1
|
Farkhondeh Tale Navi F, Heysieattalab S, Raoufy MR, Sabaghypour S, Nazari M, Nazari MA. Adaptive closed-loop modulation of cortical theta oscillations: Insights into the neural dynamics of navigational decision-making. Brain Stimul 2024; 17:1101-1118. [PMID: 39277130 DOI: 10.1016/j.brs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/04/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.
Collapse
Affiliation(s)
- Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saied Sabaghypour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Mohammad Ali Nazari
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Cao J, Gorwood P, Ramoz N, Viltart O. The Role of Central and Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker of Anorexia Nervosa Reconceptualized as a Metabo-Psychiatric Disorder. Nutrients 2024; 16:2617. [PMID: 39203753 PMCID: PMC11357464 DOI: 10.3390/nu16162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Neurotrophic factors play pivotal roles in shaping brain development and function, with brain-derived neurotrophic factor (BDNF) emerging as a key regulator in various physiological processes. This review explores the intricate relationship between BDNF and anorexia nervosa (AN), a complex psychiatric disorder characterized by disordered eating behaviors and severe medical consequences. Beginning with an overview of BDNF's fundamental functions in neurodevelopment and synaptic plasticity, the review delves into recent clinical and preclinical evidence implicating BDNF in the pathophysiology of AN. Specifically, it examines the impact of BDNF polymorphisms, such as the Val66Met variant, on AN susceptibility, prognosis, and treatment response. Furthermore, the review discusses the interplay between BDNF and stress-related mood disorders, shedding light on the mechanisms underlying AN vulnerability to stress events. Additionally, it explores the involvement of BDNF in metabolic regulation, highlighting its potential implications for understanding the metabolic disturbances observed in AN. Through a comprehensive analysis of clinical data and animal studies, the review elucidates the nuanced role of BDNF in AN etiology and prognosis, emphasizing its potential as a diagnostic and prognostic biomarker. Finally, the review discusses limitations and future directions in BDNF research, underscoring the need for further investigations to elucidate the complex interplay between BDNF signaling and AN pathology.
Collapse
Affiliation(s)
- Jingxian Cao
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Nicolas Ramoz
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- SCALab Laboratory, PsySEF Faculty, Université de Lille, UMR CNRS 9193, F-59650 Villeneuve d’Ascq, France
| |
Collapse
|
3
|
Kirsch DE, Ray LA, Wassum KM, Grodin EN. Anterior cingulate and medial prefrontal cortex alcohol cue reactivity varies as a function of drink preference in alcohol use disorder. Drug Alcohol Depend 2024; 256:111123. [PMID: 38367535 DOI: 10.1016/j.drugalcdep.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Functional MRI visual cue reactivity studies have not considered that brain responses to various alcohol-containing beverage types may vary as a function of an individual's drinking patterns and preferences. This study tested whether the brain's reward system responds differently to visual cues associated with an individuals' most commonly consumed ("preferred") alcohol beverage compared with less commonly consumed ("non-preferred") alcohol beverages in individuals with alcohol use disorder (AUD). METHODS Participants (N=70) with current AUD completed a standard visual alcohol cue reactivity procedure during fMRI and reported recent alcohol use through the Timeline Followback interview. Alcohol use patterns were used to infer drink preference. Repeated measure ANCOVAs were used to evaluate differences in subjective craving (alcohol urge) and neural reactivity to cues of individual's "preferred" versus "non-preferred" alcohol beverages. RESULTS Fifty-four (77%) participants were determined to have a "preferred" alcohol beverage, as defined by their pattern of alcohol use. These participants reported greater subjective alcohol urge (p=0.02) and activation in the anterior cingulate cortex (ACC) (p=0.005) and medial prefrontal cortex (mPFC) (p=0.001)) in response to visual cues associated with their "preferred" versus "non-preferred" alcohol beverage. Individuals with an alcohol preference did not differ from those with no alcohol preference on subjective or neural responses to their "preferred" and "non-preferred" alcohol cues. DISCUSSION Results suggest alcohol cue-elicited subjective and neural responses vary as a function of alcohol beverage preference in individuals with AUD and a behaviorally defined alcohol preference. Stronger ACC and mPFC activation may reflect greater subjective value of an individual's "preferred" alcohol beverage cue.
Collapse
Affiliation(s)
- Dylan E Kirsch
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Pimentel JM, Moioli RC, De Araujo MFP, Vargas PA. An Integrated Neurorobotics Model of the Cerebellar-Basal Ganglia Circuitry. Int J Neural Syst 2023; 33:2350059. [PMID: 37791495 DOI: 10.1142/s0129065723500594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This work presents a neurorobotics model of the brain that integrates the cerebellum and the basal ganglia regions to coordinate movements in a humanoid robot. This cerebellar-basal ganglia circuitry is well known for its relevance to the motor control used by most mammals. Other computational models have been designed for similar applications in the robotics field. However, most of them completely ignore the interplay between neurons from the basal ganglia and cerebellum. Recently, neuroscientists indicated that neurons from both regions communicate not only at the level of the cerebral cortex but also at the subcortical level. In this work, we built an integrated neurorobotics model to assess the capacity of the network to predict and adjust the motion of the hands of a robot in real time. Our model was capable of performing different movements in a humanoid robot by respecting the sensorimotor loop of the robot and the biophysical features of the neuronal circuitry. The experiments were executed in simulation and the real world. We believe that our proposed neurorobotics model can be an important tool for new studies on the brain and a reference toward new robot motor controllers.
Collapse
Affiliation(s)
- Jhielson M Pimentel
- Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Renan C Moioli
- Bioinformatics Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Patricia A Vargas
- Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
5
|
Wang J, Liu G, Xu K, Ai K, Huang W, Zhang J. The role of neurotransmitters in mediating the relationship between brain alterations and depressive symptoms in patients with inflammatory bowel disease. Hum Brain Mapp 2023; 44:5357-5371. [PMID: 37530546 PMCID: PMC10543356 DOI: 10.1002/hbm.26439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
A growing body of evidence from neuroimaging studies suggests that inflammatory bowel disease (IBD) is associated with functional and structural alterations in the central nervous system and that it has a potential link to emotional symptoms, such as anxiety and depression. However, the neurochemical underpinnings of depression symptoms in IBD remain unclear. We hypothesized that changes in cortical gamma-aminobutyric acid (GABA+) and glutamine (Glx) concentrations are related to cortical thickness and resting-state functional connectivity in IBD as compared to healthy controls. To test this, we measured whole-brain cortical thickness and functional connectivity within the medial prefrontal cortex (mPFC), as well as the concentrations of neurotransmitters in the same brain region. We used the edited magnetic resonance spectroscopy (MRS) with the MEGA-PRESS sequence at a 3 T scanner to quantitate the neurotransmitter levels in the mPFC. Subjects with IBD (N = 37) and healthy control subjects (N = 32) were enrolled in the study. Compared with healthy controls, there were significantly decreased GABA+ and Glx concentrations in the mPFC of patients with IBD. The cortical thickness of patients with IBD was thin in two clusters that included the right medial orbitofrontal cortex and the right posterior cingulate cortex. A seed-based functional connectivity analysis indicated that there was higher connectivity of the mPFC with the left precuneus cortex (PC) and the posterior cingulate cortex, and conversely, lower connectivity in the left frontal pole was observed. The functional connectivity between the mPFC and the left PC was negatively correlated with the IBD questionnaire score (r = -0.388, p = 0.018). GABA+ concentrations had a negative correlation with the Hamilton Depression Scale (HAMD) score (r = -0.497, p = 0.002). Glx concentration was negatively correlated with the HAMD score (r = -0.496, p = 0.002) and positively correlated with the Short-Form McGill Pain Questionnaire score (r = 0.330, p = 0.046, uncorrected). There was a significant positive correlation between the ratio of Glx to GABA+ and the HAMD score (r = 0.428, p = 0.008). Mediation analysis revealed that GABA+ significantly mediated the main effect of the relationship between the structural and functional alterations and the severity of depression in patients with IBD. Our study provides initial evidence of neurochemistry that can be used to identify potential mechanisms underlying the modulatory effects of GABA+ on the development of depression in patients with IBD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Guangyao Liu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kun Xu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kai Ai
- Deparment of Clinical and Technical Support, Philips HealthcareXi'anChina
| | - Wenjing Huang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Jing Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
6
|
Mehrotra D, Dubé L. Accounting for multiscale processing in adaptive real-world decision-making via the hippocampus. Front Neurosci 2023; 17:1200842. [PMID: 37732307 PMCID: PMC10508350 DOI: 10.3389/fnins.2023.1200842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
For adaptive real-time behavior in real-world contexts, the brain needs to allow past information over multiple timescales to influence current processing for making choices that create the best outcome as a person goes about making choices in their everyday life. The neuroeconomics literature on value-based decision-making has formalized such choice through reinforcement learning models for two extreme strategies. These strategies are model-free (MF), which is an automatic, stimulus-response type of action, and model-based (MB), which bases choice on cognitive representations of the world and causal inference on environment-behavior structure. The emphasis of examining the neural substrates of value-based decision making has been on the striatum and prefrontal regions, especially with regards to the "here and now" decision-making. Yet, such a dichotomy does not embrace all the dynamic complexity involved. In addition, despite robust research on the role of the hippocampus in memory and spatial learning, its contribution to value-based decision making is just starting to be explored. This paper aims to better appreciate the role of the hippocampus in decision-making and advance the successor representation (SR) as a candidate mechanism for encoding state representations in the hippocampus, separate from reward representations. To this end, we review research that relates hippocampal sequences to SR models showing that the implementation of such sequences in reinforcement learning agents improves their performance. This also enables the agents to perform multiscale temporal processing in a biologically plausible manner. Altogether, we articulate a framework to advance current striatal and prefrontal-focused decision making to better account for multiscale mechanisms underlying various real-world time-related concepts such as the self that cumulates over a person's life course.
