a marker of body representation of the paretic limb and revealed a decline in body-specific attention to the paretic limb in chronic stroke patients by a cross-sectional study. However, longitudinal changes in body-specific attention and paretic arm use in daily life (real-world arm use) from the onset to the chronic phase, and their relationship, remain unknown. Here, in a longitudinal, prospective, observational study, we sought to elucidate the longitudinal changes in body-specific attention to the paretic limb and real-world arm use, and their relationship, by using accelerometers and psychophysical methods, respectively, in 25 patients with subacute stroke. Measurements were taken at baseline (TBL), 2 weeks (T2w), 1 month (T1M), 2 months (T2M), and 6 months (T6M) after enrollment. UL function was measured using the Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT). Real-world arm use was measured using accelerometers on both wrists. Body-specific attention was measured using a visual detection task. The UL function and real-world arm use improved up to T6M. Longitudinal changes in body-specific attention were most remarkable at T1M. Changes in body-specific attention up to T1M correlated positively with changes in real-world arm use up to T6M, and from T1M to T6M, and the latter more strongly correlated with changes in real-world arm use. Changes in real-world arm use up to T2M correlated positively with changes in FMA up to T2M and T6M. No correlation was found between body-specific attention and FMA scores. Thus, these results suggest that improved body-specific attention to the paretic limb during the early phase contributes to increasing long-term real-world arm use and that increased real-world use is associated with the recovery of UL function. Our results may contribute to the development of rehabilitation strategies to enhance adaptive changes in body representation in the brain and increase real-world arm use after stroke.
Collapse
Affiliation(s)
- Ryoji Otaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation, Yamagata Saisei Hospital, Yamagata, Japan
| | - Yutaka Oouchida
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Education, Osaka Kyoiku University, Osaka, Japan
| | - Naoki Aizu
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Tamami Sudo
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Computer and Information Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Sasahara
- Department of Rehabilitation, Yamagata Saisei Hospital, Yamagata, Japan
| | - Yuki Saito
- Department of Neurosurgery, Yamagata Saisei Hospital, Yamagata, Japan
| | - Sunao Takemura
- Department of Neurosurgery, Yamagata Saisei Hospital, Yamagata, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| |
Collapse
|
26
|
Shioiri S, Sasada T, Nishikawa R. Visual attention around a hand location localized by proprioceptive information. Cereb Cortex Commun 2022; 3:tgac005. [PMID: 35224493 PMCID: PMC8867302 DOI: 10.1093/texcom/tgac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/12/2022] Open
Abstract
Facilitation of visual processing has been reported in the space near the hand. To understand the underlying mechanism of hand proximity attention, we conducted experiments that isolated hand-related effects from top–down attention, proprioceptive information from visual information, the position effect from the influence of action, and the distance effect from the peripersonal effect. The flash-lag effect was used as an index of attentional modulation. Because the results showed that the flash-lag effect was smaller at locations near the hand, we concluded that there was a facilitation effect of the visual stimuli around the hand location identified through proprioceptive information. This was confirmed by conventional reaction time measures. We also measured steady-state visual evoked potential (SSVEP) in order to investigate the spatial properties of hand proximity attention and top–down attention. The results showed that SSVEP reflects the effect of top–down attention but not that of hand proximity attention. This suggests that the site of hand proximity attention is at a later stage of visual processing, assuming that SSVEP responds to neural activities at the early stages. The results of left-handers differed from those of right-handers, and this is discussed in relation to handedness variation.
Collapse
Affiliation(s)
- Satoshi Shioiri
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Takumi Sasada
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Ryota Nishikawa
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
27
|
Aizu N, Otaki R, Nishii K, Kito T, Yao R, Uemura K, Izumi SI, Yamada K. Body-Specific Attention to the Hands and Feet in Healthy Adults. Front Syst Neurosci 2022; 15:805746. [PMID: 35145381 PMCID: PMC8821660 DOI: 10.3389/fnsys.2021.805746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
To execute the intended movement, the brain directs attention, called body-specific attention, to the body to obtain information useful for movement. Body-specific attention to the hands has been examined but not to the feet. We aimed to confirm the existence of body-specific attention to the hands and feet, and examine its relation to motor and sensory functions from a behavioral perspective. The study included two groups of 27 right-handed and right-footed healthy adults, respectively. Visual detection tasks were used to measure body-specific attention. We measured reaction times to visual stimuli on or off the self-body and calculated the index of body-specific attention score to subtract the reaction time on self-body from that off one. Participants were classified into low and high attention groups based on each left and right body-specific attention index. For motor functions, Experiment 1 comprised handgrip strength and ball-rotation tasks for the hands, and Experiment 2 comprised toe grip strength involved in postural control for the feet. For sensory functions, the tactile thresholds of the hands and feet were measured. The results showed that, in both hands, the reaction time to visual stimuli on the hand was significantly lesser than that offhand. In the foot, this facilitation effect was observed in the right foot but not the left, which showed the correlation between body-specific attention and the normalized toe gripping force, suggesting that body-specific attention affected postural control. In the hand, the number of rotations of the ball was higher in the high than in the low attention group, regardless of the elaboration exercise difficulty or the left or right hand. However, this relation was not observed in the handgripping task. Thus, body-specific attention to the hand is an important component of elaborate movements. The tactile threshold was higher in the high than in the low attention group, regardless of the side in hand and foot. The results suggested that more body-specific attention is directed to the limbs with lower tactile abilities, supporting the sensory information reaching the brain. Therefore, we suggested that body-specific attention regulates the sensory information to help motor control.
