1
|
John YJ, Wang J, Bullock D, Barbas H. Amygdalar Excitation of Hippocampal Interneurons Can Lead to Emotion-driven Overgeneralization of Context. J Cogn Neurosci 2024; 36:2667-2686. [PMID: 38261402 DOI: 10.1162/jocn_a_02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Context is central to cognition: Detailed contextual representations enable flexible adjustment of behavior via comparison of the current situation with prior experience. Emotional experiences can greatly enhance contextual memory. However, sufficiently intense emotional signals can have the opposite effect, leading to weaker or less specific memories. How can emotional signals have such intensity-dependent effects? A plausible mechanistic account has emerged from recent anatomical data on the impact of the amygdala on the hippocampus in primates. In hippocampal CA3, the amygdala formed potent synapses on pyramidal neurons, calretinin (CR) interneurons, as well as parvalbumin (PV) interneurons. CR interneurons are known to disinhibit pyramidal neuron dendrites, whereas PV neurons provide strong perisomatic inhibition. This potentially counterintuitive connectivity, enabling amygdala to both enhance and inhibit CA3 activity, may provide a mechanism that can boost or suppress memory in an intensity-dependent way. To investigate this possibility, we simulated this connectivity pattern in a spiking network model. Our simulations revealed that moderate amygdala input can enrich CA3 representations of context through disinhibition via CR interneurons, but strong amygdalar input can impoverish CA3 activity through simultaneous excitation and feedforward inhibition via PV interneurons. Our model revealed an elegant circuit mechanism that mediates an affective "inverted U" phenomenon: There is an optimal level of amygdalar input that enriches hippocampal context representations, but on either side of this zone, representations are impoverished. This circuit mechanism helps explain why excessive emotional arousal can disrupt contextual memory and lead to overgeneralization, as seen in severe anxiety and posttraumatic stress disorder.
Collapse
|
2
|
Rezagholizadeh A, Shojaei A, Hosseinmardi N, Mirnajafi-Zadeh J, Kohlmeier KA, Fathollahi Y. Astrocytes contribute to the functional differentiation of the hippocampal longitudinal axis during reward and aversion processing in the adult male rat. Neuroscience 2024; 560:297-313. [PMID: 39374644 DOI: 10.1016/j.neuroscience.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
This study aims to investigate whether glial cells, in particular putative astrocytes, contribute to functional distinctions between the dorsal (DH), intermediate (IH), and ventral (VH) hippocampus. To evaluate this, we performed three different behavioral tasks (i.e., Morris water maze; MWM, Passive avoidance; PA, T-maze place preference; TPP) to determine whether the DH, IH, and VH are necessary for each task. Sensitivity of behavioral tasks was confirmed using lidocaine (2 %, 1 μl) reversible inactivation. Subsequently, we examined the effects of silencing astrocytes, using fluorocitrate (FC, 1 mM/1 μl), into the DH, IH, and VH on these tasks. The effects of drugs were examined separately. We observed that injection of FC into the DH resulted in a significant impairment in MWM performance. In contrast, while FC injections into the IH or VH did not prevent platform localization during the acquisition phase, rats showed difficulty recalling the target zone during the retrieval phase. In the PA test, FC injection into the VH impaired task learning and memory. During the acquisition phase, FC injection into the DH or IH did not differ from the control in the number of shocks; however, during retrieval, there was a significant decrease in the latency before entering the dark chamber. The TPP test performance was impaired by FC injection in the IH. In sum, we show that glial cells, especially astrocytes in specific functional regions of the hippocampus, play distinct roles in processing aversive and rewarding experiences and contribute to the functional organization of the hippocampal longitudinal axis.
Collapse
Affiliation(s)
- Amir Rezagholizadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran.
| |
Collapse
|
3
|
Das R, Howey C, McFetridge A, Lapointe V, Luczak A. Associating sensory cues with incoming seizures: developing an animal model of auras. Sci Rep 2024; 14:20881. [PMID: 39242696 PMCID: PMC11379853 DOI: 10.1038/s41598-024-71885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
For patients with epilepsy, one of the biggest problems is the unpredictability of the time when the next seizure will occur. Interestingly, some epileptic patients experience a sensory sensation preceding seizures, called aura, which helps them move to safety before a seizure. Here, we describe the development of the first animal model of auras, which could allow for a more detailed study of this phenomenon. Specifically, in mice, we presented sensory stimuli (sound and light cues) a few seconds before kindling an animal to induce seizures. Animals were kindled by electrical stimulation in the basolateral amygdalar nucleus. Over the course of stimulation sessions, animals started showing progressively stronger freezing behavior to sensory cues preceding kindling. Interestingly, seizures are known to cause retrograde amnesia, thus it was surprising that the association between seizures and preceding sensory cues developed in all experimental animals. In summary, our experiments show that similarly to auras, a sensory sensation can be associated with incoming generalized seizures and is not erased by retrograde amnesia.
Collapse
Affiliation(s)
- Ritwik Das
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
| | - Carlos Howey
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Autumn McFetridge
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Valérie Lapointe
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Artur Luczak
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
4
|
Sanguino-Gómez J, Huijgens S, den Hartog M, Schenk IJM, Kluck W, Versluis TD, Krugers HJ. Neural correlates of learning and memory are altered by early-life stress. Neurobiol Learn Mem 2024; 213:107952. [PMID: 38906243 DOI: 10.1016/j.nlm.2024.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
The ability to learn and remember, which is fundamental for behavioral adaptation, is susceptible to stressful experiences during the early postnatal period, such as abnormal levels of maternal care. The exact mechanisms underlying these effects still remain elusive. This study examined whether early life stress (ELS) alters memory and brain activation patterns in male mice. Therefore, we examined the expression of the immediate early genes (IEGs) c-Fos and Arc in the dentate gyrus (DG) and basolateral amygdala (BLA) after training and memory retrieval in a fear conditioning task. Furthermore, we examined the potential of RU38486 (RU486), a glucocorticoid receptor antagonist, to mitigate ELS-induced memory deficits by blocking stress signalling during adolescence. Arc::dVenus reporter mice, which allow investigating experience-dependent expression of the immediate early gene Arc also at more remote time points, were exposed to ELS by housing dams and offspring with limited bedding and nesting material (LBN) between postnatal days (PND) 2-9 and trained in a fear conditioning task at adult age. We found that ELS reduced both fear acquisition and contextual memory retrieval. RU486 did not prevent these effects. ELS reduced the number of Arc::dVenus+ cells in DG and BLA after training, while the number of c-Fos+ cells were left unaffected. After memory retrieval, ELS decreased c-Fos+ cells in the ventral DG and BLA. ELS also altered the colocalization of c-Fos+ cells with Arc::dVenus+ cells in the ventral DG, possibly indicating impaired engram allocation in the ventral DG after memory retrieval. In conclusion, this study shows that ELS alters neuronal activation patterns after fear acquisition and retrieval, which may provide mechanistic insights into enduring impact of ELS on the processing of fear memories, possibly via changes in cell (co-) activation and engram cell allocation.
Collapse
Affiliation(s)
| | - Stefan Huijgens
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Maxine den Hartog
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Inim J M Schenk
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Wenya Kluck
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara D Versluis
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Oleksiak CR, Plas SL, Carriaga D, Vasudevan K, Maren S, Moscarello JM. Ventral hippocampus mediates inter-trial responding in signaled active avoidance. Behav Brain Res 2024; 470:115071. [PMID: 38806099 DOI: 10.1016/j.bbr.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.
Collapse
Affiliation(s)
- Cecily R Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Samantha L Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Denise Carriaga
- Department of Psychological Science, University of Texas Rio Grande Valley, TX 78539
| | - Krithika Vasudevan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Justin M Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
6
|
McNaughton N, Bannerman D. The homogenous hippocampus: How hippocampal cells process available and potential goals. Prog Neurobiol 2024; 240:102653. [PMID: 38960002 DOI: 10.1016/j.pneurobio.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin 9054, New Zealand.
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
7
|
Stegnjaić G, Jevtić B, Lazarević M, Ignjatović Đ, Tomić M, Nikolovski N, Bjelobaba I, Momčilović M, Dimitrijević M, Miljković Đ, Stanisavljević S. Brain inflammation in experimental autoimmune encephalomyelitis induced in Dark Agouti rats with spinal cord homogenate. Immunol Lett 2024; 267:106852. [PMID: 38508497 DOI: 10.1016/j.imlet.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
We have recently characterized experimental autoimmune encephalomyelitis (EAE) induced in DA rats with spinal cord homogenate without complete Freund's adjuvant (CFA). The main advantage of this multiple sclerosis model is the lack of CFA-related confounding effects which represent the major obstacles in translating findings from EAE to multiple sclerosis. Here, antigen specificity of the cellular and humoral immune response directed against the central nervous system was explored. The reactivity of T and B cells to myelin basic protein, myelin oligodendrocyte glycoprotein, and β-synuclein was detected. Having in mind that reactivity against β-synuclein was previously associated with autoimmunity against the brain, the infiltration of immune cells into different brain compartments, i.e. pons, cerebellum, hippocampus, and cortex was determined. T cell infiltration was observed in all structures examined. This finding stimulated investigation of the effects of immunization on DA rat behavior using the elevated plus maze and the open field test. Rats recovered from EAE displayed increased anxiety-like behavior. These data support CFA-free EAE in DA rats as a useful model for multiple sclerosis research.