Collapse
Affiliation(s)
- Dhruv Mehrotra
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Laurette Dubé
- Desautels Faculty of Management, McGill University, Montréal, QC, Canada
- McGill Center for the Convergence of Health and Economics, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Vilca S, Wahlestedt C, Izenwasser S, Gainetdinov RR, Pardo M. Dopamine Transporter Knockout Rats Display Epigenetic Alterations in Response to Cocaine Exposure. Biomolecules 2023; 13:1107. [PMID: 37509143 PMCID: PMC10377455 DOI: 10.3390/biom13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: There is an urgent need for effective treatments for cocaine use disorder (CUD), and new pharmacological approaches targeting epigenetic mechanisms appear to be promising options for the treatment of this disease. Dopamine Transporter (DAT) transgenic rats recently have been proposed as a new animal model for studying susceptibility to CUD. (2) Methods: DAT transgenic rats were treated chronically with cocaine (10 mg/kg) for 8 days, and the expression of epigenetic modulators, Lysine Demethylase 6B (KDM6B) and Bromodomain-containing protein 4 (BRD4), was examined in the prefrontal cortex (PFC). (3) Results: We show that only full knockout (KO) of DAT impacts basal levels of KDM6B in females. Additionally, cocaine altered the expression of both epigenetic markers in a sex- and genotype-dependent manner. In response to chronic cocaine, KDM6B expression was decreased in male rats with partial DAT mutation (HET), while no changes were observed in wild-type (WT) or KO rats. Indeed, while HET male rats have reduced KDM6B and BRD4 expression, HET female rats showed increased KDM6B and BRD4 expression levels, highlighting the impact of sex on epigenetic mechanisms in response to cocaine. Finally, both male and female KO rats showed increased expression of BRD4, but only KO females exhibited significantly increased KDM6B expression in response to cocaine. Additionally, the magnitude of these effects was bigger in females when compared to males for both epigenetic enzymes. (4) Conclusions: This preliminary study provides additional support that targeting KDM6B and/or BRD4 may potentially be therapeutic in treating addiction-related behaviors in a sex-dependent manner.
Collapse
Affiliation(s)
- Samara Vilca
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
| | - Marta Pardo
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
8
|
Dimick MK, Hird MA, Sultan AA, Mitchell RHB, Sinyor M, MacIntosh BJ, Goldstein BI. Resting-state functional connectivity indicators of risk and resilience for self-harm in adolescent bipolar disorder. Psychol Med 2023; 53:3377-3386. [PMID: 35256032 PMCID: PMC10277718 DOI: 10.1017/s0033291721005419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Suicide is the second leading cause of death in all youth and among adults with bipolar disorder (BD). The risk of suicide in BD is among the highest of all psychiatric conditions. Self-harm, including suicide attempts and non-suicidal self-injury, is a leading risk factor for suicide. Neuroimaging studies suggest reward circuits are implicated in both BD and self-harm; however, studies have yet to examine self-harm related resting-state functional connectivity (rsFC) phenotypes within adolescent BD. METHODS Resting-state fMRI data were analyzed for 141 adolescents, ages 13-20 years, including 38 with BD and lifetime self-harm (BDSH+), 33 with BD and no self-harm (BDSH-), and 70 healthy controls (HC). The dorsolateral prefrontal cortex (dlPFC), orbitofrontal cortex (OFC) and amygdala were examined as regions of interest in seed-to-voxel analyses. A general linear model was used to explore the bivariate correlations for each seed. RESULTS BDSH- had increased positive rsFC between the left amygdala and left lateral occipital cortex, and between the right dlPFC and right frontal pole, and increased negative rsFC between the left amygdala and left superior frontal gyrus compared to BDSH+ and HC. BDSH+ had increased positive rsFC of the right OFC with the precuneus and left paracingulate gyrus compared to BDSH- and HC. CONCLUSIONS This study provides preliminary evidence of altered reward-related rsFC in relation to self-harm in adolescents with BD. Between-group differences conveyed a combination of putative risk and resilience connectivity patterns. Future studies are warranted to evaluate changes in rsFC in response to treatment and related changes in self-harm.
Collapse
Affiliation(s)
- Mikaela K. Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Megan A. Hird
- MD Program, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Alysha A. Sultan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rachel H. B. Mitchell
- Department of Psychiatry, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mark Sinyor
- Department of Psychiatry, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Benjamin I. Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, Ercsey-Ravasz M, Winkel M, Linde H, Mureșan RC. The fractal brain: scale-invariance in structure and dynamics. Cereb Cortex 2023; 33:4574-4605. [PMID: 36156074 PMCID: PMC10110456 DOI: 10.1093/cercor/bhac363] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.
Collapse
Affiliation(s)
- George F Grosu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | | | - Vasile V Moca
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| | - Harald Bârzan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Maria Ercsey-Ravasz
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, Str. Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mathias Winkel
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Helmut Linde
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Sultan AA, Dimick MK, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. The association of CNR1 genetic variants with resting-state functional connectivity in youth bipolar disorder. Eur Neuropsychopharmacol 2023; 71:41-54. [PMID: 36972648 DOI: 10.1016/j.euroneuro.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Cannabinoid 1 receptors coded by the CNR1 gene are implicated in mood disorders and addiction. Given the prevalence and negative correlates of cannabis use in bipolar disorder (BD), we examined CNR1 polymorphism rs1324072 in relation to resting-state functional connectivity (rsFC) in youth BD. Participants included 124 youth, ages 13-20 years: 17 BD G-carriers, 48 BD non-carriers, 16 healthy controls (HC) G-carriers, and 43 HC non-carriers. rsFC was obtained using 3T-MRI. General linear models examined main effects of diagnosis, gene, and diagnosis-by-gene interaction, controlling for age, sex, and race. Regions-of-interests in seed-to-voxel analyses included: bilateral amygdala, hippocampus, nucleus accumbens (NAc), and orbitofrontal cortex (OFC). Main effects of diagnosis were observed for rsFC between the right amygdala seed and right occipital pole, and between the left NAc seed and left superior parietal lobe. Interaction analyses identified 6 significant clusters. G-allele was associated with negative connectivity in BD and positive connectivity in HC for: left amygdala seed with right intracalcarine cortex; right NAc seed with left inferior frontal gyrus; and right hippocampal seed with bilateral cuneal cortex (all p<0.001). G-allele was associated with positive connectivity in BD and negative connectivity in HC for: right hippocampal seed with left central opercular cortex (p = 0.001), and left NAc seed with left middle temporal cortex (p = 0.002). In conclusion, CNR1 rs1324072 was differentially associated with rsFC in youth with BD in regions relevant to reward and emotion. Future studies powered to integrate CNR1 alongside cannabis use are warranted to examine the inter-relationship between rs1324072 G-allele, cannabis use, and BD.
Collapse
Affiliation(s)
- Alysha A Sultan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clement C Zai
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - James L Kennedy
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Computational Radiology and Artificial Intelligence unit, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Program, Sandra E Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Daria S, Sofya K, Shamgunova Yulia Z, Mariia M. Measuring effects of packaging on willingness-to-pay for chocolate: evidence from an EEG experiment. Food Qual Prefer 2023. [DOI: 10.1016/j.foodqual.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
12
|
Vázquez D, Schneider KN, Roesch MR. Neural signals implicated in the processing of appetitive and aversive events in social and non-social contexts. Front Syst Neurosci 2022; 16:926388. [PMID: 35993086 PMCID: PMC9381696 DOI: 10.3389/fnsys.2022.926388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
In 2014, we participated in a special issue of Frontiers examining the neural processing of appetitive and aversive events. Specifically, we reviewed brain areas that contribute to the encoding of prediction errors and value versus salience, attention and motivation. Further, we described how we disambiguated these cognitive processes and their neural substrates by using paradigms that incorporate both appetitive and aversive stimuli. We described a circuit in which the orbitofrontal cortex (OFC) signals expected value and the basolateral amygdala (BLA) encodes the salience and valence of both appetitive and aversive events. This information is integrated by the nucleus accumbens (NAc) and dopaminergic (DA) signaling in order to generate prediction and prediction error signals, which guide decision-making and learning via the dorsal striatum (DS). Lastly, the anterior cingulate cortex (ACC) is monitoring actions and outcomes, and signals the need to engage attentional control in order to optimize behavioral output. Here, we expand upon this framework, and review our recent work in which within-task manipulations of both appetitive and aversive stimuli allow us to uncover the neural processes that contribute to the detection of outcomes delivered to a conspecific and behaviors in social contexts. Specifically, we discuss the involvement of single-unit firing in the ACC and DA signals in the NAc during the processing of appetitive and aversive events in both social and non-social contexts.
Collapse
Affiliation(s)
- Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Kevin N. Schneider
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Matthew R. Roesch
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
- *Correspondence: Matthew R. Roesch,
| |
Collapse
|
13
|
Cid-Jofré V, Moreno M, Sotomayor-Zárate R, Cruz G, Renard GM. Modafinil Administration to Preadolescent Rat Impairs Non-Selective Attention, Frontal Cortex D 2 Expression and Mesolimbic GABA Levels. Int J Mol Sci 2022; 23:ijms23126602. [PMID: 35743046 PMCID: PMC9223864 DOI: 10.3390/ijms23126602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
The misuse of psychostimulants is an increasing behavior among young people, highlighting in some countries the abuse of modafinil (MOD) as a neuropotentiator. However, several clinical trials are investigating MOD as an alternative pharmacological treatment for attentional deficit and hyperactivity disorder (ADHD) in children and adolescents. On the other hand, the early use of psychostimulants and the misdiagnosis rates in ADHD make it crucial to investigate the brain effects of this type of drug in young healthy individuals. The aim of this work was to evaluate the effects of chronic MOD treatment on neurochemicals (γ-aminobutyric acid and glutamate), dopamine receptor 2 (D2) expression and behavior (non-selective attention "NSA") in the mesocorticolimbic system of young healthy Sprague-Dawley rats. Preadolescent male rats were injected with MOD (75 mg/kg, i.p.) or a vehicle for 14 days (from postnatal day 22 to 35). At postnatal day 36, we measured the GLU and GABA contents and their extracellular levels in the nucleus accumbens (NAc). In addition, the GLU and GABA contents were measured in the ventral tegmental area (VTA) and D2 protein levels in the prefrontal cortex (PFC). Chronic use of MOD during adolescence induces behavioral and neurochemical changes associated with the mesocorticolimbic system, such as a reduction in PFC D2 expression, VTA GABA levels and NSA. These results contribute to the understanding of the neurological effects of chronic MOD use on a young healthy brain.
