1
|
Melgar-Locatelli S, Mañas-Padilla MC, Gavito AL, Rivera P, Rodríguez-Pérez C, Castilla-Ortega E, Castro-Zavala A. Sex-specific variations in spatial reference memory acquisition: Insights from a comprehensive behavioral test battery in C57BL/6JRj mice. Behav Brain Res 2024; 459:114806. [PMID: 38086456 DOI: 10.1016/j.bbr.2023.114806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Sex differences in declarative memory are described in humans, revealing a female or a male advantage depending on the task. Specifically, spatial memory (i.e., spatial navigation) is typically most efficient in men. This sexual dimorphism has been replicated in male rats but not clearly in mice. In this study, sex differences in spatial memory were assessed in thirty-six C57BL/6 J mice (Janvier Labs; i.e., C57BL/6JRj mice), a widely used mouse substrain. Both male and female mice (12 weeks-old) were subjected to standard behavioral paradigms: the elevated plus maze, the open field test, the novel object and place tests, the forced swimming test, and the water maze test for spatial navigation. Across assessment, no sex differences were found in measures of locomotor activity, emotional and behavioral responses, and object and place recognition memories. In the water maze, male mice were faster in learning the platform location in the reference memory training and used more spatial strategies during the first training days. However, both sexes reached a similar asymptotic performance and performed similarly in the probe trial for long-term memory consolidation. No sex differences were found in the cued training, platform inversion sessions, or spatial working memory sessions. Hippocampal expression of the brain-derived neurotrophic factor was similar in both sexes, either in basal conditions or after performing the behavioral training battery. Importantly, female mice were not more variable than males in any measure analyzed. This outcome encourages the investigation of sex differences in animal models and the usefulness of including female mice in behavioral research.
Collapse
Affiliation(s)
- Sonia Melgar-Locatelli
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
| | - M Carmen Mañas-Padilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
| | - Ana L Gavito
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Spain
| | - Celia Rodríguez-Pérez
- Departamento de Nutrición y Bromatología, Universidad de Granada, Campus Universitario de Cartuja, Spain; Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix', Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain.
| | - Adriana Castro-Zavala
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain.
| |
Collapse
|
2
|
Yassi FB, Ngoupaye GT, Kom TD, Tonleu GD, Adassi MB, Foutsop AF, Ngo Bum E. Capparis sepiaria's root bark aqueous lyophilisate shows antiamnesic properties on scopolamine induce cognitive impairment in mice. IBRO Neurosci Rep 2023; 15:355-363. [PMID: 38034861 PMCID: PMC10681918 DOI: 10.1016/j.ibneur.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Capparis sepiaria (Capparaceae) is a plant used in African traditional medicine to treat psychiatic disorders. The aim of this study was to assess the anti-amnesic effect of aqueous lyophilisate of the root bark of Capparis sepiaria (C. sepiaria) on scopolamine-induced animal model of memory impairment using Swiss albino adult mice of both sexes. Memory integrity was assessed by Morris water Maze test, Novel Object Recognition (NOR) and Object-location memory (OLT) tasks were used to assess behavioural components of memory processes and learning. Malondialdehyde (MDA), reduced glutathione (GSH), NO levels and catalase were used to assess oxidative stress while acethylcholinesterase activity was used to evaluate acetylcholine activity in the hippocampus tissues. The quantitative phytochemistry and acute toxicity of the roots of C. sepiaria were also evaluated. The aqueous lyophilisate of C. sepiaria at doses of 10 mg/kg and 40 mg/kg significantly increased the discrimination index in the Morris Water Maze and the objet location tasks. The aqueous lyophilisate of C. sepiaria significantly increased hippocampal GSH and catalase levels and decreased hippocampal MDA, NO levels and achetylcholinesterase (AChE) activities. The aqueous lyophilisate of C. sepiaria showed no acute toxicity with a LD50 > 5000 mg/kg, and revealed a content of flavonoids, tannins and phenols. These results suggest that C. sepiaria improve memory impairment induced by scopolamine and therefore possess antiamnesic properties. These properties would result from a modulation of cholinergic neurotransmission as well as an antioxidant activity of the plant.
Collapse
Affiliation(s)
- Francis Bray Yassi
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Gwladys Temkou Ngoupaye
- Department of Animal Biology, Animal Physiology and Phytopharmacology Research Unit, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Tatiana Diebo Kom
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Gabriella Dongmo Tonleu
- Department of Animal Biology, Animal Physiology and Phytopharmacology Research Unit, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Maxwell Blesdel Adassi
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Aurelien Fossueh Foutsop
- Department of Animal Biology, Animal Physiology and Phytopharmacology Research Unit, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| |
Collapse
|
3
|
Gee CC, Steffen R, Kievit FM. An updated Barnes maze protocol for assessing the outcome of controlled cortical impact mouse models of traumatic brain injury. J Neurosci Methods 2023; 392:109866. [PMID: 37116622 PMCID: PMC10205663 DOI: 10.1016/j.jneumeth.2023.109866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND The Barnes Maze (BM) is a common method of testing cognitive deficits in rodents. Adapting BM protocols for specific neurological disorders could potentially aid in more effective testing, reduce research time, and help decrease variability between studies. NEW METHOD We tested differences an updated, shortened BM consisting of 6 days, 3 trials per day, only covering the equivalent of the spatial acquisition week BM protocol and a probe trial day consisting of one trial (7 total days). RESULTS Kaplan-Meier plots of escape percentage as a function of total latency showed a significant difference between control and CCI mice in the updated protocol on days 3 through 6. Additionally, probe trial data showed significant differences in primary latency, primary errors, and returns to goal. COMPARISON WITH EXISTING METHODS We tested differences between a traditional 5 days per week, 2 trials per day, spatial acquisition and reversal weeks BM protocol (12 total days with probe trials) with an updated 6-day BM protocol (7 total days with probe trial). In the probe trial, the updated protocol control mice showed an over 5-fold decrease in primary latency and primary errors and a 4.6-fold increase in returns to goal compared to the traditional protocol. Additionally, mice in both protocols performed similarly on a trial-by-trial basis suggesting that the changes made for the updated protocol increased learning and memory and was not simply an easier task. CONCLUSION The updated BM protocol showed an improved ability to distinguish between control and CCI mice and promoted improved and more consistent learning for both the control and CCI groups.
Collapse
Affiliation(s)
- Connor C Gee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 262 Morrison Center, 4240 Fair St, Lincoln, NE 68583, USA
| | - Rylie Steffen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 262 Morrison Center, 4240 Fair St, Lincoln, NE 68583, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 262 Morrison Center, 4240 Fair St, Lincoln, NE 68583, USA.
| |
Collapse
|
4
|
Zhang Q, Li M, Wang Z, Chen F. Sex differences in learning and performing the Go/NoGo tasks. Biol Sex Differ 2023; 14:25. [PMID: 37138307 PMCID: PMC10155458 DOI: 10.1186/s13293-023-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The quality of learning and post-learning performances is critical for daily life. The behavioral flexibility is equally important for adapting the changing circumstances. The learning process requires repeated practices, which enhances prompt and proper behavioral responses, in turn, which promotes habits formation as well. Despite the well-documented sex differences in learning and performances, contradictory results were reported. A possible cause might be a systematic analysis due to specific research interests, regardless of the continuity of natural acquisition process. Here, we investigate the potential sex differences in learning, performances and adjustments of habited behaviors with regular and reversal Go/NoGo tasks. METHODS Both male and female Sprague-Dawley rats were used in this study. All rats were trained for a regular rodent Go/NoGo task and a subset of rats were trained for a reversal rodent Go/NoGo task, both with strict elimination criteria. The behavioral performance data were stored in PC for off-line analysis. Multiple behavioral indices were analyzed for both passed and retired rats. RESULTS The ability of learning the regular the reversal Go/NoGo tasks was similar for both male and female rats, however, the female rats took longer time to master the task principles in later stages for both tasks. In the regular Go/NoGo task, the female rats spent more time on completing the trial in performance optimization phases, which implied female rats were more cautious than male rats. Along with the progression of training, both male and female rats developed Go-preference strategies to perform the regular Go/NoGo task, which induced failure to meet the setting success criteria. The retired male rats exhibited shorter RTs and MTs than the retired female rats after developing Go-preference. Moreover, the time needed to complete the Go trials was significantly prolonged for male rats in the reversal Go/NoGo task. CONCLUSIONS Overall, we conclude that distinctive strategies were employed in performing Go/NoGo tasks for both male and female rats. Male rats required less time to stabilize the performance in behavioral optimization phase. In addition, male rats were more accurate in estimating time elapsing. In contrast, female rats took more cautious considerations in performing the task, through which minimal influences were manifested in the reversal version of task.
Collapse
Affiliation(s)
- Qianwen Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxi Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiru Wang
- The Institute of Brain Functional Genomics, East China Normal University, Shanghai, China.