Collapse
Affiliation(s)
- Goran Stegnjaić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Đurđica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirko Tomić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Ivana Bjelobaba
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Aliakbari S, Hasanzadeh L, Sayyah M, Amini N, Pourbadie HG. Induced expression of rabies glycoprotein in the dorsal hippocampus enhances hippocampal dependent memory in a rat model of Alzheimer's disease. J Neurovirol 2024; 30:274-285. [PMID: 38943023 DOI: 10.1007/s13365-024-01221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
The Rabies virus is a neurotropic virus that manipulates the natural cell death processes of its host to ensure its own survival and replication. Studies have shown that the anti-apoptotic effect of the virus is mediated by one of its protein named, rabies glycoprotein (RVG). Alzheimer's disease (AD) is characterized by the loss of neural cells and memory impairment. We aim to examine whether expression of RVG in the hippocampal cells can shield the detrimental effects induced by Aβ. Oligomeric form of Aβ (oAβ) or vehicle was bilaterally microinjected into the dorsal hippocampus of male Wistar rats. One week later, two μl (108 T.U. /ml) of the lentiviral vector carrying RVG gene was injected into their dorsal hippocampus (post-treatment). In another experiment, the lentiviral vector was microinjected one week before Aβ injection (pre-treatment). One week later, the rat's brain was sliced into cross-sections, and the presence of RVG-expressing neuronal cells was confirmed using fluorescent microscopy. Rats were subjected to assessments of spatial learning and memory as well as passive avoidance using the Morris water maze (MWM) and the Shuttle box apparatuses, respectively. Protein expression of AMPA receptor subunit (GluA1) was determined using western blotting technique. In MWM, Aβ treated rats showed decelerated acquisition of the task and impairment of reference memory. RVG expression in the hippocampus prevented and restored the deficits in both pre- and post- treatment conditions, respectively. It also improved inhibitory memory in the oAβ treated rats. RVG increased the expression level of GluA1 level in the hippocampus. Based on our findings, the expression of RVG in the hippocampus has the potential to enhance both inhibitory and spatial learning abilities, ultimately improving memory performance in an AD rat model. This beneficial effect is likely attributed, at least in part, to the increased expression of GluA1-containing AMPA receptors.
Collapse
Affiliation(s)
- Shayan Aliakbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Hasanzadeh
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Niloufar Amini
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
9
|
Takahashi K, Tsuji M, Nakagawasai O, Miyagawa K, Kurokawa K, Mochida-Saito A, Iwasa M, Iwasa H, Suzuki S, Takeda H, Tadano T. Anxiolytic effects of Enterococcus faecalis 2001 on a mouse model of colitis. Sci Rep 2024; 14:11519. [PMID: 38769131 PMCID: PMC11106339 DOI: 10.1038/s41598-024-62309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Ulcerative colitis (UC) is a refractory inflammatory bowel disease, which is known to cause psychiatric disorders such as anxiety and depression at a high rate in addition to peripheral inflammatory symptoms. However, the pathogenesis of these psychiatric disorders remains mostly unknown. While prior research revealed that the Enterococcus faecalis 2001 (EF-2001) suppressed UC-like symptoms and accompanying depressive-like behaviors, observed in a UC model using dextran sulfate sodium (DSS), whether it has an anxiolytic effect remains unclear. Therefore, we examined whether EF-2001 attenuates DSS-induced anxiety-like behaviors. Treatment with 2% DSS for seven days induced UC-like symptoms and anxiety-like behavior through the hole-board test, increased serum lipopolysaccharide (LPS) and corticosterone concentration, and p-glucocorticoid receptor (GR) in the prefrontal cortex (PFC), and decreased N-methyl-D-aspartate receptor subunit (NR) 2A and NR2B expression levels in the PFC. Interestingly, these changes were reversed by EF-2001 administration. Further, EF-2001 administration enhanced CAMKII/CREB/BDNF-Drebrin pathways in the PFC of DSS-treated mice, and labeling of p-GR, p-CAMKII, and p-CREB showed colocalization with neurons. EF-2001 attenuated anxiety-like behavior by reducing serum LPS and corticosterone levels linked to the improvement of UC symptoms and by facilitating the CAMKII/CREB/BDNF-Drebrin pathways in the PFC. Our findings suggest a close relationship between UC and anxiety.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Masahiro Iwasa
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Hiroyuki Iwasa
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Shigeo Suzuki
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takeshi Tadano
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
- Department of Environment and Preventive Medicine, Graduate School of Medicine Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
10
|
Oleksiak CR, Plas SL, Carriaga D, Vasudevan K, Maren S, Moscarello JM. Ventral hippocampus mediates inter-trial responding in signaled active avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585627. [PMID: 38562746 PMCID: PMC10983994 DOI: 10.1101/2024.03.18.585627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.
Collapse
Affiliation(s)
- Cecily R. Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Denise Carriaga
- Department of Psychological Science, University of Texas Rio Grande Valley, TX 78539
| | - Krithika Vasudevan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Justin M. Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| |
Collapse
|
11
|
Hashikawa-Hobara N, Fujiwara K, Hashikawa N. CGRP causes anxiety via HP1γ-KLF11-MAOB pathway and dopamine in the dorsal hippocampus. Commun Biol 2024; 7:322. [PMID: 38503899 PMCID: PMC10951359 DOI: 10.1038/s42003-024-05937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide that causes anxiety behavior; however, the underlying mechanisms remain unclear. We found that CGRP modulates anxiety behavior by epigenetically regulating the HP1γ-KLF-11-MAOB pathway and depleting dopamine in the dorsal hippocampus. Intracerebroventricular administration of CGRP (0.5 nmol) elicited anxiety-like behaviors in open field, hole-board, and plus-maze tests. Additionally, we observed an increase in monoamine oxidase B (MAOB) levels and a concurrent decrease in dopamine levels in the dorsal hippocampus of mice following CGRP administration. Moreover, CGRP increased abundance the transcriptional regulator of MAOB, Krüppel-like factor 11 (KLF11), and increased levels of phosphorylated heterochromatin protein (p-HP1γ), which is involved in gene silencing, by methylating histone H3 in the dorsal hippocampus. Chromatin immunoprecipitation assay showed that HP1γ was recruited to the Klf11 enhancer by CGRP. Furthermore, infusion of CGRP (1 nmol) into the dorsal hippocampus significantly increased MAOB expression as well as anxiety-like behaviors, which were suppressed by the pharmacological inhibition or knockdown of MAOB. Together, these findings suggest that CGRP reduces dopamine levels and induces anxiety-like behavior through epigenetic regulation in the dorsal hippocampus.
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Kyoshiro Fujiwara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| |
Collapse
|
12
|
Dirven BCJ, van Melis L, Daneva T, Dillen L, Homberg JR, Kozicz T, Henckens MJAG. Hippocampal Trauma Memory Processing Conveying Susceptibility to Traumatic Stress. Neuroscience 2024; 540:87-102. [PMID: 38220126 DOI: 10.1016/j.neuroscience.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
While the majority of the population is ever exposed to a traumatic event during their lifetime, only a fraction develops posttraumatic stress disorder (PTSD). Disrupted trauma memory processing has been proposed as a core factor underlying PTSD symptomatology. We used transgenic Targeted-Recombination-in-Active-Populations (TRAP) mice to investigate potential alterations in trauma-related hippocampal memory engrams associated with the development of PTSD-like symptomatology. Mice were exposed to a stress-enhanced fear learning paradigm, in which prior exposure to a stressor affects the learning of a subsequent fearful event (contextual fear conditioning using foot shocks), during which neuronal activity was labeled. One week later, mice were behaviorally phenotyped to identify mice resilient and susceptible to developing PTSD-like symptomatology. Three weeks post-learning, mice were re-exposed to the conditioning context to induce remote fear memory recall, and associated hippocampal neuronal activity was assessed. While no differences in the size of the hippocampal neuronal ensemble activated during fear learning were observed between groups, susceptible mice displayed a smaller ensemble activated upon remote fear memory recall in the ventral CA1, higher regional hippocampal parvalbuminneuronal density and a relatively lower activity of parvalbumininterneurons upon recall. Investigation of potential epigenetic regulators of the engram revealed rather generic (rather than engram-specific) differences between groups, with susceptible mice displaying lower hippocampal histone deacetylase 2 expression, and higher methylation and hydroxymethylation levels. These finding implicate variation in epigenetic regulation within the hippocampus, as well as reduced regional hippocampal activity during remote fear memory recall in interindividual differences in susceptibility to traumatic stress.
Collapse
Affiliation(s)
- Bart C J Dirven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Lennart van Melis
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Teya Daneva
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Lieke Dillen
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Center for Individualized Medicine, Department of Clinical Genomics, and Biochemical Genetics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; University of Pecs Medical School, Department of Anatomy, Pecs, Hungary
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Elder TR, Turner JR. Nicotine use disorder and Neuregulin 3: Opportunities for precision medicine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:387-404. [PMID: 38467488 DOI: 10.1016/bs.apha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nicotine use disorder remains a major public health emergency despite years of trumpeting the consequences of smoking. This is likely due to the complex interplay of genetics and nicotine exposure across the lifespan of these individuals. Genetics influence all aspects of life, including complex disorders such as nicotine use disorder. This review first highlights the critical neurocircuitry underlying nicotine dependence and withdrawal, and then describes the cellular signaling mechanisms involved. Finally, current genetic, genomic, and transcriptomic evidence for new drug development of smoking cessation aids is discussed, with a focus on the Neuregulin 3 Signaling Pathway.