Collapse
Affiliation(s)
- Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central, Santiago 9160019, Chile; (V.C.-J.); (M.M.)
| | - Macarena Moreno
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central, Santiago 9160019, Chile; (V.C.-J.); (M.M.)
- Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102, Chile;
| | - Gonzalo Cruz
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102, Chile;
| | - Georgina M. Renard
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central, Santiago 9160019, Chile; (V.C.-J.); (M.M.)
- Correspondence:
| |
Collapse
|
14
|
Abstract
For over 100 years, eye movements have been studied and used as indicators of human sensory and cognitive functions. This review evaluates how eye movements contribute to our understanding of the processes that underlie decision-making. Eye movement metrics signify the visual and task contexts in which information is accumulated and weighed. They indicate the efficiency with which we evaluate the instructions for decision tasks, the timing and duration of decision formation, the expected reward associated with a decision, the accuracy of the decision outcome, and our ability to predict and feel confident about a decision. Because of their continuous nature, eye movements provide an exciting opportunity to probe decision processes noninvasively in real time. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Miriam Spering
- Department of Ophthalmology & Visual Sciences and the Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada;
| |
Collapse
|
15
|
The reward positivity is sensitive to affective liking. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:258-267. [PMID: 34599487 DOI: 10.3758/s13415-021-00950-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
The EEG feature known as the Reward Positivity (RewP) is elicited by reward receipt and appears to reflect sensitively and specifically positive prediction errors during reinforcement learning. Yet, the RewP also is modulated by state and trait affect, suggesting that it has a more complex computational role than simple reinforcement surprise. We conducted a series of experiments aimed to investigate underlying affect processing reflected in the RewP during a reinforcement learning task. In the first experiment (N = 25), we manipulated the type of rewards a person could win (simple points or hedonically-appraised pictures). Although there were no differences in the amplitudes of the RewP for different types of rewards, there was a significant correlation between the individual rating of liking for the images and RewP amplitude. In a second experiment (N = 25), we manipulated reinforcement rates (easy vs. hard) and affective picture content (liked vs. ambivalent) to examine the potential interaction of prediction error and liking on RewP amplitude. We again found a significant relationship between liking and RewP amplitude, however, only in the hard condition. These findings suggest that the RewP reflects cortical computations of reward surprise as well as hedonic liking, identifying it as a possible nexus where multidimensional value is computed.
Collapse
|
16
|
Abstract
This selective review explores biologically inspired learning as a model for intelligent robot control and sensing technology on the basis of specific examples. Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence, as explained on the basis of examples from the highly plastic biological neural networks of invertebrates and vertebrates. Its potential for adaptive learning and control without supervision, the generation of functional complexity, and control architectures based on self-organization is brought forward. Learning without prior knowledge based on excitatory and inhibitory neural mechanisms accounts for the process through which survival-relevant or task-relevant representations are either reinforced or suppressed. The basic mechanisms of unsupervised biological learning drive synaptic plasticity and adaptation for behavioral success in living brains with different levels of complexity. The insights collected here point toward the Hebbian model as a choice solution for “intelligent” robotics and sensor systems.
Collapse
|
17
|
Wilkinson MP, Slaney CL, Mellor JR, Robinson ESJ. Investigation of reward learning and feedback sensitivity in non-clinical participants with a history of early life stress. PLoS One 2021; 16:e0260444. [PMID: 34890390 PMCID: PMC8664195 DOI: 10.1371/journal.pone.0260444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Early life stress (ELS) is an important risk factor for the development of depression. Impairments in reward learning and feedback sensitivity are suggested to be an intermediate phenotype in depression aetiology therefore we hypothesised that healthy adults with a history of ELS would exhibit reward processing deficits independent of any current depressive symptoms. We recruited 64 adults with high levels of ELS and no diagnosis of a current mental health disorder and 65 controls. Participants completed the probabilistic reversal learning task and probabilistic reward task followed by depression, anhedonia, social status, and stress scales. Participants with high levels of ELS showed decreased positive feedback sensitivity in the probabilistic reversal learning task compared to controls. High ELS participants also trended towards possessing a decreased model-free learning rate. This was coupled with a decreased learning ability in the acquisition phase of block 1 following the practice session. Neither group showed a reward induced response bias in the probabilistic reward task however high ELS participants exhibited decreased stimuli discrimination. Overall, these data suggest that healthy participants without a current mental health diagnosis but with high levels of ELS show deficits in positive feedback sensitivity and reward learning in the probabilistic reversal learning task that are distinct from depressed patients. These deficits may be relevant to increased depression vulnerability.
Collapse
Affiliation(s)
- Matthew Paul Wilkinson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Chloe Louise Slaney
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jack Robert Mellor
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Emma Susan Jane Robinson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Sun W, Matsuoka T, Narumoto J. Decision-Making Support for People With Alzheimer's Disease: A Narrative Review. Front Psychol 2021; 12:750803. [PMID: 34867639 PMCID: PMC8633444 DOI: 10.3389/fpsyg.2021.750803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023] Open
Abstract
The proportion of people with dementia has been increasing yearly, and the decision-making capacity of these people has become a major concern in fields such as the financial industry and in medical settings. In this narrative review, we discuss decision-making in people with Alzheimer’s disease (AD), and we propose the support for decision-making in people with AD, especially financial and medical decision-making. We summarize several hypotheses and theories on the decision-making capacity of people with AD. These include the frontal lobe hypothesis, physiological theory, dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, and the Person-Task-Fit (PTF) framework. Both internal and external factors can affect decision-making by people with AD. Internal factors are affected by changes in the brain and neurotransmitters, as well as alterations in cognitive ability and emotion. External factors include task characters, task contents, and situation influence. Since feedback has a significant effect on decision-making capacity, a series of suggestions may be helpful to improve this capacity, such as explicit advice, simple options, pleasant rewards, the Talking Mats approach, memory and organizational aid, support by caregivers, cognitive training and feedback. Thus, in providing decision-making support for people with AD, it is important to identify the internal and external factors that impair this process and to deal with these factors.
Collapse
Affiliation(s)
- Weiyi Sun
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
A role of anterior cingulate cortex in the emergence of worker-parasite relationship. Proc Natl Acad Sci U S A 2021; 118:2111145118. [PMID: 34815341 DOI: 10.1073/pnas.2111145118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
We studied the brain mechanisms underlying action selection in a social dilemma setting in which individuals' effortful gains are unfairly distributed among group members. A stable "worker-parasite" relationship developed when three individually operant-conditioned rats were placed together in a Skinner box equipped with response lever and food dispenser on opposite sides. Specifically, one rat, the "worker," engaged in lever-pressing while the other two "parasitic" rats profited from the worker's effort by crowding the feeder in anticipation of food. Anatomically, c-Fos expression in the anterior cingulate cortex (ACC) was significantly higher in worker rats than in parasite rats. Functionally, ACC inactivation suppressed the worker's lever-press behavior drastically under social, but only mildly under individual, settings. Transcriptionally, GABAA receptor- and potassium channel-related messenger RNA expressions were reliably lower in the worker's, relative to parasite's, ACC. These findings indicate the requirement of ACC activation for the expression of exploitable, effortful behavior, which could be mediated by molecular pathways involving GABAA receptor/potassium channel proteins.
Collapse
|
20
|
Sultan AA, Hird MA, Dimick MK, MacIntosh BJ, Goldstein BI. Cannabis use and resting state functional connectivity in adolescent bipolar disorder. J Psychiatry Neurosci 2021; 46:E559-E567. [PMID: 34625488 PMCID: PMC8526158 DOI: 10.1503/jpn.200228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/21/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Adolescents with bipolar disorder have high rates of cannabis use, and cannabis use is associated with increased symptom severity and treatment resistance in bipolar disorder. Studies have identified anomalous resting-state functional connectivity among reward networks in bipolar disorder and cannabis use independently, but have yet to examine their convergence. METHODS Participants included 134 adolescents, aged 13 to 20 years: 40 with bipolar disorder and lifetime cannabis use, 31 with bipolar disorder and no history of cannabis use, and 63 healthy controls without lifetime cannabis use. We used a seed-to-voxel analysis to assess the restingstate functional connectivity of the amygdala, the nucleus accumbens and the orbitofrontal cortex, regions implicated in bipolar disorder and cannabis use. We used a generalized linear model to explore bivariate correlations for each seed, controlling for age and sex. RESULTS We found 3 significant clusters. Resting-state functional connectivity between the left nucleus accumbens seed and the left superior parietal lobe was negative in adolescents with bipolar disorder and no history of cannabis use, and positive in healthy controls. Resting-state functional connectivity between the right orbitofrontal cortex seed and the right lateral occipital cortex was positive in adolescents with bipolar disorder and lifetime cannabis use, and negative in healthy controls and adolescents with bipolar disorder and no history of cannabis use. Resting-state functional connectivity between the right orbitofrontal cortex seed and right occipital pole was positive in adolescents with bipolar disorder and lifetime cannabis use, and negative in adolescents with bipolar disorder and no history of cannabis use. LIMITATIONS The study did not include a cannabis-using control group. CONCLUSION This study provides preliminary evidence of cannabis-related differences in functional reward circuits in adolescents with bipolar disorder. Further studies are necessary to evaluate whether the present findings reflect consequences of or predisposition to cannabis use.