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Chambers LC, Yen M, Jackson WF, Dorrance AM. Female mice are protected from impaired parenchymal arteriolar TRPV4 function and impaired cognition in hypertension. Am J Physiol Heart Circ Physiol 2023; 324:H581-H597. [PMID: 36897751 PMCID: PMC10069981 DOI: 10.1152/ajpheart.00481.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
Hypertension is a leading modifiable risk factor for cerebral small vessel disease. Our laboratory has shown that endothelium-dependent dilation in cerebral parenchymal arterioles (PAs) is dependent on transient receptor potential vanilloid 4 (TRPV4) activation, and this pathway is impaired in hypertension. This impaired dilation is associated with cognitive deficits and neuroinflammation. Epidemiological evidence suggests that women with midlife hypertension have an increased dementia risk that does not exist in age-matched men, though the mechanisms responsible for this are unclear. This study aimed to determine the sex differences in young, hypertensive mice to serve as a foundation for future determination of sex differences at midlife. We tested the hypothesis that young hypertensive female mice would be protected from the impaired TRPV4-mediated PA dilation and cognitive dysfunction observed in male mice. Angiotensin II (ANG II)-filled osmotic minipumps (800 ng/kg/min, 4 wk) were implanted in 16- to 19-wk-old male C56BL/6 mice. Age-matched female mice received either 800 ng/kg/min or 1,200 ng/kg/min ANG II. Sham-operated mice served as controls. Systolic blood pressure was elevated in ANG II-treated male mice and in 1,200 ng ANG II-treated female mice versus sex-matched shams. PA dilation in response to the TRPV4 agonist GSK1016790A (10-9-10-5 M) was impaired in hypertensive male mice, which was associated with cognitive dysfunction and neuroinflammation, reproducing our previous findings. Hypertensive female mice exhibited normal TRPV4-mediated PA dilation and were cognitively intact. Female mice also showed fewer signs of neuroinflammation than male mice. Determining the sex differences in cerebrovascular health in hypertension is critical for developing effective therapeutic strategies for women.NEW & NOTEWORTHY Vascular dementia is a significant public health concern, and the effect of biological sex on dementia development is not well understood. TRPV4 channels are essential regulators of cerebral parenchymal arteriolar function and cognition. Hypertension impairs TRPV4-mediated dilation and memory in male rodents. Data presented here suggest female sex protects against impaired TRPV4 dilation and cognitive dysfunction during hypertension. These data advance our understanding of the influence of biological sex on cerebrovascular health in hypertension.
Collapse
Affiliation(s)
- Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
| | - Martina Yen
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
| | - William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, Michigan, United States
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
6
|
Guez-Barber D, Eisch AJ, Cristancho AG. Developmental Brain Injury and Social Determinants of Health: Opportunities to Combine Preclinical Models for Mechanistic Insights into Recovery. Dev Neurosci 2023; 45:255-267. [PMID: 37080174 PMCID: PMC10614252 DOI: 10.1159/000530745] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Epidemiological studies show that social determinants of health are among the strongest factors associated with developmental outcomes after prenatal and perinatal brain injuries, even when controlling for the severity of the initial injury. Elevated socioeconomic status and a higher level of parental education correlate with improved neurologic function after premature birth. Conversely, children experiencing early life adversity have worse outcomes after developmental brain injuries. Animal models have provided vital insight into mechanisms perturbed by developmental brain injuries, which have indicated directions for novel therapeutics or interventions. Animal models have also been used to learn how social environments affect brain maturation through enriched environments and early adverse conditions. We recognize animal models cannot fully recapitulate human social circumstances. However, we posit that mechanistic studies combining models of developmental brain injuries and early life social environments will provide insight into pathways important for recovery. Some studies combining enriched environments with neonatal hypoxic injury models have shown improvements in developmental outcomes, but further studies are needed to understand the mechanisms underlying these improvements. By contrast, there have been more limited studies of the effects of adverse conditions on developmental brain injury extent and recovery. Uncovering the biological underpinnings for early life social experiences has translational relevance, enabling the development of novel strategies to improve outcomes through lifelong treatment. With the emergence of new technologies to analyze subtle molecular and behavioral phenotypes, here we discuss the opportunities for combining animal models of developmental brain injury with social construct models to deconvolute the complex interactions between injury, recovery, and social inequity.
Collapse
Affiliation(s)
- Danielle Guez-Barber
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana G. Cristancho
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Lista S, Vergallo A, Teipel SJ, Lemercier P, Giorgi FS, Gabelle A, Garaci F, Mercuri NB, Babiloni C, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Hampel H, Nisticò R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer's disease: relevance for precision medicine in neurodegenerative diseases. Ageing Res Rev 2023; 84:101819. [PMID: 36526257 DOI: 10.1016/j.arr.2022.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.
Collapse
Affiliation(s)
- Simone Lista
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France; School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Audrey Gabelle
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, Italy
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
8
|
Loizzo S, Rimondini R, Campana G, Fortuna A, Maroccia Z, Martorana A, Koch G. C57BL/6J and DBA/2J strains present opposite sex differences in flash visual evoked potential latency: A possible confusing factor in gender studies on neurological diseases' transgenic models. Brain Res Bull 2021; 176:18-24. [PMID: 34391824 DOI: 10.1016/j.brainresbull.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The cholinergic neurotransmitter system in the brain is crucial in processing information related to cognitive, behavioral, and motor functions. A cholinergic dysfunction has been correctly described as one of the primary causes of neurodegenerative diseases. Differences in levels of acetylcholine or expression and function of receptors in selected brain areas have been indicated as one of the causes of sexual dimorphism in neurotransmission. However, variability in results among studies based on different mice strains could affect conclusions on this topic. Visual evoked potentials (VEPs) of male and female DBA/2J and C57BL/6J mice, which are two of the most common strains backgrounds in use for developing transgenic mice models of neurological diseases, have been studied. Effects induced by a single low dose of physostigmine have also been performed to evaluate the cholinergic system involvement. VEPs responses to luminous stimuli in C57BL/6J mice have shown a consistently lower latency than in DBA/2J, confirming the previous observation of strain differences in cholinergic function. Interestingly, strains present an opposite-sex difference in VEP latency not apparently related to sensitivity to physostigmine. These findings point at paying extreme attention to the choice of the genetic background of the animal model, especially in those basic and pre-clinical experiments that involve visual functioning.
Collapse
Affiliation(s)
- Stefano Loizzo
- Department of Cardiovascular, Endocrine-Metabolic and Ageing-Associated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Gabriele Campana
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Fortuna
- Department of Cardiovascular, Endocrine-Metabolic and Ageing-Associated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Zaira Maroccia
- Department of Cardiovascular, Endocrine-Metabolic and Ageing-Associated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
9
|
Zhao X, Tran H, DeRosa H, Roderick RC, Kentner AC. Hidden talents: Poly (I:C)-induced maternal immune activation improves mouse visual discrimination performance and reversal learning in a sex-dependent manner. GENES BRAIN AND BEHAVIOR 2021; 20:e12755. [PMID: 34056840 DOI: 10.1111/gbb.12755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022]
Abstract
While there is a strong focus on the negative consequences of maternal immune activation (MIA) on developing brains, very little attention is directed towards potential advantages of early life challenges. In this study, we utilized a polyinosine-polycytidylic acid (poly(I:C)) MIA model to test visual pairwise discrimination (PD) and reversal learning (RL) in mice using touchscreen technology. Significant sex differences emerged in that MIA reduced the latency for males to make a correct choice in the PD task while females reached criterion sooner, made fewer errors, and utilized fewer correction trials in RL compared to saline controls. These surprising improvements were accompanied by the sex-specific upregulation of several genes critical to cognitive functioning, indicative of compensatory plasticity in response to MIA. In contrast, when exposed to a 'two-hit' stress model (MIA + loss of the social component of environmental enrichment [EE]), mice did not display anhedonia but required an increased number of PD and RL correction trials. These animals also had significant reductions of CamK2a mRNA in the prefrontal cortex. Appropriate functioning of synaptic plasticity, via mediators such as this protein kinase and others, are critical for behavioral flexibility. Although EE has been implicated in, delaying the appearance of symptoms associated with certain brain disorders, these findings are in line with evidence that it also makes individuals more vulnerable to its loss. Overall, with the right 'dose', early life stress exposure can confer at least some functional advantages, which are lost when the number or magnitude of these exposures become too great.
Collapse
Affiliation(s)
- Xin Zhao
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Hieu Tran
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Holly DeRosa
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Ryland C Roderick
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Sex differences shape zebrafish performance in a battery of anxiety tests and in response to acute scopolamine treatment. Neurosci Lett 2021; 759:135993. [PMID: 34058290 DOI: 10.1016/j.neulet.2021.135993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Sex differences influence human and animal behavioral and pharmacological responses. The zebrafish (Danio rerio) is a powerful, popular model system in neuroscience and drug screening. However, the impact of zebrafish sex differences on their behavior and drug responses remains poorly understood. Here, we evaluate baseline anxiety-like behavior in adult male and female zebrafish, and its changes following an acute 30-min exposure to 800-μM scopolamine, a common psychoactive anticholinergic drug. Overall, we report high baseline anxiety-like behavior and more individual variability in locomotion in female zebrafish, as well as distinct, sex-specific (anxiolytic-like in females and anxiogenic-like in males) effects of scopolamine. Collectively, these findings reinforce the growing importance of zebrafish models for studying how both individual and sex differences shape behavioral and pharmacological responses.
Collapse
|
11
|
Saré RM, Lemons A, Smith CB. Behavior Testing in Rodents: Highlighting Potential Confounds Affecting Variability and Reproducibility. Brain Sci 2021; 11:brainsci11040522. [PMID: 33924037 PMCID: PMC8073298 DOI: 10.3390/brainsci11040522] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Rodent models of brain disorders including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases are essential for increasing our understanding of underlying pathology and for preclinical testing of potential treatments. Some of the most important outcome measures in such studies are behavioral. Unfortunately, reports from different labs are often conflicting, and preclinical studies in rodent models are not often corroborated in human trials. There are many well-established tests for assessing various behavioral readouts, but subtle aspects can influence measurements. Features such as housing conditions, conditions of testing, and the sex and strain of the animals can all have effects on tests of behavior. In the conduct of behavior testing, it is important to keep these features in mind to ensure the reliability and reproducibility of results. In this review, we highlight factors that we and others have encountered that can influence behavioral measures. Our goal is to increase awareness of factors that can affect behavior in rodents and to emphasize the need for detailed reporting of methods.
