1
|
Hou K, Pan W, Liu L, Yu Q, Ou J, Li Y, Yang X, Lin Z, Yuan JH, Fang M. Molecular mechanism of PANoptosis and programmed cell death in neurological diseases. Neurobiol Dis 2025; 209:106907. [PMID: 40204169 DOI: 10.1016/j.nbd.2025.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025] Open
Abstract
PANoptosis represents a highly coordinated inflammatory programmed cell death governed by the assembly and activation of PANoptosome, which strategically integrate core molecular elements from pyroptosis, apoptosis, and necroptosis. The triple-component cell death pathways set themselves apart from alternative regulated cell death mechanisms through their unique capacity to concurrently integrate and process molecular signals derived from multiple death-signaling modalities, thereby coordinating a multifaceted cellular defense system against diverse pathological insults. Pathogen-associated molecular patterns synergistically interact with cytokine storms, and oncogenic stress to active PANoptosis, establishing this programmed cell death pathway as a critical nexus in inflammatory pathogenesis and tumor immunomodulation. This molecular crosstalk highlights PANoptosis as a promising therapeutic target for managing immune-related disorders and malignant transformation. Emerging evidence links PANoptosis to neuroinflammatory disorders through dysregulated crosstalk between programmed death pathways (apoptosis, necroptosis, pyroptosis) and accidental necrosis, driving neuronal loss and neural damage. Single-cell transcriptomics reveals spatially resolved PANoptosis signatures in Alzheimer's hippocampal microenvironments and multiple sclerosis demyelinating plaques, with distinct molecular clusters correlating to quantifiable neuroinflammatory metrics. Emerging PANoptosis-targeted therapies show preclinical promise in alleviating neurovascular dysfunction while preserving physiological microglial surveillance functions. Accumulating evidence linking dysregulated cell death pathways (particularly PANoptosis) to neurological disorders underscores the urgency of deciphering its molecular mechanisms and developing precision modulators as next-generation therapies. This review systematically deciphers PANoptosome assembly mechanisms and associated cell death cascades, evaluates their pathological roles in neurological disorders through multiscale regulatory networks, and proposes PANoptosis-targeted therapeutic frameworks to advance precision neurology.
Collapse
Affiliation(s)
- Ketian Hou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenhan Pan
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lianhui Liu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianqian Yu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Ou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yueqi Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Yang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
| | - Jun Hui Yuan
- Department of Neonatology, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang 317500, China.
| | - Mingchu Fang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Mansour RM, Shaker AAS, Abulsoud AI, Mageed SSA, Ashraf A, Elsakka EGE, Dahab MI, Sadek MM, Awad FA, Lutfy RH, Elimam H, Faraag AHI, Nassar YA, Ali MA, Mohammed OA, Abdel-Reheim MA, Doghish AS. The Role of MicroRNAs in Neurodegeneration: Insights from Huntington's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04750-7. [PMID: 40009259 DOI: 10.1007/s12035-025-04750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
MicroRNA (miRNAs) is a single non-coding strand with a small sequence of approximately 21-25 nucleotides, which could be a biomarker or act as a therapeutic agent for disease. This review explores the dynamic role of miRNAs in Huntington's disease (HD), encompassing their regulatory function, potential as diagnostic biomarker tools, and emerging therapeutic applications. We delved into the dysregulation of specific miRNAs in HD, for instance, downregulated levels of miR-9 and miR-124 and increased levels of miR-155 and miR-196a. These alterations highlight the promise of miRNAs as non-invasive tools for early HD detection and disease progression monitoring. Moving beyond diagnosis, the exciting potential of miRNA-based therapies. By mimicking downregulated miRNAs or inhibiting dysregulated ones, we can potentially restore the balance of mutant target gene expression and modify disease progression. Recent research using engineered miRNAs delivered via an adeno-associated virus (AAV) vector in a transgenic HD minipig model demonstrates encouraging results in reducing mutant HD and improving motor function.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
- Biology Department, School of Biotechnology, Badr University in Cairo, 11829, Badr City, Cairo, Egypt
| | - Abanoub A S Shaker
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Mohammed I Dahab
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Mohamed M Sadek
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat, 32897, Sadat City, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
- Botany and Microbiology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
| | - Yara A Nassar
- Department of Botany, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt.
| |
Collapse
|
3
|
Chen H, Li J, Huang Z, Fan X, Wang X, Chen X, Guo H, Liu H, Li S, Yu S, Li H, Huang X, Ma X, Deng X, Wang C, Liu Y. Dopaminergic system and neurons: Role in multiple neurological diseases. Neuropharmacology 2024; 260:110133. [PMID: 39197818 DOI: 10.1016/j.neuropharm.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.