Collapse
Affiliation(s)
- Alysha A Sultan
- From the Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, (Sultan, Hird, Dimick, Goldstein); the Department of Pharmacology and Toxicology, University of Toronto, (Sultan, Dimick, Goldstein); the Faculty of Medicine, University of Toronto, (Sultan, Hird, Dimick, Goldstein); the Department of Psychiatry, University of Toronto, (Goldstein); the Department of Medical Biophysics, University of Toronto, (MacIntosh); and the Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, (MacIntosh, Goldstein) Toronto, Ont. Canada
| | - Megan A Hird
- From the Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, (Sultan, Hird, Dimick, Goldstein); the Department of Pharmacology and Toxicology, University of Toronto, (Sultan, Dimick, Goldstein); the Faculty of Medicine, University of Toronto, (Sultan, Hird, Dimick, Goldstein); the Department of Psychiatry, University of Toronto, (Goldstein); the Department of Medical Biophysics, University of Toronto, (MacIntosh); and the Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, (MacIntosh, Goldstein) Toronto, Ont. Canada
| | - Mikaela K Dimick
- From the Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, (Sultan, Hird, Dimick, Goldstein); the Department of Pharmacology and Toxicology, University of Toronto, (Sultan, Dimick, Goldstein); the Faculty of Medicine, University of Toronto, (Sultan, Hird, Dimick, Goldstein); the Department of Psychiatry, University of Toronto, (Goldstein); the Department of Medical Biophysics, University of Toronto, (MacIntosh); and the Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, (MacIntosh, Goldstein) Toronto, Ont. Canada
| | - Bradley J MacIntosh
- From the Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, (Sultan, Hird, Dimick, Goldstein); the Department of Pharmacology and Toxicology, University of Toronto, (Sultan, Dimick, Goldstein); the Faculty of Medicine, University of Toronto, (Sultan, Hird, Dimick, Goldstein); the Department of Psychiatry, University of Toronto, (Goldstein); the Department of Medical Biophysics, University of Toronto, (MacIntosh); and the Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, (MacIntosh, Goldstein) Toronto, Ont. Canada
| | - Benjamin I Goldstein
- From the Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, (Sultan, Hird, Dimick, Goldstein); the Department of Pharmacology and Toxicology, University of Toronto, (Sultan, Dimick, Goldstein); the Faculty of Medicine, University of Toronto, (Sultan, Hird, Dimick, Goldstein); the Department of Psychiatry, University of Toronto, (Goldstein); the Department of Medical Biophysics, University of Toronto, (MacIntosh); and the Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, (MacIntosh, Goldstein) Toronto, Ont. Canada.
| |
Collapse
|
21
|
Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE. Psychedelics and Other Psychoplastogens for Treating Mental Illness. Front Psychiatry 2021; 12:727117. [PMID: 34671279 PMCID: PMC8520991 DOI: 10.3389/fpsyt.2021.727117] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Psychedelics have inspired new hope for treating brain disorders, as they seem to be unlike any treatments currently available. Not only do they produce sustained therapeutic effects following a single administration, they also appear to have broad therapeutic potential, demonstrating efficacy for treating depression, post-traumatic stress disorder (PTSD), anxiety disorders, substance abuse disorder, and alcohol use disorder, among others. Psychedelics belong to a more general class of compounds known as psychoplastogens, which robustly promote structural and functional neural plasticity in key circuits relevant to brain health. Here we discuss the importance of structural plasticity in the treatment of neuropsychiatric diseases, as well as the evidence demonstrating that psychedelics are among the most effective chemical modulators of neural plasticity studied to date. Furthermore, we provide a theoretical framework with the potential to explain why psychedelic compounds produce long-lasting therapeutic effects across a wide range of brain disorders. Despite their promise as broadly efficacious neurotherapeutics, there are several issues associated with psychedelic-based medicines that drastically limit their clinical scalability. We discuss these challenges and how they might be overcome through the development of non-hallucinogenic psychoplastogens. The clinical use of psychedelics and other psychoplastogenic compounds marks a paradigm shift in neuropsychiatry toward therapeutic approaches relying on the selective modulation of neural circuits with small molecule drugs. Psychoplastogen research brings us one step closer to actually curing mental illness by rectifying the underlying pathophysiology of disorders like depression, moving beyond simply treating disease symptoms. However, determining how to most effectively deploy psychoplastogenic medicines at scale will be an important consideration as the field moves forward.
Collapse
Affiliation(s)
- Maxemiliano V. Vargas
- Neuroscience Graduate Program, University of California, Davis, Davis, CA, United States
| | - Retsina Meyer
- Delix Therapeutics, Inc., Concord, MA, United States
| | - Arabo A. Avanes
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Program, University of California, Davis, Davis, CA, United States
| | - Mark Rus
- Delix Therapeutics, Inc., Concord, MA, United States
| | - David E. Olson
- Delix Therapeutics, Inc., Concord, MA, United States
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, Sacramento, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
Porter BS, Hillman KL. Dorsomedial prefrontal neural ensembles reflect changes in task utility that culminate in task quitting. J Neurophysiol 2021; 126:313-329. [PMID: 34133233 DOI: 10.1152/jn.00003.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When performing a physically demanding behavior, sometimes the optimal choice is to quit the behavior rather than persist to minimize energy expenditure for the benefits gained. The dorsomedial prefrontal cortex (dmPFC), consisting of the anterior cingulate cortex and secondary motor area, likely contributes toward such utility assessments. Here, we examined how male rat dmPFC single unit and ensemble-level activity corresponded to changes in task utility and quitting in an effortful weight lifting task. Rats carried out two task paradigms: one that became progressively more physically demanding over time and a second fixed effort version. Rats could quit the task at any time. Dorsomedial PFC neurons were highly responsive to each behavioral stage of the task, consisting of rope pulling, reward retrieval, and reward area leaving. Activity was highest early in sessions, commensurate with the highest relative task utility, then decreased until the point of quitting. Neural ensembles consistently represented the sequential behavioral phases of the task. However, these representations were modified over time and became more distinct over the course of the session. These results suggest that dmPFC neurons represent behavioral states that are dynamically modified as behaviors lose their utility, culminating in task quitting.NEW & NOTEWORTHY When carrying out a physically demanding task, animals must continually assess whether to persist or quit. In this study, we recorded neurons in the dorsomedial prefrontal cortex (dmPFC) of rats as they carried out a challenging weightlifting task, up to the point of quitting. We demonstrate that dmPFC neurons form a representation of the task that is modified, via a decrease in firing rate, by the decreasing the utility of the task that may signal quitting.
Collapse
Affiliation(s)
- Blake S Porter
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Kristin L Hillman
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Bangma DF, Tucha O, Tucha L, De Deyn PP, Koerts J. How well do people living with neurodegenerative diseases manage their finances? A meta-analysis and systematic review on the capacity to make financial decisions in people living with neurodegenerative diseases. Neurosci Biobehav Rev 2021; 127:709-739. [PMID: 34058557 DOI: 10.1016/j.neubiorev.2021.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Self and proxy reported questionnaires indicate that people living with a neurodegenerative disease (NDD) have more difficulties with financial decision-making (FDM) than healthy controls. Self-reports, however, rely on adequate insight into everyday functioning and might, therefore, be less reliable. The present study provides a comprehensive overview and meta-analysis of studies evaluating FDM in people living with an NDD. For this, the reliability of performance-based tests to consistently identify FDM difficulties in people living with an NDD compared to healthy controls is evaluated. Furthermore, the associations between FDM and disease severity, performances on standard measures of cognition and demographics are evaluated. All 47 included articles, consistently reported lower performances on performance-based FDM tests of people living with an NDD (including Alzheimer's disease, mild cognitive impairment, frontotemporal dementia, Parkinson's disease, multiple sclerosis or Huntington's disease) compared to healthy controls. The majority of studies, however, focused on Alzheimer's disease and mild cognitive impairment (k = 38). FDM performance appears to be related to cognitive decline, specifically in working memory, processing speed and numeracy.
Collapse
Affiliation(s)
- Dorien F Bangma
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Oliver Tucha
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, the Netherlands; Department of Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany; Department of Psychology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Lara Tucha
- Department of Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, Groningen, the Netherlands; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Middelheim General Hospital (ZNA), Antwerp, Belgium
| | - Janneke Koerts
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
24
|
Calderazzo SM, Busch SE, Moore TL, Rosene DL, Medalla M. Distribution and overlap of entorhinal, premotor, and amygdalar connections in the monkey anterior cingulate cortex. J Comp Neurol 2021; 529:885-904. [PMID: 32677044 PMCID: PMC8214921 DOI: 10.1002/cne.24986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/17/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
The anterior cingulate cortex (ACC) is important for decision-making as it integrates motor plans with affective and contextual limbic information. Disruptions in these networks have been observed in depression, bipolar disorder, and post-traumatic stress disorder. Yet, overlap of limbic and motor connections within subdivisions of the ACC is not well understood. Hence, we administered a combination of retrograde and anterograde tracers into structures important for contextual memories (entorhinal cortex), affective processing (amygdala), and motor planning (dorsal premotor cortex) to assess overlap of labeled projection neurons from (outputs) and axon terminals to (inputs) the ACC of adult rhesus monkeys (Macaca mulatta). Our data show that entorhinal and dorsal premotor cortical (dPMC) connections are segregated across ventral (A25, A24a) and dorsal (A24b,c) subregions of the ACC, while amygdalar connections are more evenly distributed across subregions. Among all areas, the rostral ACC (A32) had the lowest relative density of connections with all three regions. In the ventral ACC, entorhinal and amygdalar connections strongly overlap across all layers, especially in A25. In the dorsal ACC, outputs to dPMC and the amygdala strongly overlap in deep layers. However, dPMC input to the dorsal ACC was densest in deep layers, while amygdalar inputs predominantly localized in upper layers. These connection patterns are consistent with diverse roles of the dorsal ACC in motor evaluation and the ventral ACC in affective and contextual memory. Further, distinct laminar circuits suggest unique interactions within specific ACC compartments that are likely important for the temporal integration of motor and limbic information during flexible goal-directed behavior.