Collapse
Affiliation(s)
- Taylor R Elder
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States.
| |
Collapse
|
14
|
Eltokhi A, Bertocchi I, Rozov A, Jensen V, Borchardt T, Taylor A, Proenca CC, Rawlins JNP, Bannerman DM, Sprengel R. Distinct effects of AMPAR subunit depletion on spatial memory. iScience 2023; 26:108116. [PMID: 37876813 PMCID: PMC10590979 DOI: 10.1016/j.isci.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Pharmacological studies established a role for AMPARs in the mammalian forebrain in spatial memory performance. Here we generated global GluA1/3 double knockout mice (Gria1/3-/-) and conditional knockouts lacking GluA1 and GluA3 AMPAR subunits specifically from principal cells across the forebrain (Gria1/3ΔFb). In both models, loss of GluA1 and GluA3 resulted in reduced hippocampal GluA2 and increased levels of the NMDAR subunit GluN2A. Electrically-evoked AMPAR-mediated EPSPs were greatly diminished, and there was an absence of tetanus-induced LTP. Gria1/3-/- mice showed premature mortality. Gria1/3ΔFb mice were viable, and their memory performance could be analyzed. In the Morris water maze (MWM), Gria1/3ΔFb mice showed profound long-term memory deficits, in marked contrast to the normal MWM learning previously seen in single Gria1-/- and Gria3-/- knockout mice. Our results suggest a redundancy of function within the pool of available ionotropic glutamate receptors for long-term spatial memory performance.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacolog, University of Washington, Seattle, WA, USA
| | - Ilaria Bertocchi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute - Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Andrei Rozov
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhniy, 603022 Novgorod, Russia
- Federal Center of Brain Research and Neurotechnology, 117997 Moscow, Russia
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Thilo Borchardt
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Amy Taylor
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Catia C. Proenca
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Rolf Sprengel
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
15
|
Mehla J, Deibel SH, Karem H, Hong NS, Hossain SR, Lacoursiere SG, Sutherland RJ, Mohajerani MH, McDonald RJ. Repeated multi-domain cognitive training prevents cognitive decline, anxiety and amyloid pathology found in a mouse model of Alzheimer disease. Commun Biol 2023; 6:1145. [PMID: 37950055 PMCID: PMC10638434 DOI: 10.1038/s42003-023-05506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Education, occupation, and an active lifestyle, comprising enhanced social, physical, and mental components are associated with improved cognitive functions in aged people and may delay the progression of various neurodegenerative diseases including Alzheimer's disease. To investigate this protective effect, 3-month-old APPNL-G-F/NL-G-F mice were exposed to repeated single- or multi-domain cognitive training. Cognitive training was given at the age of 3, 6, & 9 months. Single-domain cognitive training was limited to a spatial navigation task. Multi-domain cognitive training consisted of a spatial navigation task, object recognition, and fear conditioning. At the age of 12 months, behavioral tests were completed for all groups. Then, mice were sacrificed, and their brains were assessed for pathology. APPNL-G-F/NL-G-F mice given multi-domain cognitive training compared to APPNL-G-F/NL-G-F control group showed an improvement in cognitive functions, reductions in amyloid load and microgliosis, and a preservation of cholinergic function. Additionally, multi-domain cognitive training improved anxiety in APPNL-G-F/NL-G-F mice as evidenced by measuring thigmotaxis behavior in the Morris water maze. There were mild reductions in microgliosis in the brain of APPNL-G-F/NL-G-F mice with single-domain cognitive training. These findings provide causal evidence for the potential of certain forms of cognitive training to mitigate the cognitive deficits in Alzheimer disease.
Collapse
Affiliation(s)
- Jogender Mehla
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Psychology, University of New Brunswick, POB 4400, Fredericton, NB, E3B 3A1, Canada
| | - Hadil Karem
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Nancy S Hong
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Shakhawat R Hossain
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Sean G Lacoursiere
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J Sutherland
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
16
|
Bakoyiannis I, Ducourneau EG, Parkes SL, Ferreira G. Pathway specific interventions reveal the multiple roles of ventral hippocampus projections in cognitive functions. Rev Neurosci 2023; 34:825-838. [PMID: 37192533 DOI: 10.1515/revneuro-2023-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
Since the 1950s study of Scoville and Milner on the case H.M., the hippocampus has attracted neuroscientists' attention. The hippocampus has been traditionally divided into dorsal and ventral parts, each of which projects to different brain structures and mediates various functions. Despite a predominant interest in its dorsal part in animal models, especially regarding episodic-like and spatial cognition, recent data highlight the role of the ventral hippocampus (vHPC), as the main hippocampal output, in cognitive processes. Here, we review recent studies conducted in rodents that have used advanced in vivo functional techniques to specifically monitor and manipulate vHPC efferent pathways and delineate the roles of these specific projections in learning and memory processes. Results highlight that vHPC projections to basal amygdala are implicated in emotional memory, to nucleus accumbens in social memory and instrumental actions and to prefrontal cortex in all the above as well as in object-based memory. Some of these hippocampal projections also modulate feeding and anxiety-like behaviours providing further evidence that the "one pathway-one function" view is outdated and future directions are proposed to better understand the role of hippocampal pathways and shed further light on its connectivity and function.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| | - Eva-Gunnel Ducourneau
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| | - Shauna L Parkes
- University of Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| |
Collapse
|
17
|
Bahi A, Dreyer JL. Anxiety and ethanol consumption in socially defeated mice; effect of hippocampal serotonin transporter knockdown. Behav Brain Res 2023; 451:114508. [PMID: 37244437 DOI: 10.1016/j.bbr.2023.114508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
The comorbidity of generalized anxiety disorders (GAD) with alcohol use disorders (AUD) is common and there is an association between the serotonin transporter (SERT) genetic variation and the comorbid conditions of GAD and AUD. However, few mechanistic studies have systematically explored the role of direct SERT manipulation in stress-elicited mood disorders. Therefore, the aim of this study was to determine whether reductions in SERT expression in the hippocampus were sufficient to ameliorate anxiety- and ethanol-related behaviors in socially defeated mice. Following stress exposure, and using stereotaxic surgery, SERT was knocked down using specific shRNA-expressing lentiviral vectors and anxiety-like behavior was evaluated by open-field, elevated plus maze, and marbles burying test. The two-bottle choice (TBC) drinking paradigm was used to assess stress-induced voluntary ethanol intake and preference. Results showed that hippocampal SERT loss-of-function prevented stress-elicited anxiogenic-like effects with no differences in spontaneous locomotor activity. Moreover, in the TBC paradigm, SERT shRNA-injected mice consistently showed a significantly decreased consumption and preference for ethanol when compared to Mock-injected controls. In contrast to ethanol, SERT shRNA-injected mice exhibited similar consumption and preference for saccharin and quinine. Interestingly, we confirmed that SERT hippocampal mRNA expression correlated with measures of anxiety- and ethanol-related behaviors by Pearson correlation analysis. Our findings show that social defeat recruits hippocampal serotoninergic system and that these neuroadaptations mediate the heightened anxiety-like behavior and voluntary alcohol intake observed following stress exposure, suggesting that this system represents a major brain stress element responsible for the negative reinforcement associated with the "dark side" of alcohol addiction.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE; Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
18
|
Migó M, Chou T, Widge AS, Peters AT, Ellard K, Dougherty DD, Deckersbach T. Neural correlates of learning accommodation and consolidation in generalised anxiety disorder. Acta Neuropsychiatr 2023; 35:218-225. [PMID: 35621086 DOI: 10.1017/neu.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE. Anxiety can interfere with attention and working memory, which are components that affect learning. Statistical models have been designed to study learning, such as the Bayesian Learning Model, which takes into account prior possibilities and behaviours to determine how much of a new behaviour is determined by learning instead of chance. However, the neurobiological basis underlying how anxiety interferes with learning is not yet known. Accordingly, we aimed to use neuroimaging techniques and apply a Bayesian Learning Model to study learning in individuals with generalised anxiety disorder (GAD). METHODS. Participants were 25 controls and 14 individuals with GAD and comorbid disorders. During fMRI, participants completed a shape-button association learning and reversal task. Using a flexible factorial analysis in SPM, activation in the dorsolateral prefrontal cortex, basal ganglia, and hippocampus was compared between groups during first reversal. Beta values from the peak of these regions were extracted for all learning conditions and submitted to repeated measures analyses in SPSS. RESULTS. Individuals with GAD showed less activation in the basal ganglia and the hippocampus only in the first reversal compared with controls. This difference was not present in the initial learning and second reversal. CONCLUSION. Given that the basal ganglia is associated with initial learning, and the hippocampus with transfer of knowledge from short- to long-term memory, our results suggest that GAD may engage these regions to a lesser extent during early accommodation or consolidation of learning, but have no longer term effects in brain activation patterns during subsequent learning.
Collapse
Affiliation(s)
- Marta Migó
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tina Chou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Amy T Peters
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen Ellard
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- University of Applied Sciences, Diploma Hochschule, Germany
| |
Collapse
|
19
|
Waters SJ, Basile BM, Murray EA. Reevaluating the role of the hippocampus in memory: A meta-analysis of neurotoxic lesion studies in nonhuman primates. Hippocampus 2023; 33:787-807. [PMID: 36649170 PMCID: PMC10213107 DOI: 10.1002/hipo.23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023]
Abstract
The hippocampus and perirhinal cortex are both broadly implicated in memory; nevertheless, their relative contributions to visual item recognition and location memory remain disputed. Neuropsychological studies in nonhuman primates that examine memory function after selective damage to medial temporal lobe structures report various levels of memory impairment-ranging from minor deficits to profound amnesia. The discrepancies in published findings have complicated efforts to determine the exact magnitude of visual item recognition and location memory impairments following damage to the hippocampus and/or perirhinal cortex. To provide the most accurate estimate to date of the overall effect size, we use meta-analytic techniques on data aggregated from 26 publications that assessed visual item recognition and/or location memory in nonhuman primates with and without selective neurotoxic lesions of the hippocampus or perirhinal cortex. We estimated the overall effect size, evaluated the relation between lesion extent and effect size, and investigated factors that may account for between-study variation. Grouping studies by lesion target and testing method, separate meta-analyses were conducted. One meta-analysis indicated that impairments on tests of visual item recognition were larger after lesions of perirhinal cortex than after lesions of the hippocampus. A separate meta-analysis showed that performance on tests of location memory was severely impaired by lesions of the hippocampus. For the most part, meta-regressions indicated that greater impairment corresponds with greater lesion extent; paradoxically, however, more extensive hippocampal lesions predicted smaller impairments on tests of visual item recognition. We conclude the perirhinal cortex makes a larger contribution than the hippocampus to visual item recognition, and the hippocampus predominately contributes to spatial navigation.