Collapse
|
12
|
Tseng CT, Brougher J, Gaulding SJ, Hassan BS, Thorn CA. Vagus nerve stimulation promotes cortical reorganization and reduces task-dependent calorie intake in male and female rats. Brain Res 2020; 1748:147099. [DOI: 10.1016/j.brainres.2020.147099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022]
|
13
|
Arakawa H. Sensorimotor developmental factors influencing the performance of laboratory rodents on learning and memory. Behav Brain Res 2019; 375:112140. [PMID: 31401145 PMCID: PMC6741784 DOI: 10.1016/j.bbr.2019.112140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Behavioral studies in animal models have advanced our knowledge of brain function and the neural mechanisms of human diseases. Commonly used laboratory rodents, such as mice and rats, provide a useful tool for studying the behaviors and mechanisms associated with learning and memory processes which are cooperatively regulated by multiple underlying factors, including sensory and motor performance and emotional/defense innate components. Each of these factors shows unique ontogeny and governs the sustainment of behavioral performance in learning tasks, and thus, understanding the integrative processes of behavioral development are crucial in the accurate interpretation of the functional meaning of learning and memory behaviors expressed in commonly employed behavioral test paradigms. In this review, we will summarize the major findings in the developmental processes of rodent behavior on the basis of the emergence of fundamental components for sustaining learning and memory behaviors. Briefly, most sensory modalities (except for vision) and motor abilities are functional at the juvenile stage, in which several defensive components, including active and passive defensive strategies and risk assessment behavior, emerge. Sex differences are detectable from the juvenile stage through adulthood and are considerable factors that influence behavioral tests. The test paradigms addressed in this review include associative learning (with an emphasis on fear conditioning), spatial learning, and recognition. This basic background information will aid in accurately performing behavioral studies in laboratory rodents and will therefore contribute to reducing inappropriate interpretations of behavioral data and further advance research on learning and memory in rodent models.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St. HSF2/S251, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Adelöf J, Ross JM, Lazic SE, Zetterberg M, Wiseman J, Hernebring M. Conclusions from a behavioral aging study on male and female F2 hybrid mice on age-related behavior, buoyancy in water-based tests, and an ethical method to assess lifespan. Aging (Albany NY) 2019; 11:7150-7168. [PMID: 31509518 PMCID: PMC6756906 DOI: 10.18632/aging.102242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Due to strain-specific behavioral idiosyncrasies, inbred mouse strains are suboptimal research models for behavioral aging studies. The aim of this study is to determine age-related behavioral changes of F2 hybrid C57BL/6NxBALB/c male and female mice. Lifespan was followed (nmales=48, nfemales=51) and cohorts of mature adult (7 months), middle-aged (15 months), and old mice (22 months of age; n=7-12 per group) were assessed regarding open-field activity, exploration, passive avoidance learning/memory, and depressive-like behavior. We found that both males and females demonstrated decreased exploratory behavior with age, while memory and depressive-like behavior were maintained. Females exhibited enhanced depressive-like behavior compared to males; however, a correlation between fat mass and swimming activity in the test directly accounted for 30-46% of this behavioral sex difference. In addition, we suggest a method to qualitatively estimate natural lifespan from survival analyses in which animals with signs of pain or severe disease are euthanized. This is, to our knowledge, the first behavioral study to consider both sex and aging in hybrid mice. We here define decreased exploratory behavior as a conserved hallmark of aging independent of sex, highlight the effect of buoyancy in water tests, and provide a method to assay lifespan with reduced animal suffering.
Collapse
Affiliation(s)
- Julia Adelöf
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden.,Discovery Biology, Discovery Sciences, R&D AstraZeneca, Gothenburg, Mölndal 43153, Sweden
| | - Jaime M Ross
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02215, USA.,Department of Neuroscience, Biomedicum, Karolinska Institutet, Stockholm 17165, Sweden
| | - Stanley E Lazic
- Quantitative Biology, Discovery Sciences, R&D AstraZeneca, Cambridge CB4 0WG, UK.,Current address: Prioris.ai Inc., Ottawa K2P 2N2, Canada
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - John Wiseman
- Discovery Biology, Discovery Sciences, R&D AstraZeneca, Gothenburg, Mölndal 43153, Sweden
| | - Malin Hernebring
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden.,Discovery Biology, Discovery Sciences, R&D AstraZeneca, Gothenburg, Mölndal 43153, Sweden
| |
Collapse
|
15
|
Thonnard D, Callaerts-Vegh Z, D'Hooge R. Differential effects of post-training scopolamine on spatial and non-spatial learning tasks in mice. Brain Res Bull 2019; 152:52-62. [PMID: 31302239 DOI: 10.1016/j.brainresbull.2019.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022]
Abstract
Muscarinic antagonist scopolamine has been extensively used to model amnesia in lab rodents, but most studies have focused on the effects of pre-training scopolamine administration. Here, we examined post-training scopolamine administration in C57BL/6JRj mice. Learning was assessed in three different procedures: odour discrimination in a digging paradigm, visual discrimination in a touchscreen-based setup, and spatial learning in the Morris water maze. Scopolamine administration affected performance in the odour discrimination task. More specifically, scopolamine decreased perseverance, which facilitated reversal learning. Similar results were obtained in the visual discrimination task, but scopolamine did not affect performance in the spatial learning task. It is unlikely that these results can be explained by non-memory-related cognitive effects (e.g., attention), non-cognitive behaviours (e.g., locomotor activity) or peripheral side-effects (e.g., mydriasis). They likely relate to the various neuropharmacological actions of scopolamine.
Collapse
Affiliation(s)
- David Thonnard
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium.
| |
Collapse
|
16
|
Assessment of spatial learning and memory in the Barnes maze task in rodents-methodological consideration. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:1-18. [PMID: 30470917 PMCID: PMC6311199 DOI: 10.1007/s00210-018-1589-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023]
Abstract
Among the methods valuable for assessing spatial learning and memory impairments in rodents, the Barnes maze (BM) task deserves special attention. It is based on the assumption that the animal placed into the aversive environment should learn and remember the location of an escape box located below the surface of the platform. Different phases of the task allow to measure spatial learning, memory retrieval, and cognitive flexibility. Herein, we summarize current knowledge about the BM procedure, its variations and critical parameters measured in the task. We highlight confounding factors which should be taken into account when conducting BM task, discussing briefly its advantages and disadvantages. We then propose an extended version of the BM protocol which allows to measure different aspects of spatial learning and memory in rodents. We believe that this review will help to standardize the BM methodology across the laboratories and eventually make the results comparable.
Collapse
|
17
|
Koss WA, Frick KM. Sex differences in hippocampal function. J Neurosci Res 2016; 95:539-562. [DOI: 10.1002/jnr.23864] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Wendy A. Koss
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| | - Karyn M. Frick
- Department of Psychology; University of Wisconsin-Milwaukee; Milwaukee Wisconsin
| |
Collapse
|
18
|
Melnikova T, Park D, Becker L, Lee D, Cho E, Sayyida N, Tian J, Bandeen-Roche K, Borchelt DR, Savonenko AV. Sex-related dimorphism in dentate gyrus atrophy and behavioral phenotypes in an inducible tTa:APPsi transgenic model of Alzheimer's disease. Neurobiol Dis 2016; 96:171-185. [PMID: 27569580 DOI: 10.1016/j.nbd.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 07/07/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Sex differences are a well-known phenomenon in Alzheimer's disease (AD), with women having a higher risk for AD than men. Many AD mouse models display a similar sex-dependent pattern, with females showing earlier cognitive deficits and more severe neuropathology than males. However, whether those differences are relevant to human disease is unclear. Here we show that in AD mouse models that overexpress amyloid precursor protein (APP) under control of the prion protein promoter (PrP), female transgenic mice have higher APP expression than males, complicating interpretations of the role of sex-related factors in such models. By contrast, in a tTa:APPsi model, in which APP expression is driven by the tetracycline transactivator (tTa) from the CaMKIIα promoter, there are no sex-related differences in expression or processing of APP. In addition, the levels of Aβ dimers and tetramers, as well as Aβ peptide accumulation, are similar between sexes. Behavioral testing demonstrated that both male and female tTa:APPsi mice develop age-dependent deficits in spatial recognition memory and conditional freezing to context. These cognitive deficits were accompanied by habituation-associated hyperlocomotion and startle hyper-reactivity. Significant sex-related dimorphisms were observed, due to females showing earlier onsets of the deficits in conditioned freezing and hyperlocomotion. In addition, tTa:APPsi males but not females demonstrated a lack of novelty-induced activation. Both males and females showed atrophy of the dentate gyrus (DG) of the dorsal hippocampus, associated with widening of the pyramidal layer of the CA1 area in both sexes. Ventral DG was preserved. Sex-related differences were limited to the DG, with females showing more advanced degeneration than males. Collectively, our data show that the tTa:APPsi model is characterized by a lack of sex-related differences in APP expression, making this model useful in deciphering the mechanisms of sex differences in AD pathogenesis. Sex-related dimorphisms observed in this model under conditions of equal APP expression between sexes suggest a higher sensitivity of females to the effects of APP and/or Aβ production.
Collapse
Affiliation(s)
- Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - DaMin Park
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Lauren Becker
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Deidre Lee
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Eugenia Cho
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Nuzhat Sayyida
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Jing Tian
- Department of Biostatistics, School of Public Health, The Johns Hopkins University, 615 N Wolfe St E3527, Baltimore, MD 21205, USA.
| | - Karen Bandeen-Roche
- Department of Biostatistics, School of Public Health, The Johns Hopkins University, 615 N Wolfe St E3527, Baltimore, MD 21205, USA.
