1
|
Stutt HR, Weber MA, Cole RC, Bova AS, Ding X, McMurrin MS, Narayanan NS. Sex similarities and dopaminergic differences in interval timing. Behav Neurosci 2024; 138:85-93. [PMID: 38661668 PMCID: PMC11512544 DOI: 10.1037/bne0000577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing representation in behavioral neuroscience. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | - Xin Ding
- Department of Neurology, University of Iowa
| | | | | |
Collapse
|
2
|
Cavallaro J, Yeisley J, Akdoǧan B, Salazar RE, Floeder JR, Balsam PD, Gallo EF. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. Neuropsychopharmacology 2023; 48:1309-1317. [PMID: 37221325 PMCID: PMC10354036 DOI: 10.1038/s41386-023-01608-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.
Collapse
Affiliation(s)
| | - Jenna Yeisley
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Başak Akdoǧan
- Department of Psychology, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Ronald E Salazar
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Joseph R Floeder
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Peter D Balsam
- Department of Psychology, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College, New York, NY, USA
| | - Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
3
|
Stutt HR, Weber MA, Cole RC, Bova AS, Ding X, McMurrin MS, Narayanan NS. Sex similarities and dopaminergic differences in interval timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539584. [PMID: 37205472 PMCID: PMC10187305 DOI: 10.1101/2023.05.05.539584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing represenation in behavioral neuroscience.
Collapse
|
4
|
Cavallaro J, Yeisley J, Akdoǧan B, Floeder J, Balsam PD, Gallo EF. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524596. [PMID: 36711450 PMCID: PMC9882257 DOI: 10.1101/2023.01.20.524596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.
Collapse
Affiliation(s)
| | - Jenna Yeisley
- Department of Biological Sciences, Fordham University, Bronx, NY
| | - Başak Akdoǧan
- Department of Psychology, Columbia University, New York, NY.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY
| | - Joseph Floeder
- Department of Biological Sciences, Fordham University, Bronx, NY
| | - Peter D. Balsam
- Department of Psychology, Columbia University, New York, NY.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY.,Department of Neuroscience and Behavior, Barnard College, New York, NY
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY
| |
Collapse
|
5
|
Akdoğan B, Wanar A, Gersten BK, Gallistel CR, Balsam PD. Temporal encoding: Relative and absolute representations of time guide behavior. JOURNAL OF EXPERIMENTAL PSYCHOLOGY. ANIMAL LEARNING AND COGNITION 2023; 49:46-61. [PMID: 36795422 PMCID: PMC10472319 DOI: 10.1037/xan0000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Temporal information-processing is critical for adaptive behavior and goal-directed action. It is thus crucial to understand how the temporal distance between behaviorally relevant events is encoded to guide behavior. However, research on temporal representations has yielded mixed findings as to whether organisms utilize relative versus absolute judgments of time intervals. To address this fundamental question about the timing mechanism, we tested mice in a duration discrimination procedure in which they learned to correctly categorize tones of different durations as short or long. After being trained on a pair of target intervals, the mice were transferred to conditions in which cue durations and corresponding response locations were systematically manipulated so that either the relative or absolute mapping remained constant. The findings indicate that transfer occurred most readily when relative relationships of durations and response locations were preserved. In contrast, when subjects had to re-map these relative relations, even when positive transfer initially occurred based on absolute mappings, their temporal discrimination performance was impaired, and they required extensive training to re-establish temporal control. These results demonstrate that mice can represent experienced durations both as having a certain magnitude (absolute representation) and as being shorter or longer of the two durations (an ordinal relation to other cue durations), with relational control having a more enduring influence in temporal discriminations. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Başak Akdoğan
- Department of Psychology, Columbia University
- New York State Psychiatric Institute
| | | | | | | | - Peter D Balsam
- Department of Psychology, Columbia University
- New York State Psychiatric Institute
- Department of Psychology, Barnard College
| |
Collapse
|
6
|
Mastrogiacomo R, Trigilio G, Devroye C, Dautan D, Ferretti V, Losi G, Caffino L, Orso G, Marotta R, Maltese F, Vitali E, Piras G, Forgiarini A, Pacinelli G, Lia A, Rothmond DA, Waddington JL, Drago F, Fumagalli F, Luca MAD, Leggio GM, Carmignoto G, Weickert CS, Managò F, Papaleo F. Dysbindin-1A modulation of astrocytic dopamine and basal ganglia dependent behaviors relevant to schizophrenia. Mol Psychiatry 2022; 27:4201-4217. [PMID: 35821415 DOI: 10.1038/s41380-022-01683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.
Collapse
Affiliation(s)
- Rosa Mastrogiacomo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriella Trigilio
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Céline Devroye
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Daniel Dautan
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Ferretti
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriele Losi
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Roberto Marotta
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Enrica Vitali
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessia Forgiarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giada Pacinelli
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Annamaria Lia
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Cynthia S Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Francesca Managò
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
7
|
Deane AR, Ward RD. The instrumental role of operant paradigms in translational psychiatric research: Insights from a maternal immune activation model of schizophrenia risk. J Exp Anal Behav 2022; 117:560-575. [PMID: 35319781 PMCID: PMC9314699 DOI: 10.1002/jeab.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/01/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Rigorous behavioral analysis is essential to the translation of research conducted using animal models of neuropsychiatric disease. Here we discuss the use of operant paradigms within our lab as a powerful approach for exploring the biobehavioral bases of disease in the maternal immune activation rat model of schizophrenia. We have investigated a range of disease features in schizophrenia including abnormal perception of time, cognition, learning, motivation, and internal state (psychosis), providing complex insights into brain and behavior. Beyond simple phenotyping, implementing sophisticated operant procedures has been effective in delineating aspects of pathological behavior, identifying interacting pathologies, and isolating contributing mechanisms of disease. We provide comment on the strengths of operant techniques to support high-quality behavioral investigations in fundamental neuropsychiatric research.
Collapse
Affiliation(s)
- Ashley R. Deane
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Ryan D. Ward
- Department of PsychologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
8
|
Cook JR, Li H, Nguyen B, Huang HH, Mahdavian P, Kirchgessner MA, Strassmann P, Engelhardt M, Callaway EM, Jin X. Secondary auditory cortex mediates a sensorimotor mechanism for action timing. Nat Neurosci 2022; 25:330-344. [PMID: 35260862 DOI: 10.1038/s41593-022-01025-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/26/2022] [Indexed: 01/08/2023]
Abstract
The ability to accurately determine when to perform an action is a fundamental brain function and vital to adaptive behavior. The behavioral mechanism and neural circuit for action timing, however, remain largely unknown. Using a new, self-paced action timing task in mice, we found that deprivation of auditory, but not somatosensory or visual input, disrupts learned action timing. The hearing effect was dependent on the auditory feedback derived from the animal's own actions, rather than passive environmental cues. Neuronal activity in the secondary auditory cortex was found to be both correlated with and necessary for the proper execution of learned action timing. Closed-loop, action-dependent optogenetic stimulation of the specific task-related neuronal population within the secondary auditory cortex rescued the key features of learned action timing under auditory deprivation. These results unveil a previously underappreciated sensorimotor mechanism in which the secondary auditory cortex transduces self-generated audiomotor feedback to control action timing.