Collapse
Affiliation(s)
- Spencer J. Waters
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, USA
| | - Benjamin M. Basile
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
- Department of Psychology, Dickinson College, Carlisle PA, USA
| | - Elisabeth A. Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| |
Collapse
|
20
|
Zanin JP, Pandya MA, Espinoza D, Friedman WJ, Shiflett MW. Excess cerebellar granule neurons induced by the absence of p75NTR during development elicit social behavior deficits in mice. Front Mol Neurosci 2023; 16:1147597. [PMID: 37305555 PMCID: PMC10249730 DOI: 10.3389/fnmol.2023.1147597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Recently, the cerebellum has been implicated with non-motor functions, including cognitive and emotional behavior. Anatomical and functional studies demonstrate bidirectional cerebellar connections with brain regions involved in social cognition. Cerebellar developmental abnormalities and injury are often associated with several psychiatric and mental disorders including autism spectrum disorders and anxiety. The cerebellar granule neurons (CGN) are essential for cerebellar function since they provide sensorimotor, proprioceptive, and contextual information to Purkinje cells to modify behavior in different contexts. Therefore, alterations to the CGN population are likely to compromise cerebellar processing and function. Previously we demonstrated that the p75 neurotrophin receptor (p75NTR) was fundamental for the development of the CGN. In the absence of p75NTR, we observed increased proliferation of the granule cell precursors (GCPs), followed by increased GCP migration toward the internal granule layer. The excess granule cells were incorporated into the cerebellar network, inducing alterations in cerebellar circuit processing. Methods In the present study, we used two conditional mouse lines to specifically delete the expression of p75NTR in CGN. In both mouse lines, deletion of the target gene was under the control of the transcription factor Atoh-1 promotor, however, one of the lines was also tamoxifen-inducible. Results We observed a loss of p75NTR expression from the GCPs in all cerebellar lobes. Compared to control animals, both mouse lines exhibited a reduced preference for social interactions when presented with a choice to interact with a mouse or an object. Open-field locomotor behavior and operant reward learning were unaffected in both lines. Lack of preference for social novelty and increased anxiety-related behavior was present in mice with constitutive p75NTR deletion; however, these effects were not present in the tamoxifen-inducible mice with p75NTR deletion that more specifically targeted the GCPs. Discussion Our findings demonstrate that alterations to CGN development by loss of p75NTR alter social behavior, and contribute to the increasing evidence that the cerebellum plays a role in non-motor-related behaviors, including social behavior.
Collapse
Affiliation(s)
- Juan Pablo Zanin
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Mansi A. Pandya
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Diego Espinoza
- Department of Psychology, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Wilma J. Friedman
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Michael W. Shiflett
- Department of Psychology, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
21
|
McNeil E, Walilko T, Hulbert LE, VanMeter JW, LaConte S, VandeVord P, Zai L, Bentley TB. Development of a Minipig Model of BINT From Blast Exposure Using a Repeatable Mobile Shock Expansion Tube. Mil Med 2023; 188:e591-e599. [PMID: 34677612 DOI: 10.1093/milmed/usab409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/27/2021] [Accepted: 09/27/2021] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION The Office of Naval Research (ONR) sponsored the Blast Load Assessment Sense and Test (BLAST) program to provide an approach to operationally relevant monitoring and analysis of blast exposure for optimization of service member performance and health. Of critical importance in this effort was the development of a standardized methodology for preclinical large animal studies that can reliably produce outcome measures that cannot be measured in human studies to support science-based guidelines. The primary advantage of this approach is that, because animal studies report physiological measures that correlate with human neuropathology, these data can be used to evaluate potential risks to service members by accounting for the anatomical and physiological differences between humans and large animal models. This article describes the methodology used to generate a comprehensive outcome measure dataset correlated with controlled blast exposure. METHODS AND MATERIALS To quantify outcomes associated with a single exposure to blast, 23 age- and weight-matched Yucatan minipigs were exposed to a single blast event generated by a large-bore, compressed gas shock tube. The peak pressure ranged from 280 to 525 kPa. After a post-exposure 72-hour observation period, the physiological response was quantified using a comprehensive set of neurological outcome measures that included neuroimaging, histology, and behavioral measures. Responses of the blast-exposed animals were compared to the sham-treated cohort to identify statistically significant and physiologically relevant differences between the two groups. RESULTS Following a single exposure, the minipigs were assessed for structural, behavioral, and cellular changes for 3 days after exposure. The following neurological changes were observed: Structural-Using Diffusion Tensor Imaging, a statistically significant decrement (P < .001) in Fractional Anisotropy across the entire volume of the brain was observed when comparing the exposed group to the sham group. This finding indicates that alterations in brain tissue following exposure are not focused at a single location but instead a diffuse brain volume that can only be observed through a systematic examination of the neurological tissue. Cellular-The histopathology results from several large white matter tract locations showed varied cellular responses from six different stains. Using standard statistical methods, results from stains such as Fluoro-Jade C and cluster of differentiation 68 in the hippocampus showed significantly higher levels of neurodegeneration and increased microglia/macrophage activation in blast-exposed subjects. However, other stains also indicated increased response, demonstrating the need for multivariate analysis with a larger dataset. Behavioral-The behavior changes observed were typically transient; the animals' behavior returned to near baseline levels after a relatively short recovery period. Despite behavioral recovery, the presence of active neurodegenerative and inflammatory responses remained. CONCLUSIONS The results of this study demonstrate that (1) a shock tube provides an effective tool for generating repeatable exposures in large animals and (2) exposure to blast overpressure can be correlated using a combination of imaging, behavioral, and histological analyses. This research demonstrates the importance of using multiple physiological indicators to track blast-induced changes in minipigs. The methodology and findings from this effort were central to developing machine-learning models to inform the development of blast exposure guidelines.
Collapse
Affiliation(s)
- Elizabeth McNeil
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Timothy Walilko
- Arlington Division, Applied Research Associates, Inc., Arlington, VA 22203, USA
| | - Lindsey E Hulbert
- Animal Sciences and Industry Department, Kansas State University, Manhattan, KS 66506, USA
| | - John W VanMeter
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Stephen LaConte
- Virginia Tech Carilion Research Institute 2 Riverside Circle, Roanoke, VA 24016, USA
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
- Salem Veteran Affairs Medical Center, Salem, VA 24153, USA
| | - Laila Zai
- Lucent Research, LLC, Parker, CO 80138, USA
| | | |
Collapse
|
22
|
Colyer-Patel K, Kuhns L, Weidema A, Lesscher H, Cousijn J. Age-dependent effects of tobacco smoke and nicotine on cognition and the brain: A systematic review of the human and animal literature comparing adolescents and adults. Neurosci Biobehav Rev 2023; 146:105038. [PMID: 36627063 DOI: 10.1016/j.neubiorev.2023.105038] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Cigarette smoking is often initiated during adolescence and an earlier age of onset is associated with worse health outcomes later in life. Paradoxically, the transition towards adulthood also marks the potential for recovery, as the majority of adolescents are able to quit smoking when adulthood emerges. This systematic review aimed to evaluate the evidence from both human and animal studies for the differential impact of adolescent versus adult repeated and long-term tobacco and nicotine exposure on cognitive and brain outcomes. The limited human studies and more extensive yet heterogeneous animal studies, provide preliminary evidence of heightened fear learning, anxiety-related behaviour, reward processing, nicotinic acetylcholinergic receptors expression, dopamine expression and serotonin functioning after adolescent compared to adult exposure. Effects of nicotine or tobacco use on impulsivity were comparable across age groups. These findings provide novel insights into the mechanisms underlying adolescents' vulnerability to tobacco and nicotine. Future research is needed to translate animal to human findings, with a focus on directly linking a broader spectrum of brain and behavioural outcomes.
Collapse
Affiliation(s)
- Karis Colyer-Patel
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Lauren Kuhns
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Alix Weidema
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands
| | - Heidi Lesscher
- Department Population Health Sciences, Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Janna Cousijn
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Georgelin M, Ferreira VHB, Cornilleau F, Meurisse M, Poissenot K, Beltramo M, Keller M, Lansade L, Dardente H, Calandreau L. Short photoperiod modulates behavior, cognition and hippocampal neurogenesis in male Japanese quail. Sci Rep 2023; 13:951. [PMID: 36653419 PMCID: PMC9849226 DOI: 10.1038/s41598-023-28248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The mechanisms underlying the photoperiodic control of reproduction in mammals and birds have been recently clarified. In contrast, the potential impact of photoperiod on more complex, integrative processes, such as cognitive behaviors, remains poorly characterized. Here, we investigated the impact of contrasted long and short photoperiods (LP, 16 h light/day and SP, 8 h light/day, respectively) on learning, spatial orientation abilities, and emotional reactivity in male Japanese quail. In addition, we quantified cell proliferation and young cell maturation/migration within the hippocampus, a brain region involved in spatial orientation. Our study reveals that, in male quail, SP increases emotional responses and spatial orientation abilities, compared to LP. Behaviorally, SP birds were found to be more fearful than LP birds, exhibiting more freezing in the open field and taking longer to exit the dark compartment in the emergence test. Furthermore, SP birds were significantly less aggressive than LP birds in a mirror test. Cognitively, SP birds were slower to habituate and learn a spatial orientation task compared to LP birds. However, during a recall test, SP birds performed better than LP birds. From a neuroanatomical standpoint, SP birds had a significantly lower density of young neurons, and also tended to have a lower density of mature neurons within the hippocampus, compared to LP birds. In conclusion, our data reveal that, beyond breeding control, photoperiod also exerts a profound influence on behavior, cognition, and brain plasticity, which comprise the seasonal program of this species.