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 100 Newell Drive, Gainesville, FL 32610, USA.
| | - Alena V Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Mamczarz J, Pescrille JD, Gavrushenko L, Burke RD, Fawcett WP, DeTolla LJ, Chen H, Pereira EFR, Albuquerque EX. Spatial learning impairment in prepubertal guinea pigs prenatally exposed to the organophosphorus pesticide chlorpyrifos: Toxicological implications. Neurotoxicology 2016; 56:17-28. [PMID: 27296654 DOI: 10.1016/j.neuro.2016.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022]
Abstract
Exposure of the developing brain to chlorpyrifos (CPF), an organophosphorus (OP) pesticide used extensively in agriculture worldwide, has been associated with increased prevalence of cognitive deficits in children, particularly boys. The present study was designed to test the hypothesis that cognitive deficits induced by prenatal exposure to sub-acute doses of CPF can be reproduced in precocial small species. To address this hypothesis, pregnant guinea pigs were injected daily with CPF (25mg/kg,s.c.) or vehicle (peanut oil) for 10days starting on presumed gestation day (GD) 53-55. Offspring were born around GD 65, weaned on postnatal day (PND) 20, and subjected to behavioral tests starting around PND 30. On the day of birth, butyrylcholinesterase (BuChE), an OP bioscavenger used as a biomarker of OP exposures, and acetylcholinesterase (AChE), a major molecular target of OP compounds, were significantly inhibited in the blood of CPF-exposed offspring. In their brains, BuChE, but not AChE, was significantly inhibited. Prenatal CPF exposure had no significant effect on locomotor activity or on locomotor habituation, a form of non-associative memory assessed in open fields. Spatial navigation in the Morris water maze (MWM) was found to be sexually dimorphic among guinea pigs, with males outperforming females. Prenatal CPF exposure impaired spatial learning more significantly among male than female guinea pigs and, consequently, reduced the sexual dimorphism of the task. The results presented here, which strongly support the test hypothesis, reveal that the guinea pig is a valuable animal model for preclinical assessment of the developmental neurotoxicity of OP pesticides. These findings are far reaching as they lay the groundwork for future studies aimed at identifying therapeutic interventions to treat and/or prevent the neurotoxic effects of CPF in the developing brain.
Collapse
Affiliation(s)
- Jacek Mamczarz
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph D Pescrille
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Lisa Gavrushenko
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Richard D Burke
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - William P Fawcett
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Louis J DeTolla
- Program of Comparative Medicine and Departments of Pathology and Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Hegang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edna F R Pereira
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edson X Albuquerque
- Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
20
|
Kapadia M, Xu J, Sakic B. The water maze paradigm in experimental studies of chronic cognitive disorders: Theory, protocols, analysis, and inference. Neurosci Biobehav Rev 2016; 68:195-217. [PMID: 27229758 DOI: 10.1016/j.neubiorev.2016.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023]
Abstract
An instrumental step in assessing the validity of animal models of chronic cognitive disorders is to document disease-related deficits in learning/memory capacity. The water maze (WM) is a popular paradigm because of its low cost, relatively simple protocol and short procedure time. Despite being broadly accepted as a spatial learning task, inference of generalized, bona fide "cognitive" dysfunction can be challenging because task accomplishment is also reliant on non-cognitive processes. We review theoretical background, testing procedures, confounding factors, as well as approaches to data analysis and interpretation. We also describe an extended protocol that has proven useful in detecting early performance deficits in murine models of neuropsychiatric lupus and Alzheimer's disease. Lastly, we highlight the need for standardization of inferential criteria on "cognitive" dysfunction in experimental rodents and exclusion of preparations of a limited scientific merit. A deeper appreciation for the multifactorial nature of performance in WM may also help to reveal other deficits that herald the onset of neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Minesh Kapadia
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada
| | - Josie Xu
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada
| | - Boris Sakic
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
21
|
Tucker LB, Fu AH, McCabe JT. Performance of Male and Female C57BL/6J Mice on Motor and Cognitive Tasks Commonly Used in Pre-Clinical Traumatic Brain Injury Research. J Neurotrauma 2015; 33:880-94. [PMID: 25951234 DOI: 10.1089/neu.2015.3977] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To date, clinical trials have failed to find an effective therapy for victims of traumatic brain injury (TBI) who live with motor, cognitive, and psychiatric complaints. Pre-clinical investigators are now encouraged to include male and female subjects in all translational research, which is of particular interest in the field of neurotrauma given that circulating female hormones (progesterone and estrogen) have been demonstrated to exert neuroprotective effects. To determine whether behavior of male and female C57BL6/J mice is differentially impaired by TBI, male and cycling female mice were injured by controlled cortical impact and tested for several weeks with functional assessments commonly employed in pre-clinical research. We found that cognitive and motor impairments post-TBI, as measured by the Morris water maze (MWM) and rotarod, respectively, were largely equivalent in male and female animals. However, spatial working memory, assessed by the y-maze, was poorer in female mice. Female mice were generally more active, as evidenced by greater distance traveled in the first exposure to the open field, greater distance in the y-maze, and faster swimming speeds in the MWM. Statistical analysis showed that variability in all behavioral data was no greater in cycling female mice than it was in male mice. These data all suggest that with careful selection of tests, procedures, and measurements, both sexes can be included in translational TBI research without concern for effect of hormones on functional impairments or behavioral variability.
Collapse
Affiliation(s)
- Laura B Tucker
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Amanda H Fu
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Joseph T McCabe
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|
22
|
Tanaka T, Ogata A, Inomata A, Nakae D. Effects of different types of bedding materials on behavioral development in laboratory CD1 mice (Mus musculus). ACTA ACUST UNITED AC 2014; 101:393-401. [PMID: 25283888 DOI: 10.1002/bdrb.21129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/18/2014] [Indexed: 02/05/2023]
Abstract
Male and female mice were housed in cages, containing different types of bedding materials (wood flakes or pulp chips), from 4 weeks of age in the F0 generation to 11 weeks of age in the F1 generation; selected reproductive and neurobehavioral parameters were measured in the F1 generation. There were no adverse effects of bedding materials on litter size, litter weight, or sex ratios at the time of birth. With regard to behavioral development parameters, bedding materials did not influence any variables (p > 0.05) in both sexes. Regarding exploratory behavior in the F1 generation, number of defecations significantly varied (p = 0.0203) with bedding materials in males at 3 weeks of age. The number of horizontal activities also significantly varied (p = 0.0342) with bedding materials in males at 8 weeks of age. Multiple-T water maze performance data indicated that the time required was significantly shortened across trials in pulp chips group than wood flakes group in males (p = 0.0211). Moreover, all spontaneous behavior variables in males significantly varied with bedding materials, particularly the average time of movement was significantly different (p = 0.0037) in distance between parallel lines of types of bedding materials in the F1 generation. The present study shows that bedding materials influence the neurobehavioral development in mice.
Collapse
Affiliation(s)
- Toyohito Tanaka
- Division of Toxicology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Elmarzouki H, Aboussaleh Y, Bitiktas S, Suer C, Artis AS, Dolu N, Ahami A. Effects of cold exposure on behavioral and electrophysiological parameters related with hippocampal function in rats. Front Cell Neurosci 2014; 8:253. [PMID: 25225472 PMCID: PMC4150461 DOI: 10.3389/fncel.2014.00253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/10/2014] [Indexed: 11/13/2022] Open
Abstract
Aim: Behavioral and mental changes may occur in people exposed to cold stress by decreasing their work efficiency and their mental capacity while increasing the number of accidents on the job site. The goal of this study was to explore the effect of cold stress in spatial learning performance excitability and LTP. Materials and Methods: Three to four month old rats were randomly divided into four groups to form a control group and a cold stress group for each sex. The groups of cold stressed animals were placed in a cold room ambient temperature of 4°C for 2 h day. Adrenal glands and body weight (g) were recorded in control and stressed rats during the cold exposure. Spatial learning (acquisition phase) and memory (probe trial) were tested in the Morris water maze (MWM) immediately after daily exposure. Latency to locate the hidden platform, distance moved (DM), mean distance to platform, swim speed (SS) and time spent in the platform quadrant were compared between genders and treatments. Field potential recordings were made, under urethane anesthesia, from the dentate gyrus (DG) granule-cell layer, with stimulation of the medial perforant pathway 2 h after the probe trial. This study examined spatial memory as measured by MWM performance and hippocampal long-term potentiation (LTP) in the DG after exposure to cold in a repeated stress condition for 2 h/day for 5 days. Results: The cold-exposed female rats needed less time to find the hidden platform on day 1 (43.0 ± 13.9 s vs. 63.2 ± 13.2 s), day 2 (18.2 ± 8.4 s vs. 40.9 ± 12.2 s) and on day 4 (8.0 ± 2.1 s vs. 17.2 ± 7.0 s) while cold-exposed male rats showed a decreased escape latency (EL) on day 1 only (37.3 ± 12.5 s vs. 75.4 ± 13.1 s). Cold-exposed male rats spent less time in the target quadrant (30.08 ± 6.11%) than the control male rats (37.33 ± 8.89%). Two hour cold exposure decreased population spike (PS) potentiation during both induction (218.3 ± 21.6 vs. 304.5 ± 18.8%) and maintenance intervals (193.9 ± 24.5 vs. 276.6 ± 25.4%) in male rats. Meanwhile cold exposure did not affect the body weight (C: 221 ± 2.5 vs. S: 222 ± 1.7) but it impacts the adrenal gland relative weight (S: 27.1 ± 1.8 mg vs. C: 26.2 ± 1.4 mg). Conclusion: Overall, the results show that repeated cold exposure can selectively improve spatial learning in adult female rats, but impaired retention memory for platform location in male rats. It is possible that impaired LTP underlies some of the impaired retention memory caused by cold exposure in the male rats.