Collapse
Affiliation(s)
- Samantha M. Calderazzo
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Silas E. Busch
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
25
|
Garcia B, Cerrotti F, Palminteri S. The description-experience gap: a challenge for the neuroeconomics of decision-making under uncertainty. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190665. [PMID: 33423626 PMCID: PMC7815421 DOI: 10.1098/rstb.2019.0665] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 01/10/2023] Open
Abstract
The experimental investigation of decision-making in humans relies on two distinct types of paradigms, involving either description- or experience-based choices. In description-based paradigms, decision variables (i.e. payoffs and probabilities) are explicitly communicated by means of symbols. In experience-based paradigms decision variables are learnt from trial-by-trial feedback. In the decision-making literature, 'description-experience gap' refers to the fact that different biases are observed in the two experimental paradigms. Remarkably, well-documented biases of description-based choices, such as under-weighting of rare events and loss aversion, do not apply to experience-based decisions. Here, we argue that the description-experience gap represents a major challenge, not only to current decision theories, but also to the neuroeconomics research framework, which relies heavily on the translation of neurophysiological findings between human and non-human primate research. In fact, most non-human primate neurophysiological research relies on behavioural designs that share features of both description- and experience-based choices. As a consequence, it is unclear whether the neural mechanisms built from non-human primate electrophysiology should be linked to description-based or experience-based decision-making processes. The picture is further complicated by additional methodological gaps between human and non-human primate neuroscience research. After analysing these methodological challenges, we conclude proposing new lines of research to address them. This article is part of the theme issue 'Existence and prevalence of economic behaviours among non-human primates'.
Collapse
Affiliation(s)
| | | | - Stefano Palminteri
- Laboratoire de Neurosciences Cognitives et Computationnelles, Ecole Normale Supérieure, Institut National de la Santé et Recherche Médicale, Université de Recherche Paris Sciences et Lettres, Paris, France
| |
Collapse
|
26
|
Dhingra I, Zhang S, Zhornitsky S, Wang W, Le TM, Li CSR. Sex differences in neural responses to reward and the influences of individual reward and punishment sensitivity. BMC Neurosci 2021; 22:12. [PMID: 33639845 PMCID: PMC7913329 DOI: 10.1186/s12868-021-00618-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Men and women show differences in sensitivity to reward and punishment, which may impact behavior in health and disease. However, the neural bases of these sex differences remain under-investigated. Here, by combining functional magnetic resonance imaging (fMRI) and a variant of the Monetary Incentive Delay Task (MIDT), we examined sex differences in the neural responses to wins and losses and how individual reward and punishment sensitivity modulates these regional activities. METHODS Thirty-sex men and 27 women participated in the fMRI study. We assessed sensitivity to punishment (SP) and sensitivity to reward (SR) with the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ). In the MIDT, participants pressed a button to collect reward ($1, 1¢, or nil), with the reaction time window titrated across trials so participants achieved a success rate of approximately 67%. We processed the Imaging data with published routines and evaluated the results with a corrected threshold. RESULTS Women showed higher SP score than men and men showed higher SR score than women. Men relative to women showed higher response to the receipt of dollar or cent reward in bilateral orbitofrontal and visual cortex. Men as compared to women also showed higher response to dollar loss in bilateral orbitofrontal cortex. Further, in whole-brain regressions, women relative to men demonstrated more significant modulation by SP in the neural responses to wins and larger wins, and the sex differences were confirmed by slope tests. CONCLUSIONS Together, men showed higher SR and neural sensitivity to both wins, large or small, and losses than women. Individual differences in SP were associated with diminished neural responses to wins and larger wins in women only. These findings highlight how men and women may differ in reward-related brain activations in the MIDT and add to the imaging literature of sex differences in cognitive and affective functions.
Collapse
Affiliation(s)
- Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA.
- Connecticut Mental Health Center S112, 34 Park Street, New Haven, CT, 06519-1109, USA.
| |
Collapse
|
27
|
Youm Y, Kim J, Kwak S, Chey J. Neural and social correlates of attitudinal brokerage: using the complete social networks of two entire villages. Proc Biol Sci 2021; 288:20202866. [PMID: 33563127 PMCID: PMC7893238 DOI: 10.1098/rspb.2020.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To avoid polarization and maintain small-worldness in society, people who act as attitudinal brokers are critical. These people maintain social ties with people who have dissimilar and even incompatible attitudes. Based on resting-state functional magnetic resonance imaging (n = 139) and the complete social networks from two Korean villages (n = 1508), we investigated the individual-level neural capacity and social-level structural opportunity for attitudinal brokerage regarding gender role attitudes. First, using a connectome-based predictive model, we successfully identified the brain functional connectivity that predicts attitudinal diversity of respondents' social network members. Brain regions that contributed most to the prediction included mentalizing regions known to be recruited in reading and understanding others’ belief states. This result was corroborated by leave-one-out cross-validation, fivefold cross-validation and external validation where the brain connectivity identified in one village was used to predict the attitudinal diversity in another independent village. Second, the association between functional connectivity and attitudinal diversity of social network members was contingent on a specific position in a social network, namely, the structural brokerage position where people have ties with two people who are not otherwise connected.
Collapse
Affiliation(s)
- Yoosik Youm
- Department of Sociology, Yonsei University, Seoul, Republic of Korea
| | - Junsol Kim
- Department of Sociology, Yonsei University, Seoul, Republic of Korea
| | - Seyul Kwak
- Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Jeanyung Chey
- Department of Psychology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Coley AA, Padilla-Coreano N, Patel R, Tye KM. Valence processing in the PFC: Reconciling circuit-level and systems-level views. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:171-212. [PMID: 33785145 DOI: 10.1016/bs.irn.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An essential component in animal behavior is the ability to process emotion and dissociate among positive and negative valence in response to a rewarding or aversive stimulus. The medial prefrontal cortex (mPFC)-responsible for higher order executive functions that include cognition, learning, and working memory; and is also involved in sociability-plays a major role in emotional processing and control. Although the amygdala is widely regarded as the "emotional hub," the mPFC encodes for context-specific salience and elicits top-down control over limbic circuitry. The mPFC can then conduct behavioral responses, via cortico-striatal and cortico-brainstem pathways, that correspond to emotional stimuli. Evidence shows that abnormalities within the mPFC lead to sociability deficits, working memory impairments, and drug-seeking behavior that include addiction and compulsive disorders; as well as conditions such as anhedonia. Recent studies investigate the effects of aberrant salience processing on cortical circuitry and neuronal populations associated with these behaviors. In this chapter, we discuss mPFC valence processing, neuroanatomical connections, and physiological substrates involved in mPFC-associated behavior. We review neurocomputational and theoretical models such as "mixed selectivity," that describe cognitive control, attentiveness, and motivational drives. Using this knowledge, we describe the effects of valence imbalances and its influence on mPFC neural pathways that contribute to deficits in social cognition, while understanding the effects in addiction/compulsive behaviors and anhedonia.
Collapse
Affiliation(s)
- Austin A Coley
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Reesha Patel
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA, United States.
| |
Collapse
|
29
|
Garofalo S, Battaglia S, Starita F, di Pellegrino G. Modulation of cue-guided choices by transcranial direct current stimulation. Cortex 2021; 137:124-137. [PMID: 33609898 DOI: 10.1016/j.cortex.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/13/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Environmental cues may anticipate the availability of rewards, thus acting as a guide towards a specific choice (i.e., cue-guided choices). Despite the lateral prefrontal cortex having a critical role in using past learning and flexibly selecting relevant information to guide behavior, the literature on the neural basis of human cue-guided choice mainly focused on the subcortical brain structures implicated, while the specific role of cortical areas remained unclear. The present study aimed to provide causal evidence for the involvement of the lateral prefrontal cortex in two forms of human cue-guided choice, namely outcome-specific and general. To do this, 2 mA cathodal, anodal or sham transcranial direct current stimulation was applied over the lateral prefrontal cortex (with the posterior parietal cortex serving as control region) in three separate groups performing a Pavlovian-to-Instrumental Transfer task. Results showed, for the first time, a dissociation in the cortical structures involved in human cue-guided choice. Cathodal stimulation of the lateral prefrontal cortex reduced the outcome-specific transfer. In striking contrast, there was no influence on the general transfer. These results argue in favor of the presence of at least two possible neural pathways underlying cue-guided choices.
Collapse
Affiliation(s)
- Sara Garofalo
- Department of Psychology, University of Bologna, Cesena, Italy.