Collapse
Affiliation(s)
- Naoki Aizu
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
- *Correspondence: Naoki Aizu
| | - Ryoji Otaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Nishii
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takumi Kito
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
| | - Runhong Yao
- Department of Physical Therapy, School of Health Sciences, Japan University of Health Sciences, Satte, Japan
| | - Kenya Uemura
- Department of Rehabilitation, Hachinohe City Hospital, Hachinohe, Japan
| | - Shin-ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kouji Yamada
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
28
|
Sakurada T, Yoshida M, Nagai K. Individual Optimal Attentional Strategy in Motor Learning Tasks Characterized by Steady-State Somatosensory and Visual Evoked Potentials. Front Hum Neurosci 2022; 15:784292. [PMID: 35058765 PMCID: PMC8763707 DOI: 10.3389/fnhum.2021.784292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
Focus of attention is one of the most influential factors facilitating motor performance. Previous evidence supports that the external focus (EF) strategy, which directs attention to movement outcomes, is associated with better motor performance than the internal focus (IF) strategy, which directs attention to body movements. However, recent studies have reported that the EF strategy is not effective for some individuals. Furthermore, neuroimaging studies have demonstrated that the frontal and parietal areas characterize individual optimal attentional strategies for motor tasks. However, whether the sensory cortices are also functionally related to individual optimal attentional strategy remains unclear. Therefore, the present study examined whether an individual’s sensory processing ability would reflect the optimal attentional strategy. To address this point, we explored the relationship between responses in the early sensory cortex and individuals’ optimal attentional strategy by recording steady-state somatosensory evoked potentials (SSSEP) and steady-state visual evoked potentials (SSVEP). Twenty-six healthy young participants first performed a motor learning task with reaching movements under IF and EF conditions. Of the total sample, 12 individuals showed higher after-effects under the IF condition than the EF condition (IF-dominant group), whereas the remaining individuals showed the opposite trend (EF-dominant group). Subsequently, we measured SSSEP from bilateral primary somatosensory cortices while presenting vibrotactile stimuli and measured SSVEP from bilateral primary visual cortices while presenting checkerboard visual stimuli. The degree of increasing SSSEP response when the individuals in the IF-dominant group directed attention to vibrotactile stimuli was significantly more potent than those in the EF-dominant individuals. By contrast, the individuals in the EF-dominant group showed a significantly larger SSVEP increase while they directed attention to visual stimuli compared with the IF-dominant individuals. Furthermore, a significant correlation was observed such that individuals with more robust IF dominance showed more pronounced SSSEP attention modulation. These results suggest that the early sensory areas have crucial brain dynamics to characterize an individual’s optimal attentional strategy during motor tasks. The response characteristics may reflect the individual sensory processing ability, such as control of priority to the sensory inputs. Considering individual cognitive traits based on the suitable attentional strategy could enhance adaptability in motor tasks.
Collapse
Affiliation(s)
- Takeshi Sakurada
- Department of Robotics, College of Science and Engineering, Ritsumeikan University, Shiga, Japan
- *Correspondence: Takeshi Sakurada,
| | - Masataka Yoshida
- Major in Advanced Mechanical Engineering and Robotics, Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - Kiyoshi Nagai
- Department of Robotics, College of Science and Engineering, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
29
|
Perceived depth modulates perceptual resolution. Psychon Bull Rev 2021; 29:455-466. [PMID: 34585320 DOI: 10.3758/s13423-021-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Humans constantly use depth information to support perceptual decisions about object size and location in space, as well as planning and executing actions. It was recently reported that perceived depth modulates perceptual performance even when depth information is not relevant to the task, with faster shape discrimination for objects perceived as being close to the observer. However, it is yet to be determined if the observed "close advantage" reflects differences in psychophysical sensitivity or response bias. Moreover, it is unclear whether this advantage is generalizable to other viewing situations and tasks. To address these outstanding issues, we evaluated whether visual resolution is modulated by perceived depth defined by 2D pictorial cues. In a series of experiments, we used the method of constant stimuli to measure the precision of perceptual judgements for stimuli positioned at close, far, and flat perceived distances. In Experiment 1, we found that size discrimination was more precise when the object was perceived to be closer to the observers. Experiments 2a and 2b extended this finding to a visual property orthogonal to depth information, by showing superior orientation discrimination for "close" objects. Finally, Experiment 3 demonstrated that the close advantage also occurs when performing high-level perceptual tasks such as face perception. Taken together, our results provide novel evidence that the perceived depth of an object, as defined by pictorial cues, modulates the precision of visual processing for close objects.
