1
|
Zelleroth S, Stam F, Nylander E, Kjellgren E, Gising J, Larhed M, Grönbladh A, Hallberg M. The decanoate esters of nandrolone, testosterone, and trenbolone induce steroid specific memory impairment and somatic effects in the male rat. Horm Behav 2024; 161:105501. [PMID: 38368844 DOI: 10.1016/j.yhbeh.2024.105501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.
Collapse
Affiliation(s)
- Sofia Zelleroth
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Frida Stam
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Ellinor Kjellgren
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden
| | - Johan Gising
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, SE-751 23, Uppsala University, Sweden.
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, SE-751 23, Uppsala University, Sweden.
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| |
Collapse
|
2
|
Zelleroth S, Nylander E, Örtenblad A, Stam F, Nyberg F, Grönbladh A, Hallberg M. Structurally different anabolic androgenic steroids reduce neurite outgrowth and neuronal viability in primary rat cortical cell cultures. J Steroid Biochem Mol Biol 2021; 210:105863. [PMID: 33677017 DOI: 10.1016/j.jsbmb.2021.105863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
The illicit use of anabolic androgenic steroids (AAS) among adolescents and young adults is a major concern due to the unknown and unpredictable impact of AAS on the developing brain and the consequences of this on mental health, cognitive function and behaviour. The present study aimed to investigate the effects of supra-physiological doses of four structurally different AAS (testosterone, nandrolone, stanozolol and trenbolone) on neurite development and cell viability using an in vitro model of immature primary rat cortical cell cultures. A high-throughput screening image-based approach, measuring the neurite length and number of neurons, was used for the analysis of neurite outgrowth. In addition, cell viability and expression of the Tubb3 gene (encoding the protein beta-III tubulin) were investigated. Testosterone, nandrolone, and trenbolone elicited adverse effects on neurite outgrowth as deduced from an observed reduced neurite length per neuron. Trenbolone was the only AAS that reduced the cell viability as indicated by a decreased number of neurons and declined mitochondrial function. Moreover, trenbolone downregulated the Tubb3 mRNA expression. The adverse impact on neurite development was neither inhibited nor supressed by the selective androgen receptor (AR) antagonist, flutamide, suggesting that the observed effects result from another mechanism or mechanisms of action that are operating apart from AR activation. The results demonstrate a possible AAS-induced detrimental effect on neuronal development and regenerative functions. An impact on these events, that are essential mechanisms for maintaining normal brain function, could possibly contribute to behavioural alterations seen in AAS users.
Collapse
Affiliation(s)
- Sofia Zelleroth
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| | - Axel Örtenblad
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden
| | - Frida Stam
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| | - Fred Nyberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, SE-751 24, Uppsala University, Sweden.
| |
Collapse
|
3
|
Morrison TR, Ricci LA, Puckett AS, Joyce J, Curran R, Davis C, Melloni RH. Serotonin type-3 receptors differentially modulate anxiety and aggression during withdrawal from adolescent anabolic steroid exposure. Horm Behav 2020; 119:104650. [PMID: 31805280 DOI: 10.1016/j.yhbeh.2019.104650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Male Syrian hamsters (Mesocricetus auratus) administered anabolic/androgenic steroids during adolescent development display increased aggression and decreased anxious behavior during the adolescent exposure period. Upon withdrawal from anabolic/androgenic steroids, this neurobehavioral relationship shifts and hamsters exhibit decreased aggression and increased anxious behavior. This study investigated the hypothesis that alterations in anterior hypothalamic signaling through serotonin type-3 receptors modulate the behavioral shift between adolescent anabolic/androgenic steroid-induced aggressive and anxious behaviors during the withdrawal period. To test this, hamsters were administered anabolic/androgenic steroids during adolescence then withdrawn from drug exposure for 21 days and tested for aggressive and anxious behaviors following direct pharmacological manipulation of serotonin type-3 receptor signaling within the latero-anterior hypothalamus. Blockade of latero-anterior hypothalamic serotonin type-3 receptors both increased aggression and decreased anxious behavior in steroid-treated hamsters, effectively reversing the pattern of behavioral responding normally observed during anabolic/androgenic steroid withdrawal. These findings suggest that the state of serotonin neural signaling within the latero-anterior hypothalamus plays an important role in behavioral shifting between aggressive and anxious behaviors following adolescent exposure to anabolic/androgenic steroids.