Collapse
Affiliation(s)
- Jonathan R Cook
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bella Nguyen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hsiang-Hsuan Huang
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Payaam Mahdavian
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Megan A Kirchgessner
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Patrick Strassmann
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Max Engelhardt
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA. .,Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China. .,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
| |
Collapse
|
9
|
Simpson EH, Gallo EF, Balsam PD, Javitch JA, Kellendonk C. How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Mol Psychiatry 2022; 27:436-444. [PMID: 34385603 PMCID: PMC8837728 DOI: 10.1038/s41380-021-01253-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
It was first posited, more than five decades ago, that the etiology of schizophrenia involves overstimulation of dopamine receptors. Since then, advanced clinical research methods, including brain imaging, have refined our understanding of the relationship between striatal dopamine and clinical phenotypes as well as disease trajectory. These studies point to striatal dopamine D2 receptors, the main target for all current antipsychotic medications, as being involved in both positive and negative symptoms. Simultaneously, animal models have been central to investigating causal relationships between striatal dopamine D2 receptors and behavioral phenotypes relevant to schizophrenia. We begin this article by reviewing the circuit, cell-type and subcellular locations of dopamine D2 receptors and their downstream signaling pathways. We then summarize results from several mouse models in which D2 receptor levels were altered in various brain regions, cell-types and developmental periods. Behavioral, electrophysiological and anatomical consequences of these D2 receptor perturbations are reviewed with a selective focus on striatal circuit function and alterations in motivated behavior, a core negative symptom of schizophrenia. These studies show that D2 receptors serve distinct physiological roles in different cell types and at different developmental time points, regulating motivated behaviors in sometimes opposing ways. We conclude by considering the clinical implications of this complex regulation of striatal circuit function by D2 receptors.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, NY 10458
| | - Peter D. Balsam
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027,Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY 10027
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032,Department of Molecular Pharmacology and Therapeutics, Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY, USA. .,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA. .,Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Mikhael JG, Lai L, Gershman SJ. Rational inattention and tonic dopamine. PLoS Comput Biol 2021; 17:e1008659. [PMID: 33760806 PMCID: PMC7990190 DOI: 10.1371/journal.pcbi.1008659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/28/2020] [Indexed: 11/27/2022] Open
Abstract
Slow-timescale (tonic) changes in dopamine (DA) contribute to a wide variety of processes in reinforcement learning, interval timing, and other domains. Furthermore, changes in tonic DA exert distinct effects depending on when they occur (e.g., during learning vs. performance) and what task the subject is performing (e.g., operant vs. classical conditioning). Two influential theories of tonic DA-the average reward theory and the Bayesian theory in which DA controls precision-have each been successful at explaining a subset of empirical findings. But how the same DA signal performs two seemingly distinct functions without creating crosstalk is not well understood. Here we reconcile the two theories under the unifying framework of 'rational inattention,' which (1) conceptually links average reward and precision, (2) outlines how DA manipulations affect this relationship, and in so doing, (3) captures new empirical phenomena. In brief, rational inattention asserts that agents can increase their precision in a task (and thus improve their performance) by paying a cognitive cost. Crucially, whether this cost is worth paying depends on average reward availability, reported by DA. The monotonic relationship between average reward and precision means that the DA signal contains the information necessary to retrieve the precision. When this information is needed after the task is performed, as presumed by Bayesian inference, acute manipulations of DA will bias behavior in predictable ways. We show how this framework reconciles a remarkably large collection of experimental findings. In reinforcement learning, the rational inattention framework predicts that learning from positive and negative feedback should be enhanced in high and low DA states, respectively, and that DA should tip the exploration-exploitation balance toward exploitation. In interval timing, this framework predicts that DA should increase the speed of the internal clock and decrease the extent of interference by other temporal stimuli during temporal reproduction (the central tendency effect). Finally, rational inattention makes the new predictions that these effects should be critically dependent on the controllability of rewards, that post-reward delays in intertemporal choice tasks should be underestimated, and that average reward manipulations should affect the speed of the clock-thus capturing empirical findings that are unexplained by either theory alone. Our results suggest that a common computational repertoire may underlie the seemingly heterogeneous roles of DA.
Collapse
Affiliation(s)
- John G. Mikhael
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- MD-PhD Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lucy Lai
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samuel J. Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
11
|
Timing behavior in genetic murine models of neurological and psychiatric diseases. Exp Brain Res 2021; 239:699-717. [PMID: 33404792 DOI: 10.1007/s00221-020-06021-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
How timing behavior is altered in different neurodevelopmental and neurodegenerative disorders is a contemporary research question. Genetic murine models (GMM) that offer high construct validity also serve as useful tools to investigate this question. But the literature on timing behavior of different GMMs largely remains to be consolidated. The current paper addresses this gap by reviewing studies that have been conducted with GMMs of neurodevelopmental (e.g. ADHD, schizophrenia, autism spectrum disorder), neurodegenerative disorders (e.g., Alzheimer's disease, Huntington's disease) as well as circadian and other mutant lines. The review focuses on those studies that specifically utilized the peak interval procedure to improve the comparability of findings both within and between different disease models. The reviewed studies revealed timing deficits that are characteristic of different disorders. Specifically, Huntington's disease models had weaker temporal control over the termination of their anticipatory responses, Alzheimer's disease models had earlier timed responses, schizophrenia models had weaker temporal control, circadian mutants had shifted timed responses consistent with shifts in the circadian periods. The differences in timing behavior were less consistent for other conditions such as attention deficit and hyperactivity disorder and mutations related to intellectual disability. We discuss the implications of these findings for the neural basis of an internal stopwatch. Finally, we make methodological recommendations for future research for improving the comparability of the timing behavior across different murine models.
Collapse
|
12
|
Elcoro M, Backer A. Murray Sidman and Patient H. M.: The role of behavior analysis in the emergence of collaborative modern neuroscience. J Exp Anal Behav 2020; 115:242-254. [PMID: 33319374 DOI: 10.1002/jeab.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 11/09/2022]
Abstract
The intersection of the lives of 2 essential individuals in science, behavior analyst Murray Sidman (1923-2019), and Henry G. Molaison also known as Patient H.M. (1926-2008), warrants examination as it highlights the role of behavior analysis and other disciplines in the emergence of modern neuroscience and a collaborative approach to science. This paper describes the historical context and content of two publications by Sidman in which Molaison served as a research participant. The goal of the present paper is to emphasize this little-known facet of Sidman's rich career and to highlight the pioneering role of behavior analysis, and particularly the work of Murray Sidman, in the emergence of collaborative modern neuroscience.
Collapse
|
13
|
Balcı F, Freestone D. The Peak Interval Procedure in Rodents: A Tool for Studying the Neurobiological Basis of Interval Timing and Its Alterations in Models of Human Disease. Bio Protoc 2020; 10:e3735. [PMID: 33659396 PMCID: PMC7854006 DOI: 10.21769/bioprotoc.3735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/02/2022] Open
Abstract
Animals keep track of time intervals in the seconds to minutes range with, on average, high accuracy but substantial trial-to-trial variability. The ability to detect the statistical signatures of such timing behavior is an indispensable feature of a good and theoretically-tractable testing procedure. A widely used interval timing procedure is the peak interval (PI) procedure, where animals learn to anticipate rewards that become available after a fixed delay. After learning, they cluster their responses around that reward-availability time. The in-depth analysis of such timed anticipatory responses leads to the understanding of an internal timing mechanism, that is, the processing dynamics and systematic biases of the brain's clock. This protocol explains in detail how the PI procedure can be implemented in rodents, from training through testing to analysis. We showcase both trial-by-trial and trial-averaged analytical methods as a window into these internal processes. This protocol has the advantages of capturing timing behavior in its full-complexity in a fashion that allows for a theoretical treatment of the data.
Collapse
Affiliation(s)
- Fuat Balcı
- Koç University, Department of Psychology, Istanbul, Turkey
| | - David Freestone
- William Paterson University, Department of Psychology, NJ, United States
| |
Collapse
|
14
|
Olivetti PR, Balsam PD, Simpson EH, Kellendonk C. Emerging roles of striatal dopamine D2 receptors in motivated behaviour: Implications for psychiatric disorders. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:47-55. [PMID: 31188541 DOI: 10.1111/bcpt.13271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
Impaired motivation has been a long recognized negative symptom of schizophrenia, as well as a common feature of non-psychotic psychiatric disorders, responsible for a significant share of functional burden, and with limited treatment options. The striatum and dopamine signalling system play a central role in extracting motivationally relevant information from the environment, selecting which behavioural direction the animal should follow, and the vigour with which to engage it. Much of this function relies on striatal projection neurons, known as medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2Rs), or D2-MSNs. However, determining the precise nature of D2-MSNs in regulating motivated behaviour in both healthy individuals and experimental manipulations of D2-MSN function has at times yielded a somewhat confusing picture since their activity has been linked to either enhancement or dampening of motivation in animal models. In this MiniReview, we describe the latest data from rodent studies that investigated how D2Rs exert their modulatory effect on motivated behaviour by regulating striatal indirect pathway neuronal activity. We will include a discussion about how functional selectivity of D2Rs towards G protein-dependent or β-arrestin-dependent signalling differentially affects motivated behaviour. Lastly, we will describe a recent preclinical attempt to improve motivation by exploiting serotonin receptor-mediated modulation of dopamine transmission in the striatum.