Collapse
Affiliation(s)
- Heng Chen
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jieshu Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixing Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxiao Fan
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaofei Wang
- Beijing Normal University, Beijing, 100875, China
| | - Xing Chen
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haitao Guo
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuqi Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaojun Yu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honghong Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinyu Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuehua Ma
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xinqi Deng
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yonggang Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
4
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
5
|
Padalko V, Posnik F, Adamczyk M. Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9950. [PMID: 39337438 PMCID: PMC11431987 DOI: 10.3390/ijms25189950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This survey reviews modern ideas on the structure and functions of mitochondrial and cytosolic aconitase isoenzymes in eukaryotes. Cumulative experimental evidence about mitochondrial aconitases (Aco2) as one of the main targets of reactive oxygen and nitrogen species is generalized. The important role of Aco2 in maintenance of homeostasis of the intracellular iron pool and maintenance of the mitochondrial DNA is discussed. The role of Aco2 in the pathogenesis of some neurodegenerative diseases is highlighted. Inactivation or dysfunction of Aco2 as well as mutations found in the ACO2 gene appear to be significant factors in the development and promotion of various types of neurodegenerative diseases. A restoration of efficient mitochondrial functioning as a source of energy for the cell by targeting Aco2 seems to be one of the promising therapeutic directions to minimize progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Volodymyr Padalko
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- School of Medicine, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Filip Posnik
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
6
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
7
|
Pengo M, Squitieri F. Beyond CAG Repeats: The Multifaceted Role of Genetics in Huntington Disease. Genes (Basel) 2024; 15:807. [PMID: 38927742 PMCID: PMC11203031 DOI: 10.3390/genes15060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG expansion on the huntingtin (HTT) gene and is characterized by progressive motor, cognitive, and neuropsychiatric decline. Recently, new genetic factors besides CAG repeats have been implicated in the disease pathogenesis. Most genetic modifiers are involved in DNA repair pathways and, as the cause of the loss of CAA interruption in the HTT gene, they exert their main influence through somatic expansion. However, this mechanism might not be the only driver of HD pathogenesis, and future studies are warranted in this field. The aim of the present review is to dissect the many faces of genetics in HD pathogenesis, from cis- and trans-acting genetic modifiers to RNA toxicity, mitochondrial DNA mutations, and epigenetics factors. Exploring genetic modifiers of HD onset and progression appears crucial to elucidate not only disease pathogenesis, but also to improve disease prediction and prevention, develop biomarkers of disease progression and response to therapies, and recognize new therapeutic opportunities. Since the same genetic mechanisms are also described in other repeat expansion diseases, their implications might encompass the whole spectrum of these disorders.
Collapse
Affiliation(s)
- Marta Pengo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Ferdinando Squitieri
- Centre for Neurological Rare Diseases (CMNR), Fondazione Lega Italiana Ricerca Huntington (LIRH), 00161 Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
8
|
Dagar S, Sharma M, Tsaprailis G, Tapia CS, Crynen G, Joshi PS, Shahani N, Subramaniam S. Ribosome Profiling and Mass Spectrometry Reveal Widespread Mitochondrial Translation Defects in a Striatal Cell Model of Huntington Disease. Mol Cell Proteomics 2024; 23:100746. [PMID: 38447791 PMCID: PMC11040134 DOI: 10.1016/j.mcpro.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024] Open
Abstract
Huntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT) that promotes prominent atrophy in the striatum and subsequent psychiatric, cognitive deficits, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions; however, the present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We found that protein synthesis is diminished in HD mitochondria compared to healthy control striatal cell models. We utilized ribosome profiling (Ribo-Seq) to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cell models. The Ribo-Seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (SDHA, Ndufv1, Timm23, Tomm5, Mrps22) in HD cells. By contrast, ribosome occupancy was dramatically increased for mitochondrially encoded oxidative phosphorylation mRNAs (mt-Nd1, mt-Nd2, mt-Nd4, mt-Nd4l, mt-Nd5, mt-Nd6, mt-Co1, mt-Cytb, and mt-ATP8). We also applied tandem mass tag-based mass spectrometry identification of mitochondrial proteins to derive correlations between ribosome occupancy and actual mature mitochondrial protein products. We found many mitochondrial transcripts with comparable or higher ribosome occupancy, but diminished mitochondrial protein products, in HD. Thus, our study provides the first evidence of a widespread dichotomous effect on ribosome occupancy and protein abundance of mitochondria-related genes in HD.
Collapse
Affiliation(s)
- Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Manish Sharma
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - George Tsaprailis
- Proteomics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | | | - Gogce Crynen
- Bioinformatics and Statistics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Preksha Sandipkumar Joshi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Neelam Shahani
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, USA; Norman Fixel Institute for Neurological Diseases, Gainesville, Florida, USA.
| |
Collapse
|
9
|
Kumar A, Jeong E, Noh Y, Chae PS. Fluorescence-based ratiometric sensors as emerging tools for CN - detection: Chemical structures, sensing mechanisms and applications. Methods 2024; 222:57-80. [PMID: 38191006 DOI: 10.1016/j.ymeth.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Hazardous cyanide anions (CN-) are increasingly threatening the environment and human health due to their widespread use in industry and many other fields. Over the past three decades, a large number of probes have been reported to sensitively and selectively detect this toxic anion, while a rather limited number of ratiometric fluorescent probes have been developed. The ratiometric probes have significant potential in bio-imaging and biomedical applications because of the ability to detect CN- in a quick, convenient and affordable way. In this review, we introduce 42 ratiometric fluorescent probes reported in the past 6 years (2018-2023) for CN- detection. Our description includes the chemical structures, photo-physical properties, CN- sensing mechanisms, solution color changes, limits of detection (LODs) and/or various applications of these chemical probes. This review provides guidelines for design and development of a new ratiometric probe for effective CN- detection.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, Republic of Korea,.