Collapse
Affiliation(s)
- Marion Georgelin
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Vitor Hugo Bessa Ferreira
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Fabien Cornilleau
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Maryse Meurisse
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Kévin Poissenot
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Massimiliano Beltramo
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Matthieu Keller
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Léa Lansade
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Hugues Dardente
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ludovic Calandreau
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
24
|
Investigation of effects of transferrin-conjugated gold nanoparticles on hippocampal neuronal activity and anxiety behavior in mice. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Mehla J, Deibel SH, Karem H, Hossain S, Lacoursiere SG, Sutherland RJ, Mohajerani MH, McDonald RJ. Dramatic impacts on brain pathology, anxiety, and cognitive function in the knock-in APPNL-G-F mouse model of Alzheimer disease following long-term voluntary exercise. Alzheimers Res Ther 2022; 14:143. [PMID: 36180883 PMCID: PMC9526288 DOI: 10.1186/s13195-022-01085-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Background An active lifestyle is associated with improved cognitive functions in aged people and may prevent or slow down the progression of various neurodegenerative diseases including Alzheimer’s disease (AD). To investigate these protective effects, male APPNL-G-F mice were exposed to long-term voluntary exercise. Methods Three-month-old AD mice were housed in a cage supplemented with a running wheel for 9 months for long-term exercise. At the age of 12 months, behavioral tests were completed for all groups. After completing behavioral testing, their brains were assessed for amyloid pathology, microgliosis, and cholinergic cells. Results The results showed that APPNL-G-F mice allowed to voluntarily exercise showed an improvement in cognitive functions. Furthermore, long-term exercise also improved anxiety in APPNL-G-F mice as assessed by measuring thigmotaxis in the Morris water task. We also found reductions in amyloid load and microgliosis, and a preservation of cholinergic cells in the brain of APPNL-G-F mice allowed to exercise in their home cages. These profound reductions in brain pathology associated with AD are likely responsible for the observed improvement of learning and memory functions following extensive and regular exercise. Conclusion These findings suggest the potential of physical exercise to mitigate the cognitive deficits in AD.
Collapse
|
26
|
Nagayach A, Bhaskar R, Patro I. Microglia activation and inflammation in hippocampus attenuates memory and mood functions during experimentally induced diabetes in rat. J Chem Neuroanat 2022; 125:102160. [PMID: 36089179 DOI: 10.1016/j.jchemneu.2022.102160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Incidence of cognitive and emotional alterations are reportedly two times more in diabetic patients than in non-diabetic population with hitherto unexplained causation and mechanism. Purview of the hippocampus functional diversity sanctions the accessibility and the necessity to investigate the regional neuro-immunological aspects of neurodegeneration and related functional alterations following diabetes. We examined the possible involvement of microglia activation, macrophage response, oxidative stress and inflammatory stature in both ventral and dorsal hippocampus of rats rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/ kg body weight; intraperitoneal). Cognitive and behavioural alterations were studied using open field test (locomotor activity), elevated plus maze (anxiety), Barnes maze (spatial cognition) and T maze (working memory) at 2nd, 4th, 6th, 8th, 10th and 12th week post diabetic confirmation. Oxidative stress was investigated via measuring the level of lipid peroxidation biochemically. Scenario of microglia activation, macrophage response and inflammation was gauged using qualitative and quantitative analysis. Pronounced macrophage expression and activation directed microglia phenotypic switching was prominent in both ventral and dorsal hippocampus indicating the impact of oxidative stress following diabetes in hippocampus. The resultant inflammatory response was also progressive and persistent in both ventral and dorsal hippocampus parallel to the altered cognitive, locomotor ability and anxiety behaviour in diabetic rats. Conclusively, present data not only comprehends the microglia, macrophage physiology and related immune response in functionally different hippocampal regions associated cognitive and behavioural deficits, but also offers a suggestive region-specific cellular mechanism pathway for developing an imminent therapeutic approach during particular diabetes deficits.
Collapse
Affiliation(s)
- Aarti Nagayach
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, Madhya Pradesh, India; Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, South Korea
| | - Ishan Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, Madhya Pradesh, India; School of Studies in Zoology, Jiwaji University, Gwalior 474011, Madhya Pradesh, India
| |
Collapse
|
27
|
Shou Q, Yamada J, Nishina K, Matsunaga M, Matsuda T, Takagishi H. Association between salivary oxytocin levels and the amygdala and hippocampal volumes. Brain Struct Funct 2022; 227:2503-2511. [PMID: 35943580 DOI: 10.1007/s00429-022-02543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
Salivary oxytocin levels have been widely measured and studied in relation to social behavior because of procedural simplicity and noninvasiveness. Although the relationship between oxytocin levels in the blood and the hippocampus and amygdala is now becoming clear with reliable blood oxytocin studies, few studies have examined the relationship between salivary oxytocin and the brain function and structure. This study aimed to investigate whether the salivary oxytocin level is associated with the volume of the amygdala and hippocampus in 178 adults (92 women and 86 men) in their third to seventh decade of life. We performed volumetric analysis of the amygdala and hippocampus using FreeSurfer and measured salivary oxytocin levels using enzyme-linked immunosorbent assay. The results showed contradictory effects of the salivary oxytocin level on the amygdala volume by sex and no significant effect on the hippocampal volume. Specifically, men showed a positive correlation between the salivary oxytocin level and amygdala volume, whereas women showed a negative correlation between the salivary oxytocin level and amygdala volume. The present study's finding of sex differences in the association between salivary oxytocin and brain structure supports previous findings that there are sex differences in the oxytocin system.
Collapse
Affiliation(s)
- Qiulu Shou
- Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan
| | - Junko Yamada
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
A. Samara M, Oikonomou GD, Trompoukis G, Madarou G, Adamopoulou M, Papatheodoropoulos C. Septotemporal variation in modulation of synaptic transmission, paired-pulse ratio and frequency facilitation/depression by adenosine and GABA B receptors in the rat hippocampus. Brain Neurosci Adv 2022; 6:23982128221106315. [PMID: 35782711 PMCID: PMC9240614 DOI: 10.1177/23982128221106315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
Short-term synaptic plasticity represents a fundamental mechanism in
neural information processing and is regulated by neuromodulators.
Here, using field recordings from the CA1 region of adult rat
hippocampal slices, we show that excitatory synaptic transmission is
suppressed by strong but not moderate activation of adenosine
A1 receptors by
2-Chloro-N6-cyclopentyladenosine (CCPA) more in the dorsal
than the ventral hippocampus; in contrast, both mild and strong
activation of GABAB receptors by baclofen (1 μM, 10 μM)
suppress synaptic transmission more in the ventral than the dorsal
hippocampus. Using a 10-pulse stimulation train of variable frequency,
we found that CCPA modulates short-term synaptic plasticity
independently of the suppression of synaptic transmission in both
segments of the hippocampus and at stimulation frequencies greater
than 10 Hz. However, specifically regarding the paired-pulse ratio
(PPR) and frequency facilitation/depression (FF/D) we found
significant drug action before but not after adjusting conditioning
responses to control levels. Activation of GABABRs by
baclofen suppressed synaptic transmission more in the ventral than the
dorsal hippocampus. Furthermore, relatively high (10 μM) but not low
(1 μM) baclofen concentration enhanced both PPR and FF in both
hippocampal segments at stimulation frequencies greater than 1 Hz,
independently of the suppression of synaptic transmission by baclofen.
These results show that A1Rs and GABABRs control
synaptic transmission more effectively in the dorsal and the ventral
hippocampus, respectively, and suggest that these receptors modulate
PPR and FF/D at different frequency bands of afferent input, in both
segments of the hippocampus.
Collapse
Affiliation(s)
- Maria A. Samara
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George D. Oikonomou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George Trompoukis
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Georgia Madarou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Maria Adamopoulou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
29
|
Bang JY, Zhao J, Rahman M, St-Cyr S, McGowan PO, Kim JC. Hippocampus-Anterior Hypothalamic Circuit Modulates Stress-Induced Endocrine and Behavioral Response. Front Neural Circuits 2022; 16:894722. [PMID: 35795487 PMCID: PMC9251012 DOI: 10.3389/fncir.2022.894722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Hippocampal input to the hypothalamus is known to be critically involved in mediating the negative feedback inhibition of stress response. However, the underlying neural circuitry has not been fully elucidated. Using a combination of rabies tracing, pathway-specific optogenetic inhibition, and cell-type specific synaptic silencing, the present study examined the role of hippocampal input to the hypothalamus in modulating neuroendocrine and behavioral responses to stress in mice. Transsynaptic rabies tracing revealed that the ventral hippocampus (vHPC) is monosynaptically connected to inhibitory cells in the anterior hypothalamic nucleus (AHN-GABA cells). Optogenetic inhibition of the vHPC→AHN pathway during a restraint stress resulted in a prolonged and exaggerated release of corticosterone, accompanied by an increase in stress-induced anxiety behaviors. Consistently, tetanus toxin-mediated synaptic inhibition in AHN-GABA cells produced a remarkably similar effect on the corticosterone release profile, corroborating the role of HPC→AHN pathway in mediating the hippocampal control of stress responses. Lastly, we found that chronic inhibition of AHN-GABA cells leads to cognitive impairments in both object and social recognition memory. Together, our data present a novel hypothalamic circuit for the modulation of adaptive stress responses, the dysfunction of which has been implicated in various affective disorders.
Collapse
Affiliation(s)
- Jee Yoon Bang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Julie Zhao
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Mouly Rahman
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sophie St-Cyr
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Patrick O. McGowan
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jun Chul Kim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jun Chul Kim
| |
Collapse
|
30
|
Yeates DCM, Leavitt D, Sujanthan S, Khan N, Alushaj D, Lee ACH, Ito R. Parallel ventral hippocampus-lateral septum pathways differentially regulate approach-avoidance conflict. Nat Commun 2022; 13:3349. [PMID: 35688838 PMCID: PMC9187740 DOI: 10.1038/s41467-022-31082-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The ability to resolve an approach-avoidance conflict is critical to adaptive behavior. The ventral CA3 (vCA3) and CA1 (vCA1) subfields of the ventral hippocampus (vHPC) have been shown to facilitate avoidance and approach behavior, respectively, in the face of motivational conflict, but the neural circuits by which this subfield-specific regulation is implemented is unknown. We demonstrate that two distinct pathways from these subfields to lateral septum (LS) contribute to this divergent control. In Long-Evans rats, chemogenetic inhibition of the vCA3- LS caudodorsal (cd) pathway potentiated approach towards a learned conflict-eliciting stimulus, while inhibition of the vCA1-LS rostroventral (rv) pathway potentiated approach non-specifically. Additionally, vCA3-LScd inhibited animals were less hesitant to explore food during environmental uncertainty, while the vCA1- LSrv inhibited animals took longer to initiate food exploration. These findings suggest that the vHPC influences multiple behavioral systems via differential projections to the LS, which in turn send inhibitory projections to motivational centres of the brain.