Collapse
Affiliation(s)
- Thomas R Morrison
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Amanda S Puckett
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Jillian Joyce
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Riley Curran
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Courtney Davis
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America.
| |
Collapse
|
4
|
Haller J. Preclinical models of conduct disorder – principles and pharmacologic perspectives. Neurosci Biobehav Rev 2018; 91:112-120. [DOI: 10.1016/j.neubiorev.2016.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/09/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022]
|
5
|
Haller J. The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches. Neurosci Biobehav Rev 2017; 85:34-43. [PMID: 28918358 DOI: 10.1016/j.neubiorev.2017.09.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/21/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
The involvement of the amygdala in aggression is supported by overwhelming evidence. Frequently, however, the amygdala is studied as a whole, despite its complex internal organization. To reveal the role of various subdivisions, here we review the involvement of the central and medial amygdala in male rivalry aggression, maternal aggression, predatory aggression, and models of abnormal aggression where violent behavior is associated with increased or decreased arousal. We conclude that: (1) rivalry aggression is controlled by the medial amygdala; (2) predatory aggression is controlled by the central amygdala; (3) hypoarousal-associated violent aggression recruits both nuclei, (4) a specific upregulation of the medial amygdala was observed in hyperarousal-driven aggression. These patterns of amygdala activation were used to build four alternative models of the aggression circuitry, each being specific to particular forms of aggression. The separate study of the roles of amygdala subdivisions may not only improve our understanding of aggressive behavior, but also the differential control of aggression and violent behaviors of various types, including those associated with various psychopathologies.
Collapse
Affiliation(s)
- Jozsef Haller
- Institute of Experimental Medicine, Budapest, Hungary; National University of Public Service, Budapest, Hungary.
| |
Collapse
|
6
|
Morrison TR, Ricci LA, Melloni RH. Vasopressin differentially modulates aggression and anxiety in adolescent hamsters administered anabolic steroids. Horm Behav 2016; 86:55-63. [PMID: 27149949 PMCID: PMC5094902 DOI: 10.1016/j.yhbeh.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/24/2016] [Accepted: 04/15/2016] [Indexed: 12/19/2022]
Abstract
Adolescent Syrian hamsters (Mesocricetus auratus) treated with anabolic/androgenic steroids display increased offensive aggression and decreased anxiety correlated with an increase in vasopressin afferent development, synthesis, and neural signaling within the anterior hypothalamus. Upon withdrawal from anabolic/androgenic steroids, this neurobehavioral relationship shifts as hamsters display decreased offensive aggression and increased anxiety correlated with a decrease in anterior hypothalamic vasopressin. This study investigated the hypothesis that alterations in anterior hypothalamic vasopressin neural signaling modulate behavioral shifting between adolescent anabolic/androgenic steroid-induced offensive aggression and anxiety. To test this, adolescent male hamsters were administered anabolic/androgenic steroids and tested for offensive aggression or anxiety following direct pharmacological manipulation of vasopressin V1A receptor signaling within the anterior hypothalamus. Blockade of anterior hypothalamic vasopressin V1A receptor signaling suppressed offensive aggression and enhanced general and social anxiety in hamsters administered anabolic/androgenic steroids during adolescence, effectively reversing the pattern of behavioral response pattern normally observed during the adolescent exposure period. Conversely, activation of anterior hypothalamic vasopressin V1A receptor signaling enhanced offensive aggression in hamsters exposed to anabolic/androgenic steroids during adolescence. Together, these findings suggest that the state of vasopressin neural development and signaling in the anterior hypothalamus plays an important role in behavioral shifting between aggression and anxiety following adolescent exposure to anabolic/androgenic steroids.
Collapse
Affiliation(s)
- Thomas R Morrison
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, United States
| | - Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, United States
| | - Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, United States.