Collapse
|
30
|
Effects of pointing movements on visuospatial working memory in a joint-action condition: Evidence from eye movements. Mem Cognit 2021; 50:261-277. [PMID: 34480326 PMCID: PMC8821511 DOI: 10.3758/s13421-021-01230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
Previous studies showed that (a) performing pointing movements towards to-be-remembered locations enhanced their later recognition, and (b) in a joint-action condition, experimenter-performed pointing movements benefited memory to the same extent as self-performed movements. The present study replicated these findings and additionally recorded participants’ fixations towards studied arrays. Each trial involved the presentation of two consecutive spatial arrays, where each item occupied a different spatial location. The item locations of one array were encoded by mere visual observation (the no-move array), whereas the locations of the other array were encoded by observation plus pointing movements (the move array). Critically, in Experiment 1, participants took turns with the experimenter in pointing towards the move arrays (joint-action condition), while in Experiment 2 pointing was performed only by the experimenter (passive condition). The results showed that the locations of move arrays were recognized better than the locations of no-move arrays in Experiment 1, but not in Experiment 2. The pattern of eye-fixations was in line with behavioral findings, indicating that in Experiment 1, fixations to the locations of move arrays were higher in number and longer in duration than fixations to the locations of no-move arrays, irrespective of the agent who performed the movements. In contrast, no differences emerged in Experiment 2. We propose that, in the joint-action condition, self- and other-performed pointing movements are coded at the same representational level and their functional equivalency is reflected in a similar pattern of eye-fixations.
Collapse
|
31
|
Mine D, Yokosawa K. Does response facilitation to visuo-tactile stimuli around a remote-controlled hand avatar reflect peripersonal space or attentional bias? Exp Brain Res 2021; 239:3105-3112. [PMID: 34402944 DOI: 10.1007/s00221-021-06192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
People react faster to visuo-tactile stimuli presented near the body (i.e., in peripersonal space) than to tactile stimuli presented alone. This multi-sensory facilitation effect has been used as a measurement of peripersonal space. Previous research has reported that peripersonal space representations can be modulated by actively using hand-held tools or disconnected hand avatars. However, previous research has ignored the possibility that the attentional effect of active tool use could affect multi-sensory facilitation. In the present study, we delivered tactile stimuli to participants' left or right hand concurrently with visual stimuli presented near a virtual hand avatar operated by the movements of participants' left or right hand, which was shown far in a virtual environment and disconnected from the body. Participants reacted to tactile stimuli while ignoring the visual stimuli. The results indicated a multi-sensory facilitation effect when tactile stimuli were delivered to the hand used to operate the hand avatar. In contrast, the facilitation was not observed when the tactile stimuli were delivered to the hand that is not operating the hand avatar. These results suggest that the strength of the multi-sensory facilitation effect differed across conditions, even though the visual attention captured around the hand avatar was controlled across conditions. We concluded that the modulation of peripersonal space resulting from using tools or avatars is nearly independent of visual attention captured around tools or avatars.
Collapse
Affiliation(s)
- Daisuke Mine
- Graduate School of Interdisciplinary Information Studies, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
32
|
Witt JK. Tool Use Affects Spatial Perception. Top Cogn Sci 2021; 13:666-683. [PMID: 34291888 DOI: 10.1111/tops.12563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Tools do not just expand our capabilities. They change what we can do, and in doing so, they change who we are. Serena is Serena because of what she can do with a tennis racket. Tiger is Tiger because of what he can do with a golf club. In changing what we can do, tools also change the very way we perceive the spatial layout of the world. Objects beyond arm's reach appear closer when we wield a tool that can expand out to the object. Catchable objects seem to move faster when we wield a tool that is less effective for catching the object. These examples illustrate how the basic processes of spatial vision are impacted by tool use.
Collapse
|
33
|
Weser VU, Proffitt DR. Expertise in Tool Use Promotes Tool Embodiment. Top Cogn Sci 2021; 13:597-609. [PMID: 34080797 DOI: 10.1111/tops.12538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/18/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022]
Abstract
Body representations are known to be dynamically modulated or extended through tool use. Here, we review findings that demonstrate the importance of a user's tool experience or expertise for successful tool embodiment. Examining expert tool users, such as individuals who use tools in professional sports, people who use chopsticks at every meal, or spinal injury patients who use a wheelchair daily, offers new insights into the role of expertise in tool embodiment: Not only does tool embodiment differ between novices and experts, but experts may experience enhanced changes to their body representation when interacting with their own, personal tool. The findings reviewed herein reveal the importance of assessing tool skill in future studies of tool embodiment.