Collapse
Affiliation(s)
- Dylan C M Yeates
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Dallas Leavitt
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Sajeevan Sujanthan
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Nisma Khan
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Denada Alushaj
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
- Rotman Research Institute, Baycrest Centre, Toronto, ON, M6A 2E1, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
31
|
Deji C, Yan P, Ji Y, Yan X, Feng Y, Liu J, Liu Y, Wei S, Zhu Y, Lai J. The Basolateral Amygdala to Ventral Hippocampus Circuit Controls Anxiety-Like Behaviors Induced by Morphine Withdrawal. Front Cell Neurosci 2022; 16:894886. [PMID: 35726232 PMCID: PMC9205755 DOI: 10.3389/fncel.2022.894886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Anxiety is one of the most common comorbid conditions reported in people with opioid dependence. The basolateral amygdala (BLA) and ventral hippocampus (vHip) are critical brain regions for fear and anxiety. The kappa opioid receptor (KOR) is present in the mesolimbic regions involved in emotions and addiction. However, the precise circuits and molecular basis underlying anxiety associated with chronic opioid use are poorly understood. Using a mouse model, we demonstrated that anxiety-like behaviors appeared in the first 2 weeks after morphine withdrawal. Furthermore, the BLA and vHip were activated in mice experiencing anxiety after morphine withdrawal (Mor-A). KORs in the BLA to vHip projections were significantly increased in the Mor-A group. Optogenetic/chemogenetic inhibition of BLA inputs ameliorated anxiety-like behaviors and facilitated conditioned place preference (CPP) extinction in Mor-A mice. Knockdown of the BLA to vHip circuit KOR alleviated the anxiety-like behaviors but did not affect CPP extinction or reinstatement. Furthermore, combined treatment of inhibition of the BLA to vHip circuit and KOR antagonists mitigated anxiety-like behaviors and prevented stress-induced CPP reinstatement after morphine withdrawal. These results revealed a previously unknown circuit associated with the emotional component of opioid withdrawal and indicated that restoration of synaptic deficits with KOR antagonists might be effective in the treatment of anxiety associated with morphine withdrawal.
Collapse
|
32
|
Role of the glycoprotein thorns in anxious effects of rabies virus: Evidence from an animal study. Brain Res Bull 2022; 185:107-116. [DOI: 10.1016/j.brainresbull.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/17/2022]
|
33
|
Shuvaev AN, Belozor OS, Mozhei OI, Mileiko AG, Mosina LD, Laletina IV, Mikhailov IG, Fritsler YV, Shuvaev AN, Teschemacher AG, Kasparov S. Memantine Disrupts Motor Coordination through Anxiety-like Behavior in CD1 Mice. Brain Sci 2022; 12:brainsci12040495. [PMID: 35448027 PMCID: PMC9027563 DOI: 10.3390/brainsci12040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Memantine is an FDA approved drug for the treatment of Alzheimer’s disease. It reduces neurodegeneration in the hippocampus and cerebral cortex through the inhibition of extrasynaptic NMDA receptors in patients and mouse models. Potentially, it could prevent neurodegeneration in other brain areas and caused by other diseases. We previously used memantine to prevent functional damage and to retain morphology of cerebellar neurons and Bergmann glia in an optogenetic mouse model of spinocerebellar ataxia type-1 (SCA1). However, before suggesting wider use of memantine in clinics, its side effects must be carefully evaluated. Blockers of NMDA receptors are controversial in terms of their effects on anxiety. Here, we investigated the effects of chronic application of memantine over 9 weeks to CD1 mice and examined rotarod performance and anxiety-related behaviors. Memantine-treated mice exhibited an inability to adapt to anxiety-causing conditions which strongly affected their rotarod performance. A tail suspension test revealed increased signs of behavioral despair. These data provide further insights into the potential deleterious effects of memantine which may result from the lack of adaptation to novel, stressful conditions. This effect of memantine may affect the results of tests used to assess motor performance and should be considered during clinical trials of memantine in patients.
Collapse
Affiliation(s)
- Anton N. Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia;
- Correspondence: ; Tel.: +7-(391)-228-0769
| | - Olga S. Belozor
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Oleg I. Mozhei
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (O.I.M.); (S.K.)
| | - Aleksandra G. Mileiko
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Ludmila D. Mosina
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Irina V. Laletina
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Ilia G. Mikhailov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Yana V. Fritsler
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Andrey N. Shuvaev
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.G.M.); (L.D.M.); (I.V.L.); (I.G.M.); (Y.V.F.); (A.N.S.)
| | - Anja G. Teschemacher
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK;
| | - Sergey Kasparov
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (O.I.M.); (S.K.)
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK;
| |
Collapse
|
34
|
Wong AH, Wirth FM, Pittig A. Avoidance of learnt fear: Models, potential mechanisms, and future directions. Behav Res Ther 2022; 151:104056. [DOI: 10.1016/j.brat.2022.104056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
|
35
|
Caradonna SG, Zhang TY, O’Toole N, Shen MJ, Khalil H, Einhorn NR, Wen X, Parent C, Lee FS, Akil H, Meaney MJ, McEwen BS, Marrocco J. Genomic modules and intramodular network concordance in susceptible and resilient male mice across models of stress. Neuropsychopharmacology 2022; 47:987-999. [PMID: 34848858 PMCID: PMC8938529 DOI: 10.1038/s41386-021-01219-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
The multifactorial etiology of stress-related disorders necessitates a constant interrogation of the molecular convergences in preclinical models of stress that use disparate paradigms as stressors spanning from environmental challenges to genetic predisposition to hormonal signaling. Using RNA-sequencing, we investigated the genomic signatures in the ventral hippocampus common to mouse models of stress. Chronic oral corticosterone (CORT) induced increased anxiety- and depression-like behavior in wild-type male mice and male mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met, a variant associated with genetic susceptibility to stress. In a separate set of male mice, chronic social defeat stress (CSDS) led to a susceptible or a resilient population, whose proportion was dependent on housing conditions, namely standard housing or enriched environment. Rank-rank-hypergeometric overlap (RRHO), a threshold-free approach that ranks genes by their p value and effect size direction, was used to identify genes from a continuous gradient of significancy that were concordant across groups. In mice treated with CORT and in standard-housed susceptible mice, differentially expressed genes (DEGs) were concordant for gene networks involved in neurotransmission, cytoskeleton function, and vascularization. Weighted gene co-expression analysis generated 54 gene hub modules and revealed two modules in which both CORT and CSDS-induced enrichment in DEGs, whose function was concordant with the RRHO predictions, and correlated with behavioral resilience or susceptibility. These data showed transcriptional concordance across models in which the stress coping depends upon hormonal, environmental, or genetic factors revealing common genomic drivers that embody the multifaceted nature of stress-related disorders.
Collapse
Affiliation(s)
- Salvatore G. Caradonna
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Tie-Yuan Zhang
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Nicholas O’Toole
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Mo-Jun Shen
- grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore
| | - Huzefa Khalil
- grid.214458.e0000000086837370Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Nathan R. Einhorn
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Xianglan Wen
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Carine Parent
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Francis S. Lee
- grid.5386.8000000041936877XDepartment of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY USA
| | - Huda Akil
- grid.214458.e0000000086837370Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Michael J. Meaney
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, Singapore, Singapore ,grid.14709.3b0000 0004 1936 8649Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC Canada
| | - Bruce S. McEwen
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Jordan Marrocco
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
36
|
Borjeni MS, Korani M, Meftahi GH, Davoodian N, Hadipour M, Jahromi GP. Laterality dissociation of ventral hippocampus inhibition in learning and memory, glial activation and neural arborization in response to chronic stress in male Wistar rats. J Chem Neuroanat 2022; 121:102090. [DOI: 10.1016/j.jchemneu.2022.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
|
37
|
Maltz RM, Marte-Ortiz P, Rajasekera TA, Loman BR, Gur TL, Bailey MT. Stressor-Induced Increases in Circulating, but Not Colonic, Cytokines Are Related to Anxiety-like Behavior and Hippocampal Inflammation in a Murine Colitis Model. Int J Mol Sci 2022; 23:ijms23042000. [PMID: 35216112 PMCID: PMC8877477 DOI: 10.3390/ijms23042000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Stressor exposure increases colonic inflammation. Because inflammation leads to anxiety-like behavior, we tested whether stressor exposure in mice recovering from dextran-sulfate-sodium (DSS)-induced colitis enhances anxiety-like behavior. Mice received 2% DSS for five consecutive days prior to being exposed to a social-disruption (SDR) stressor (or being left undisturbed). After stressor exposure, their behavior was tested and colitis was assessed via histopathology and via inflammatory-cytokine measurement in the serum and colon. Cytokine and chemokine mRNA levels in the colon, mesenteric lymph nodes (MLNs), hippocampus, and amygdala were measured with RT-PCR. SDR increased anxiety-like behaviors, which correlated with serum and hippocampal IL-17A. The stressor also reduced IL-1β, CCL2, and iNOS in the colonic tissue, but increased iNOS, IFNγ, IL-17A, and TNFα in the MLNs. A network analysis indicated that reductions in colonic iNOS were related to elevated MLN iNOS and IFNγ. These inflammatory markers were related to serum and hippocampal IL-17A and associated with anxiety-like behavior. Our data suggest that iNOS may protect against extra-colonic inflammation, and when suppressed during stress it is associated with elevated MLN IFNγ, which may coordinate gut-to-brain inflammation. Our data point to hippocampal IL-17A as a key correlate of anxiety-like behavior.
Collapse
Affiliation(s)
- Ross M. Maltz
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA;
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
- Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Correspondence: ; Tel.: +1-614-722-5116; Fax: +1-614-722-2979
| | - Pedro Marte-Ortiz
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
| | - Therese A. Rajasekera
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.A.R.); (T.L.G.)
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Brett R. Loman
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
| | - Tamar L. Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.A.R.); (T.L.G.)