Collapse
Affiliation(s)
- Pedro R Olivetti
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA
| | - Peter D Balsam
- New York State Psychiatric Institute, New York City, New York, USA.,Barnard College, Columbia University, New York City, New York, USA
| | - Eleanor H Simpson
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA
| | - Christoph Kellendonk
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA.,Department of Pharmacology, Columbia University, New York City, New York, USA
| |
Collapse
|
15
|
Mikhael JG, Gershman SJ. Adapting the flow of time with dopamine. J Neurophysiol 2019; 121:1748-1760. [PMID: 30864882 PMCID: PMC6589719 DOI: 10.1152/jn.00817.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 01/25/2023] Open
Abstract
The modulation of interval timing by dopamine (DA) has been well established over decades of research. The nature of this modulation, however, has remained controversial: Although the pharmacological evidence has largely suggested that time intervals are overestimated with higher DA levels, more recent optogenetic work has shown the opposite effect. In addition, a large body of work has asserted DA's role as a "reward prediction error" (RPE), or a teaching signal that allows the basal ganglia to learn to predict future rewards in reinforcement learning tasks. Whether these two seemingly disparate accounts of DA may be related has remained an open question. By taking a reinforcement learning-based approach to interval timing, we show here that the RPE interpretation of DA naturally extends to its role as a modulator of timekeeping and furthermore that this view reconciles the seemingly conflicting observations. We derive a biologically plausible, DA-dependent plasticity rule that can modulate the rate of timekeeping in either direction and whose effect depends on the timing of the DA signal itself. This bidirectional update rule can account for the results from pharmacology and optogenetics as well as the behavioral effects of reward rate on interval timing and the temporal selectivity of striatal neurons. Hence, by adopting a single RPE interpretation of DA, our results take a step toward unifying computational theories of reinforcement learning and interval timing. NEW & NOTEWORTHY How does dopamine (DA) influence interval timing? A large body of pharmacological evidence has suggested that DA accelerates timekeeping mechanisms. However, recent optogenetic work has shown exactly the opposite effect. In this article, we relate DA's role in timekeeping to its most established role, as a critical component of reinforcement learning. This allows us to derive a neurobiologically plausible framework that reconciles a large body of DA's temporal effects, including pharmacological, behavioral, electrophysiological, and optogenetic.
Collapse
Affiliation(s)
- John G Mikhael
- Program in Neuroscience and MD-PhD Program, Harvard Medical School , Boston, Massachusetts
| | - Samuel J Gershman
- Center for Brain Science and Department of Psychology, Harvard University , Cambridge, Massachusetts
| |
Collapse
|
16
|
LeSauter J, Balsam PD, Simpson EH, Silver R. Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity. Eur J Neurosci 2018; 51:71-81. [PMID: 30362616 DOI: 10.1111/ejn.14219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Dopamine has been implicated in circadian timing underlying the food entrainable oscillator (FEO) circuitry and overexpression of the dopamine D2 receptor (D2R) in the striatum has been reported to reduce motivation to obtain food rewards in operant tasks. In the present study, we explored both of these mechanisms by examining food anticipatory activity (FAA) in dopamine D2 receptor-overexpressing (D2R-OE) mice under various durations of food availability. First, we noted that at baseline, there were no differences between D2R-OE mice and their littermates in activity level, food intake, and body weight or in circadian activity. Under conditions of very restricted food availability (4 or 6 hr), both genotypes displayed FAA. In contrast, under 8-hr food availability, control mice showed FAA, but D2R-OE mice did not. Normalization of D2R by administration of doxycycline, a tetracycline analogue, rescued FAA under 8-hr restricted food. We next tested for circadian regulation of FAA. When given ad libitum access to food, neither D2R-OE nor controls were active during the daytime. However, after an interval of food restriction, all mice showed elevated locomotor activity at the time of previous food availability in the day, indicating circadian timing of anticipatory activity. In summary, motivation is reduced in D2R-OE mice but circadian timing behavior is not affected. We conclude that an increase in striatal D2R reduces FAA by modulating motivation and not by acting on a clock mechanism.
Collapse
Affiliation(s)
- Joseph LeSauter
- Department of Psychology, Barnard College, New York City, New York
| | - Peter D Balsam
- Department of Psychology, Barnard College, New York City, New York.,Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Rae Silver
- Department of Psychology, Barnard College, New York City, New York.,Departments of Psychology and of Pathology and Cell Biology, Columbia University, New York City, New York
| |
Collapse
|
17
|
Stolf AR, Cupertino RB, Müller D, Sanvicente-Vieira B, Roman T, Vitola ES, Grevet EH, von Diemen L, Kessler FHP, Grassi-Oliveira R, Bau CHD, Rovaris DL, Pechansky F, Schuch JB. Effects of DRD2 splicing-regulatory polymorphism and DRD4 48 bp VNTR on crack cocaine addiction. J Neural Transm (Vienna) 2018; 126:193-199. [PMID: 30367264 DOI: 10.1007/s00702-018-1946-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/17/2018] [Indexed: 11/24/2022]
Abstract
There is evidence that dopamine receptors D2 (DRD2) and D4 (DRD4) polymorphisms may influence substance use disorders (SUD) susceptibility both individually and through their influence in the formation of DRD2-DRD4 heteromers. The dopaminergic role on the vulnerability to addiction appears to be influenced by sex. A cross-sectional study with 307 crack cocaine addicts and 770 controls was conducted. The influence of DRD2 rs2283265 and DRD4 48 bp VNTR in exon 3 variants, as well as their interaction on crack cocaine addiction susceptibility and severity were evaluated in women and men separately. An association between the DRD2 T allele and crack cocaine addiction was found in women. In this same group, interaction analysis demonstrated that the presence of DRD2-T allele and concomitant absence of DRD4-7R allele were associated with risk for crack cocaine addiction. No influence of DRD2 and DRD4 variants was observed in men regarding addiction severity. This study reinforces the role of dopaminergic genes in externalizing behaviors, especially the influence of DRD2-DRD4 interaction on SUD. This is the fourth sample that independently associated the DRD2-DRD4 interaction with SUD itself or related disorders. In addition, our findings point out to a potential difference of dopaminergic neurotransmission across sex influencing addiction susceptibility.
Collapse
Affiliation(s)
- Anderson R Stolf
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Renata B Cupertino
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Breno Sanvicente-Vieira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tatiana Roman
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo S Vitola
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lisia von Diemen
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felix H P Kessler
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flavio Pechansky
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Laboratory of Immunosenescence, Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, prédio 81, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.
| |
Collapse
|
18
|
Maternal immune activation in rats produces temporal perception impairments in adult offspring analogous to those observed in schizophrenia. PLoS One 2017; 12:e0187719. [PMID: 29108010 PMCID: PMC5673217 DOI: 10.1371/journal.pone.0187719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
The neurophysiology underlying temporal perception significantly overlaps with areas of dysfunction identified in schizophrenia. Patients commonly exhibit distorted temporal perception, which likely contributes to functional impairments. Thus, study of temporal perception in animal models of the disease may help to understand both cognitive and neurobiological factors involved in functional impairments in patients. As maternal immune activation (MIA) has been shown to be a significant etiological risk factor in development of schizophrenia and other developmental psychiatric diseases, we tested interval timing in a rat model of MIA that has previously been shown to recapitulate several behavioural and neurophysiological impairments observed in the disease. Rats were tested on a temporal-bisection task, in which temporal duration stimuli were categorized as either “short” or “long” by responding to a corresponding lever. Data from this task were modeled to provide estimates of accuracy and sensitivity of temporal perception. Parameter estimates derived from the model fitting showed that MIA rats significantly overestimated the passage of time compared to controls. These results indicate that the MIA rat paradigm recapitulates timing distortions that are phenotypical of schizophrenia. These findings lend further support to the epidemiological validity of this MIA rat model, supporting its relevance for future research into the role of maternal immune activation in producing neurobiological and behavioural impairments in schizophrenia.