| | - Eunhye Jeong
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, Republic of Korea
| | - Youngwoo Noh
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, Republic of Korea
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, Republic of Korea,.
| |
Collapse
|
10
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
11
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
12
|
Kumar A, Hur W, Seong GH, Chae PS. Ratiometric orange fluorescent and colorimetric highly sensitive imidazolium-bearing naphthoquinolinedione-based probes for CN - sensing in aqueous solutions and bio-samples. Anal Chim Acta 2023; 1267:341376. [PMID: 37257976 DOI: 10.1016/j.aca.2023.341376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
The widespread use of cyanide (CN-) in industry results in contamination of various effluents such as drain, lake, and tap water, an imminent danger to the environment and human health. We prepared naphthoquinolinedione (cyclized; 1-5) and anthracenedione (un-cyclized) probes (6-7) for selective detection of CN-. The addition of CN- to the probe solutions (1-5) resulted in a color change from pale green to orange under 365 nm illumination. The nucleophilic addition of CN- to C2 of the imidazolium ring of the probes is responsible for selective CN- detection. Among all probes, 1 gave the lowest fluorescence-based LOD of 0.13 pM. In contrast, the un-cyclized probes (6 and 7) were substantially inferior to the cyclized counterparts (1 and 2, respectively) for detecting a trace amount of CN-. The notably low LOD displayed by probe 1 was maintained in the detection of CN- in real food samples, human fluids, and human brain cells. This is the first report studying imidazolium-bearing naphthoquinolinedione-based probes for CN- sensing in 100% water.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Bionano Engineering, Hanyang University, Ansan, 155-88, Republic of Korea.
| | - Won Hur
- Department of Bionano Engineering, Hanyang University, Ansan, 155-88, Republic of Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Hanyang University, Ansan, 155-88, Republic of Korea
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan, 155-88, Republic of Korea.
| |
Collapse
|
13
|
Dai Y, Wang H, Lian A, Li J, Zhao G, Hu S, Li B. A comprehensive perspective of Huntington's disease and mitochondrial dysfunction. Mitochondrion 2023; 70:8-19. [PMID: 36906250 DOI: 10.1016/j.mito.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/04/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease. It is caused by the expansion of the CAG trinucleotide repeat sequence in the HTT gene. HD mainly manifests as involuntary dance-like movements and severe mental disorders. As it progresses, patients lose the ability to speak, think, and even swallow. Although the pathogenesis is unclear, studies have found that mitochondrial dysfunctions occupy an important position in the pathogenesis of HD. Based on the latest research advances, this review sorts out and discusses the role of mitochondrial dysfunction on HD in terms of bioenergetics, abnormal autophagy, and abnormal mitochondrial membranes. This review provides researchers with a more complete perspective on the mechanisms underlying the relationship between mitochondrial dysregulation and HD.
Collapse
Affiliation(s)
- Yinghong Dai
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Haonan Wang
- Department of Physical Education and Research, Central South University, 932 Lushan South Rd., Changsha, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shenghui Hu
- The Second Xiangya Hospital of Central South University, China
| | - Bin Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Lopes C, Ferreira IL, Maranga C, Beatriz M, Mota SI, Sereno J, Castelhano J, Abrunhosa A, Oliveira F, De Rosa M, Hayden M, Laço MN, Januário C, Castelo Branco M, Rego AC. Mitochondrial and redox modifications in early stages of Huntington's disease. Redox Biol 2022; 56:102424. [PMID: 35988447 PMCID: PMC9420526 DOI: 10.1016/j.redox.2022.102424] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 01/30/2023] Open
Abstract
Deficits in mitochondrial function and redox deregulation have been attributed to Huntington's disease (HD), a genetic neurodegenerative disorder largely affecting the striatum. However, whether these changes occur in early stages of the disease and can be detected in vivo is still unclear. In the present study, we analysed changes in mitochondrial function and production of reactive oxygen species (ROS) at early stages and with disease progression. Studies were performed in vivo in human brain by PET using [64Cu]-ATSM and ex vivo in human skin fibroblasts of premanifest and prodromal (Pre-M) and manifest HD carriers. In vivo brain [64Cu]-ATSM PET in YAC128 transgenic mouse and striatal and cortical isolated mitochondria were assessed at presymptomatic (3 month-old, mo) and symptomatic (6–12 mo) stages. Pre-M HD carriers exhibited enhanced whole-brain (with exception of caudate) [64Cu]-ATSM labelling, correlating with CAG repeat number. Fibroblasts from Pre-M showed enhanced basal and maximal respiration, proton leak and increased hydrogen peroxide (H2O2) levels, later progressing in manifest HD. Mitochondria from fibroblasts of Pre-M HD carriers also showed reduced circularity, while higher number of mitochondrial DNA copies correlated with maximal respiratory capacity. In vivo animal PET analysis showed increased accumulation of [64Cu]-ATSM in YAC128 mouse striatum. YAC128 mouse (at 3 months) striatal isolated mitochondria exhibited a rise in basal and maximal mitochondrial respiration and in ATP production, and increased complex II and III activities. YAC128 mouse striatal mitochondria also showed enhanced mitochondrial H2O2 levels and circularity, revealed by brain ultrastructure analysis, and defects in Ca2+ handling, supporting increased striatal susceptibility. Data demonstrate both human and mouse mitochondrial overactivity and altered morphology at early HD stages, facilitating redox unbalance, the latter progressing with manifest disease. Pre-manifest HD carriers and presymptomatic YAC128 mice show increased brain [64Cu]-ATSM labelling. Increased [64Cu]-ATSM brain retention correlates with raised ROS levels in human and mouse samples. Increased [64Cu]-ATSM correlates with enhanced mitochondrial activity and mtDNA copy number. Presymptomatic YAC128 mouse striatal mitochondria show altered morphology and Ca2+ handling.