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Michael T. Bailey
- Department of Pediatrics, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA;
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
- Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.A.R.); (T.L.G.)
| |
Collapse
|
38
|
Cross-species anxiety tests in psychiatry: pitfalls and promises. Mol Psychiatry 2022; 27:154-163. [PMID: 34561614 PMCID: PMC8960405 DOI: 10.1038/s41380-021-01299-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 11/08/2022]
Abstract
Behavioural anxiety tests in non-human animals are used for anxiolytic drug discovery, and to investigate the neurobiology of threat avoidance. Over the past decade, several of them were translated to humans with three clinically relevant goals: to assess potential efficacy of candidate treatments in healthy humans; to develop diagnostic tests or biomarkers; and to elucidate the pathophysiology of anxiety disorders. In this review, we scrutinise these promises and compare seven anxiety tests that are validated across species: five approach-avoidance conflict tests, unpredictable shock anticipation, and the social intrusion test in children. Regarding the first goal, three tests appear suitable for anxiolytic drug screening in humans. However, they have not become part of the drug development pipeline and achieving this may require independent confirmation of predictive validity and cost-effectiveness. Secondly, two tests have shown potential to measure clinically relevant individual differences, but their psychometric properties, predictive value, and clinical applicability need to be clarified. Finally, cross-species research has not yet revealed new evidence that the physiology of healthy human behaviour in anxiety tests relates to the physiology of anxiety symptoms in patients. To summarise, cross-species anxiety tests could be rendered useful for drug screening and for development of diagnostic instruments. Using these tests for aetiology research in healthy humans or animals needs to be queried and may turn out to be unrealistic.
Collapse
|
39
|
Fan Y, Zhang L, Kong X, Liu K, Wu H. Different Exercise Time on 5-HT and Anxiety-like Behavior in the Rat With Vascular Dementia. Am J Alzheimers Dis Other Demen 2022; 37:15333175221082743. [PMID: 35344444 PMCID: PMC10581105 DOI: 10.1177/15333175221082743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies have demonstrated that pre-exercise suppresses anxiety-like behavior, but the effects of different exercise times on vascular dementia induced anxiety-like behavior have not been well investigated. OBJECTIVE The present study aims to investigate the underlying neurochemical mechanism of different pre-vascular-dementia exercise times on 5-HT and anxiety-like behavior in rats with vascular dementia. METHODS 32 Sprague-Dawley (SD) rats were randomly divided into 4 groups: sham group (S group, n = 8), vascular dementia group (VD group, n = 8), 1-week physical exercise and vascular dementia group (1WVD group, n = 8), and 4 weeks physical exercise and vascular dementia group (4WVD group, n = 8). 1 week and 4 weeks of voluntary wheel running were used as pre-exercise training. The vascular dementia model was established by bilateral common carotid arteries occlusion (BCCAo) for 1 week. But bilateral common carotid arteries were not ligated in the sham group. The level of hippocampal 5-HT was detected with in vivo microdialysis coupled with high-performance liquid chromatography (MD-HPLC). Elevated plus maze (EPM), open field (OF), and light/dark box test were used to test anxiety-like behavior. RESULTS Compared with the C group, the hippocampal 5-HT was significantly decreased in the VD group after 1 week of ligated operation. The hippocampal 5-HT levels in 1WVD and 4WVD groups were substantially higher than the level in the VD group. The hippocampal 5-HT level has no significant difference among C, 1WVD, and 4WVD. Behavioral data suggested that the rats in the VD group developed obvious anxiety-like behavior after 1 week of ligation surgery. Still, the rats in 1WVD and 4WVD groups did not show significant anxiety-like behavior. CONCLUSION Both 1 week and 4 weeks of voluntary running wheel exercise can inhibit the anxiety-like behavior in rats with vascular dementia by upregulating 5-HT levels in the hippocampus in the VD model.
Collapse
Affiliation(s)
- Yongzhao Fan
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
| | - Linlin Zhang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Xiaoyang Kong
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
| | - Kun Liu
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Brain Peace Science Foundation, New Haven, CT, USA
| | - Hao Wu
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
| |
Collapse
|
40
|
Jing W, Zhang T, Liu J, Huang X, Yu Q, Yu H, Zhang Q, Li H, Deng M, Zhu LQ, Du H, Lu Y. A circuit of COCH neurons encodes social-stress-induced anxiety via MTF1 activation of Cacna1h. Cell Rep 2021; 37:110177. [PMID: 34965426 DOI: 10.1016/j.celrep.2021.110177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/20/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
The hippocampus is a temporal lobe structure critical for cognition, such as learning, memory, and attention, as well as emotional responses. Hippocampal dysfunction can lead to persistent anxiety and/or depression. However, how millions of neurons in the hippocampus are molecularly and structurally organized to engage their divergent functions remains unknown. Here, we genetically target a subset of neurons expressing the coagulation factor c homolog (COCH) gene. COCH-expressing neurons or COCH neurons are topographically segregated in the distal region of the ventral CA3 hippocampus and express Mtf1 and Cacna1h. MTF1 activation of Cacna1h transcription in COCH neurons encodes the ability of COCH neurons to burst action potentials and cause social-stress-induced anxiety-like behaviors by synapsing directly with a subset of GABAergic inhibitory neurons in the lateral septum. Together, this study provides a molecular and circuitry-based framework for understanding how COCH neurons in the hippocampus are assembled to engage social behavior.
Collapse
Affiliation(s)
- Wei Jing
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongmei Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Histology and Embryology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jiaying Liu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian Huang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyan Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingping Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Manfei Deng
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling-Qiang Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
41
|
Chiba S, Okawara T, Kawakami K, Ohta R, Kawaguchi M. Alterations between high and low-avoidance lines of Hatano rats in learning behaviors, ultrasonic vocalizations, and histological characteristics in hippocampus and amygdala. Physiol Behav 2021; 245:113670. [PMID: 34890592 DOI: 10.1016/j.physbeh.2021.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
Growing evidence supports interactions between anxiety and cognitive function. The primary object of this study was to elucidate whether high-avoidance (HAA) and low-avoidance (LAA) strains of Hatano rats are suitable for the analysis of interactions between the formation of long-term memory and emotional reactivity. The learning/memory ability of Hatano rats and their Sprague-Dawley (SD) ancestors was evaluated using contextual fear conditioning, Y-maze, and Barnes maze tests from 8 weeks of age. Ultrasonic vocalizations were recorded and analyzed during contextual fear conditioning. In a separate experiment, rat brains were sampled 90 min after the first context test and subjected to Nissl staining and c-fos immunostaining. The duration of freezing and number of 22 kHz ultrasonic vocalizations were decreased in LAA compared with HAA and SD rats during the first and second context tests of contextual fear conditioning. The HAA rats did not show preferences for quadrants during the Barnes maze probe test, whereas the SD and LAA rats spent significantly more time in the quadrant where the goals had been placed. There was no difference among the strains in short-term spatial memory as shown by the Y-maze test. Decreases were found in the number of c-fos+ cells as well as the volume of some hippocampal regions in the HAA rats compared to SD and LAA rats. By contrast, the volume of the basolateral amygdala was bigger in the HAA than the other strains. On the basis of the 22 kHz ultrasonic calls and literature regarding Syracuse rats, the possibility that emotional reactivity influences contextual memory in Hatano strains was discussed. This emotional difference may be derived from structural and/or functional divergence in the hippocampus and amygdala between the strains. The cause of strain-related differences in long-term spatial learning was difficult to elucidate because there are several possible explanations, including differences in memory and/or the interference of hyperactivity during the Barnes maze test.
Collapse
Affiliation(s)
- Shuichi Chiba
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-Oka, Imabari, Ehime 794-8555, Japan
| | - Toru Okawara
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kotaro Kawakami
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ryo Ohta
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano,Kanagawa 257-8523, Japan
| | - Maiko Kawaguchi
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
42
|
AlSubaie R, Wee RWS, Ritoux A, Mishchanchuk K, Passlack J, Regester D, MacAskill AF. Control of parallel hippocampal output pathways by amygdalar long-range inhibition. eLife 2021; 10:e74758. [PMID: 34845987 PMCID: PMC8654375 DOI: 10.7554/elife.74758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons and avoids prefrontal cortex-projecting vH neurons, while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.
Collapse
Affiliation(s)
- Rawan AlSubaie
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Ryan WS Wee
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Anne Ritoux
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Karyna Mishchanchuk
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Jessica Passlack
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Daniel Regester
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
43
|
Coleman LG, Crews FT, Vetreno RP. The persistent impact of adolescent binge alcohol on adult brain structural, cellular, and behavioral pathology: A role for the neuroimmune system and epigenetics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:1-44. [PMID: 34696871 DOI: 10.1016/bs.irn.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adolescence is a critical neurodevelopmental window for maturation of brain structure, neurocircuitry, and glia. This development is sculpted by an individual's unique experiences and genetic background to establish adult level cognitive function and behavioral makeup. Alcohol abuse during adolescence is associated with an increased lifetime risk for developing an alcohol use disorder (AUD). Adolescents participate in heavy, episodic binge drinking that causes persistent changes in neurocircuitry and behavior. These changes may underlie the increased risk for AUD and might also promote cognitive deficits later in life. In this chapter, we have examined research on the persistent effects of adolescent binge-drinking both in humans and in rodent models. These studies implicate roles for neuroimmune signaling as well as epigenetic reprogramming of neurons and glia, which create a vulnerable neuroenvironment. Some of these changes are reversible, giving hope for future treatments to prevent many of the long-term consequences of adolescent alcohol abuse.