Collapse
Affiliation(s)
- Veronica U Weser
- Department of General Internal Medicine, Yale School of Medicine
| | | |
Collapse
|
34
|
Bogdanova OV, Bogdanov VB, Dureux A, Farnè A, Hadj-Bouziane F. The Peripersonal Space in a social world. Cortex 2021; 142:28-46. [PMID: 34174722 DOI: 10.1016/j.cortex.2021.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/27/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
The PeriPersonal Space (PPS) has been defined as the space surrounding the body, where physical interactions with elements of the environment take place. As our world is social in nature, recent evidence revealed the complex modulation of social factors onto PPS representation. In light of the growing interest in the field, in this review we take a close look at the experimental approaches undertaken to assess the impact of social factors onto PPS representation. Our social world also influences the personal space (PS), a concept stemming from social psychology, defined as the space we keep between us and others to avoid discomfort. Here we analytically compare PPS and PS with the aim of understanding if and how they relate to each other. At the behavioral level, the multiplicity of experimental methodologies, whether well-established or novel, lead to somewhat divergent results and interpretations. Beyond behavior, we review physiological and neural signatures of PPS representation to discuss how interoceptive signals could contribute to PPS representation, as well as how these internal signals could shape the neural responses of PPS representation. In particular, by merging exteroceptive information from the environment and internal signals that come from the body, PPS may promote an integrated representation of the self, as distinct from the environment and the others. We put forward that integrating internal and external signals in the brain for perception of proximal environmental stimuli may also provide us with a better understanding of the processes at play during social interactions. Adopting such an integrative stance may offer novel insights about PPS representation in a social world. Finally, we discuss possible links between PPS research and social cognition, a link that may contribute to the understanding of intentions and feelings of others around us and promote appropriate social interactions.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; INCIA, UMR 5287, CNRS, Université de Bordeaux, France.
| | - Volodymyr B Bogdanov
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Ecole Nationale des Travaux Publics de l'Etat, Laboratoire Génie Civil et Bâtiment, Vaulx-en-Velin, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France.
| |
Collapse
|
35
|
Kristjánsson Á, Draschkow D. Keeping it real: Looking beyond capacity limits in visual cognition. Atten Percept Psychophys 2021; 83:1375-1390. [PMID: 33791942 PMCID: PMC8084831 DOI: 10.3758/s13414-021-02256-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 11/23/2022]
Abstract
Research within visual cognition has made tremendous strides in uncovering the basic operating characteristics of the visual system by reducing the complexity of natural vision to artificial but well-controlled experimental tasks and stimuli. This reductionist approach has for example been used to assess the basic limitations of visual attention, visual working memory (VWM) capacity, and the fidelity of visual long-term memory (VLTM). The assessment of these limits is usually made in a pure sense, irrespective of goals, actions, and priors. While it is important to map out the bottlenecks our visual system faces, we focus here on selected examples of how such limitations can be overcome. Recent findings suggest that during more natural tasks, capacity may be higher than reductionist research suggests and that separable systems subserve different actions, such as reaching and looking, which might provide important insights about how pure attentional or memory limitations could be circumvented. We also review evidence suggesting that the closer we get to naturalistic behavior, the more we encounter implicit learning mechanisms that operate "for free" and "on the fly." These mechanisms provide a surprisingly rich visual experience, which can support capacity-limited systems. We speculate whether natural tasks may yield different estimates of the limitations of VWM, VLTM, and attention, and propose that capacity measurements should also pass the real-world test within naturalistic frameworks. Our review highlights various approaches for this and suggests that our understanding of visual cognition will benefit from incorporating the complexities of real-world cognition in experimental approaches.
Collapse
Affiliation(s)
- Árni Kristjánsson
- School of Health Sciences, University of Iceland, Reykjavík, Iceland.
- School of Psychology, National Research University Higher School of Economics, Moscow, Russia.
| | - Dejan Draschkow
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Miall RC, Afanasyeva D, Cole JD, Mason P. Perception of body shape and size without touch or proprioception: evidence from individuals with congenital and acquired neuropathy. Exp Brain Res 2021; 239:1203-1221. [PMID: 33580292 PMCID: PMC8068692 DOI: 10.1007/s00221-021-06037-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/09/2021] [Indexed: 12/26/2022]
Abstract
The degree to which mental representations of the body can be established and maintained without somatosensory input remains unclear. We contrast two "deafferented" adults, one who acquired large fibre sensory loss as an adult (IW) and another who was born without somatosensation (KS). We compared their responses to those of matched controls in three perceptual tasks: first accuracy of their mental image of their hands (assessed by testing recognition of correct hand length/width ratio in distorted photographs and by locating landmarks on the unseen hand); then accuracy of arm length judgements (assessed by judgement of reaching distance), and finally, we tested for an attentional bias towards peri-personal space (assessed by reaction times to visual target presentation). We hypothesised that IW would demonstrate responses consistent with him accessing conscious knowledge, whereas KS might show evidence of responses dependent on non-conscious mechanisms. In the first two experiments, both participants were able to give consistent responses about hand shape and arm length, but IW displayed a better awareness of hand shape than KS (and controls). KS demonstrated poorer spatial accuracy in reporting hand landmarks than both IW and controls, and appears to have less awareness of her hands. Reach distance was overestimated by both IW and KS, as it was for controls; the precision of their judgements was slightly lower than that of the controls. In the attentional task, IW showed no reaction time differences across conditions in the visual detection task, unlike controls, suggesting that he has no peri-personal bias of attention. In contrast, KS did show target location-dependent modulation of reaction times, when her hands were visible. We suggest that both IW and KS can access a conscious body image, although its accuracy may reflect their different experience of hand action. Acquired sensory loss has deprived IW of any subconscious body awareness, but the congenital absence of somatosensation may have led to its partial replacement by a form of visual proprioception in KS.