Collapse
Affiliation(s)
- Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - I Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Carina Maranga
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Margarida Beatriz
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - José Sereno
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - João Castelhano
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Antero Abrunhosa
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Francisco Oliveira
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal.
| | - Maura De Rosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Michael Hayden
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Mário N Laço
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Medical Genetics Unit, Pediatric Hospital of Coimbra, Coimbra University Hospital (CHUC), Coimbra, Portugal.
| | | | - Miguel Castelo Branco
- ICNAS-Institute of Nuclear Science Applied to Health, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
16
|
Paldino E, Fusco FR. Emerging Role of NLRP3 Inflammasome/Pyroptosis in Huntington's Disease. Int J Mol Sci 2022; 23:8363. [PMID: 35955494 PMCID: PMC9368941 DOI: 10.3390/ijms23158363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease characterized by several symptoms encompassing movement, cognition, and behavior. The mutation of the IT15 gene encoding for the huntingtin protein is the cause of HD. Mutant huntingtin interacts with and impairs the function of several transcription factors involved in neuronal survival. Although many mechanisms determining neuronal death have been described over the years, the significant role of inflammation has gained momentum in the last decade. Drugs targeting the elements that orchestrate inflammation have been considered powerful tools to treat HD. In this review, we will describe the data supporting inflammasome and NLRP3 as a target of therapeutics to fight HD, deepening the possible mechanisms of action underlying these effects.
Collapse
Affiliation(s)
- Emanuela Paldino
- Laboratory of Neuroanatomy, IRRCS Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00143 Rome, Italy
| | - Francesca Romana Fusco
- Laboratory of Neuroanatomy, IRRCS Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| |
Collapse
|
17
|
Wenceslau CV, de Souza DM, Mambelli-Lisboa NC, Ynoue LH, Araldi RP, da Silva JM, Pagani E, Haddad MS, Kerkis I. Restoration of BDNF, DARPP32, and D2R Expression Following Intravenous Infusion of Human Immature Dental Pulp Stem Cells in Huntington's Disease 3-NP Rat Model. Cells 2022; 11:1664. [PMID: 35626701 PMCID: PMC9139280 DOI: 10.3390/cells11101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative inherited genetic disorder, which leads to the onset of motor, neuropsychiatric and cognitive disturbances. HD is characterized by the loss of gamma-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs). To date, there is no treatment for HD. Mesenchymal stem cells (MSCs) provide a substantial therapeutic opportunity for the HD treatment. Herein, we investigated the therapeutic potential of human immature dental pulp stem cells (hIDPSC), a special type of MSC originated from the neural crest, for HD treatment. Two different doses of hIDPSC were intravenously administrated in a subacute 3-nitropropionic acid (3NP)-induced rat model. We demonstrated hIDPSC homing in the striatum, cortex and subventricular zone using specific markers for human cells. Thirty days after hIDPSC administration, the cells found in the brain are still express hallmarks of undifferentiated MSC. Immunohistochemistry quantities analysis revealed a significant increase in the number of BDNF, DARPP32 and D2R positive stained cells in the striatum and cortex in the groups that received hIDPSC. The differences were more expressive in animals that received only one administration of hIDPSC. Altogether, these data suggest that the intravenous administration of hIDPSCs can restore the BDNF, DARPP32 and D2R expression, promoting neuroprotection and neurogenesis.
Collapse
Affiliation(s)
| | - Dener Madeiro de Souza
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (D.M.d.S.); (N.C.M.-L.)
| | | | | | - Rodrigo Pinheiro Araldi
- Cellavita Pesquisas Científicas Ltda., Valinhos 13271-650, SP, Brazil;
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (D.M.d.S.); (N.C.M.-L.)
- Programa de Pós-graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | | | - Eduardo Pagani
- Azidus Brasil, Valinhos 13271-130, SP, Brazil; (L.H.Y.); (J.M.d.S.); (E.P.)
| | - Monica Santoro Haddad
- Hospital das Clínicas, Faculdade de Medicina, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil;
| | - Irina Kerkis
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (D.M.d.S.); (N.C.M.-L.)