| | | | | | | |
Collapse
|
30
|
Alabi OO, Davatolhagh MF, Robinson M, Fortunato MP, Vargas Cifuentes L, Kable JW, Fuccillo MV. Disruption of Nrxn1α within excitatory forebrain circuits drives value-based dysfunction. eLife 2020; 9:e54838. [PMID: 33274715 PMCID: PMC7759380 DOI: 10.7554/elife.54838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Goal-directed behaviors are essential for normal function and significantly impaired in neuropsychiatric disorders. Despite extensive associations between genetic mutations and these disorders, the molecular contributions to goal-directed dysfunction remain unclear. We examined mice with constitutive and brain region-specific mutations in Neurexin1α, a neuropsychiatric disease-associated synaptic molecule, in value-based choice paradigms. We found Neurexin1α knockouts exhibited reduced selection of beneficial outcomes and impaired avoidance of costlier options. Reinforcement modeling suggested that this was driven by deficits in updating and representation of value. Disruption of Neurexin1α within telencephalic excitatory projection neurons, but not thalamic neurons, recapitulated choice abnormalities of global Neurexin1α knockouts. Furthermore, this selective forebrain excitatory knockout of Neurexin1α perturbed value-modulated neural signals within striatum, a central node in feedback-based reinforcement learning. By relating deficits in value-based decision-making to region-specific Nrxn1α disruption and changes in value-modulated neural activity, we reveal potential neural substrates for the pathophysiology of neuropsychiatric disease-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Opeyemi O Alabi
- Department of NeurosciencePhiladelphiaUnited States
- Neuroscience Graduate Group, Perelman School of MedicinePhiladelphiaUnited States
| | - M Felicia Davatolhagh
- Department of NeurosciencePhiladelphiaUnited States
- Neuroscience Graduate Group, Perelman School of MedicinePhiladelphiaUnited States
| | | | | | - Luigim Vargas Cifuentes
- Department of NeurosciencePhiladelphiaUnited States
- Neuroscience Graduate Group, Perelman School of MedicinePhiladelphiaUnited States
| | - Joseph W Kable
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | | |
Collapse
|
31
|
Biologically plausible mechanisms underlying motor response correction during reward-based decision-making. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.06.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
The role of dopaminergic and serotonergic transmission in the processing of primary and monetary reward. Neuropsychopharmacology 2020; 45:1490-1497. [PMID: 32392573 PMCID: PMC7360589 DOI: 10.1038/s41386-020-0702-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022]
Abstract
Natural rewards such as erotic stimuli activate common neural pathways with monetary rewards. In human studies, the manipulation of dopamine and serotonin play an important role in the processing of monetary rewards with less understood on its role on erotic stimuli. In this study, we investigate the neuromodulatory effects of dopaminergic and serotonergic transmission in the processing of erotic versus monetary visual stimuli. We scanned one hundred and two (N = 102) healthy volunteers using functional magnetic resonance imaging while performing a modified version of the well-validated monetary incentive delay task consisting of erotic, monetary and neutral visual stimuli. We show a role for enhanced central dopamine and lowered central serotonin levels in increasing activity in the right caudate and left anterior insula during anticipation of erotic relative to monetary rewards in healthy controls. We further show differential activation in the anticipation of natural versus monetary rewards with the former associated with ventromesial and dorsomesial activity and the latter with dorsal cingulate, striatal and anterior insular activity. These findings are consistent with preclinical and clinical findings of a role for dopaminergic and serotonergic mechanisms in the processing of natural rewards. Our study provides further insights into the neural substrates underlying reward processing for natural primary erotic rewards and yields importance for the neurochemical systems of addictive disorders including gambling disorder.
Collapse
|
33
|
Tamburro G, di Fronso S, Robazza C, Bertollo M, Comani S. Modulation of Brain Functional Connectivity and Efficiency During an Endurance Cycling Task: A Source-Level EEG and Graph Theory Approach. Front Hum Neurosci 2020; 14:243. [PMID: 32733219 PMCID: PMC7363938 DOI: 10.3389/fnhum.2020.00243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Various methods have been employed to investigate different aspects of brain activity modulation related to the performance of a cycling task. In our study, we examined how functional connectivity and brain network efficiency varied during an endurance cycling task. For this purpose, we reconstructed EEG signals at source level: we computed current densities in 28 anatomical regions of interest (ROIs) through the eLORETA algorithm, and then we calculated the lagged coherence of the 28 current density signals to define the adjacency matrix. To quantify changes of functional network efficiency during an exhaustive cycling task, we computed three graph theoretical indices: local efficiency (LE), global efficiency (GE), and density (D) in two different frequency bands, Alpha and Beta bands, that indicate alertness processes and motor binding/fatigue, respectively. LE is a measure of functional segregation that quantifies the ability of a network to exchange information locally. GE is a measure of functional integration that quantifies the ability of a network to exchange information globally. D is a global measure of connectivity that describes the extent of connectivity in a network. This analysis was conducted for six different task intervals: pre-cycling; initial, intermediate, and final stages of cycling; and active recovery and passive recovery. Fourteen participants performed an incremental cycling task with simultaneous EEG recording and rated perceived exertion monitoring to detect the participants’ exhaustion. LE remained constant during the endurance cycling task in both bands. Therefore, we speculate that fatigue processes did not affect the segregated neural processing. We observed an increase of GE in the Alpha band only during cycling, which could be due to greater alertness processes and preparedness to stimuli during exercise. Conversely, although D did not change significantly over time in the Alpha band, its general reduction in the Beta bands during cycling could be interpreted within the framework of the neural efficiency hypothesis, which posits a reduced neural activity for expert/automated performances. We argue that the use of graph theoretical indices represents a clear methodological advancement in studying endurance performance.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Selenia di Fronso
- Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Claudio Robazza
- Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maurizio Bertollo
- Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Silvia Comani
- Behavioral Imaging and Neural Dynamics Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
34
|
Zakirov F, Krasilnikov A. Age-related differences in decision-making process in the context of healthy aging. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202201022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During aging cognitive functions change differently from others. Unlike most of the body systems, there is no clear decline pattern in cognitive processes. One of the most significant cognitive processes is decision-making, which defines social interactions, economical relationships, and risky behavior. Among factors influence decisionmaking process, individual lifelong experience is considered to be an important one. Obviously, older adults have more life experience, than the younger groups. However, the former often do not tend to rational choices and beneficial strategies. In this case it is important to assess how aging processes in brain contribute into searching for the most beneficial option during decision-making. On the basis of today’s studies about risky behavior, judgement of fairness, financial games, and modern neuroimaging data this review will observe and discuss age-related differences in decision-making. Thus, a correct cognitive profile of older adult in decision-making context can be determined.
Collapse
|
35
|
Takeuchi Y, Berényi A. Oscillotherapeutics - Time-targeted interventions in epilepsy and beyond. Neurosci Res 2020; 152:87-107. [PMID: 31954733 DOI: 10.1016/j.neures.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/09/2023]
Abstract
Oscillatory brain activities support many physiological functions from motor control to cognition. Disruptions of the normal oscillatory brain activities are commonly observed in neurological and psychiatric disorders including epilepsy, Parkinson's disease, Alzheimer's disease, schizophrenia, anxiety/trauma-related disorders, major depressive disorders, and drug addiction. Therefore, these disorders can be considered as common oscillation defects despite having distinct behavioral manifestations and genetic causes. Recent technical advances of neuronal activity recording and analysis have allowed us to study the pathological oscillations of each disorder as a possible biomarker of symptoms. Furthermore, recent advances in brain stimulation technologies enable time- and space-targeted interventions of the pathological oscillations of both neurological disorders and psychiatric disorders as possible targets for regulating their symptoms.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary; Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary; HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary; Neuroscience Institute, New York University, New York, NY 10016, USA.
| |
Collapse
|
36
|
Klasen M, Mathiak KA, Zvyagintsev M, Sarkheil P, Weber R, Mathiak K. Selective reward responses to violent success events during video games. Brain Struct Funct 2020; 225:57-69. [DOI: 10.1007/s00429-019-01986-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/14/2019] [Indexed: 01/10/2023]
|
37
|
Hong Q, Liu J, Lin Z, Zhuang D, Xu W, Xu Z, Lai M, Zhu H, Zhou W, Liu H. Histone 3 lysine 9 acetylation of BRG1 in the medial prefrontal cortex is associated with heroin self‑administration in rats. Mol Med Rep 2019; 21:405-412. [PMID: 31939625 DOI: 10.3892/mmr.2019.10845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 09/20/2019] [Indexed: 11/06/2022] Open
Abstract
Heroin addiction is a chronic relapsing brain disorder with negative social consequences. Histone acetylation serves a role in drug‑induced behavior and neuroplasticity impairment. Brahma/SWI2‑related gene‑1 (BRG1) participates in cerebellar development, embryogenesis and transcriptional regulation of neuronal genes concurrent with histone modifications. However, little is known about the relationship between histone H3 lysine 9 acetylation (H3K9ac) and BRG1 in response to heroin. The present study aimed to assess the contribution of histone 3 lysine 9 acetylation of BRG1 to heroin self‑administration. The present study established a Sprague‑Dawley rat model of heroin self‑administration under a fixed‑ratio‑1 paradigm. Chromatin immunoprecipitation followed by reverse transcription‑quantitative PCR (RT‑qPCR) was used to detect the accumulation of H3K9ac on BRG1 in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) following heroin self‑administration. The relative expression levels of BRG1 were analyzed by RT‑qPCR. H3K9ac at the promoter region of BRG1 was significantly elevated (P=0.002), and the expression of BRG1 in the mPFC increased 1.47‑fold in the heroin self‑administration group compared with the control group. No significant difference in H3K9ac at the BRG1 locus was observed in the NAc (P=0.323), with the expression of BRG1 decreasing 1.38‑fold in the heroin self‑administering rats compared with the control group. H3K9ac is associated with transcriptional activation, and the increased BRG1 expression suggested an essential and novel role for BRG1 and its H3K9ac‑mediated regulation in the mPFC after heroin self‑administration; and this may function through epigenetically modulating the activation of neuroplasticity‑associated genes. This association may provide a novel therapeutic target for the treatment of heroin addiction.
Collapse
Affiliation(s)
- Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Zi Lin
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Dingding Zhuang
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Zemin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Miaojun Lai
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Huaqiang Zhu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
38
|
Common and Distinct Functional Brain Networks for Intuitive and Deliberate Decision Making. Brain Sci 2019; 9:brainsci9070174. [PMID: 31330815 PMCID: PMC6680530 DOI: 10.3390/brainsci9070174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 11/16/2022] Open
Abstract
Reinforcement learning studies in rodents and primates demonstrate that goal-directed and habitual choice behaviors are mediated through different fronto-striatal systems, but the evidence is less clear in humans. In this study, functional magnetic resonance imaging (fMRI) data were collected whilst participants (n = 20) performed a conditional associative learning task in which blocks of novel conditional stimuli (CS) required a deliberate choice, and blocks of familiar CS required an intuitive choice. Using standard subtraction analysis for fMRI event-related designs, activation shifted from the dorso-fronto-parietal network, which involves dorsolateral prefrontal cortex (DLPFC) for deliberate choice of novel CS, to ventro-medial frontal (VMPFC) and anterior cingulate cortex for intuitive choice of familiar CS. Supporting this finding, psycho-physiological interaction (PPI) analysis, using the peak active areas within the PFC for novel and familiar CS as seed regions, showed functional coupling between caudate and DLPFC when processing novel CS and VMPFC when processing familiar CS. These findings demonstrate separable systems for deliberate and intuitive processing, which is in keeping with rodent and primate reinforcement learning studies, although in humans they operate in a dynamic, possibly synergistic, manner particularly at the level of the striatum.