Collapse
Affiliation(s)
| | - Daria Afanasyeva
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jonathan D Cole
- Centre of Postgraduate Research and Education, Bournemouth University, Bournemouth, UK
| | - Peggy Mason
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
37
|
Schendel K, Herron TJ, Curran B, Dronkers NF, Ivanova M, Baldo J. Case study: A selective tactile naming deficit for letters and numbers due to interhemispheric disconnection. Neuroimage Clin 2021; 30:102614. [PMID: 33770548 PMCID: PMC8022252 DOI: 10.1016/j.nicl.2021.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022]
Abstract
The role of white matter pathways in cognition is a topic of active investigation that is vital to both the fields of clinical neurology and cognitive neuroscience. White matter pathways provide critical connectivity amongst numerous specialized brain regions thereby enabling higher level cognition. While the effects of dissections and lesions of the corpus callosum have been reported, it is less understood how unilateral focal white matter lesions may impact cognitive processes. Here, we report a unique case study in which a small left lateralized stroke in the white matter adjacent to the body of the corpus callosum selectively impaired the ability to name letters and numbers presented to the ipsilesional, left hand. Naming of letters, numbers and objects was tested in both the visual and tactile modalities in both hands. Diffusion-weighted imaging showed a marked reduction in white matter pathway integrity through the body of the corpus callosum. Clinically, this case highlights the significant impact that a focal white matter lesion can have on higher-level cognition, specifically the integration of verbal and tactile information. Moreover, this case adds to prior reports on tactile agnosia by including DTI imaging data and emphasizing the role that white matter pathways through the body of the corpus callosum play in integrating tactile input from the right hemisphere with verbal naming capabilities of the left hemisphere. Finally, the findings also provoke fresh insight into alternative strategies for rehabilitating cognitive functioning when structural connectivity may be compromised.
Collapse
Affiliation(s)
| | | | - Brian Curran
- VA Northern California Health Care System, United States
| | | | | | - Juliana Baldo
- VA Northern California Health Care System, United States
| |
Collapse
|
38
|
Coello Y, Cartaud A. The Interrelation Between Peripersonal Action Space and Interpersonal Social Space: Psychophysiological Evidence and Clinical Implications. Front Hum Neurosci 2021; 15:636124. [PMID: 33732124 PMCID: PMC7959827 DOI: 10.3389/fnhum.2021.636124] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
The peripersonal space is an adaptive and flexible interface between the body and the environment that fulfills a dual-motor function: preparing the body for voluntary object-oriented actions to interact with incentive stimuli and preparing the body for defensive responses when facing potentially harmful stimuli. In this position article, we provide arguments for the sensorimotor rooting of the peripersonal space representation and highlight the variables that contribute to its flexible and adaptive characteristics. We also demonstrate that peripersonal space represents a mediation zone between the body and the environment contributing to not only the control of goal-directed actions but also the organization of social life. The whole of the data presented and discussed led us to the proposal of a new theoretical framework linking the peripersonal action space and the interpersonal social space and we highlight how this theoretical framework can account for social behaviors in populations with socio-emotional deficits.
Collapse
Affiliation(s)
- Yann Coello
- Univ. Lille, CNRS, Lille, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Lille, France
| | - Alice Cartaud
- Univ. Lille, CNRS, Lille, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Lille, France
| |
Collapse
|
39
|
An auditory hand-proximity effect: The auditory Simon effect is enhanced near the hands. Psychon Bull Rev 2021; 28:853-861. [PMID: 33469849 DOI: 10.3758/s13423-020-01860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 11/08/2022]
Abstract
Visual processing near the hands is altered compared with stimuli far from the hands. Here, we aimed to test whether this alteration can be found in auditory processing. Participants were required to perform an auditory Simon task either with their hands close to the loudspeakers or far from the loudspeakers. Two experiments consistently showed that the auditory Simon effect was enhanced when the hands were close to the speakers compared with far from the speakers. This is consistent with previous findings of an enhanced visual Simon effect near the hands. Furthermore, the hand-proximity effects in auditory and visual Simon tasks (an enhanced Simon effect near hands compared with far from hands) were comparable, indicating hand-proximity effect is reliable across visual and auditory modalities. Thus, the present study extended the hand-proximity effect from vision to audition by showing that the auditory Simon effect was enhanced near the hands compared with far from the hands.
Collapse
|
40
|
Wirth R, Foerster A, Kunde W, Pfister R. Design choices: Empirical recommendations for designing two-dimensional finger-tracking experiments. Behav Res Methods 2020; 52:2394-2416. [PMID: 32415558 PMCID: PMC7725755 DOI: 10.3758/s13428-020-01409-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The continuous tracking of mouse or finger movements has become an increasingly popular research method for investigating cognitive and motivational processes such as decision-making, action-planning, and executive functions. In the present paper, we evaluate and discuss how apparently trivial design choices of researchers may impact participants' behavior and, consequently, a study's results. We first provide a thorough comparison of mouse- and finger-tracking setups on the basis of a Simon task. We then vary a comprehensive set of design factors, including spatial layout, movement extent, time of stimulus onset, size of the target areas, and hit detection in a finger-tracking variant of this task. We explore the impact of these variations on a broad spectrum of movement parameters that are typically used to describe movement trajectories. Based on our findings, we suggest several recommendations for best practice that avoid some of the pitfalls of the methodology. Keeping these recommendations in mind will allow for informed decisions when planning and conducting future tracking experiments.