- Programa de Pós-graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| |
Collapse
|
18
|
Martí-Martínez S, Valor LM. A Glimpse of Molecular Biomarkers in Huntington's Disease. Int J Mol Sci 2022; 23:ijms23105411. [PMID: 35628221 PMCID: PMC9142992 DOI: 10.3390/ijms23105411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder that is caused by an abnormal expansion of CAG repeats in the Huntingtin (HTT) gene. Although the main symptomatology is explained by alterations at the level of the central nervous system, predominantly affecting the basal ganglia, a peripheral component of the disease is being increasingly acknowledged. Therefore, the manifestation of the disease is complex and variable among CAG expansion carriers, introducing uncertainty in the appearance of specific signs, age of onset and severity of disease. The monogenic nature of the disorder allows a precise diagnosis, but the use of biomarkers with prognostic value is still needed to achieve clinical management of the patients in an individual manner. In addition, we need tools to evaluate the patient's response to potential therapeutic approaches. In this review, we provide a succinct summary of the most interesting molecular biomarkers that have been assessed in patients, mostly obtained from body fluids such as cerebrospinal fluid, peripheral blood and saliva.
Collapse
Affiliation(s)
- Silvia Martí-Martínez
- Servicio de Neurología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain;
| | - Luis M. Valor
- Laboratorio de Apoyo a la Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-913-988
| |
Collapse
|
19
|
Jahanshahi A, Boonstra JT, Alosaimi F, Ozsoy O, Michielse S, Temel Y. Hidden brain atrophy in ultra-high-field MR images in a transgenic rat model of Huntington's disease. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Fakih W, Zeitoun R, AlZaim I, Eid AH, Kobeissy F, Abd-Elrahman KS, El-Yazbi AF. Early metabolic impairment as a contributor to neurodegenerative disease: Mechanisms and potential pharmacological intervention. Obesity (Silver Spring) 2022; 30:982-993. [PMID: 35470973 DOI: 10.1002/oby.23400] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/18/2022]
Abstract
The metabolic syndrome comprises a family of clinical and laboratory findings, including insulin resistance, hyperglycemia, hypertriglyceridemia, low high-density lipoprotein cholesterol levels, and hypertension, in addition to central obesity. The syndrome confers a high risk of cardiovascular mortality. Indeed, metabolic dysfunction has been shown to cause a direct insult to smooth muscle and endothelial components of the vasculature, which leads to vascular dysfunction and hyperreactivity. This, in turn, causes cerebral vasoconstriction and hypoperfusion, eventually contributing to cognitive deficits. Moreover, the metabolic syndrome disrupts key homeostatic processes in the brain, including apoptosis, autophagy, and neurogenesis. Impairment of such processes in the context of metabolic dysfunction has been implicated in the pathogenesis of neurodegenerative diseases, including Alzheimer, Parkinson, and Huntington diseases. The aim of this review is to elucidate the role that the metabolic syndrome plays in the pathogenesis of the latter disorders, with a focus on the role of perivascular adipose inflammation in the peripheral-to-central transduction of the inflammatory insult. This review delineates common signaling pathways that contribute to these pathologies. Moreover, the role of therapeutic agents aimed at treating the metabolic syndrome, as well as their risk factors that interfere with the aforementioned pathways, are discussed as potential interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Walaa Fakih
- Faculty of Pharmacy, Federation of Translational Medicine of Strasbourg, University of Strasbourg, Illkirch, France
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ralph Zeitoun
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, USA
| | - Khaled S Abd-Elrahman
- Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alamein International University, New Alamein City, Egypt
| |
Collapse
|
21
|
Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol 2022; 215:102289. [DOI: 10.1016/j.pneurobio.2022.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
22
|
Hyeon SJ, Park J, Yoo J, Kim SH, Hwang YJ, Kim SC, Liu T, Shim HS, Kim Y, Cho Y, Woo J, Kim KS, Myers RH, Ryu HL, Kowall NW, Song EJ, Hwang EM, Seo H, Lee J, Ryu H. Dysfunction of X-linked inhibitor of apoptosis protein (XIAP) triggers neuropathological processes via altered p53 activity in Huntington's disease. Prog Neurobiol 2021; 204:102110. [PMID: 34166773 PMCID: PMC8364511 DOI: 10.1016/j.pneurobio.2021.102110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.
Collapse
Affiliation(s)
- Seung Jae Hyeon
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Junsang Yoo
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Su-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yu Jin Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Seung-Chan Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Tian Liu
- USF Health Byrd Alzheimer's Institute and Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - Hyun Soo Shim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yunha Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yakdol Cho
- KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jiwan Woo
- KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Key-Sun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Richard H Myers
- Boston University Genome Science Institute and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hannah L Ryu
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02130, USA
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea.
| | - Junghee Lee
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02130, USA.