Collapse
Affiliation(s)
- Leon G Coleman
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Fulton T Crews
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
44
|
James T, Kula B, Choi S, Khan SS, Bekar LK, Smith NA. Locus coeruleus in memory formation and Alzheimer's disease. Eur J Neurosci 2021; 54:6948-6959. [PMID: 33190318 PMCID: PMC8121900 DOI: 10.1111/ejn.15045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Catecholamine neurons of the locus coeruleus (LC) in the dorsal pontine tegmentum innervate the entire neuroaxis, with signaling actions implicated in the regulation of attention, arousal, sleep-wake cycle, learning, memory, anxiety, pain, mood, and brain metabolism. The co-release of norepinephrine (NE) and dopamine (DA) from LC terminals in the hippocampus plays a role in all stages of hippocampal-memory processing. This catecholaminergic regulation modulates the encoding, consolidation, retrieval, and reversal of hippocampus-based memory. LC neurons in awake animals have two distinct firing modes: tonic firing (explorative) and phasic firing (exploitative). These two firing modes exert different modulatory effects on post-synaptic dendritic spines. In the hippocampus, the firing modes regulate long-term potentiation (LTP) and long-term depression, which differentially regulate the mRNA expression and transcription of plasticity-related proteins (PRPs). These proteins aid in structural alterations of dendritic spines, that is, structural long-term potentiation (sLTP), via expansion and structural long-term depression (sLTD) via contraction of post-synaptic dendritic spines. Given the LC's role in all phases of memory processing, the degeneration of 50% of the LC neuron population occurring in Alzheimer's disease (AD) is a clinically relevant aspect of disease pathology. The loss of catecholaminergic regulation contributes to dysfunction in memory processes along with impaired functions associated with attention and task completion. The multifaceted role of the LC in memory and general task performance and the close correlation of LC degeneration with neurodegenerative disease progression together implicate it as a target for new clinical assessment tools.
Collapse
Affiliation(s)
- Tony James
- George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Bartosz Kula
- Center for NeuroscienceChildren's National Research InstituteChildren's National HospitalWashingtonDCUSA
| | - Seowon Choi
- Center for NeuroscienceChildren's National Research InstituteChildren's National HospitalWashingtonDCUSA
- Thomas Jefferson High School for Science and TechnologyAlexandriaVAUSA
| | | | - Lane K. Bekar
- Department of Anatomy, Physiology and PharmacologyUniversity of SaskatchewanSaskatoonCanada
| | - Nathan A. Smith
- George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- Center for NeuroscienceChildren's National Research InstituteChildren's National HospitalWashingtonDCUSA
| |
Collapse
|
45
|
Septotemporal variation in beta-adrenergic modulation of short-term dynamics in the hippocampus. IBRO Neurosci Rep 2021; 11:64-72. [PMID: 34409401 PMCID: PMC8363828 DOI: 10.1016/j.ibneur.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Recent evidence shows a greater facilitating effect of beta-adrenergic receptors (β-ARs) on long-term synaptic plasticity in the ventral versus the dorsal hippocampus. Here, using field potentials from the CA1 area and a ten-pulse stimulation train of varying frequency we show that activation of β-ARs by isoproterenol preferentially facilitates the output from the dorsal hippocampus at the frequency range of 3–40 Hz without affecting short-term synaptic plasticity. Furthermore, isoproterenol increases basal synaptic transmission in the dorsal hippocampus only and enhances basal neuronal excitation more in the dorsal than the ventral hippocampus. These results suggest that β-AR-modulation of short-term neuronal dynamics differs along the longitudinal axis of the hippocampus, thereby contributing to functional specialization along the same axis. We studied the effects of isoproterenol (ISO) in dorsal (DH) and ventral (VH) hippocampus. ISO increased synaptic transmission and population spike more in DH than VH. ISO modulated short-term changes of population spike in the dorsal hippocampus only. ISO did not affect short-term changes of synaptic transmission in DH or VH. β adrenergic receptors modulate short-term changes in excitation in DH only.
Collapse
|
46
|
Molina SJ, Lietti ÁE, Carreira Caro CS, Buján GE, Guelman LR. Effects of early noise exposure on hippocampal-dependent behaviors during adolescence in male rats: influence of different housing conditions. Anim Cogn 2021; 25:103-120. [PMID: 34322771 DOI: 10.1007/s10071-021-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Central nervous system (CNS) development is a very complex process that can be altered by environmental stimuli such as noise, which can generate long-term auditory and/or extra-auditory impairments. We have previously reported that early noise exposure can induce hippocampus-related behavioral alterations in postnatal day (PND) 28 adolescent rats. Furthermore, we recently found biochemical modifications in the hippocampus (HC) of these animals that seemed to endure even in more mature animals (i.e. PND35) and that have not been studied along with behavioral correlates. Thus, the aim of this work was to reveal novel data about the effects of early noise exposure on hippocampal-dependent behaviors in more mature animals. Additionally, extended enriched environment (EE) housing was evaluated to determine its capacity to induce behavioral modifications, either by its neuroprotective ability or the greater stimulation that it generates. Male Wistar rats were exposed to different noise schemes at PND7 or PND15. Upon weaning, some animals were transferred to EE whereas others were kept in standard cages. At PND35, different hippocampal-dependent behavioral assessments were performed. Results showed noise-induced behavioral changes that differed according to the scheme and age of exposure used. In addition, housing in an EE was effective either in preventing some of these changes or in inducing the appearance of new behavioral modifications. These findings suggest that CNS development would be sensitive to the effects of different type of environmental stimuli such as noise or enriched housing, leading to maladaptive behavioral changes that last even until adolescence.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina.
| | - Ángel Emanuel Lietti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina
| | - Candela Sofía Carreira Caro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
47
|
Differential encoding of place value between the dorsal and intermediate hippocampus. Curr Biol 2021; 31:3053-3072.e5. [DOI: 10.1016/j.cub.2021.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023]
|
48
|
Different cholinergic cell groups in the basal forebrain regulate social interaction and social recognition memory. Sci Rep 2021; 11:13589. [PMID: 34193944 PMCID: PMC8245640 DOI: 10.1038/s41598-021-93045-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/21/2021] [Indexed: 11/08/2022] Open
Abstract
Social behaviour is a complex construct that is reported to include several components of social approach, interaction and recognition memory. Alzheimer's disease (AD) is mainly characterized by progressive dementia and is accompanied by cognitive impairments, including a decline in social ability. The cholinergic system is a potential constituent for the neural mechanisms underlying social behaviour, and impaired social ability in AD may have a cholinergic basis. However, the involvement of cholinergic function in social behaviour has not yet been fully understood. Here, we performed a selective elimination of cholinergic cell groups in the basal forebrain in mice to examine the role of cholinergic function in social interaction and social recognition memory by using the three-chamber test. Elimination of cholinergic neurons in the medial septum (MS) and vertical diagonal band of Broca (vDB) caused impairment in social interaction, whereas ablating cholinergic neurons in the nucleus basalis magnocellularis (NBM) impaired social recognition memory. These impairments were restored by treatment with cholinesterase inhibitors, leading to cholinergic system activation. Our findings indicate distinct roles of MS/vDB and NBM cholinergic neurons in social interaction and social recognition memory, suggesting that cholinergic dysfunction may explain social ability deficits associated with AD symptoms.
Collapse
|
49
|
Petrie GN, Nastase AS, Aukema RJ, Hill MN. Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology 2021; 195:108626. [PMID: 34116110 DOI: 10.1016/j.neuropharm.2021.108626] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cannabis has been used for hundreds of years, with its ability to dampen feelings of anxiety often reported as a primary reason for use. Only recently has the specific role cannabinoids play in anxiety been thoroughly investigated. Here we discuss the body of evidence describing how endocannabinoids and exogenous cannabinoids are capable of regulating the generation and termination of anxiety states. Disruption of the endogenous cannabinoid (eCB) system following genetic manipulation, pharmacological intervention or stress exposure reliably leads to the generation of an anxiety state. On the other hand, upregulation of eCB signaling is capable of alleviating anxiety-like behaviors in multiple paradigms. When considering exogenous cannabinoid administration, cannabinoid receptor 1 (CB1) agonists have a biphasic, dose-dependent effect on anxiety such that low doses are anxiolytic while high doses are anxiogenic, a phenomenon that is evident in both rodent models and humans. Translational studies investigating a loss of function mutation in the gene for fatty acid amide hydrolase, the enzyme responsible for metabolizing AEA, have also shown that AEA signaling regulates anxiety in humans. Taken together, evidence reviewed here has outlined a convincing argument for cannabinoids being powerful regulators of both the manifestation and amelioration of anxiety symptoms, and highlights the therapeutic potential of targeting the eCB system for the development of novel classes of anxiolytics. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Gavin N Petrie
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Robert J Aukema
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
50
|
Danan D, Todder D, Zohar J, Cohen H. Is PTSD-Phenotype Associated with HPA-Axis Sensitivity? Feedback Inhibition and Other Modulating Factors of Glucocorticoid Signaling Dynamics. Int J Mol Sci 2021; 22:ijms22116050. [PMID: 34205191 PMCID: PMC8200046 DOI: 10.3390/ijms22116050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/12/2023] Open
Abstract
Previously, we found that basal corticosterone pulsatility significantly impacts the vulnerability for developing post-traumatic stress disorder (PTSD). Rats that exhibited PTSD-phenotype were characterized by blunted basal corticosterone pulsatility amplitude and a blunted corticosterone response to a stressor. This study sought to identify the mechanisms underlining both the loss of pulsatility and differences in downstream responses. Serial blood samples were collected manually via jugular vein cannula at 10-min intervals to evaluate suppression of corticosterone following methylprednisolone administration. The rats were exposed to predator scent stress (PSS) after 24 h, and behavioral responses were assessed 7 days post-exposure for retrospective classification into behavioral response groups. Brains were harvested for measurements of the glucocorticoid receptor, mineralocorticoid receptor, FK506-binding protein-51 and arginine vasopressin in specific brain regions to assess changes in hypothalamus–pituitary–adrenal axis (HPA) regulating factors. Methylprednisolone produced greater suppression of corticosterone in the PTSD-phenotype group. During the suppression, the PTSD-phenotype rats showed a significantly more pronounced pulsatile activity. In addition, the PTSD-phenotype group showed distinct changes in the ventral and dorsal CA1, dentate gyrus as well as in the paraventricular nucleus and supra-optic nucleus. These results demonstrate a pre-trauma vulnerability state that is characterized by an over-reactivity of the HPA and changes in its regulating factors.
Collapse
Affiliation(s)
- Dor Danan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Doron Todder
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv 52621, Israel;
| | - Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
- Correspondence: ; Tel.: +972-544-369106
| |
Collapse
|