Collapse
Affiliation(s)
- Hajar Elmarzouki
- Laboratory of Nutrition and Health, Department of Biology, Faculty of Science, Ibn Tofail University Kenitra, Morocco
| | - Youssef Aboussaleh
- Laboratory of Nutrition and Health, Department of Biology, Faculty of Science, Ibn Tofail University Kenitra, Morocco
| | - Soner Bitiktas
- Department of Physiology, Erciyes University School of Medicine Kayseri, Turkey
| | - Cem Suer
- Department of Physiology, Erciyes University School of Medicine Kayseri, Turkey
| | - A Seda Artis
- Department of Physiology, Medeniyet University School of Medicine İstanbul, Turkey
| | - Nazan Dolu
- Department of Physiology, Erciyes University School of Medicine Kayseri, Turkey
| | - Ahmed Ahami
- Laboratory of Nutrition and Health, Department of Biology, Faculty of Science, Ibn Tofail University Kenitra, Morocco
| |
Collapse
|
24
|
Joel D, Yankelevitch-Yahav R. Reconceptualizing sex, brain and psychopathology: interaction, interaction, interaction. Br J Pharmacol 2014; 171:4620-35. [PMID: 24758640 DOI: 10.1111/bph.12732] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 03/22/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023] Open
Abstract
In recent years there has been a growing recognition of the influence of sex on brain structure and function, and in relation, on the susceptibility, prevalence and response to treatment of psychiatric disorders. Most theories and descriptions of the effects of sex on the brain are dominated by an analogy to the current interpretation of the effects of sex on the reproductive system, according to which sex is a divergence system that exerts a unitary, overriding and serial effect on the form of other systems. We shortly summarize different lines of evidence that contradict aspects of this analogy. The new view that emerges from these data is of sex as a complex system whose different components interact with one another and with other systems to affect body and brain. The paradigm shift that this understanding calls for is from thinking of sex in terms of sexual dimorphism and sex differences, to thinking of sex in terms of its interactions with other factors and processes. Our review of data obtained from animal models of psychopathology clearly reveals the need for such a paradigmatic shift, because in the field of animal behaviour whether a sex difference exists and its direction depend on the interaction of many factors including, species, strain, age, specific test employed and a multitude of environmental factors. We conclude by explaining how the new conceptualization can account for sex differences in psychopathology.
Collapse
Affiliation(s)
- D Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
25
|
Nagapan G, Meng Goh Y, Shameha Abdul Razak I, Nesaretnam K, Ebrahimi M. The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats. BMC Neurosci 2013; 14:77. [PMID: 23902378 PMCID: PMC3750608 DOI: 10.1186/1471-2202-14-77] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 07/29/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. RESULTS Results showed that prenatal and postnatal TRF supplementation increased the brain (4-6 fold increase) and plasma α-tocotrienol (0.8 fold increase) levels in male off-springs. There is also notably better cognitive performance based on the Morris water maze test among these male off-springs. CONCLUSION Based on these results, it is concluded that prenatal and postnatal TRF supplementation improved cognitive function development in male progeny rats.
Collapse
Affiliation(s)
- Gowri Nagapan
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute for Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Intan Shameha Abdul Razak
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kalanithi Nesaretnam
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mahdi Ebrahimi
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Kim J, Chakrabarty P, Hanna A, March A, Dickson DW, Borchelt DR, Golde T, Janus C. Normal cognition in transgenic BRI2-Aβ mice. Mol Neurodegener 2013; 8:15. [PMID: 23663320 PMCID: PMC3658944 DOI: 10.1186/1750-1326-8-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent research in Alzheimer's disease (AD) field has been focused on the potential role of the amyloid-β protein that is derived from the transmembrane amyloid precursor protein (APP) in directly mediating cognitive impairment in AD. Transgenic mouse models overexpressing APP develop robust AD-like amyloid pathology in the brain and show various levels of cognitive decline. In the present study, we examined the cognition of the BRI2-Aβ transgenic mouse model in which secreted extracellular Aβ1-40, Aβ1-42 or both Aβ1-40/Aβ1-42 peptides are generated from the BRI-Aβ fusion proteins encoded by the transgenes. BRI2-Aβ mice produce high levels of Aβ peptides and BRI2-Aβ1-42 mice develop amyloid pathology that is similar to the pathology observed in mutant human APP transgenic models. RESULTS Using established behavioral tests that reveal deficits in APP transgenic models, BRI2-Aβ1-42 mice showed completely intact cognitive performance at ages both pre and post amyloid plaque formation. BRI2-Aβ mice producing Aβ1-40 or both peptides were also cognitively intact. CONCLUSIONS These data indicate that high levels of Aβ1-40 or Aβ1-42, or both produced in the absence of APP overexpression do not reproduce memory deficits observed in APP transgenic mouse models. This outcome is supportive of recent data suggesting that APP processing derivatives or the overexpression of full length APP may contribute to cognitive decline in APP transgenic mouse models. Alternatively, Aβ aggregates may impact cognition by a mechanism that is not fully recapitulated in these BRI2-Aβ mouse models.
Collapse
Affiliation(s)
- Jungsu Kim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Current address: Department of Neurology, Washington University School of Medicine, 660 S. Euclid Box 811, St. Louis, MO 63110, USA
| | - Paramita Chakrabarty
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA
| | - Amanda Hanna
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Amelia March
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - David R Borchelt
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA
| | - Todd Golde
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA
| | - Christopher Janus
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA
| |
Collapse
|
27
|
Liu P, Huang Z, Gu N. Exposure to silver nanoparticles does not affect cognitive outcome or hippocampal neurogenesis in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 87:124-130. [PMID: 23146669 DOI: 10.1016/j.ecoenv.2012.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/12/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
Due to the unique antimicrobial and many other broad spectrum biotechnological advantages, silver nanoparticles (Ag-NPs) are widely used in biomedical and general applications. However, the current knowledge about the impact of Ag-NPs on the central nervous system is extremely limited. To assess whether Ag-NPs influence spatial cognition and adult hippocampal neurogenesis, male ICR mice received intraperitoneal administration of Ag-NPs (10, 25, and 50 mg/kg body weight) or vehicle every day for 7 days. At the end of this time period, Morris water maze test was performed for the spatial learning and memory. Subsequently, mice were injected with bromodeoxyuridine and sacrificed 1 day or 28 days after the last injection in order to evaluate cell proliferation, survival and differentiation in the hippocampus. Results showed that compared with the control group, both reference memory and working memory were not impaired in Ag-NPs exposed groups. In addition, no differences were observed in hippocampal progenitor proliferation, new born cell survival or differentiation. These data reveal that exposure to Ag-NPs does not affect spatial cognition or hippocampal neurogenesis in mice.
Collapse
Affiliation(s)
- Peidang Liu
- Department of Toxicology, School of Public Health, Southeast University, Nanjing 210009, PR China
| | | | | |
Collapse
|
28
|
Bayless DW, Darling JS, Stout WJ, Daniel JM. Sex differences in attentional processes in adult rats as measured by performance on the 5-choice serial reaction time task. Behav Brain Res 2012; 235:48-54. [DOI: 10.1016/j.bbr.2012.07.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
29
|
Seasonal and sex differences in the hippocampus of a wild rodent. Behav Brain Res 2012; 236:131-138. [PMID: 22974551 DOI: 10.1016/j.bbr.2012.08.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/29/2012] [Accepted: 08/28/2012] [Indexed: 01/14/2023]
Abstract
Studies across and within species suggest that hippocampus size is sexually dimorphic in polygamous species, but not in monogamous species. Although hippocampal volume varies with sex, season and mating system, few studies have simultaneously tested for sex and seasonal differences. Here, we test for sex and seasonal differences in the hippocampal volume of wild Richardson's ground squirrels (Urocitellus richardsonii), a polygamous species that lives in matrilineal, kin-based social groups and has profound sex differences in behavior. Based on the behavior and ecology of this species, we predicted that males would have a significantly larger hippocampus than females and that the hippocampus would be largest in males during the breeding season. Analyses of both absolute and relative volumes of the hippocampus yielded a significant difference between the sexes and seasons as well as an interaction between the two such that non-breeding males have significantly larger hippocampal volumes than breeding males or females from either season. Dentate gyrus, CA1 and CA3 subfield volumes were generally larger in the non-breeding season and in males, but no significant interaction effects were detected. This sex and seasonal variation in hippocampal volume is likely the result of their social organization and male-only food caching behavior during the non-breeding season. The demonstration of a sex and seasonal variation in hippocampal volume suggests that Richardson's ground squirrel may be a useful model for understanding hippocampal plasticity within a natural context.
Collapse
|
30
|
Fernandes-Santos L, Patti CL, Zanin KA, Fernandes HA, Tufik S, Andersen ML, Frussa-Filho R. Sleep deprivation impairs emotional memory retrieval in mice: influence of sex. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:216-22. [PMID: 22521334 DOI: 10.1016/j.pnpbp.2012.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/24/2022]
Abstract
The deleterious effects of paradoxical sleep deprivation on memory processes are well documented. However, non-selective sleep deprivation occurs more commonly in modern society and thus represents a better translational model. We have recently reported that acute total sleep deprivation (TSD) for 6 h immediately before testing impaired performance of male mice in the plus-maze discriminative avoidance task (PM-DAT) and in the passive avoidance task (PAT). In order to extend these findings to females, we examined the effect of (pre-test) TSD on the retrieval of different memory tasks in both male and female mice. Animals were tested using 3 distinct memory models: 1) conditioning fear context (CFC), 2) PAT and 3) PM-DAT. In all experiments, animals were totally sleep-deprived by the gentle interference method for 6h immediately before being tested. In the CFC task and the PAT, TSD induced memory impairment regardless of sex. In PM-DAT, the memory impairing effects of TSD were greater in females. Collectively, our results confirm the impairing effect of TSD on emotional memory retrieval and demonstrate that it can be higher in female mice depending on the memory task evaluated.