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
23
|
Wang Y, Guo X, Ye K, Orth M, Gu Z. Accelerated expansion of pathogenic mitochondrial DNA heteroplasmies in Huntington's disease. Proc Natl Acad Sci U S A 2021; 118:e2014610118. [PMID: 34301881 PMCID: PMC8325154 DOI: 10.1073/pnas.2014610118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction is found in the brain and peripheral tissues of patients diagnosed with Huntington's disease (HD), an irreversible neurodegenerative disease of which aging is a major risk factor. Mitochondrial function is encoded by not only nuclear DNA but also DNA within mitochondria (mtDNA). Expansion of mtDNA heteroplasmies (coexistence of mutated and wild-type mtDNA) can contribute to age-related decline of mitochondrial function but has not been systematically investigated in HD. Here, by using a sensitive mtDNA-targeted sequencing method, we studied mtDNA heteroplasmies in lymphoblasts and longitudinal blood samples of HD patients. We found a significant increase in the fraction of mtDNA heteroplasmies with predicted pathogenicity in lymphoblasts from 1,549 HD patients relative to lymphoblasts from 182 healthy individuals. The increased fraction of pathogenic mtDNA heteroplasmies in HD lymphoblasts also correlated with advancing HD stages and worsened disease severity measured by HD motor function, cognitive function, and functional capacity. Of note, elongated CAG repeats in HTT promoted age-dependent expansion of pathogenic mtDNA heteroplasmies in HD lymphoblasts. We then confirmed in longitudinal blood samples of 169 HD patients that expansion of pathogenic mtDNA heteroplasmies was correlated with decline in functional capacity and exacerbation of HD motor and cognitive functions during a median follow-up of 6 y. The results of our study indicate accelerated decline of mtDNA quality in HD, and highlight monitoring mtDNA heteroplasmies longitudinally as a way to investigate the progressive decline of mitochondrial function in aging and age-related diseases.
Collapse
Affiliation(s)
- Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Xiaoxian Guo
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kaixiong Ye
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Michael Orth
- Department of Neurology, Ulm University Hospital, D-89081 Ulm, Germany
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
24
|
Lee M, Ban JJ, Won BH, Im W, Kim M. Therapeutic potential of ginsenoside Rg3 and Rf for Huntington's disease. In Vitro Cell Dev Biol Anim 2021; 57:641-648. [PMID: 34128157 DOI: 10.1007/s11626-021-00595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington's disease (HD) is incurable genetic disorder associated with mutant huntingtin (mHtt) aggregation in the central nervous system. This study was conducted to investigate the effects of ginsenoside Rg3 and Rf on mHtt aggregation, cell viability, mitochondrial function, and apoptotic molecules on HD model. To investigate the effect of ginsenosides on HD, neural stem cells were isolated from the R6/2 mouse brain and used as a cellular model of HD. Nuclear aggregation of mHtt was measured by immunocytochemistry, and expressions of mitochondrial biogenesis and apoptotic molecules were investigated by western blot. As a result, the number of mHtt aggregates positive cells has decreased by ginsenoside Rg3 and Rf treatment in cellular model of HD. Mitochondrial biogenesis-related molecules such as PGC-1α and phosphorylated CREB were increased or showed increased tendency by ginsenoside Rg3 and Rf. Apoptotic molecules, p53, Bax, and cleaved caspase-3, were down-regulated by treatment of ginsenoside Rg3 and Rf. In addition, Lysotracker staining result showed that cellular lysosomal content was reduced by ginsenoside Rg3 and Rf. Given that ginsenoside Rg3 and Rf have the potential to reduce mHtt aggregation and cellular apoptosis, these ginsenosides can be possible therapeutic candidates for treating HD phenotypes.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Bo Hee Won
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Institute of Women's Life Medical Science, Gangnam Severance Hospital, Seoul, South Korea.
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Neuroscience Research Institute, College of Medicine, Seoul National University , Seoul, South Korea. .,Protein Metabolism and Neuroscience Dementia Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
25
|
Huang L, Fang L, Liu Q, Torshizi AD, Wang K. Integrated analysis on transcriptome and behaviors defines HTT repeat-dependent network modules in Huntington's disease. Genes Dis 2021; 9:479-493. [PMID: 35224162 PMCID: PMC8843892 DOI: 10.1016/j.gendis.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Knock-in mice carrying a CAG repeat-expanded Htt will develop HD phenotypes. Previous studies suggested dysregulated molecular networks in a CAG length genotype- and the age-dependent manner in brain tissues from knock-in mice carrying expanded Htt CAG repeats. Furthermore, a large-scale phenome analysis defined a behavioral signature for HD genotype in knock-in mice carrying expanded Htt CAG repeats. However, an integrated analysis correlating phenotype features with genotypes (CAG repeat expansions) was not conducted previously. In this study, we revealed the landscape of the behavioral features and gene expression correlations based on 445 mRNA samples and 445 microRNA samples, together with behavioral features (396 PhenoCube behaviors and 111 NeuroCube behaviors) in Htt CAG-knock-in mice. We identified 37 behavioral features that were significantly associated with CAG repeat length including the number of steps and hind limb stand duration. The behavioral features were associated with several gene coexpression groups involved in neuronal dysfunctions, which were also supported by the single-cell RNA sequencing data in the striatum and the spatial gene expression in the brain. We also identified 15 chemicals with significant responses for genes with enriched behavioral features, most of them are agonist or antagonist for dopamine receptors and serotonin receptors used for neurology/psychiatry. Our study provides further evidence that abnormal neuronal signal transduction in the striatum plays an important role in causing HD-related phenotypic behaviors and provided rich information for the further pharmacotherapeutic intervention possibility for HD.