| |
Collapse
|
7
|
Mad men, women and steroid cocktails: a review of the impact of sex and other factors on anabolic androgenic steroids effects on affective behaviors. Psychopharmacology (Berl) 2016; 233:549-69. [PMID: 26758282 PMCID: PMC4751878 DOI: 10.1007/s00213-015-4193-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/11/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE For several decades, elite athletes and a growing number of recreational consumers have used anabolic androgenic steroids (AAS) as performance enhancing drugs. Despite mounting evidence that illicit use of these synthetic steroids has detrimental effects on affective states, information available on sex-specific actions of these drugs is lacking. OBJECTIVES The focus of this review is to assess information to date on the importance of sex and its interaction with other environmental factors on affective behaviors, with an emphasis on data derived from non-human studies. METHODS The PubMed database was searched for relevant studies in both sexes. RESULTS Studies examining AAS use in females are limited, reflecting the lower prevalence of use in this sex. Data, however, indicate significant sex-specific differences in AAS effects on anxiety-like and aggressive behaviors, interactions with other drugs of abuse, and the interplay of AAS with other environmental factors such as diet and exercise. CONCLUSIONS Current methods for assessing AAS use have limitations that suggest biases of both under- and over-reporting, which may be amplified for females who are poorly represented in self-report studies of human subjects and are rarely used in animal studies. Data from animal literature suggest that there are significant sex-specific differences in the impact of AAS on aggression, anxiety, and concomitant use of other abused substances. These results have relevance for human females who take these drugs as performance-enhancing substances and for transgender XX individuals who may illicitly self-administer AAS as they transition to a male gender identity.
Collapse
|
8
|
Morrison TR, Ricci LA, Melloni RH. Anabolic/androgenic steroid administration during adolescence and adulthood differentially modulates aggression and anxiety. Horm Behav 2015; 69:132-8. [PMID: 25655668 PMCID: PMC4359666 DOI: 10.1016/j.yhbeh.2015.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/03/2015] [Accepted: 01/28/2015] [Indexed: 12/15/2022]
Abstract
Anabolic/androgenic steroid (AAS) use remains high in both teens and adults in the U.S. and worldwide despite studies showing that AAS use is associated with a higher incidence of aggression and anxiety. Recently we showed that chronic exposure to AAS through adolescence increases aggression and decreases anxious behaviors, while during AAS-withdrawal aggression is lowered to species-normative levels and anxiety increases. AAS exposure is known to differentially alter behaviors and their underlying neural substrates between adults and adolescents and thus the current study investigated whether exposure to AAS during adulthood affects the relationship between aggression and anxiety in a manner similar to that previously observed in adolescents. Male hamsters were administered a moderate dose of AAS (5.0mg/kg/day×30days) during adolescence (P27-56) or young adulthood (P65-P94) and then tested for aggression and anxiety during AAS exposure (i.e., on P57 or P95) and during AAS withdrawal (i.e., 30days later on P77 or P115). Adolescent exposure to AAS increased aggressive responding during the AAS exposure period and anxiety-like responding during AAS withdrawal. Neither behavior was similarly influenced by adult exposure to AAS. Adult AAS exposure produced no difference in aggressive responding during AAS exposure (P95) or AAS withdrawal (P115); however, while AAS exposure during adulthood produced no difference in anxiety-like responding during AAS exposure, adult hamsters administered AAS were less anxious than vehicle control animals following AAS withdrawal. Together these data suggest that the aggression and anxiety provoking influence of AAS are likely a developmental phenomenon and that adult exposure to AAS may be anxiolytic over the long term.
Collapse
Affiliation(s)
- Thomas R Morrison
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, USA
| | - Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, USA
| | - Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, USA.
| |
Collapse
|
9
|
Kalinine E, Zimmer ER, Zenki KC, Kalinine I, Kazlauckas V, Haas CB, Hansel G, Zimmer AR, Souza DO, Müller AP, Portela LV. Nandrolone-induced aggressive behavior is associated with alterations in extracellular glutamate homeostasis in mice. Horm Behav 2014; 66:383-92. [PMID: 24937439 DOI: 10.1016/j.yhbeh.2014.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
Nandrolone decanoate (ND), an anabolic androgenic steroid (AAS), induces an aggressive phenotype by mechanisms involving glutamate-induced N-methyl-d-aspartate receptor (NMDAr) hyperexcitability. The astrocytic glutamate transporters remove excessive glutamate surrounding the synapse. However, the impact of supraphysiological doses of ND on glutamate transporters activity remains elusive. We investigated whether ND-induced aggressive behavior is interconnected with GLT-1 activity, glutamate levels and abnormal NMDAr responses. Two-month-old untreated male mice (CF1, n=20) were tested for baseline aggressive behavior in the resident-intruder test. Another group of mice (n=188) was injected with ND (15mg/kg) or vehicle for 4, 11 and 19days (short-, mid- and long-term endpoints, respectively) and was evaluated in the resident-intruder test. Each endpoint was assessed for GLT-1 expression and glutamate uptake activity in the frontoparietal cortex and hippocampal tissues. Only the long-term ND endpoint significantly decreased the latency to first attack and increased the number of attacks, which was associated with decreased GLT-1 expression and glutamate uptake activity in both brain areas. These alterations may affect extracellular glutamate levels and receptor excitability. Resident males were assessed for hippocampal glutamate levels via microdialysis both prior to, and following, the introduction of intruders. Long-term ND mice displayed significant increases in the microdialysate glutamate levels only after exposure to intruders. A single intraperitoneal dose of the NMDAr antagonists, memantine or MK-801, shortly before the intruder test decreased aggressive behavior. In summary, long-term ND-induced aggressive behavior is associated with decreased extracellular glutamate clearance and NMDAr hyperexcitability, emphasizing the role of this receptor in mediating aggression mechanisms.