Collapse
|
19
|
Davis GL, Stewart A, Stanwood GD, Gowrishankar R, Hahn MK, Blakely RD. Functional coding variation in the presynaptic dopamine transporter associated with neuropsychiatric disorders drives enhanced motivation and context-dependent impulsivity in mice. Behav Brain Res 2017; 337:61-69. [PMID: 28964912 DOI: 10.1016/j.bbr.2017.09.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
Recent genetic analyses have provided evidence that clinical commonalities associated with different psychiatric diagnoses often have shared mechanistic underpinnings. The development of animal models expressing functional genetic variation attributed to multiple disorders offers a salient opportunity to capture molecular, circuit and behavioral alterations underlying this hypothesis. In keeping with studies suggesting dopaminergic contributions to attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BPD) and autism spectrum disorder (ASD), subjects with these diagnoses have been found to express a rare, functional coding substitution in the dopamine (DA) transporter (DAT), Ala559Val. We developed DAT Val559 knock-in mice as a construct valid model of dopaminergic alterations that drive multiple clinical phenotypes, and here evaluate the impact of lifelong expression of the variant on impulsivity and motivation utilizing the 5- choice serial reaction time task (5-CSRTT) and Go/NoGo as well as tests of time estimation (peak interval analysis), reward salience (sucrose preference), and motivation (progressive ratio test). Our findings indicate that the DAT Val559 variant induces impulsivity behaviors that are dependent upon the reward context, with increased impulsive action observed when mice are required to delay responding for a reward, whereas mice are able to withhold responding if there is a probability of reward for a correct rejection. Utilizing peak interval and progressive ratio tests, we provide evidence that impulsivity is likely driven by an enhanced motivational phenotype that also may drive faster task acquisition in operant tasks. These data provide critical validation that DAT, and more generally, DA signaling perturbations can drive impulsivity that can manifest in specific contexts and not others, and may rely on motivational alterations, which may also drive increased maladaptive reward seeking.
Collapse
Affiliation(s)
- Gwynne L Davis
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States.
| | - Adele Stewart
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| | - Gregg D Stanwood
- Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, United States.
| | - Raajaram Gowrishankar
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States.
| | - Maureen K Hahn
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| |
Collapse
|
20
|
Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of Goal-Directed Action. J Neurosci 2017; 36:5988-6001. [PMID: 27251620 DOI: 10.1523/jneurosci.0444-16.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Altered dopamine D2 receptor (D2R) binding in the striatum has been associated with abnormal motivation in neuropsychiatric disorders, including schizophrenia. Here, we tested whether motivational deficits observed in mice with upregulated D2Rs (D2R-OEdev mice) are reversed by decreasing function of the striatopallidal "no-go" pathway. To this end, we expressed the Gαi-coupled designer receptor hM4D in adult striatopallidal neurons and activated the receptor with clozapine-N-oxide (CNO). Using a head-mounted miniature microscope we confirmed with calcium imaging in awake mice that hM4D activation by CNO inhibits striatopallidal function measured as disinhibited downstream activity in the globus pallidus. Mice were then tested in three operant tasks that address motivated behavior, the progressive ratio task, the progressive hold-down task, and outcome devaluation. Decreasing striatopallidal function in the dorsomedial striatum or nucleus accumbens core enhanced motivation in D2R-OEdev mice and control littermates. This effect was due to increased response initiation but came at the cost of goal-directed efficiency. Moreover, response vigor and the sensitivity to changes in reward value were not altered. Chronic activation of hM4D by administering CNO for 2 weeks in drinking water did not affect motivation due to a tolerance effect. However, the acute effect of CNO on motivation was reinstated after discontinuing chronic treatment for 48 h. Used as a therapeutic approach, striatopallidal inhibition should consider the risk of impairing goal-directed efficiency and behavioral desensitization. SIGNIFICANCE STATEMENT Motivation involves a directional component that allows subjects to efficiently select the behavior that will lead to an optimal outcome and an activational component that initiates and maintains the vigor and persistence of actions. Striatal output pathways modulate motivated behavior, but it remains unknown how these pathways regulate specific components of motivation. Here, we found that the indirect pathway controls response initiation without affecting response vigor or the sensitivity to changes in the reward outcome. A specific enhancement in the activational component of motivation, however, can come at the cost of goal-directed efficiency when a sustained response is required to obtain the goal. These data should inform treatment strategies for brain disorders with impaired motivation such as schizophrenia and Parkinson's disease.
Collapse
|
21
|
Acosta J, Campolongo MA, Höcht C, Depino AM, Golombek DA, Agostino PV. Deficits in temporal processing in mice prenatally exposed to Valproic Acid. Eur J Neurosci 2017; 47:619-630. [DOI: 10.1111/ejn.13621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Julieta Acosta
- Laboratorio de Cronobiología; Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes/CONICET; Roque Sáenz Peña 352 Bernal Buenos Aires B1876BXD Argentina
| | - Marcos A. Campolongo
- Instituto de Fisiología; Biología Molecular y Neurociencias; CONICET-UBA; Buenos Aires Argentina
| | - Christian Höcht
- Cátedra de Farmacología; Facultad de Farmacia y Bioquímica; UBA; Buenos Aires Argentina
| | - Amaicha M. Depino
- Instituto de Fisiología; Biología Molecular y Neurociencias; CONICET-UBA; Buenos Aires Argentina
| | - Diego A. Golombek
- Laboratorio de Cronobiología; Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes/CONICET; Roque Sáenz Peña 352 Bernal Buenos Aires B1876BXD Argentina
| | - Patricia V. Agostino
- Laboratorio de Cronobiología; Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes/CONICET; Roque Sáenz Peña 352 Bernal Buenos Aires B1876BXD Argentina
| |
Collapse
|
22
|
Morè L, Künnecke B, Yekhlef L, Bruns A, Marte A, Fedele E, Bianchi V, Taverna S, Gatti S, D'Adamo P. Altered fronto-striatal functions in the Gdi1-null mouse model of X-linked Intellectual Disability. Neuroscience 2017; 344:346-359. [PMID: 28057534 PMCID: PMC5315088 DOI: 10.1016/j.neuroscience.2016.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 01/17/2023]
Abstract
RAB-GDP dissociation inhibitor 1 (GDI1) loss-of-function mutations are responsible for a form of non-specific X-linked Intellectual Disability (XLID) where the only clinical feature is cognitive impairment. GDI1 patients are impaired in specific aspects of executive functions and conditioned response, which are controlled by fronto-striatal circuitries. Previous molecular and behavioral characterization of the Gdi1-null mouse revealed alterations in the total number/distribution of hippocampal and cortical synaptic vesicles as well as hippocampal short-term synaptic plasticity, and memory deficits. In this study, we employed cognitive protocols with high translational validity to human condition that target the functionality of cortico-striatal circuitry such as attention and stimulus selection ability with progressive degree of complexity. We previously showed that Gdi1-null mice are impaired in some hippocampus-dependent forms of associative learning assessed by aversive procedures. Here, using appetitive-conditioning procedures we further investigated associative learning deficits sustained by the fronto-striatal system. We report that Gdi1-null mice are impaired in attention and associative learning processes, which are a key part of the cognitive impairment observed in XLID patients.