Collapse
Affiliation(s)
- Luciano Fernandes-Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Napoleão de Barros, 925, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Woods R, Vallero RO, Golub MS, Suarez JK, Ta TA, Yasui DH, Chi LH, Kostyniak PJ, Pessah IN, Berman RF, LaSalle JM. Long-lived epigenetic interactions between perinatal PBDE exposure and Mecp2308 mutation. Hum Mol Genet 2012; 21:2399-411. [PMID: 22343140 DOI: 10.1093/hmg/dds046] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The widespread use of persistent organic polybrominated diphenyl ethers (PBDEs) as commercial flame retardants has raised concern about potential long-lived effects on human health. Epigenetic mechanisms, such as DNA methylation, are responsive to environmental influences and have long-lasting consequences. Autism spectrum disorders (ASDs) have complex neurodevelopmental origins whereby both genetic and environmental factors are implicated. Rett syndrome is an X-linked ASD caused by mutations in the epigenetic factor methyl-CpG binding protein 2 (MECP2). In this study, an Mecp2 truncation mutant mouse (Mecp2(308)) with social behavioral defects was used to explore the long-lasting effects of PBDE exposure in a genetically and epigenetically susceptible model. Mecp2(308/+) dams were perinatally exposed daily to 2,2',4,4'-tetrabromodiphenyl ether 47 (BDE-47) and bred to wild-type C57BL/6J males, and the offspring of each sex and genotype were examined for developmental, behavioral and epigenetic outcomes. Perinatal BDE-47 exposure negatively impacted fertility of Mecp2(308/+) dams and preweaning weights of females. Global hypomethylation of adult brain DNA was observed specifically in female offspring perinatally exposed to BDE-47 and it coincided with reduced sociability in a genotype-independent manner. A reversing interaction of Mecp2 genotype on BDE-47 exposure was observed in a short-term memory test of social novelty that corresponded to increased Dnmt3a levels specifically in BDE-47-exposed Mecp2(308/+) offspring. In contrast, learning and long-term memory in the Morris water maze was impaired by BDE-47 exposure in female Mecp2(308/+) offspring. These results demonstrate that a genetic and environmental interaction relevant to social and cognitive behaviors shows sexual dimorphism, epigenetic dysregulation, compensatory molecular mechanisms and specific behavioral deficits.
Collapse
Affiliation(s)
- Rima Woods
- Medical Microbiology and Immunology and Rowe Program in Human Genetics, UC Davis School of Medicine, One Shields Avenue,Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
O’Leary TP, Brown RE. The effects of apparatus design and test procedure on learning and memory performance of C57BL/6J mice on the Barnes maze. J Neurosci Methods 2012; 203:315-24. [DOI: 10.1016/j.jneumeth.2011.09.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/24/2011] [Accepted: 09/26/2011] [Indexed: 11/29/2022]
|
33
|
Relevance of stress and female sex hormones for emotion and cognition. Cell Mol Neurobiol 2011; 32:725-35. [PMID: 22113371 PMCID: PMC3377901 DOI: 10.1007/s10571-011-9774-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/14/2011] [Indexed: 01/16/2023]
Abstract
There are clear sex differences in incidence and onset of stress-related and other psychiatric disorders in humans. Yet, rodent models for psychiatric disorders are predominantly based on male animals. The strongest argument for not using female rodents is their estrous cycle and the fluctuating sex hormones per phase which multiplies the number of animals to be tested. Here, we will discuss studies focused on sex differences in emotionality and cognitive abilities in experimental conditions with and without stress. First, female sex hormones such as estrogens and progesterone affect emotions and cognition, contributing to sex differences in behavior. Second, females respond differently to stress than males which might be related to the phase of the estrous cycle. For example, female rats and mice express less anxiety than males in a novel environment. Proestrus females are less anxious than females in the other estrous phases. Third, males perform in spatial tasks superior to females. However, while stress impairs spatial memory in males, females improve their spatial abilities, depending on the task and kind of stressor. We conclude that the differences in emotion, cognition and responses to stress between males and females over the different phases of the estrous cycle should be used in animal models for stress-related psychiatric disorders.
Collapse
|
34
|
Bougarel L, Guitton J, Zimmer L, Vaugeois JM, El Yacoubi M. Behaviour of a genetic mouse model of depression in the learned helplessness paradigm. Psychopharmacology (Berl) 2011; 215:595-605. [PMID: 21340472 DOI: 10.1007/s00213-011-2218-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
RATIONALE H/Rouen (displaying a helpless phenotype in the tail suspension test) mice exhibiting features of depressive disorders and NH/Rouen (displaying non-helpless phenotype) mice were previously created through behavioural screening and selective breeding. Learned helplessness (LH), in which footshock stress induces a coping deficit, models some aspects of depression in rodents, but so far, fewer LH studies have been performed in mice than in rats. OBJECTIVES To study H/Rouen and NH/Rouen in the LH paradigm. RESULTS When CD1 mice were submitted to footshock with various training durations and shock intensities, the most suitable parameters to induce a behavioural deficit were 0.3 mA and four training sessions. A significantly longer latency to escape shocks was found in male H/Rouen mice compared to male NH/Rouen mice. On the other hand, once shocked, NH/Rouen mice showed more severe coping deficits than H/Rouen mice. In addition, a sub-chronic treatment with fluoxetine lacked efficacy in NH/Rouen mice, whereas it improved performances in H/Rouen mice. We also found that a shock reminder at day 8, subsequent to inescapable shocks, maintained helplessness for 20 days. Finally, female H/Rouen mice responded to chronic fluoxetine administration after 10 days of treatment, while a 20-day treatment was necessary to improve the behavioural deficit in H/Rouen male mice. CONCLUSION H/Rouen and NH/Rouen lines displayed different despair-related behaviour in the LH paradigm. Fluoxetine had beneficial effects after sub-chronic or chronic but not acute treatment of H/Rouen mice, thus providing a pharmacological validation of the protocols.
Collapse
Affiliation(s)
- Laure Bougarel
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292/INSERM U1028 Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | | | | | | | | |
Collapse
|
35
|
Iñiguez SD, Charntikov S, Baella SA, Herbert MS, Bolaños-Guzmán CA, Crawford CA. Post-training cocaine exposure facilitates spatial memory consolidation in C57BL/6 mice. Hippocampus 2011; 22:802-13. [PMID: 21542053 DOI: 10.1002/hipo.20941] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 01/07/2023]
Abstract
In this study, we examined the ability of post-training injections of cocaine to facilitate spatial memory performance using the Morris water maze (MWM). We also investigated the role that hippocampal protein kinase A (PKA) and extracellular signal-regulated kinase 1/2 (ERK) signaling may play in cocaine-mediated spatial memory consolidation processes. Male and female C57BL/6 mice were first trained in a MWM task (eight consecutive trials) then injected with cocaine (0, 1.25, 2.5, 5, or 20 mg/kg), and memory for the platform location was retested after a 24 h delay. Cocaine had a dose-dependent effect on spatial memory performance because only the mice receiving 2.5 mg/kg cocaine displayed a significant reduction in latency to locate the platform. No sex differences in MWM performance were observed; however, females showed higher hippocampal levels of PKA when compared with males. A second experiment demonstrated that 2.5 mg/kg cocaine enhanced MWM performance only when administered within 2, but not 4 h after spatial training. We also found that cocaine (2.5 mg/kg) increased ERK2 phosphorylation within the hippocampus and one of its downstream targets (ribosomal S6 kinase), a mechanism that may be responsible, at least in part, for the enhanced cocaine-mediated spatial memory performance. Overall, these data demonstrate that a low dose of cocaine (2.5 mg/kg) administered within 2 h after training facilitates MWM spatial memory performance in C57BL/6 mice.
Collapse
Affiliation(s)
- Sergio D Iñiguez
- Department of Psychology, California State University, San Bernardino, California 92407, USA
| | | | | | | | | | | |
Collapse
|
36
|
Gaskill BN, Lucas JR, Pajor EA, Garner JP. Little and often? Maintaining continued performance in an automated T-maze for mice. Behav Processes 2010; 86:272-8. [PMID: 21187130 DOI: 10.1016/j.beproc.2010.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 11/19/2022]
Abstract
Operant and maze tasks in mice are limited by the small number of trials possible in a session before mice lose motivation. We hypothesized that by manipulating reward size and session length, motivation, and hence performance, would be maintained in an automated T-maze. We predicted that larger rewards and shorter sessions would improve acquisition; and smaller rewards and shorter sessions would maintain higher and less variable performance. Eighteen C57BL/6J mice (9 per sex) acquired (criterion 8/10 correct) and performed a spatial discrimination, with one of 3 reward sizes (.02, .04, or .08 g) and one of 3 session schedules (15, 30, or 45 min sessions). Each mouse had a total of 360 min of access to the maze per night, for two nights, and averaged 190 trials. Analysis used split-plot GLM with contrasts testing for linear effects. Acquisition of the discrimination was unaffected by reward size or session length/interval. After-criterion average performance improved as reward size decreased. After-criterion variability in performance was also affected. Variability increased as reward size increased. Session length/interval did not affect any outcome. We conclude that an automated maze, with suitable reward sizes, can sustain performance with low variability, at 5-10 times faster than traditional methods.