Collapse
Affiliation(s)
- Eduardo Kalinine
- Department of Biochemistry, Post-Graduation Program in Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Rigon Zimmer
- Department of Biochemistry, Post-Graduation Program in Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Porto Alegre, Brazil
| | - Kamila Cagliari Zenki
- Department of Biochemistry, Post-Graduation Program in Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Porto Alegre, Brazil
| | - Iouri Kalinine
- Laboratory of Exercise Physiology and Human Performance, Federal University of Santa Maria (UFSM), Rio Grande do Sul, Santa Maria, Brazil
| | - Vanessa Kazlauckas
- Department of Biochemistry, Post-Graduation Program in Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Porto Alegre, Brazil
| | - Clarissa Branco Haas
- Department of Biochemistry, Post-Graduation Program in Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Porto Alegre, Brazil
| | - Gisele Hansel
- Department of Biochemistry, Post-Graduation Program in Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Rigon Zimmer
- Pharmaceutical Sciences Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Department of Biochemistry, Post-Graduation Program in Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Pastoris Müller
- Laboratory of Exercise Biochemistry and Physiology, Health Sciences Unit, University of Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Luis Valmor Portela
- Department of Biochemistry, Post-Graduation Program in Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Ricci LA, Morrison TR, Melloni RH. Adolescent anabolic/androgenic steroids: Aggression and anxiety during exposure predict behavioral responding during withdrawal in Syrian hamsters (Mesocricetus auratus). Horm Behav 2013; 64:770-80. [PMID: 24126136 PMCID: PMC3957330 DOI: 10.1016/j.yhbeh.2013.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/10/2013] [Accepted: 10/03/2013] [Indexed: 11/22/2022]
Abstract
In the U.S. and worldwide anabolic/androgenic steroid use remains high in the adolescent population. This is concerning given that anabolic/androgenic steroid use is associated with a higher incidence of aggressive behavior during exposure and anxiety during withdrawal. This study uses pubertal Syrian hamsters (Mesocricetus auratus) to investigate the hypothesis that an inverse behavioral relationship exists between anabolic/androgenic steroid-induced aggression and anxiety across adolescent exposure and withdrawal. In the first experiment, we examined aggression and anxiety during adolescent anabolic/androgenic steroid exposure and withdrawal. Adolescent anabolic/androgenic steroid administration produced significant increases in aggression and decreases in anxiety during the exposure period followed by significant decreases in aggression and increases in anxiety during anabolic/androgenic steroid withdrawal. In a second experiment, anabolic/androgenic steroid exposed animals were separated into groups based on their aggressive response during the exposure period and then tested for anxiety during exposure and then for both aggression and anxiety during withdrawal. Data were analyzed using a within-subjects repeated measures predictive analysis. Linear regression analysis revealed that the difference in aggressive responding between the anabolic/androgenic steroid exposure and withdrawal periods was a significant predictor of differences in anxiety for both days of testing. Moreover, the combined data suggest that the decrease in aggressive behavior from exposure to withdrawal predicts an increase in anxiety-like responding within these same animals during this time span. Together these findings indicate that early anabolic/androgenic steroid exposure has potent aggression- and anxiety-eliciting effects and that these behavioral changes occur alongside a predictive relationship that exists between these two behaviors over time.