Collapse
Affiliation(s)
- Lorenzo Morè
- Molecular Genetics of Intellectual Disability Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Basil Künnecke
- pRED, Pharma Research & Early Development, NORD Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Switzerland
| | - Latefa Yekhlef
- Neuroimmunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andreas Bruns
- pRED, Pharma Research & Early Development, NORD Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Switzerland
| | - Antonella Marte
- Department of Pharmacy, Section of Pharmacology and Toxicology, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Veronica Bianchi
- Molecular Genetics of Intellectual Disability Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Taverna
- Neuroimmunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gatti
- pRED, Pharma Research & Early Development, NORD Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Switzerland
| | - Patrizia D'Adamo
- Molecular Genetics of Intellectual Disability Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
23
|
Simpson EH, Kellendonk C. Insights About Striatal Circuit Function and Schizophrenia From a Mouse Model of Dopamine D 2 Receptor Upregulation. Biol Psychiatry 2017; 81:21-30. [PMID: 27720388 PMCID: PMC5121031 DOI: 10.1016/j.biopsych.2016.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
Abstract
The dopamine hypothesis of schizophrenia is supported by a large number of imaging studies that have identified an increase in dopamine binding at the D2 receptor selectively in the striatum. We review a decade of work using a regionally restricted and temporally regulated transgenic mouse model to investigate the behavioral, molecular, electrophysiological, and anatomical consequences of selective D2 receptor upregulation in the striatum. These studies have identified new and potentially important biomarkers at the circuit and molecular level that can now be explored in patients with schizophrenia. They provide an example of how animal models and their detailed level of neurobiological analysis allow a deepening of our understanding of the relationship between neuronal circuit function and symptoms of schizophrenia, and as a consequence generate new hypotheses that are testable in patients.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Department of Psychiatry, Columbia University,Neurobiology and Behavior, New York State Psychiatric Institute,Corresponding author: Eleanor H. Simpson, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 87, New York, New York 10032, , +1-646-774-6835
| | - Christoph Kellendonk
- Department of Pharmacology, Columbia University,Molecular Therapeutics, New York State Psychiatric Institute
| |
Collapse
|
24
|
Bailey MR, Simpson EH, Balsam PD. Neural substrates underlying effort, time, and risk-based decision making in motivated behavior. Neurobiol Learn Mem 2016; 133:233-256. [PMID: 27427327 PMCID: PMC5007005 DOI: 10.1016/j.nlm.2016.07.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/16/2022]
Abstract
All mobile organisms rely on adaptive motivated behavior to overcome the challenges of living in an environment in which essential resources may be limited. A variety of influences ranging from an organism's environment, experiential history, and physiological state all influence a cost-benefit analysis which allows motivation to energize behavior and direct it toward specific goals. Here we review the substantial amount of research aimed at discovering the interconnected neural circuits which allow organisms to carry-out the cost-benefit computations which allow them to behave in adaptive ways. We specifically focus on how the brain deals with different types of costs, including effort requirements, delays to reward and payoff riskiness. An examination of this broad literature highlights the importance of the extended neural circuits which enable organisms to make decisions about these different types of costs. This involves Cortical Structures, including the Anterior Cingulate Cortex (ACC), the Orbital Frontal Cortex (OFC), the Infralimbic Cortex (IL), and prelimbic Cortex (PL), as well as the Baso-Lateral Amygdala (BLA), the Nucleus Accumbens (NAcc), the Ventral Pallidal (VP), the Sub Thalamic Nucleus (STN) among others. Some regions are involved in multiple aspects of cost-benefit computations while the involvement of other regions is restricted to information relating to specific types of costs.
Collapse
Affiliation(s)
- Matthew R Bailey
- Department of Psychology, Columbia University, New York, NY, USA.
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA; Barnard College, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Bolkan SS, Carvalho Poyraz F, Kellendonk C. Using human brain imaging studies as a guide toward animal models of schizophrenia. Neuroscience 2016; 321:77-98. [PMID: 26037801 PMCID: PMC4664583 DOI: 10.1016/j.neuroscience.2015.05.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/15/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points toward the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients.
Collapse
Affiliation(s)
- S S Bolkan
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - F Carvalho Poyraz
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - C Kellendonk
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
26
|
|
27
|
Cheng RK, Tipples J, Narayanan NS, Meck WH. Clock Speed as a Window into Dopaminergic Control of Emotion and Time Perception. TIMING & TIME PERCEPTION 2016. [DOI: 10.1163/22134468-00002064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although fear-producing treatments (e.g., electric shock) and pleasure-inducing treatments (e.g., methamphetamine) have different emotional valences, they both produce physiological arousal and lead to effects on timing and time perception that have been interpreted as reflecting an increase in speed of an internal clock. In this commentary, we review the results reported by Fayolle et al. (2015):Behav. Process., 120, 135–140) and Meck (1983: J. Exp. Psychol. Anim. Behav. Process., 9, 171–201) using electric shock and by Maricq et al. (1981: J. Exp. Psychol. Anim. Behav. Process., 7, 18–30) using methamphetamine in a duration-bisection procedure across multiple duration ranges. The psychometric functions obtained from this procedure relate the proportion ‘long’ responses to signal durations spaced between a pair of ‘short’ and ‘long’ anchor durations. Horizontal shifts in these functions can be described in terms of attention or arousal processes depending upon whether they are a fixed number of seconds independent of the timed durations (additive) or proportional to the durations being timed (multiplicative). Multiplicative effects are thought to result from a change in clock speed that is regulated by dopamine activity in the medial prefrontal cortex. These dopaminergic effects are discussed within the context of the striatal beat frequency model of interval timing (Matell & Meck, 2004:Cogn. Brain Res.,21, 139–170) and clinical implications for the effects of emotional reactivity on temporal cognition (Parker et al., 2013:Front. Integr. Neurosci., 7, 75).
Collapse
|
28
|
The amygdalo-nigrostriatal network is critical for an optimal temporal performance. ACTA ACUST UNITED AC 2016; 23:104-7. [PMID: 26884227 PMCID: PMC4755265 DOI: 10.1101/lm.041152.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022]
Abstract
The amygdalo-nigrostriatal (ANS) network plays an essential role in enhanced attention to significant events. Interval timing requires attention to temporal cues. We assessed rats having a disconnected ANS network, due to contralateral lesions of the medial central nucleus of the amygdala (CEm) and dopaminergic afferents to the lateral striatum, as compared to controls (sham and ipsilateral lesions of CEm and dopaminergic afferents to LS) in a temporal bisection task. ANS disconnection induced poorer temporal precision and increased response latencies to a short duration. The present results reveal a role of the ANS network in temporal processing.
Collapse
|
29
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
30
|
Kabitzke PA, Simpson EH, Kandel ER, Balsam PD. Social behavior in a genetic model of dopamine dysfunction at different neurodevelopmental time points. GENES BRAIN AND BEHAVIOR 2015; 14:503-15. [PMID: 26176662 DOI: 10.1111/gbb.12233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 01/05/2023]
Abstract
Impairments in social behavior characterize many neurodevelopmental psychiatric disorders. In fact, the temporal emergence and trajectory of these deficits can define the disorder, specify their treatment and signal their prognosis. The sophistication of mouse models with neurobiological endophenotypes of many aspects of psychiatric diseases has increased in recent years, with the necessity to evaluate social behavior in these models. We adapted an assay for the multimodal characterization of social behavior at different development time points (juvenile, adolescent and adult) in control mice in different social contexts (specifically, different sex pairings). Although social context did not affect social behavior in juvenile mice, it did have an effect on the quantity and type of social interaction as well as ultrasonic vocalizations in both adolescence and adulthood. We compared social development in control mice to a transgenic mouse model of the increase in postsynaptic striatal D2R activity observed in patients with schizophrenia (D2R-OE mice). Genotypic differences in social interactions emerged in adolescence and appeared to become more pronounced in adulthood. That vocalizations emitted from dyads with a D2R-OE subject were negatively correlated with active social behavior while vocalizations from control dyads were positively correlated with both active and passive social behavior also suggest social deficits. These data show that striatal dopamine dysfunction plays an important role in the development of social behavior and mouse models such as the one studied here provide an opportunity for screening potential therapeutics at different developmental time points.