Collapse
Affiliation(s)
- Robert Wirth
- Department of Psychology, Julius-Maximilians-University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
| | - Anna Foerster
- Department of Psychology, Julius-Maximilians-University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Wilfried Kunde
- Department of Psychology, Julius-Maximilians-University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Roland Pfister
- Department of Psychology, Julius-Maximilians-University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| |
Collapse
|
41
|
Tseng P, Lo YH. Altered EEG Signal Complexity Induced by Hand Proximity: A Multiscale Entropy Approach. Front Neurosci 2020; 14:562132. [PMID: 33132825 PMCID: PMC7578420 DOI: 10.3389/fnins.2020.562132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022] Open
Abstract
Visual short-term memory (VSTM) is an important cognitive function that acts as a temporary storage for visual information. Previous studies have shown that VSTM capacity can be modulated by the location of one’s hands, where hand proximity enhances neural processing and memory of nearby visual stimuli. The present study used traditional event-related potentials (ERP) along with multiscale entropy (MSE) analysis to shed light on the neural mechanism(s) behind such near-hand effect. Participants’ electroencephalogram (EEG) data were recorded as they performed a VSTM task with their hands either proximal or distal to the display. ERP analysis showed altered memory processing in the 400–700 ms time window during memory retrieval period. Importantly, MSE analysis also showed significant EEG difference between hand proximal and distal conditions between scales 10 to 20, and such difference is clustered around the right parietal cortex – a region that is involved in VSTM processing and bimodal hand-eye integration. The implications of higher MSE time scale in the parietal cortex are discussed in the context of signal complexity and its possible relation to cognitive processing. To our knowledge, this study provides the first investigation using MSE to characterize the temporal characteristics and signal complexity behind the effect of hand proximity.
Collapse
Affiliation(s)
- Philip Tseng
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Center, TMU-Shuang Ho Hospital, New Taipei City, Taiwan.,Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hui Lo
- Brain and Consciousness Research Center, TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
42
|
Damsgaard L, Elleby SR, Gejl AK, Malling ASB, Bugge A, Lundbye-Jensen J, Poulsen M, Nielsen G, Wienecke J. Motor-Enriched Encoding Can Improve Children's Early Letter Recognition. Front Psychol 2020; 11:1207. [PMID: 32676043 PMCID: PMC7333458 DOI: 10.3389/fpsyg.2020.01207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
It is not known how effective specific types of motor-enriched activities are at improving academic learning and early reading skills in children. The aim of this study was to investigate whether fine or gross motor enrichment during a single session of recognizing letters “b”/“d” can improve within-session performance or delayed retention the following day in comparison to letter recognition practice without movement. Furthermore, the aim was to investigate children’s motivation to perform the specific tasks. We used a randomized controlled intervention study-design to investigate the effect of 10-min motor-enriched “b”/“d” letter training on children’s ability to recognize the letters “b” and “d” (n = 127, mean age = 7.61 ± SD = 0.44 years) acutely, and in a delayed retention test. Three groups were included: a fine motor-enriched group (FME), a gross motor-enriched group (GME), that received 10 min of “b” and “d” training with enriched gestures (fine or gross motor movements, respectively), and a control group (CON), which received non motor-enriched “b”/“d” training. The children’s ability to recognize “b” and “d” were tested before (T0), immediately after (T1), and one day after the intervention (T2) using a “b”/“d” Recognition Test. Based on a generalized linear mixed model a significant group-time interaction was found for accuracy in the “b”/“d” Recognition Test. Specifically, FME improved their ability to recognize “b”/“d” at post intervention (T0→T1, p = 0.008) and one-day retention test (T0→T2, p < 0.001) more than CON. There was no significant difference in change between GME and CON. For reaction time there were no significant global interaction effects observed. However, planned post hoc comparisons revealed a significant difference between GME and CON immediately after the intervention (T0→T1, p = 0.03). The children’s motivation-score was higher for FME and GME compared to CON (FME-CON: p = 0.01; GME-CON: p = 0.01). The study demonstrated that fine motor-enriched training improved children’s letter recognition more than non motor activities. Both types of motor training were accompanied by higher intrinsic motivation for the children compared to the non motor training group. The study suggests a new method for motor-enriched letter learning and future research should investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Linn Damsgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Rejkjær Elleby
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anne Kær Gejl
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Anna Bugge
- Department of Midwifery, Physiotherapy, Occupational Therapy and Psychomotor Therapy, University College Copenhagen, Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mads Poulsen
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark
| | - Glen Nielsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Wienecke
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Peck TC, Tutar A. The Impact of a Self-Avatar, Hand Collocation, and Hand Proximity on Embodiment and Stroop Interference. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1964-1971. [PMID: 32070969 DOI: 10.1109/tvcg.2020.2973061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the effects of hand proximity to objects and tasks is critical for hand-held and near-hand objects. Even though self-avatars have been shown to be beneficial for various tasks in virtual environments, little research has investigated the effect of avatar hand proximity on working memory. This paper presents a between-participants user study investigating the effects of self-avatars and physical hand proximity on a common working memory task, the Stroop interference task. Results show that participants felt embodied when a self-avatar was in the scene, and that the subjective level of embodiment decreased when a participant's hands were not collocated with the avatar's hands. Furthermore, a participant's physical hand placement was significantly related to Stroop interference: proximal hands produced a significant increase in accuracy compared to non-proximal hands. Surprisingly, Stroop interference was not mediated by the existence of a self-avatar or level of embodiment.