Collapse
|
39
|
Park S, Mun S, Lee DW, Whang M. IR-camera-based measurements of 2D/3D cognitive fatigue in 2D/3D display system using task-evoked pupillary response. APPLIED OPTICS 2019; 58:3467-3480. [PMID: 31044844 DOI: 10.1364/ao.58.003467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
This study was carried out to evaluate a method used to measure three-dimensional (3D) cognitive fatigue based on the pupillary response. This technique was designed to overcome measurement burdens by using non-contact methods. The pupillary response is related to cognitive function by a neural pathway and may be an indicator of 3D cognitive fatigue. Twenty-six undergraduate students (including 14 women) watched both 2D and 3D versions of a video for 70 min. The participants experienced visual fatigue after viewing the 3D content. Measures such as subjective rating, response time, event-related potential latency, heartbeat-evoked potential (HEP) alpha power, and task-evoked pupillary response (TEPR) latency were significantly different. Multitrait-multimethod matrix analysis indicated that HEP and TEPR latency measures had stronger reliability and higher correlations with 3D cognitive fatigue than other measures. TEPR latency may be useful for quantitatively determining 3D visual fatigue, as it can be easily used to evaluate 3D visual fatigue using a non-contact method without measuring burden.
Collapse
|
40
|
De Couck M, Caers R, Musch L, Fliegauf J, Giangreco A, Gidron Y. How breathing can help you make better decisions: Two studies on the effects of breathing patterns on heart rate variability and decision-making in business cases. Int J Psychophysiol 2019; 139:1-9. [DOI: 10.1016/j.ijpsycho.2019.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/26/2023]
|
41
|
Courtney KE, Infante MA, Brown GG, Tapert SF, Simmons AN, Smith TL, Schuckit MA. The Relationship Between Regional Cerebral Blood Flow Estimates and Alcohol Problems at 5-Year Follow-Up: The Role of Level of Response. Alcohol Clin Exp Res 2019; 43:812-821. [PMID: 30924954 DOI: 10.1111/acer.13998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/28/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Acute alcohol consumption is associated with temporarily increased regional cerebral blood flow (CBF). The extent of this increase appears to be moderated by individual differences in the level of response (LR) to alcohol's subjective effects. The low LR phenotype is a known risk factor for the development of alcohol problems. This study investigates how the low LR phenotype relates to the relationship between alcohol-related changes in CBF and alcohol problems 5 years later. METHODS Young adults (ages 18 to 25) were selected based on their LR to alcohol and underwent a neuroimaging protocol including arterial spin labeling and functional scans. These participants were recontacted ~5 years later and assessed on alcohol outcomes. A final sample of 107 subjects (54 low and 53 high LR subjects) was included in the analyses. Whole-brain analysis revealed 5 clusters of significant alcohol-induced, versus placebo-induced, CBF changes that were consistent with a previous report. Peak alcohol-placebo CBF response was extracted from these regions and, along with the LR group, submitted to a hierarchical linear regression predicting alcohol problems. Analyses controlled for age, sex, and baseline alcohol problems. RESULTS In the regression analysis, greater alcohol-placebo CBF difference in the right middle/superior/inferior frontal gyri and bilateral anterior cingulate gyri clusters predicted greater future alcohol problems for the low LR group, whereas this relationship was not found to be significant in the high LR group. CONCLUSIONS This study demonstrates a clinically important relationship between CBF and future alcohol problems, particularly in individuals with a low LR phenotype. These initial results help to elucidate the neurobiological pathways involved in the development of alcohol use disorders for individuals with low LR.
Collapse
Affiliation(s)
- Kelly E Courtney
- Department of Psychiatry , University of California San Diego, La Jolla, California
| | | | - Gregory G Brown
- Department of Psychiatry , University of California San Diego, La Jolla, California.,Veteran's Affairs Healthcare System , San Diego, California
| | - Susan F Tapert
- Department of Psychiatry , University of California San Diego, La Jolla, California
| | - Alan N Simmons
- Department of Psychiatry , University of California San Diego, La Jolla, California.,Veteran's Affairs Healthcare System , San Diego, California
| | - Tom L Smith
- Department of Psychiatry , University of California San Diego, La Jolla, California
| | - Marc A Schuckit
- Department of Psychiatry , University of California San Diego, La Jolla, California
| |
Collapse
|
42
|
Stickel S, Wagels L, Wudarczyk O, Jaffee S, Habel U, Schneider F, Chechko N. Neural correlates of depression in women across the reproductive lifespan - An fMRI review. J Affect Disord 2019; 246:556-570. [PMID: 30605874 DOI: 10.1016/j.jad.2018.12.133] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/19/2018] [Accepted: 12/26/2018] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Depressive disorders in women emerge largely during transitions in their reproductive aging cycle, which can be attributed to internal endocrine possesses that affect emotion-associated brain circuits. A review was performed to outline the neural basis in depression during female puberty, premenstrual dysphoric disorder (PMDD), postpartum depression disorder (PPD) and perimenopausal depression disorder. METHODS For this review, Web of science, Pubmed and PsychInfo databases were searched for functional brain imaging studies addressing reproductive cycle-related mood disorder. The results are summarized and discussed within a broader theoretical framework of major depression disorder (MDD) to determine how reproductive-sensitive phases contribute to affective symptoms and how they relate to the neurobiology of MDD. RESULTS Neural activation patterns of all depressive disorders related to female reproductive cycle, except for puberty depression, differ from these observed in MDD. While the PMDD results are widely divergent, the activation patterns in PPD show general hypoactivation in all respects. LIMITATIONS Systematic comparisons between the diverse depression disorders are impeded by the heterogeneous experimental protocols used on different samples, reproductive aging stages and depression types. CONCLUSION Given that hormonal fluctuations strongly influence the development of a reproductive cycle-related depression, it is possible that the hormonal and neural patterns are indicative of distinct mood disorder with phase specific biotypes, that only show behavioral similarities to MDD. Understanding the similarities and differences in the neural functioning of female cycle-related mood disorders evaluated against MDD might help elucidate the role of neuroendocrine involvement in development of depression in women, and potentially facilitate the search for prevention and treatment approaches for women' reproductive-related depressions.
Collapse
Affiliation(s)
- Susanne Stickel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany.
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Olga Wudarczyk
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Sara Jaffee
- Department of Psychology, University of Pennsylvania, Philadelphia, USA
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Frank Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelstraße 30, 52074 Aachen, Germany; University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Natalia Chechko
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
43
|
Inhibitory control mediates a negative relationship between body mass index and intelligence: A neurocognitive investigation. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:392-408. [PMID: 30725324 DOI: 10.3758/s13415-019-00695-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structure and function of the human brain is closely related to cognitive processes of the mind and physiological processes of the body, suggesting that an intricate relationship exists between cognitive health, body health, and underlying neural architecture. In the current study, morphometric differences in cortical and subcortical gray matter regions, white matter integrity, and resting-state functional connectivity was assessed to determine what combinations of neural variables best explain an interconnected behavioral relationship between body mass index (BMI), general intelligence, and specific measures of executive function. Data for 82 subjects were obtained from the Nathan Kline Institute Rockland Sample. Behavioral results indicated a negative relationship between BMI and intelligence, which exhibited mediation by an inhibitory measure of executive function. Neural analyses further revealed generally contrasting associations of BMI, intelligence, and executive function with cortical morphometric regions important for inhibitory control and directed attention. Moreover, BMI related to morphometric alterations in components of a frontolimbic network, namely reduced thickness in the anterior cingulate cortex and ventromedial prefrontal cortex, whereas intelligence and inhibitory control primarily related to increased thickness and volume in parietal regions, as well as significantly increased across-network connectivity of visual and default mode resting-state networks. These results propose that medial prefrontal structure and interconnected frontolimbic and frontoparietal networks are important to consider in the relationship between BMI, intelligence, and executive function.
Collapse
|
44
|
Porter BS, Hillman KL, Bilkey DK. Anterior cingulate cortex encoding of effortful behavior. J Neurophysiol 2019; 121:701-714. [DOI: 10.1152/jn.00654.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An animal’s ability to assess the value of their behaviors to minimize energy use while maximizing goal achievement is critical to its survival. The anterior cingulate cortex (ACC) has been previously shown to play a critical role in this behavioral optimization process, especially when animals are faced with effortful behaviors. In the present study, we designed a novel task to investigate the role of the ACC in evaluating behaviors that varied in effort but all resulted in the same outcome. We recorded single unit activity from the ACC as rats ran back and forth in a shuttle box that could be tilted to different tilt angles (0, 15, and 25°) to manipulate effort. Overall, a majority of ACC neurons showed selective firing to specific effort conditions. During effort expenditure, ACC units showed a consistent firing rate bias toward the downhill route compared with the more difficult uphill route, regardless of the tilt angle of the apparatus. Once rats completed a run and received their fixed reward, ACC units also showed a clear firing rate preference for the single condition with the highest relative value (25° downhill). To assess effort preferences, we used a choice version of our task and confirmed that rats prefer downhill routes to uphill routes when given the choice. Overall, these results help to elucidate the functional role of the ACC in monitoring and evaluating effortful behaviors that may then bias decision-making toward behaviors with the highest utility. NEW & NOTEWORTHY We developed a novel effort paradigm to investigate how the anterior cingulate cortex (ACC) responds to behaviors with varied degrees of physical effort and how changes in effort influence the ACC’s evaluation of behavioral outcomes. Our results provide evidence for a wider role of the ACC in its ability to motivate effortful behaviors and evaluate the outcome of multiple behaviors within an environment.