Collapse
Affiliation(s)
- Brianna N Gaskill
- Animal Behavior and Well-Being Group, Department of Animal Science, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
37
|
Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci Biobehav Rev 2010; 34:1307-50. [DOI: 10.1016/j.neubiorev.2010.04.001] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 01/06/2023]
|
38
|
Barnes maze performance of Octodon degus is gender dependent. Behav Brain Res 2010; 212:159-67. [PMID: 20385170 DOI: 10.1016/j.bbr.2010.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 11/22/2022]
Abstract
Gender differences in spatial navigation have been widely reported in nocturnal rodent species. Here, for the first time we report gender differences in spatial learning and memory of Octodon degus, a long-lived diurnal hystricomorph rodent. In the present study, 16 months old male and female O. degus were tested in the 18-holes Barnes circular maze. The acquisition session consisted of four daily 4 min trials, during 10 days. Seven days later, the retention test was performed. To avoid the effect of hormonal fluctuation on spatial navigation, both the acquisition and the retention tests, were performed in 21-day regular cycling females in a period that corresponds to the diestrus phase of the estrus cycle. At the beginning of the acquisition, female degus were significantly slower than males to find the escape hole, but the situation reversed afterwards. Moreover, during the course of acquisition, females made significantly less reference memory errors, working memory errors as well as omission errors, than males. In both sexes, motivation and learning ceiling effects were reached at days 5-6 of the training. During the acquisition, females used more frequently a spatial strategy, while males preferably applied either serial, random or opposite strategies. The observed cognitive differences between male and female O. degus existed only during the acquisition period but not during the retention, indicating that acquisition and consolidation are differently influenced by gender.
Collapse
|
39
|
Characterization of spatial performance in male and female Long-Evans rats by means of the Morris water task and the ziggurat task. Brain Res Bull 2010; 81:164-72. [PMID: 19883740 DOI: 10.1016/j.brainresbull.2009.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/02/2009] [Accepted: 10/21/2009] [Indexed: 11/20/2022]
Abstract
Sex differences are prominent influences on spatial performance. One of the most common tasks to assess sex differences in spatial navigation in rodents is the Morris water task (MWT). In this task rats swim in a pool of water to locate a hidden platform employing the topographical relationships among the distal visual cues, pool wall, and goal location. Some evidence suggests that male rats display superior performance relative to females in the MWT. It is unknown, however, to what extent the sex difference in rats is task-dependent. This study compared the performance of male and female Long-Evans rats in the wet-land MWT versus the dry-land ziggurat task (ZT). The ZT represents a new dry-land task in which rats explore an arena with 16 ziggurat pyramids to locate food rewards. Several behavioural parameters, including latency, path length, path speed, probe trial performance, errors, and the number of returns were used as indices of spatial learning and memory. While males and females did not display significant differences in the traditional measures of spatial navigation within MWT, they displayed a robust sex difference in all measures of the ZT. These results indicate task-specific sex differences in spatial performance. Our findings suggest that males and females may employ different learning strategies in the MWT and ZT and that the latter task provides a more favourable task for assessing sex differences in rats.
Collapse
|
40
|
Peña Y, Prunell M, Rotllant D, Armario A, Escorihuela RM. Enduring effects of environmental enrichment from weaning to adulthood on pituitary-adrenal function, pre-pulse inhibition and learning in male and female rats. Psychoneuroendocrinology 2009; 34:1390-404. [PMID: 19481873 DOI: 10.1016/j.psyneuen.2009.04.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/26/2022]
Abstract
Environmental enrichment (EE) increases stimulation and provides richer sensory, cognitive and motor opportunities through the interaction with the social and physical environment. EE produces a wide range of neuroanatomical, neurochemical and behavioural effects in several animal species. However, the effects of EE have mainly been studied shortly after the treatment, so its long-lasting effects remain to be elucidated. Thus, we studied in male and female Sprague-Dawley rats the enduring effects of EE on tasks that measured emotional reactivity, social exploration and memory, sensorimotor gating and learning. After weaning, rats reared in EE were housed in single-sex groups of 12-14 in enriched cages during 12 weeks, whereas control rats were housed in single-sex groups of 2-3 animals in standard cages. Then, all rats were housed in pairs and successively exposed to different tests between 4 and 60 weeks post-EE. The results indicated that animals of both sexes reared in EE gained less weight during the enrichment period; differences disappeared in females during the post-EE period, but were maintained intact in males. Rats reared in EE showed an altered daily pattern of corticosterone and a lower hormone response to a novel environment (hole board, HB), although no differences in ACTH were found. EE resulted in more exploratory behaviour in the HB and higher number of entries in the open arms of the elevated plus maze (with no changes in the time spent in the open arms), suggesting a greater motivation to explore. Unexpectedly, rats reared in EE showed reduced pre-pulse inhibition (PPI), a measure of sensorimotor gating, suggesting lower capability to filter non-relevant information compared with control rats. EE increased social exploratory behaviour towards juvenile rats and social discrimination in males, but decreased social discrimination in females. Finally, in the Hebb-Williams maze, rats reared in EE showed better performance in terms of reduced number of errors and shorter distances travelled in the mazes. It is concluded that EE exposure from weaning to adulthood has important and long-lasting consequences on physiological and behavioural variables, most of them similar in both sexes, although sex differences in response to the EE are also reported.
Collapse
Affiliation(s)
- Yolanda Peña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
41
|
Han L, Picker JD, Schaevitz LR, Tsai G, Feng J, Jiang Z, Chu HC, Basu AC, Berger-Sweeney J, Coyle JT. Phenotypic characterization of mice heterozygous for a null mutation of glutamate carboxypeptidase II. Synapse 2009; 63:625-35. [PMID: 19347959 DOI: 10.1002/syn.20649] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of N-methyl-D-aspartate receptors (NMDAR) has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into glutamate and N-acetyl-aspartate. NAAG is a neuropeptide that is an NMDAR antagonist as well as an agonist for the metabotropic glutamate receptor-3 (mGluR3), which inhibits glutamate release. The aggregate effect of NAAG is thus to attenuate NMDAR activation. To manipulate the expression of GCP II, LoxP sites were inserted flanking exons 1 and 2, which were excised by crossing with a Cre-expressing mouse. The mice heterozygous for this deletion showed a 50% reduction in the expression level of protein and functional activity of GCP II in brain samples. Heterozygous mutant crosses did not yield any homozygous null animals at birth or as embryos (N > 200 live births and fetuses). These data are consistent with the previous report that GCP II homozygous mutant mice generated by removing exons 9 and 10 of GCP II gene were embryonically lethal and confirm our hypothesis that GCP II plays an essential role early in embryonic development. Heterozygous mice, however, developed normally to adulthood and exhibited increased locomotor activity, reduced social interaction, and a subtle cognitive deficit in working memory.
Collapse
Affiliation(s)
- Liqun Han
- Department of Psychiatry, Laboratory of Molecular and Psychiatric Neuroscience, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yue M, Hanna A, Wilson J, Roder H, Janus C. Sex difference in pathology and memory decline in rTg4510 mouse model of tauopathy. Neurobiol Aging 2009; 32:590-603. [PMID: 19427061 DOI: 10.1016/j.neurobiolaging.2009.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/25/2009] [Accepted: 04/10/2009] [Indexed: 01/28/2023]
Abstract
Abnormal phosphorylation of tau protein is a common event in many neurodegenerative disorders, including Alzheimer's disease and other tauopathies. We investigated the relationship between hyperphosphorylated tau in brain extracts and mnemonic functions in rTg4510 mouse model of tauopathy. We report that rTg4510 mice showed rapid deterioration in spatial learning and memory, which paralleled a significant increase of hyperphosphorylated tau in the brain between 3 and 5.5 months of age. At 5.5 months, rTg4510 females showed significantly higher levels of hyperphosphorylated tau than males, with no evidence of differential tau transgene expression between the sexes. The increased levels of hyperphosphorylated tau in females were associated with more severe impairment in spatial learning and memory as compared to transgenic males. We also showed that within studied age range, the decrease in memory performance was accompanied by other behavioral disturbances in the water maze related to search strategy, like thigmotaxic swim and cue response. These findings suggest that the onset of abnormal tau biochemistry and coincident cognitive deficits in the rTg4510 mouse model is sex-dependent with females being affected earlier and more aggressively than males.
Collapse
Affiliation(s)
- Mei Yue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Birdsall Bld., R215, Jacksonville, FL 32224, USA
| | | | | | | | | |
Collapse
|
43
|
Guzmán CB, Graham KA, Grace LA, Moore AH. Sex-dependent effect of cyclooxygenase-2 inhibition on mouse spatial memory. Behav Brain Res 2009; 199:355-9. [PMID: 19162088 DOI: 10.1016/j.bbr.2009.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 11/24/2008] [Accepted: 01/04/2009] [Indexed: 11/30/2022]
Abstract
Cyclooxygenase (COX)-2 is constitutively expressed in neurons of the hippocampus and neocortex. Therefore, non-steroidal anti-inflammatory drugs (NSAIDs) targeting inflammation-induced COX-2 in the periphery and the central nervous system may also affect cognitive function mediated by basal COX-2 activity. We report that systemic administration of the selective COX-2 inhibitor NS-398 6h prior to behavioral assessment does not influence spatial acquisition or retention in male C57BL/6J mice. However, we observed impaired spatial retention in female mice treated with NS-398, suggesting a sex-dependent role of COX-2 in spatial memory of mice.