Collapse
|
44
|
Agauas SJ, Jacoby M, Thomas LE. Near-hand effects are robust: Three OSF pre-registered replications of visual biases in perihand space. VISUAL COGNITION 2020. [DOI: 10.1080/13506285.2020.1751763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Stephen J. Agauas
- Center for Visual and Cognitive Neuroscience, Department of Psychology, North Dakota State University, Fargo, ND, USA
| | - Morgan Jacoby
- Center for Visual and Cognitive Neuroscience, Department of Psychology, North Dakota State University, Fargo, ND, USA
| | - Laura E. Thomas
- Center for Visual and Cognitive Neuroscience, Department of Psychology, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
45
|
Bamford LE, Klassen NR, Karl JM. Faster recognition of graspable targets defined by orientation in a visual search task. Exp Brain Res 2020; 238:905-916. [PMID: 32170332 DOI: 10.1007/s00221-020-05769-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Peri-hand space is the area surrounding the hand. Objects within this space may be subject to increased visuospatial perception, increased attentional prioritization, and slower attentional disengagement compared to more distal objects. This may result from kinesthetic and visual feedback about the location of the hand that projects from the reach and grasp networks of the dorsal visual stream back to occipital visual areas, which in turn, refines cortical visual processing that can subsequently guide skilled motor actions. Thus, we hypothesized that visual stimuli that afford action, which are known to potentiate activity in the dorsal visual stream, would be associated with greater alterations in visual processing when presented near the hand. To test this, participants held their right hand near or far from a touchscreen that presented a visual array containing a single target object that differed from 11 distractor objects by orientation only. The target objects and their accompanying distractors either strongly afforded grasping or did not. Participants identified the target among the distractors by reaching out and touching it with their left index finger while eye-tracking was used to measure visual search times, target recognition times, and search accuracy. The results failed to support the theory of enhanced visual processing of graspable objects near the hand as participants were faster at recognizing graspable compared to non-graspable targets, regardless of the position of the right hand. The results are discussed in relation to the idea that, in addition to potentiating appropriate motor responses, object affordances may also potentiate early visual processes necessary for object recognition.
Collapse
Affiliation(s)
- Lindsay E Bamford
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada.
| | - Nikola R Klassen
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada
| | - Jenni M Karl
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada
| |
Collapse
|
46
|
Diminished distractor exclusion for magnocellular features near the hand. Exp Brain Res 2020; 238:761-770. [DOI: 10.1007/s00221-020-05752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/12/2020] [Indexed: 11/24/2022]
|
47
|
Cuberovic I, Gill A, Resnik LJ, Tyler DJ, Graczyk EL. Learning of Artificial Sensation Through Long-Term Home Use of a Sensory-Enabled Prosthesis. Front Neurosci 2019; 13:853. [PMID: 31496931 PMCID: PMC6712074 DOI: 10.3389/fnins.2019.00853] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Upper limb prostheses are specialized tools, and skilled operation is learned by amputees over time. Recently, neural prostheses using implanted peripheral nerve interfaces have enabled advances in artificial somatosensory feedback that can improve prosthesis outcomes. However, the effect of sensory learning on artificial somatosensation has not been studied, despite its known influence on intact somatosensation and analogous neuroprostheses. Sensory learning involves changes in the perception and interpretation of sensory feedback and may further influence functional and psychosocial outcomes. In this mixed methods case study, we examined how passive learning over 115 days of home use of a neural-connected, sensory-enabled prosthetic hand influenced perception of artificial sensory feedback in a participant with transradial amputation. We examined perceptual changes both within individual days of use and across the duration of the study. At both time scales, the reported percept locations became significantly more aligned with prosthesis sensor locations, and the phantom limb became significantly more extended toward the prosthesis position. Similarly, the participant’s ratings of intensity, naturalness, and contact touch significantly increased, while his ratings of vibration and movement significantly decreased across-days for tactile channels. These sensory changes likely resulted from engagement of cortical plasticity mechanisms as the participant learned to use the artificial sensory feedback. We also assessed psychosocial and functional outcomes through surveys and interviews, and found that self-efficacy, perceived function, prosthesis embodiment, social touch, body image, and prosthesis efficiency improved significantly. These outcomes typically improved within the first month of home use, demonstrating rapid benefits of artificial sensation. Participant interviews indicated that the naturalness of the experience and engagement with the prosthesis increased throughout the study, suggesting that artificial somatosensation may decrease prosthesis abandonment. Our data showed that prosthesis embodiment was intricately related to naturalness and phantom limb perception, and that learning the artificial sensation may have modified the body schema. As another indicator of successfully learning to use artificial sensation, the participant reported the emergence of stereognosis later in the study. This study provides the first evidence that artificial somatosensation can undergo similar learning processes as intact sensation and highlights the importance of sensory restoration in prostheses.