Collapse
Affiliation(s)
- Lulin Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Corresponding author. The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Corresponding author.
| |
Collapse
|
26
|
Annesley SJ, Fisher PR. Lymphoblastoid Cell Lines as Models to Study Mitochondrial Function in Neurological Disorders. Int J Mol Sci 2021; 22:4536. [PMID: 33926115 PMCID: PMC8123577 DOI: 10.3390/ijms22094536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders, including neurodegenerative diseases, are collectively a major cause of death and disability worldwide. Whilst the underlying disease mechanisms remain elusive, altered mitochondrial function has been clearly implicated and is a key area of study in these disorders. Studying mitochondrial function in these disorders is difficult due to the inaccessibility of brain tissue, which is the key tissue affected in these diseases. To overcome this issue, numerous cell models have been used, each providing unique benefits and limitations. Here, we focussed on the use of lymphoblastoid cell lines (LCLs) to study mitochondrial function in neurological disorders. LCLs have long been used as tools for genomic analyses, but here we described their use in functional studies specifically in regard to mitochondrial function. These models have enabled characterisation of the underlying mitochondrial defect, identification of altered signalling pathways and proteins, differences in mitochondrial function between subsets of particular disorders and identification of biomarkers of the disease. The examples provided here suggest that these cells will be useful for development of diagnostic tests (which in most cases do not exist), identification of drug targets and testing of pharmacological agents, and are a worthwhile model for studying mitochondrial function in neurological disorders.
Collapse
Affiliation(s)
- Sarah Jane Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia;
| | | |
Collapse
|
27
|
Kakareko K, Rydzewska-Rosołowska A, Zbroch E, Hryszko T. TRAIL and Cardiovascular Disease-A Risk Factor or Risk Marker: A Systematic Review. J Clin Med 2021; 10:jcm10061252. [PMID: 33803523 PMCID: PMC8002847 DOI: 10.3390/jcm10061252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic protein showing broad biological functions. Data from animal studies indicate that TRAIL may possibly contribute to the pathophysiology of cardiomyopathy, atherosclerosis, ischemic stroke and abdominal aortic aneurysm. It has been also suggested that TRAIL might be useful in cardiovascular risk stratification. This systematic review aimed to evaluate whether TRAIL is a risk factor or risk marker in cardiovascular diseases (CVDs) focusing on major adverse cardiovascular events. Two databases (PubMed and Cochrane Library) were searched until December 2020 without a year limit in accordance to the PRISMA guidelines. A total of 63 eligible original studies were identified and included in our systematic review. Studies suggest an important role of TRAIL in disorders such as heart failure, myocardial infarction, atrial fibrillation, ischemic stroke, peripheral artery disease, and pulmonary and gestational hypertension. Most evidence associates reduced TRAIL levels and increased TRAIL-R2 concentration with all-cause mortality in patients with CVDs. It is, however, unclear whether low TRAIL levels should be considered as a risk factor rather than a risk marker of CVDs. Further studies are needed to better define the association of TRAIL with cardiovascular diseases.
Collapse
Affiliation(s)
- Katarzyna Kakareko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; (A.R.-R.); (T.H.)
- Correspondence:
| | - Alicja Rydzewska-Rosołowska
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; (A.R.-R.); (T.H.)
| | - Edyta Zbroch
- Department of Internal Medicine and Hypertension, Medical University of Białystok, 15-276 Białystok, Poland;
| | - Tomasz Hryszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; (A.R.-R.); (T.H.)
| |
Collapse
|
28
|
A high-throughput screening to identify small molecules that suppress huntingtin promoter activity or activate huntingtin-antisense promoter activity. Sci Rep 2021; 11:6157. [PMID: 33731741 PMCID: PMC7969751 DOI: 10.1038/s41598-021-85279-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of huntingtin (HTT). While there are currently no disease-modifying treatments for HD, recent efforts have focused on the development of nucleotide-based therapeutics to lower HTT expression. As an alternative to siRNA or oligonucleotide methods, we hypothesized that suppression of HTT expression might be accomplished by small molecules that either (1) directly decrease HTT expression by suppressing HTT promoter activity or (2) indirectly decrease HTT expression by increasing the promoter activity of HTT-AS, the gene antisense to HTT that appears to inhibit expression of HTT. We developed and employed a high-throughput screen for modifiers of HTT and HTT-AS promoter activity using luminescent reporter HEK293 cells; of the 52,041 compounds tested, we identified 898 replicable hits. We used a rigorous stepwise approach to assess compound toxicity and the capacity of the compounds to specifically lower huntingtin protein in 5 different cell lines, including HEK293 cells, HD lymphoblastoid cells, mouse primary neurons, HD iPSCs differentiated into cortical-like neurons, and HD hESCs. We found no compounds which were able to lower huntingtin without lowering cell viability in all assays, though the potential efficacy of a few compounds at non-toxic doses could not be excluded. Our results suggest that more specific targets may facilitate a small molecule approach to HTT suppression.