Collapse
Affiliation(s)
- P A Kabitzke
- Department of Psychiatry, Columbia University.,New York State Psychiatric Institute
| | - E H Simpson
- Department of Psychiatry, Columbia University.,New York State Psychiatric Institute
| | - E R Kandel
- Department of Neuroscience, Columbia University.,Kavli Institute for Brain Science.,Howard Hughes Medical Institute
| | - P D Balsam
- Department of Psychiatry, Columbia University.,New York State Psychiatric Institute.,Department of Psychology, Barnard College, Columbia University, New York, NY, USA
| |
Collapse
|
31
|
Avlar B, Kahn JB, Jensen G, Kandel ER, Simpson EH, Balsam PD. Improving temporal cognition by enhancing motivation. Behav Neurosci 2015; 129:576-88. [PMID: 26371378 DOI: 10.1037/bne0000083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increasing motivation can positively impact cognitive performance. Here we employed a cognitive timing task that allows us to detect changes in cognitive performance that are not influenced by general activity or arousal factors such as the speed or persistence of responding. This approach allowed us to manipulate motivation using three different methods; molecular/genetic, behavioral and pharmacological. Increased striatal D2Rs resulted in deficits in temporal discrimination. Switching off the transgene improved motivation in earlier studies, and here partially rescued the temporal discrimination deficit. To manipulate motivation behaviorally, we altered reward magnitude and found that increasing reward magnitude improved timing in control mice and partially rescued timing in the transgenic mice. Lastly, we manipulated motivation pharmacologically using a functionally selective 5-HT2C receptor ligand, SB242084, which we previously found to increase incentive motivation. SB242084 improved temporal discrimination in both control and transgenic mice. Thus, while there is a general intuitive belief that motivation can affect cognition, we here provide a direct demonstration that enhancing motivation, in a variety of ways, can be an effective strategy for enhancing temporal cognition. Understanding the interaction of motivation and cognition is of clinical significance since many psychiatric disorders are characterized by deficits in both domains.
Collapse
Affiliation(s)
| | | | - Greg Jensen
- Department of Psychology, Columbia University
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, Howard Hughes Medical Institute
| | | | - Peter D Balsam
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute
| |
Collapse
|
32
|
A Scalable Population Code for Time in the Striatum. Curr Biol 2015; 25:1113-22. [DOI: 10.1016/j.cub.2015.02.036] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/23/2015] [Accepted: 02/11/2015] [Indexed: 11/20/2022]
|
33
|
Ward RD, Winiger V, Higa KK, Kahn JB, Kandel ER, Balsam PD, Simpson EH. The impact of motivation on cognitive performance in an animal model of the negative and cognitive symptoms of schizophrenia. Behav Neurosci 2015; 129:292-9. [PMID: 25914923 DOI: 10.1037/bne0000051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interactions between motivation and cognition are implicated in producing functional impairments and poor quality of life in psychiatric patients. This interaction, however, is not well understood at either the behavioral or neural level. We developed a procedure for mice in which a cognitive measure, sustained attention, is modulated by a motivationally relevant signal that predicts reward probability on a trial-by-trial basis. Using this paradigm, we tested the interaction between motivation and cognition in mice that model the increased striatal D2 receptor activity observed in schizophrenia patients (D2R-OE mice). In control mice, attention was modulated by signaled-reward probability. In D2R-OE mice, however, attention was not modulated by reward-related cues. This impairment was not due to any global deficits in attention or maintenance of the trial-specific information in working memory. Turning off the transgene in D2R-OE mice rescued the motivational modulation of attention. These results indicate that deficits in motivation impair the ability to use reward-related cues to recruit attention and that improving motivation improves functional cognitive performance. These results further suggest that addressing motivational impairments in patients is critical to achieving substantive cognitive and functional gains.
Collapse
Affiliation(s)
- Ryan D Ward
- Department of Psychology, Columbia University
| | | | | | | | - Eric R Kandel
- Department of Neuroscience and Psychiatry, Columbia University
| | | | | |
Collapse
|
34
|
Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area. Proc Natl Acad Sci U S A 2015; 112:E1498-506. [PMID: 25675529 DOI: 10.1073/pnas.1500450112] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There is strong evidence that the core deficits of schizophrenia result from dysfunction of the dopamine (DA) system, but details of this dysfunction remain unclear. We previously reported a model of transgenic mice that selectively and reversibly overexpress DA D2 receptors (D2Rs) in the striatum (D2R-OE mice). D2R-OE mice display deficits in cognition and motivation that are strikingly similar to the deficits in cognition and motivation observed in patients with schizophrenia. Here, we show that in vivo, both the firing rate (tonic activity) and burst firing (phasic activity) of identified midbrain DA neurons are impaired in the ventral tegmental area (VTA), but not in the substantia nigra (SN), of D2R-OE mice. Normalizing striatal D2R activity by switching off the transgene in adulthood recovered the reduction in tonic activity of VTA DA neurons, which is concordant with the rescue in motivation that we previously reported in our model. On the other hand, the reduction in burst activity was not rescued, which may be reflected in the observed persistence of cognitive deficits in D2R-OE mice. We have identified a potential molecular mechanism for the altered activity of DA VTA neurons in D2R-OE mice: a reduction in the expression of distinct NMDA receptor subunits selectively in identified mesolimbic DA VTA, but not nigrostriatal DA SN, neurons. These results suggest that functional deficits relevant for schizophrenia symptoms may involve differential regulation of selective DA pathways.
Collapse
|
35
|
Methods for Dissecting Motivation and Related Psychological Processes in Rodents. Curr Top Behav Neurosci 2015; 27:451-70. [PMID: 26272262 DOI: 10.1007/7854_2015_380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Motivational impairments are increasingly recognized as being critical to functional deficits and decreased quality of life in patients diagnosed with psychiatric disease. Accordingly, much preclinical research has focused on identifying psychological and neurobiological processes which underlie motivation . Inferring motivation from changes in overt behavioural responding in animal models, however, is complicated, and care must be taken to ensure that the observed change is accurately characterized as a change in motivation , and not due to some other, task-related process. This chapter discusses current methods for assessing motivation and related psychological processes in rodents. Using an example from work characterizing the motivational impairments in an animal model of the negative symptoms of schizophrenia, we highlight the importance of careful and rigorous experimental dissection of motivation and the related psychological processes when characterizing motivational deficits in rodent models . We suggest that such work is critical to the successful translation of preclinical findings to therapeutic benefits for patients.
Collapse
|
36
|
Fox AE, Kyonka EGE. Timing in response-initiated fixed intervals. J Exp Anal Behav 2014; 103:375-92. [PMID: 25533195 DOI: 10.1002/jeab.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 01/02/2023]
|
37
|
Sumiyoshi T, Kunugi H, Nakagome K. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia. Front Neurosci 2014; 8:395. [PMID: 25538549 PMCID: PMC4255483 DOI: 10.3389/fnins.2014.00395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/18/2014] [Indexed: 11/17/2022] Open
Abstract
Negative symptoms (e.g., decreased spontaneity, social withdrawal, blunt affect) and disturbances of cognitive function (e.g., several types of memory, attention, processing speed, executive function, fluency) provide a major determinant of long-term outcome in patients with schizophrenia. Specifically, motivation deficits, a type of negative symptoms, have been attracting interest as (1) a moderator of cognitive performance in schizophrenia and related disorders, and (2) a modulating factor of cognitive enhancers/remediation. These considerations suggest the need to clarify neurobiological substrates regulating motivation. Genetic studies indicate a role for the monoamine systems in motivation and key cognitive domains. For example, polymorphism of genes encoding catecholamine-O-methyltransferase, an enzyme catabolizing dopamine (DA), affects performance on tests of working memory and executive function in a phenotype (schizophrenia vs. healthy controls)-dependent fashion. On the other hand, motivation to maximize rewards has been shown to be influenced by other genes encoding DA-related substrates, such as DARPP-32 and DA-D2 receptors. Serotonin (5-HT) receptors may also play a significant role in cognitive and motivational disabilities in psychoses and mood disorders. For example, mutant mice over-expressing D2 receptors in the striatum, an animal model of schizophrenia, exhibit both decreased willingness to work for reward and up-regulation of 5-HT2C receptors. Taken together, genetic predisposition related to 5-HT receptors may mediate the diversity of incentive motivation that is impaired in patients receiving biological and/or psychosocial treatments. Thus, research into genetic and neurobiological measures of motivation, in association with 5-HT receptors, is likely to facilitate intervention into patients seeking better social consequences.