Collapse
Affiliation(s)
- Blake S. Porter
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Kristin L. Hillman
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - David K. Bilkey
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
45
|
Park S, Whang M. Infrared Camera-Based Non-contact Measurement of Brain Activity From Pupillary Rhythms. Front Physiol 2018; 9:1400. [PMID: 30364205 PMCID: PMC6192458 DOI: 10.3389/fphys.2018.01400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/14/2018] [Indexed: 11/17/2022] Open
Abstract
Pupillary responses are associated with affective processing, cognitive function, perception, memory, attention, and other brain activities involving neural pathways. The present study aimed to develop a noncontact system to measure brain activity based on pupillary rhythms using an infra-red web camera. Electroencephalogram (EEG) signals and pupil imaging of 70 undergraduate volunteers (35 female, 35 male) were measured in response to sound stimuli designed to evoke arousal, relaxation, happiness, sadness, or neutral responses. This study successfully developed a real-time system that could detect an EEG spectral index (relative power: low beta in FP1; mid beta in FP1; SMR in FP1; beta in F3; high beta in F8; gamma P4; mu in C4) from pupillary rhythms using the synchronization phenomenon in harmonic frequency (1/100 f) between the pupil and brain oscillations. This method was effective in measuring and evaluating brain activity using a simple, low-cost, noncontact system, and may be an alternative to previous methods used to evaluate brain activity.
Collapse
Affiliation(s)
- Sangin Park
- Industry-Academy Cooperation Team, Sangmyung University, Seoul, South Korea
| | - Mincheol Whang
- Department of Intelligent Engineering Informatics for Human, Sangmyung University, Seoul, South Korea
| |
Collapse
|
46
|
Cavanagh SE, Towers JP, Wallis JD, Hunt LT, Kennerley SW. Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal cortex. Nat Commun 2018; 9:3498. [PMID: 30158519 PMCID: PMC6115433 DOI: 10.1038/s41467-018-05873-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/31/2018] [Indexed: 01/17/2023] Open
Abstract
Competing accounts propose that working memory (WM) is subserved either by persistent activity in single neurons or by dynamic (time-varying) activity across a neural population. Here, we compare these hypotheses across four regions of prefrontal cortex (PFC) in an oculomotor-delayed-response task, where an intervening cue indicated the reward available for a correct saccade. WM representations were strongest in ventrolateral PFC neurons with higher intrinsic temporal stability (time-constant). At the population-level, although a stable mnemonic state was reached during the delay, this tuning geometry was reversed relative to cue-period selectivity, and was disrupted by the reward cue. Single-neuron analysis revealed many neurons switched to coding reward, rather than maintaining task-relevant spatial selectivity until saccade. These results imply WM is fulfilled by dynamic, population-level activity within high time-constant neurons. Rather than persistent activity supporting stable mnemonic representations that bridge subsequent salient stimuli, PFC neurons may stabilise a dynamic population-level process supporting WM.
Collapse
Affiliation(s)
- Sean E Cavanagh
- Sobell Department of Motor Neuroscience, University College London, London WC1N 3BG, UK.
| | - John P Towers
- Sobell Department of Motor Neuroscience, University College London, London WC1N 3BG, UK
| | - Joni D Wallis
- Department of Psychology, University of California at Berkeley, Berkeley, CA 94720, United States.,Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, United States
| | - Laurence T Hunt
- Sobell Department of Motor Neuroscience, University College London, London WC1N 3BG, UK.,Max Planck-UCL Centre for Computational Psychiatry and Aging, University College London, London WC1B 5EH, UK.,Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX37JX, UK
| | - Steven W Kennerley
- Sobell Department of Motor Neuroscience, University College London, London WC1N 3BG, UK. .,Department of Psychology, University of California at Berkeley, Berkeley, CA 94720, United States. .,Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|
47
|
Zhang Q, Kobayashi Y, Goto H, Itohara S. An Automated T-maze Based Apparatus and Protocol for Analyzing Delay- and Effort-based Decision Making in Free Moving Rodents. J Vis Exp 2018. [PMID: 30124665 PMCID: PMC6126603 DOI: 10.3791/57895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many neurological and psychiatric patients demonstrate difficulties and/or deficits in decision making. Rodent models are helpful to produce a deeper understanding of the neurobiological causes underlying the decision-making problems. A cost-benefit based T-maze task is used for measuring decision making in which rodents choose between a high reward arm (HRA) and a low reward arm (LRA). There are two paradigms of the T-maze decision-making task, one in which the cost is a time delay and the other in which it is physical effort. Both paradigms require a tedious and labor-intensive management of experimental animals, multiple doors, pellet reward, and arm choice recordings. In the current work, we invented an apparatus based on traditional T-maze with full automation for pellet delivery, door management and choice recordings. This automated setup can be used for the evaluation of both delay- and effort-based decision making in rodents. With the protocol described here, our lab investigated the decision-making phenotypes of multiple genetically modified mice. In the representative data, we showed that the mice with ablated medial habenular showed aversions of both delay and effort and tended to choose the immediate and effortless reward. This protocol helps to decrease the variability caused by experimenter intervention and to enhance experiment efficiency. In addition, chronic silicon probe or microelectrode recording, fiber-optic imaging and/or manipulation of neural activity can be easily applied during the decision-making task using the setup described here.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Behavioral Genetics, Center for Brain Science, RIKEN; Faculty of Human Science, University of Tsukuba;
| | - Yuki Kobayashi
- Laboratory of Behavioral Genetics, Center for Brain Science, RIKEN
| | - Hiromichi Goto
- Laboratory of Behavioral Genetics, Center for Brain Science, RIKEN
| | | |
Collapse
|
48
|
A Novel Role for Oligodendrocyte Precursor Cells (OPCs) and Sox10 in Mediating Cellular and Behavioral Responses to Heroin. Neuropsychopharmacology 2018; 43:1385-1394. [PMID: 29260792 PMCID: PMC5916371 DOI: 10.1038/npp.2017.303] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Opiate abuse and addiction have become a worldwide epidemic with great societal and financial burdens, highlighting a critical need to understand the neurobiology of opiate addiction. Although several studies have focused on drug-dependent changes in neurons, the role of glia in opiate addiction remains largely unstudied. RNA sequencing pathway analysis from the prefrontal cortex (PFC) of male rats revealed changes in several genes associated with oligodendrocyte differentiation and maturation following heroin self-administration. Among these genes changed was Sox10, which is regulated, in part, by the chromatin remodeler BRG1/SMARCA4. To directly test the functional role of Sox10 in mediating heroin-induced behavioral plasticity, we selectively overexpressed Sox10 and BRG1 in the PFC. Overexpression of either Sox10 or BRG1 decreased the motivation to obtain heroin infusions in a progressive ratio test without altering the acquisition or maintenance of heroin self-administration. These data demonstrate a critical, and perhaps compensatory, role of Sox10 and BRG1 in oligodendrocytes in regulating the motivation for heroin.
Collapse
|
49
|
Extinction as a deficit of the decision-making circuitry in the posterior parietal cortex. HANDBOOK OF CLINICAL NEUROLOGY 2018. [PMID: 29519457 DOI: 10.1016/b978-0-444-63622-5.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Extinction is a common neurologic deficit that often occurs as one of a constellation of symptoms seen with lesions of the posterior parietal cortex (PPC). Although extinction has typically been considered a deficit in the allocation of attention, new findings, particularly from nonhuman primate studies, point to one potential and important source of extinction as damage to decision-making circuits for actions within the PPC. This new understanding provides clues to potential therapies for extinction. Also the finding that the PPC is important for action decisions and action planning has led to new neuroprosthetic applications using PPC recordings as control signals to assist paralyzed patients.
Collapse
|
50
|
Suarez-Jimenez B, Bisby JA, Horner AJ, King JA, Pine DS, Burgess N. Linked networks for learning and expressing location-specific threat. Proc Natl Acad Sci U S A 2018; 115:E1032-E1040. [PMID: 29326231 PMCID: PMC5798349 DOI: 10.1073/pnas.1714691115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Learning locations of danger within our environment is a vital adaptive ability whose neural bases are only partially understood. We examined fMRI brain activity while participants navigated a virtual environment in which flowers appeared and were "picked." Picking flowers in the danger zone (one-half of the environment) predicted an electric shock to the wrist (or "bee sting"); flowers in the safe zone never predicted shock; and household objects served as controls for neutral spatial memory. Participants demonstrated learning with shock expectancy ratings and skin conductance increases for flowers in the danger zone. Patterns of brain activity shifted between overlapping networks during different task stages. Learning about environmental threats, during flower approach in either zone, engaged the anterior hippocampus, amygdala, and ventromedial prefrontal cortex (vmPFC), with vmPFC-hippocampal functional connectivity increasing with experience. Threat appraisal, during approach in the danger zone, engaged the insula and dorsal anterior cingulate (dACC), with insula-hippocampal functional connectivity. During imminent threat, after picking a flower, this pattern was supplemented by activity in periaqueductal gray (PAG), insula-dACC coupling, and posterior hippocampal activity that increased with experience. We interpret these patterns in terms of multiple representations of spatial context (anterior hippocampus); specific locations (posterior hippocampus); stimuli (amygdala); value (vmPFC); threat, both visceral (insula) and cognitive (dACC); and defensive behaviors (PAG), interacting in different combinations to perform the functions required at each task stage. Our findings illuminate how we learn about location-specific threats and suggest how they might break down into overgeneralization or hypervigilance in anxiety disorders.
Collapse
Affiliation(s)
- Benjamin Suarez-Jimenez
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom;
- Section of Developmental Affective Neuroscience, National Institute of Mental Health, Bethesda, MD 20892
| | - James A Bisby
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Aidan J Horner
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | - John A King
- Department of Clinical Psychology, University College London, London WC1E 6BT, United Kingdom
| | - Daniel S Pine
- Section of Developmental Affective Neuroscience, National Institute of Mental Health, Bethesda, MD 20892
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom;
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
| |
Collapse
|