Collapse
Affiliation(s)
- Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, USA
| | | | | |
Collapse
|
11
|
Cunningham RL, Lumia AR, McGinnis MY. Androgenic anabolic steroid exposure during adolescence: ramifications for brain development and behavior. Horm Behav 2013; 64:350-6. [PMID: 23274699 PMCID: PMC3633688 DOI: 10.1016/j.yhbeh.2012.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 01/13/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Puberty is a critical period for brain maturation that is highly dependent on gonadal sex hormones. Modifications in the gonadal steroid environment, via the use of anabolic androgenic steroids (AAS), have been shown to affect brain development and behavior. Studies in both humans and animal models indicate that AAS exposure during adolescence alters normal brain remodeling, including structural changes and neurotransmitter function. The most commonly reported behavioral effect is an increase in aggression. Evidence has been presented to identify factors that influence the effect of AAS on the expression of aggression. The chemical composition of the AAS plays a major role in determining whether aggression is displayed, with testosterone being the most effective. The hormonal context, the environmental context, physical provocation and the perceived threat during the social encounter have all been found to influence the expression of aggression and sexual behavior. All of these factors point toward an altered behavioral state that includes an increased readiness to respond to a social encounter with heightened vigilance and enhanced motivation. This AAS-induced state may be defined as emboldenment. The evidence suggests that the use of AAS during this critical period of development may increase the risk for maladaptive behaviors along with neurological disorders.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Centre at Fort Worth, Fort Worth, TX 76107 USA.
| | | | | |
Collapse
|
12
|
Ricci LA, Morrison TR, Melloni RH. Serotonin modulates anxiety-like behaviors during withdrawal from adolescent anabolic-androgenic steroid exposure in Syrian hamsters. Horm Behav 2012; 62:569-78. [PMID: 23026540 PMCID: PMC3612524 DOI: 10.1016/j.yhbeh.2012.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/27/2022]
Abstract
From the U.S. to Europe and Australia anabolic steroid abuse remains high in the adolescent population. This is concerning given that anabolic steroid use is associated with a higher incidence of pathological anxiety that often appears during withdrawal from use. This study uses pubertal Syrian hamsters (Mesocricetus auratus) to investigate the hypothesis that adolescent anabolic/androgenic steroid (AAS) exposure predisposes hamsters to heightened levels of anxiety during AAS withdrawal that is modulated by serotonin (5HT) neural signaling. In the first two sets of experiments, adolescent AAS-treated hamsters were tested for anxiety 21 days after the cessation of AAS administration (i.e., during AAS withdrawal) using the elevated plus maze (EPM), dark/light (DL), and seed finding (SF) tests and then examined for differences in 5HT afferent innervation to select areas of the brain important for anxiety. In the EPM and DL tests, adolescent AAS exposure leads to significant increases in anxiety-like response during AAS withdrawal. AAS-treated hamsters showed long-term reductions in 5HT innervation within several areas of the hamster brain implicated in anxiety, most notably the anterior hypothalamus and the central and medial amygdala. However, no differences in 5HT were found in other anxiety areas, e.g., frontal cortex and lateral septum. In the last experiment, adolescent AAS-treated hamsters were scored for anxiety on the 21st day of AAS withdrawal following the systemic administration of saline or one of three doses of fluoxetine, a selective serotonin reuptake inhibitor. Saline-treated hamsters showed high levels of AAS withdrawal-induced anxiety, while treatment with fluoxetine reduced AAS withdrawal-induced anxiety. These findings indicate that early AAS exposure has potent anxiogenic effects during AAS withdrawal that are modulated, in part, by 5HT signaling.
Collapse
|
13
|
The Sturm und Drang of anabolic steroid use: angst, anxiety, and aggression. Trends Neurosci 2012; 35:382-92. [PMID: 22516619 DOI: 10.1016/j.tins.2012.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/17/2012] [Accepted: 03/01/2012] [Indexed: 12/13/2022]
Abstract
Anabolic androgenic steroids (AAS) are illicitly administered to enhance athletic performance and body image. Although conferring positive actions on performance, steroid abuse is associated with changes in anxiety and aggression. AAS users are often keenly invested in understanding the biological actions of these drugs. Thus, mechanistic information on AAS actions is important not only for the biomedical community, but also for steroid users. Here we review findings from animal studies on the impact of AAS exposure on neural systems that are crucial for the production of anxiety and aggression, and compare the effects of the different classes of AAS and their potential signaling mechanisms, as well as context-, age- and sex-dependent aspects of their actions.
Collapse
|