Collapse
Affiliation(s)
- Tomiki Sumiyoshi
- Department of Clinical Research Promotion, National Center Hospital, National Center of Neurology and Psychiatry Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo, Japan
| | - Kazuyuki Nakagome
- National Center Hospital, National Center of Neurology and Psychiatry Tokyo, Japan
| |
Collapse
|
38
|
Genetically modified mice related to schizophrenia and other psychoses: seeking phenotypic insights into the pathobiology and treatment of negative symptoms. Eur Neuropsychopharmacol 2014; 24:800-21. [PMID: 24290531 DOI: 10.1016/j.euroneuro.2013.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/11/2013] [Accepted: 08/31/2013] [Indexed: 01/05/2023]
Abstract
Modelling negative symptoms in any animal model, particularly in mice mutant for genes related to schizophrenia, is complicated by the absence of the following key elements that might assist in developing validation criteria: clinical clarity surrounding this symptom constellation; any clear association between negative symptoms and pathological signature(s) in the brain; and therapeutic strategies with material clinical efficacy against these symptoms. In this review, the application of mutant mouse models to the study of negative symptoms is subjected to critical evaluation, focussing on the following challenges: (a) conceptual issues relating to negative symptoms and their evaluation in mutant models; (b) measurement of negative symptoms in mice, in terms of social behaviour, motivational deficits/avolition and anhedonia; (c) studies in mutants with disruption of genes either regulating aspects of neurotransmission implicated in schizophrenia or associated with risk for psychotic illness; (d) the disaggregation of behavioural phenotypes into underlying pathobiological processes, as a key to the development of new therapeutic strategies for negative symptoms. Advances in genetic and molecular technologies are facilitating these processes, such that more accurate models of putative schizophrenia-linked genetic abnormalities are becoming feasible. This progress in terms of mimicking the genetic contribution to distinct domains of psychopathology associated with psychotic illness must be matched by advances in conceptual/clinical relevance and sensitivity/specificity of phenotypic assessments at the level of behaviour.
Collapse
|
39
|
Millan MJ, Fone K, Steckler T, Horan WP. Negative symptoms of schizophrenia: clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment. Eur Neuropsychopharmacol 2014; 24:645-92. [PMID: 24820238 DOI: 10.1016/j.euroneuro.2014.03.008] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a complex and multifactorial disorder generally diagnosed in young adults at the time of the first psychotic episode of delusions and hallucinations. These positive symptoms can be controlled in most patients by currently-available antipsychotics. Conversely, they are poorly effective against concomitant neurocognitive dysfunction, deficits in social cognition and negative symptoms (NS), which strongly contribute to poor functional outcome. The precise notion of NS has evolved over the past century, with recent studies - underpinned by novel rating methods - suggesting two major sub-domains: "decreased emotional expression", incorporating blunted affect and poverty of speech, and "avolition", which embraces amotivation, asociality and "anhedonia" (inability to anticipate pleasure). Recent studies implicate a dysfunction of frontocortico-temporal networks in the aetiology of NS, together with a disruption of cortico-striatal circuits, though other structures are also involved, like the insular and parietal cortices, amygdala and thalamus. At the cellular level, a disruption of GABAergic-glutamatergic balance, dopaminergic signalling and, possibly, oxytocinergic and cannibinoidergic transmission may be involved. Several agents are currently under clinical investigation for the potentially improved control of NS, including oxytocin itself, N-Methyl-d-Aspartate receptor modulators and minocycline. Further, magnetic-electrical "stimulation" strategies to recruit cortical circuits and "cognitive-behavioural-psychosocial" therapies likewise hold promise. To acquire novel insights into the causes and treatment of NS, experimental study is crucial, and opportunities are emerging for improved genetic, pharmacological and developmental modelling, together with more refined readouts related to deficits in reward, sociality and "expression". The present article comprises an integrative overview of the above issues as a platform for this Special Issue of European Neuropsychopharmacology in which five clinical and five preclinical articles treat individual themes in greater detail. This Volume provides, then, a framework for progress in the understanding - and ultimately control - of the debilitating NS of schizophrenia.
Collapse
Affiliation(s)
- Mark J Millan
- Pole of Innovation in Neuropsychiatry, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| | - Kevin Fone
- School of Biomedical Sciences, Medical School, Queen׳s Medical Centre, Nottingham University, Nottingham NG72UH, UK
| | - Thomas Steckler
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - William P Horan
- VA Greater Los Angeles Healthcare System, University of California, Los Angeles, MIRECC 210A, Bldg. 210, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA
| |
Collapse
|
40
|
Bussi IL, Levín G, Golombek DA, Agostino PV. Involvement of dopamine signaling in the circadian modulation of interval timing. Eur J Neurosci 2014; 40:2299-310. [PMID: 24689904 DOI: 10.1111/ejn.12569] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/12/2014] [Accepted: 02/21/2014] [Indexed: 02/03/2023]
Abstract
Duration discrimination within the seconds-to-minutes range, known as interval timing, involves the interaction of cortico-striatal circuits via dopaminergic-glutamatergic pathways. Besides interval timing, most (if not all) organisms exhibit circadian rhythms in physiological, metabolic and behavioral functions with periods close to 24 h. We have previously reported that both circadian disruption and desynchronization impaired interval timing in mice. In this work we studied the involvement of dopamine (DA) signaling in the interaction between circadian and interval timing. We report that daily injections of levodopa improved timing performance in the peak-interval procedure in C57BL/6 mice with circadian disruptions, suggesting that a daily increase of DA is necessary for an accurate performance in the timing task. Moreover, striatal DA levels measured by reverse-phase high-pressure liquid chromatography indicated a daily rhythm under light/dark conditions. This daily variation was affected by inducing circadian disruption under constant light (LL). We also demonstrated a daily oscillation in tyrosine hydroxylase levels, DA turnover (3,4-dihydroxyphenylacetic acid/DA levels), and both mRNA and protein levels of the circadian component Period2 (Per2) in the striatum and substantia nigra, two brain areas relevant for interval timing. None of these oscillations persisted under LL conditions. We suggest that the lack of DA rhythmicity in the striatum under LL - probably regulated by Per2 - could be responsible for impaired performance in the timing task. Our findings add further support to the notion that circadian and interval timing share some common processes, interacting at the level of the dopaminergic system.
Collapse
Affiliation(s)
- Ivana L Bussi
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, R. S. Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
41
|
Delamater AR, Desouza A, Rivkin Y, Derman R. Associative and temporal processes: a dual process approach. Behav Processes 2014; 101:38-48. [PMID: 24076309 PMCID: PMC3943879 DOI: 10.1016/j.beproc.2013.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Approaches to the study of associative learning and interval timing have traditionally diverged on methodological and theoretical levels of analysis. However, more recent attempts have been made to explain one class of phenomena in terms of the other using various single-process approaches. In this paper we suggest that an interactive dual-process approach might more accurately reflect underlying behavioral and neural processes. We will argue that timing in Pavlovian conditioning is best understood in terms of an abstract temporal code that is not a feature of the predictive stimulus (i.e., the conditioned stimulus, CS), per se. Rather, we assume that the time between the CS and the unconditioned stimulus (US) is encoded in the form of an abstract representation of this temporal interval produced as an output of a central multiple-oscillator interval timing system. As such, associations can then develop between the CS and this abstract temporal code in much the same way that the CS develops associations with different features of the US. To support the dual-process approach, we first show that exposure to a Pavlovian zero contingency procedure results in a failure to acquire new associations, not a failure to express learning due to some temporally defined performance mask. We also consider evidence that supports the abstract temporal coding idea in a US preexposure task, and, finally, present some evidence to encourage the dissociation between basic associative and temporal learning processes by exploring reward devaluation effects in a peak timing task.
Collapse
|
42
|
Kirkpatrick K. Interactions of timing and prediction error learning. Behav Processes 2014; 101:135-45. [PMID: 23962670 PMCID: PMC3926915 DOI: 10.1016/j.beproc.2013.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/24/2013] [Accepted: 08/06/2013] [Indexed: 11/28/2022]
Abstract
Timing and prediction error learning have historically been treated as independent processes, but growing evidence has indicated that they are not orthogonal. Timing emerges at the earliest time point when conditioned responses are observed, and temporal variables modulate prediction error learning in both simple conditioning and cue competition paradigms. In addition, prediction errors, through changes in reward magnitude or value alter timing of behavior. Thus, there appears to be a bi-directional interaction between timing and prediction error learning. Modern theories have attempted to integrate the two processes with mixed success. A neurocomputational approach to theory development is espoused, which draws on neurobiological evidence to guide and constrain computational model development. Heuristics for future model development are presented with the goal of sparking new approaches to theory development in the timing and prediction error fields.