Collapse
Affiliation(s)
- Ivana Cuberovic
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Anisha Gill
- Providence VA Medical Center, Providence, RI, United States
| | - Linda J Resnik
- Providence VA Medical Center, Providence, RI, United States.,Department of Health Services, Policy, and Practice, Brown University, Providence, RI, United States
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Emily L Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
48
|
Abstract
Recent evidence has demonstrated that observers experience visual-processing biases in perihand space that may be tied to the hands' relevance for grasping actions. Our previous work suggested that when the hands are positioned to afford a power-grasp action, observers show increased temporal sensitivity that could aid with fast and forceful action, whereas when the hands are instead at the ready to perform a precision-grasp action, observers show enhanced spatial sensitivity that benefits delicate and detail-oriented actions. In the present investigation we seek to extend these previous findings by examining how object affordances may interact with hand positioning to shape visual biases in perihand space. Across three experiments, we examined how long participants took to perform a change detection task on photos of real objects, while we manipulated hand position (near/far from display), grasp posture (power/precision), and change type (orientation/identity). Participants viewed objects that afforded either a power grasp or a precision grasp, or were ungraspable. Although we were unable to uncover evidence of altered vision in perihand space in our first experiment, mirroring previous findings, in Experiments 2 and 3 our participants showed grasp-dependent biases near the hands when detecting changes to target objects that afforded a power grasp. Interestingly, ungraspable target objects were not subject to the same perihand space biases. Taken together, our results suggest that the influence of hand position on change detection performance is mediated not only by the hands' grasp posture, but also by a target object's affordances for grasping.
Collapse
|
49
|
Prolonged subjective duration near the hands: Effects of hand proximity on temporal reproduction. Psychon Bull Rev 2019; 26:1303-1309. [PMID: 31144134 DOI: 10.3758/s13423-019-01614-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been reported that human visual perception and attention are altered when the hands are nearby. Previous studies indicate that placing hands near stimuli enhances a subject's temporal sensitivity. However, few researchers have investigated the effect of hand proximity on reproducing temporal duration. Moreover, the delayed attentional disengagement and enhanced magnocellular visual processing theories provide two distinct predictions of the hand proximity effect on reproduced duration. Delayed attentional disengagement near hands will cause prolonged reproductions, whereas enhanced magnocellular visual processing predicts more accurate reproduction in the peri-hand space. The current study is the first to show that a short temporal duration is reproduced for a longer period near hands than far from hands in the dual-responding-hand condition, and this hand-proximity effect is attenuated in the single-responding-hand condition. These findings together with two further studies suggest that reproducing a temporal duration is modulated by hand proximity through prolonged attentional switch.
Collapse
|
50
|
Balslev D, Odoj B. Distorted gaze direction input to attentional priority map in spatial neglect. Neuropsychologia 2019; 131:119-128. [PMID: 31128129 PMCID: PMC6667735 DOI: 10.1016/j.neuropsychologia.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 11/30/2022]
Abstract
A contribution of the gaze signals to the attention imbalance in spatial neglect is presumed. Direct evidence however, is still lacking. Theoretical models for spatial attention posit an internal representation of locations that are selected in the competition for neural processing resources – an attentional priority map. Following up on our recent research showing an imbalance in the allocation of attention after an oculoproprioceptive perturbation in healthy volunteers, we investigated here whether the lesion in spatial neglect distorts the gaze direction input to this representation. Information about one's own direction of gaze is critical for the coordinate transformation between retinotopic and hand proprioceptive locations. To assess the gaze direction input to the attentional priority map, patients with left spatial neglect performed a cross-modal attention task in their normal, right hemispace. They discriminated visual targets whose location was cued by the patient's right index finger hidden from view. The locus of attention in response to the cue was defined as the location with the largest decrease in reaction time for visual discrimination in the presence vs. absence of the cue. In two control groups consisting of healthy elderly and patients with a right hemisphere lesion without neglect, the loci of attention were at the exact location of the cues. In contrast, neglect patients allocated attention at 0.5⁰-2⁰ rightward of the finger for all tested locations. A control task using reaching to visual targets in the absence of visual hand feedback ruled out a general error in visual localization. These findings demonstrate that in spatial neglect the gaze direction input to the attentional priority map is distorted. This observation supports the emerging view that attention and gaze are coupled and suggests that interventions that target gaze signals could alleviate spatial neglect. The mechanisms of left inattention in spatial neglect are incompletely understood. Attention loci in visual space are displaced to the right of somatosensory cues. This indicates a distorted gaze direction input to the attentional priority map. Distorted gaze direction input could lead to left-right attention imbalance.
Collapse
Affiliation(s)
- Daniela Balslev
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY169JP, UK.
| | - Bartholomäus Odoj
- Center of Neurology, Division of Neuropsychology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, 72076, Germany; Department of Psychology, University of Copenhagen, Copenhagen, DK, 1353, Denmark
| |
Collapse
|