Collapse
Affiliation(s)
- Cristina B Guzmán
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, United States
| | | | | | | |
Collapse
|
44
|
Fragkouli A, Pachnis V, Stylianopoulou F. Sex differences in water maze performance and cortical neurotrophin levels of LHX7 null mutant mice. Neuroscience 2008; 158:1224-33. [PMID: 19095044 DOI: 10.1016/j.neuroscience.2008.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/20/2008] [Accepted: 11/13/2008] [Indexed: 01/08/2023]
Abstract
Mice lacking both alleles of the LIM-homeobox gene Lhx7 display dramatically reduced number of forebrain cholinergic neurons. Given the fact that sex differences are consistently observed in forebrain cholinergic function, in the present study we investigated whether the absence of LHX7 differentially affects water maze performance in the two sexes. Herein we demonstrate that LHX7 null mutants display a sex-dependent impairment in water maze, with females appearing more affected than males. Moreover, neurotrophin assessment revealed a compensatory increase of brain-derived neurotrophic factor and neurotrophin 3 in the neocortex of both male and female mutants and an increase of nerve growth factor levels only in the females. Nevertheless, the compensatory increase of cortical neurotrophin levels did not restore cognitive abilities of Lhx7 homozygous mutants. Finally, our analysis revealed that cortical neurotrophin levels correlate negatively with water maze proficiency, indicating that there is an optimal neurotrophin level for successful cognitive performance.
Collapse
Affiliation(s)
- A Fragkouli
- Department of Basic Sciences, University of Athens, 11527 Athens, Greece
| | | | | |
Collapse
|
45
|
Abstract
Reduced androgen levels in aged men and women might be risk factors for age-related cognitive decline and Alzheimer's disease (AD). Ongoing clinical trials are designed to evaluate the potential benefit of estrogen in women and of testosterone in men. In this review, we discuss the potential beneficial effects of androgens and androgen receptors (ARs) in males and females. In addition, we discuss the hypothesis that AR interacts with apolipoprotein (apoE)4, encoded by epsilon4 and a risk factor for age-related cognitive decline and AD, and the potential consequences of this interaction.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
46
|
Hughes RN. Sex does matter: comments on the prevalence of male-only investigations of drug effects on rodent behaviour. Behav Pharmacol 2008; 18:583-9. [PMID: 17912042 DOI: 10.1097/fbp.0b013e3282eff0e8] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite abundant evidence of sex differences in the effects of drugs on nonsexual behaviour in rats and mice, most researchers continue to investigate male animals exclusively. This was evident from a survey of all relevant research reports published during the period February 2005-September 2006 (inclusive) in recent issues of five representative behavioural pharmacological journals. Reasons for excluding female animals from most studies are discussed along with attempts to justify the use of either male or female animals only, and the value of including both sexes (especially when a drug effect is poorly understood). Although there are other factors that can influence the effects of drugs, such as strain, age and social density, the sex of experimental animals is the easiest to control and thus is well suited to inclusion in pharmacological investigations. It is accordingly suggested that, as has been recommended many times in the past, animals' sex should play a more important part in future research than is still currently the case.
Collapse
Affiliation(s)
- Robert N Hughes
- Department of Psychology, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
47
|
Saucier DM, Shultz SR, Keller AJ, Cook CM, Binsted G. Sex differences in object location memory and spatial navigation in Long-Evans rats. Anim Cogn 2007; 11:129-37. [PMID: 17562087 DOI: 10.1007/s10071-007-0096-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 05/14/2007] [Accepted: 05/15/2007] [Indexed: 11/25/2022]
Abstract
In both humans and rodents, males typically excel on a number of tasks requiring spatial ability. However, human females exhibit advantages in memory for the spatial location of objects. This study investigated whether rats would exhibit similar sex differences on a task of object location memory (OLM) and on the watermaze (WM). We predicted that females should outperform males on the OLM task and that males should outperform females on the WM. To control for possible effects of housing environment, rats were housed in either complex environments or in standard shoebox housing. Eighty Long-Evans rats (40 males and 40 females) were housed in either complex (Complex rats) or standard shoebox housing (Control rats). Results indicated that males had superior performance on the WM, whereas females outperformed males on the OLM task, regardless of housing environment. As these sex differences cannot be easily attributed to differences in cognitive style related to linguistic processing of environmental features or to selection pressures related to the hunting gathering evolutionary prehistory of humans, these data suggest that sex differences in spatial ability may be related to traits selected for by polygynous mating strategies.
Collapse
Affiliation(s)
- D M Saucier
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Dr., Lethbridge, AB, Canada, T1K 3M4.
| | | | | | | | | |
Collapse
|
48
|
Moles A, Costantini F, Garbugino L, Zanettini C, D'Amato FR. Ultrasonic vocalizations emitted during dyadic interactions in female mice: a possible index of sociability? Behav Brain Res 2007; 182:223-30. [PMID: 17336405 DOI: 10.1016/j.bbr.2007.01.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/16/2007] [Accepted: 01/23/2007] [Indexed: 11/26/2022]
Abstract
Despite the evidence that ultrasonic vocalizations are a consistent component of the behavioural repertoire of female mice, only few studies have investigated this phenomenon. In this paper, we reported new data about ultrasonic vocalisations emitted during female-female mice social encounters. In particular, we first showed that the resident female utters a considerable number of 70 kHz calls and that the number of calls seems to be modulated by the motivational state of the emitter during the estrous cycle: sexually receptive females emitted fewer ultrasonic vocalizations than non-receptive ones in the presence of a female intruder. A strong positive correlation linked the number of calls and the time spent by the resident sniffing the intruder female. Moreover, the number of calls uttered during interaction with an unknown female partner significantly decreased with pregnancy and ageing. Secondly we reported that 1-year-old female mice showed a reduction of ultrasonic calls in the presence of a partner they had been exposed to, only if the re-exposure (test) occurred 30 min after the previous presentation. If the test was performed with a delay of 60 min, the number of calls emitted did not decrease. These results confirm that ultrasonic vocalizations emitted during social interaction with a female conspecific can be used as an index of social recognition and can be useful to detect age-related disruption of social memory in female mice.
Collapse
Affiliation(s)
- Anna Moles
- Institute of Neuroscience, CNR-CERC, Via del Fosso di Fiorano 64/65, I-00143 Rome, Italy.
| | | | | | | | | |
Collapse
|
49
|
Imwalle DB, Bateman HL, Wills A, Honda SI, Harada N, Rissman EF. Impairment of spatial learning by estradiol treatment in female mice is attenuated by estradiol exposure during development. Horm Behav 2006; 50:693-8. [PMID: 16884724 DOI: 10.1016/j.yhbeh.2006.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 05/15/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
High doses of estradiol (E(2)) can impair spatial learning in the Morris water maze, in ovariectomized mice, but the same dose has no effect on adult castrated males. Here, we test the hypothesis that this sex difference is caused by neonatal actions of E(2). In Experiment 1, C57BL/6J pups were given daily estradiol benzoate (EB) or oil injections from the day of birth until postnatal Day 3. Adults were gonadectomized and received EB (s.c.) or oil 28 h before the first day of training, and 4 h before each of four daily training sessions on the Morris water maze. Females given oil as neonates, and EB prior to training displayed the poorest performance. Females that received EB as neonates and EB prior to training were insensitive to the deleterious effects of adult EB and performed better than males given the same hormone treatments. We conducted a second experiment using aromatase enzyme knockout (ArKO) mice. Adult male and female ArKO and wild-type (WT) littermates were gonadectomized and received either injections of oil or EB prior to and during water maze training (as described above). Hormone treatment failed to affect performance, yet, female but not male ArKO mice showed impaired learning compared to WT littermates. Thus, exposure to estradiol during neonatal development can counteract the deleterious effects of EB on adult spatial learning.
Collapse
Affiliation(s)
- D Bradley Imwalle
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Assisi A, Banzi R, Buonocore C, Capasso F, Di Muzio V, Michelacci F, Renzo D, Tafuri G, Trotta F, Vitocolonna M, Garattini S. Fish oil and mental health: the role of n-3 long-chain polyunsaturated fatty acids in cognitive development and neurological disorders. Int Clin Psychopharmacol 2006; 21:319-36. [PMID: 17012979 DOI: 10.1097/01.yic.0000224790.98534.11] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epidemiological and experimental studies have indicated that consumption of more n-3 long-chain polyunsaturated fatty acids may reduce the risk for a variety of diseases, including cardiovascular, neurological and immunological disorders, diabetes and cancer. This article focuses on the role of marine n-3 long-chain polyunsaturated fatty acids in brain functions, including the development of the central nervous system and neurological disorders. An overview of the major animal studies and clinical trials is provided here, focusing on fatty acid supplementation during pregnancy and infancy, and prevention and management of Alzheimer's disease, schizophrenia, depression and attention deficit hyperactive disorder. Although an optimal balance in n-3/n-6 long-chain polyunsaturated fatty acid ratio is important for proper neurodevelopment and cognitive functions, results from randomized controlled trials are controversial and do not confirm any useful effect of supplementation on development of preterm and term infants. The relationship between fatty acid status and mental disorders is confirmed by reduced levels of n-3 long-chain polyunsaturated fatty acids in erythrocyte membranes of patients with central nervous system disorders. Nevertheless, there are very little data supporting the use of fish oil in those patients. The only way to verify whether n-3 long-chain polyunsaturated fatty acids are a potential therapeutic option in the management and prevention of mental disorders is to conduct a large definitive randomized controlled trials similar to those required for the licensing of any new pharmacological treatment.
Collapse
Affiliation(s)
- Alessandro Assisi
- Regulatory Policies Laboratory, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|