Collapse
|
43
|
Agostino PV, Cheng RK, Williams CL, West AE, Meck WH. Acquisition of response thresholds for timed performance is regulated by a calcium-responsive transcription factor, CaRF. GENES BRAIN AND BEHAVIOR 2013; 12:633-44. [DOI: 10.1111/gbb.12059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/23/2013] [Accepted: 06/19/2013] [Indexed: 01/25/2023]
Affiliation(s)
- P. V. Agostino
- Laboratory of Chronobiology, Department of Science and Technology; National University of Quilmes; Buenos Aires; Argentina
| | - R.-K. Cheng
- A*STAR/Duke-NUS Neuroscience Research Partnership; Singapore; Singapore
| | | | - A. E. West
- Department of Neurobiology; Duke University; Durham; NC; USA
| | | |
Collapse
|
44
|
O'Tuathaigh CMP, Moran PM, Waddington JL. Genetic models of schizophrenia and related psychotic disorders: progress and pitfalls across the methodological "minefield". Cell Tissue Res 2013; 354:247-57. [PMID: 23715722 DOI: 10.1007/s00441-013-1652-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 12/13/2022]
Abstract
The challenge of modelling a complex and multifaceted disorder such as schizophrenia is epitomised by the considerable degree of phenotypic variability described in patients and by the absence of specific and consistent neuropathological biomarkers. The pattern and severity of a range of clinical features, including florid psychotic symptoms such as hallucinations and delusions, negative symptoms and cognitive dysfunction, together with age at onset, course of illness and other indices, can vary greatly between individual patients. The undefined nature of the relationship between diagnosis and underlying aetiology has complicated research in the field of clinical and preclinical neuroscience, thereby making it difficult to generate or evaluate appropriate disease models of schizophrenia. In the present review, we explore those conceptual and practical issues that relate specifically to the genetic modelling of schizophrenia and related disorders in rodents. Practical issues that impact on the robustness of endophenotypic findings and their translational relevance are discussed with reference to evidence from selective genetic models of candidate risk genes and copy number variants implicated in schizophrenia.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland,
| | | | | |
Collapse
|
45
|
Simpson EH, Waltz JA, Kellendonk C, Balsam PD. Schizophrenia in translation: dissecting motivation in schizophrenia and rodents. Schizophr Bull 2012; 38:1111-7. [PMID: 23015686 PMCID: PMC3494038 DOI: 10.1093/schbul/sbs114] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/22/2012] [Indexed: 11/14/2022]
Abstract
The negative symptoms of schizophrenia include deficits in motivation, for which there is currently no treatment available. Animal models provide a powerful tool for identifying the potential pathophysiological mechanisms underlying the motivation deficits of schizophrenia with the aim of discovering novel treatment targets. The success of such an approach critically depends on meticulously detailed analysis of motivational phenotypes in patients and in animal models. Here, we review the results of recent human behavioral and imaging studies of motivation, and we relate those findings to the results from animal studies, including a mouse model of striatal dopamine D2 receptor hyperfunction. The motivational deficit in patients with schizophrenia is not due to an inability to experience pleasure in the moment as hedonic reaction appears intact in patients. Instead, the motivation deficit represents a reduced capacity for anticipating future pleasure resulting from goal-directed action. The diminished anticipation appears to be a consequence of an inability to accurately represent the expected reward values of actions. A strikingly similar phenotype in incentive motivation has also been described in mice with striatal dopamine D2 receptor hyperfunction. These convergent findings identify potential pathophysiological mechanisms that underlie the deficit in anticipatory motivation, and importantly, the mouse model provides a tool for investigating novel treatment strategies, which we discuss here.
Collapse
|
46
|
Trueman R, Dunnett S, Brooks S. Operant-based instrumental learning for analysis of genetically modified models of Huntington's disease. Brain Res Bull 2012; 88:261-75. [DOI: 10.1016/j.brainresbull.2011.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 01/03/2023]
|
47
|
Dissociation of hedonic reaction to reward and incentive motivation in an animal model of the negative symptoms of schizophrenia. Neuropsychopharmacology 2012; 37:1699-707. [PMID: 22414818 PMCID: PMC3358738 DOI: 10.1038/npp.2012.15] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously showed that mice that selectively and reversibly overexpress striatal D2 receptors (D2R-OE) model the negative symptoms of schizophrenia. Specifically, D2R-OE mice display a deficit in incentive motivation. The present studies investigated the basis for this deficit. First, we assessed whether hedonic reaction to reward is intact in D2R-OE mice. We assessed licking behavior and video-scored positive hedonic facial reactions to increasing concentrations of sucrose in control and D2R-OE mice. We found no difference between D2R-OE mice and controls in hedonic reactions. To further understand the basis of the motivational deficit, mice were given a choice between pressing a lever for access to a preferred reward (evaporated milk) or consuming a freely available less preferred reward (home-cage chow). D2R-OE mice pressed less for the preferred milk and consumed more of the freely available less preferred chow, indicating that striatal overexpression of postsynaptic D2Rs can alter cost/benefit computations, leading to a motivational deficit. This motivational impairment was ameliorated when the transgene was turned off and D2R levels were normalized. Such a deficit may arise from impaired ability to represent the value of future rewards. To test this, we used operant concurrent schedules and found reduced sensitivity to the value of future outcomes in D2R-OE mice. These results demonstrate for the first time in a transgenic animal model of schizophrenia a dissociation between hedonic reaction to reward and incentive motivation, and show a striking parallel to the proposed neurobiological and psychological mechanisms of impaired incentive motivation in schizophrenia.
Collapse
|
48
|
Striatal D2 receptors regulate dendritic morphology of medium spiny neurons via Kir2 channels. J Neurosci 2012; 32:2398-409. [PMID: 22396414 DOI: 10.1523/jneurosci.6056-11.2012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural plasticity in the adult brain is essential for adaptive behaviors and is thought to contribute to a variety of neurological and psychiatric disorders. Medium spiny neurons of the striatum show a high degree of structural plasticity that is modulated by dopamine through unknown signaling mechanisms. Here, we demonstrate that overexpression of dopamine D2 receptors in medium spiny neurons increases their membrane excitability and decreases the complexity and length of their dendritic arbors. These changes can be reversed in the adult animal after restoring D2 receptors to wild-type levels, demonstrating a remarkable degree of structural plasticity in the adult striatum. Increased excitability and decreased dendritic arborization are associated with downregulation of inward rectifier potassium channels (Kir2.1/2.3). Downregulation of Kir2 function is critical for the neurophysiological and morphological changes in vivo because virally mediated expression of a dominant-negative Kir2 channel is sufficient to recapitulate the changes in D2 transgenic mice. These findings may have important implications for the understanding of basal ganglia disorders, and more specifically schizophrenia, in which excessive activation of striatal D2 receptors has long been hypothesized to be of pathophysiologic significance.
Collapse
|
49
|
Macdonald CJ, Cheng RK, Meck WH. Acquisition of "Start" and "Stop" response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum. Front Integr Neurosci 2012; 6:10. [PMID: 22435054 PMCID: PMC3303086 DOI: 10.3389/fnint.2012.00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 02/28/2012] [Indexed: 01/07/2023] Open
Abstract
Time-based decision-making in peak-interval timing procedures involves the setting of response thresholds for the initiation (“Start”) and termination (“Stop”) of a response sequence that is centered on a target duration. Using intracerebral infusions of the protein synthesis inhibitor anisomycin, we report that the acquisition of the “Start” response depends on normal functioning (including protein synthesis) in the dorsal striatum (DS), but not the ventral striatum (VS). Conversely, disruption of the VS, but not the DS, impairs the acquisition of the “Stop” response. We hypothesize that the dorsal and ventral regions of the striatum function as a competitive neural network that encodes the temporal boundaries marking the beginning and end of a timed response sequence.
Collapse
|
50
|
Meck WH, Cheng RK, MacDonald CJ, Gainetdinov RR, Caron MG, Çevik MÖ. Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology 2012; 62:1221-9. [DOI: 10.1016/j.neuropharm.2011.01.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|