Collapse
|
29
|
Tu Y, Li X, Zhu X, Liu X, Guo C, Jia D, Tang TS. Determining the Fate of Neurons in SCA3: ATX3, a Rising Decision Maker in Response to DNA Stresses and Beyond. Front Cell Dev Biol 2021; 8:619911. [PMID: 33425926 PMCID: PMC7793700 DOI: 10.3389/fcell.2020.619911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
DNA damage response (DDR) and apoptosis are reported to be involved in the pathogenesis of many neurodegenerative diseases including polyglutamine (polyQ) disorders, such as Spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD). Consistently, an increasing body of studies provide compelling evidence for the crucial roles of ATX3, whose polyQ expansion is defined as the cause of SCA3, in the maintenance of genome integrity and regulation of apoptosis. The polyQ expansion in ATX3 seems to affect its physiological functions in these distinct pathways. These advances have expanded our understanding of the relationship between ATX3's cellular functions and the underlying molecular mechanism of SCA3. Interestingly, dysregulated DDR pathways also contribute to the pathogenesis of other neurodegenerative disorder such as HD, which presents a common molecular mechanism yet distinct in detail among different diseases. In this review, we provide a comprehensive overview of the current studies about the physiological roles of ATX3 in DDR and related apoptosis, highlighting the crosslinks between these impaired pathways and the pathogenesis of SCA3. Moreover, whether these mechanisms are shared in other neurodegenerative diseases are analyzed. Finally, the preclinical studies targeting DDR and related apoptosis for treatment of polyQ disorders including SCA3 and HD are also summarized and discussed.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoling Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Xuefei Zhu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaokang Liu
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Caixia Guo
- Beijing Institute of Genomics (China National Center for Bioinformation), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
van Diemen MPJ, Hart EP, Abbruscato A, Mead L, van Beelen I, Bergheanu SC, Hameeteman PW, Coppen E, Winder JY, Moerland M, Kan H, van der Grond J, Webb A, Roos RAC, Groeneveld GJ. Safety, pharmacokinetics and pharmacodynamics of SBT-020 in patients with early stage Huntington's disease, a 2-part study. Br J Clin Pharmacol 2020; 87:2290-2302. [PMID: 33197078 PMCID: PMC8247328 DOI: 10.1111/bcp.14656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Aims Huntington's disease (HD) is a neurodegenerative disease with cognitive, motor and psychiatric symptoms. Toxic accumulation of misfolded mutant huntingtin protein induces mitochondrial dysfunction, leading to a bioenergetic insufficiency in neuronal and muscle cells. We evaluated the safety, pharmacokinetics and pharmacodynamics of SBT‐020, a novel compound to improve mitochondrial function, in a 2‐part study in early stage HD patients. Methods Part 1 consisted of 7‐day multiple ascending dose study to select the highest tolerable dose for Part 2, a 28‐day multiple dose study. Mitochondrial function was measured in the visual cortex and calf muscle, using phosphorous magnetic resonance spectroscopy, and in circulating peripheral blood mononuclear cells. Results Treatment‐emergent adverse events were mild and more present in the SBT‐020 group. Injection site reactions occurred in 91% in Part 1 and 97% in Part 2. Mitochondrial function in calf muscle, peripheral blood mononuclear cells or visual cortex was not changed overall due to treatment with SBT‐020. In a posthoc analysis, patients with a higher degree of mitochondrial dysfunction (below the median [∆Ψm < 3412 and τPCr > 42.5 s]) showed more improvement than patients with a relatively lower level of mitochondrial dysfunction. Conclusion SBT‐020 was safe at all doses, but no significant differences in any of the pharmacodynamic measurements between the treatment groups and placebo group could be demonstrated. The data suggest that the better than expected mitochondrial function in our patient population at baseline might explain the lack of effect of SBT‐020.
Collapse
Affiliation(s)
| | - Ellen P Hart
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Liz Mead
- Stealth BioTherapeutics Inc, Newton, Massachusetts, USA
| | | | | | | | - Emma Coppen
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica Y Winder
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hermien Kan
- Gorter Centre for high-field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Radiology Research Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Gorter Centre for high-field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
31
|
van Diemen MPJ, Hart EP, Hameeteman PW, Coppen EM, Winder JY, den Heijer J, Moerland M, Kan H, van der Grond J, Webb A, Roos RAC, Groeneveld GJ. Brain Bio-Energetic State Does Not Correlate to Muscle Mitochondrial Function in Huntington's Disease. J Huntingtons Dis 2020; 9:335-344. [PMID: 33325391 DOI: 10.3233/jhd-200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disease with cognitive, motor and psychiatric symptoms. A toxic accumulation of misfolded mutant huntingtin protein (Htt) induces mitochondrial dysfunction, leading to a bioenergetic insufficiency in neuronal and muscle cells. Improving mitochondrial function has been proposed as an opportunity to treat HD, but it is not known how mitochondrial function in different tissues relates. OBJECTIVE We explored associations between central and peripheral mitochondrial function in a group of mild to moderate staged HD patients. METHODS We used phosphorous magnetic resonance spectroscopy (31P-MRS) to measure mitochondrial function in vivo in the calf muscle (peripheral) and the bio-energetic state in the visual cortex (central). Mitochondrial function was also assessed ex vivo in circulating peripheral blood mononuclear cells (PBMCs). Clinical function was determined by the Unified Huntington's Disease Rating Scale (UHDRS) total motor score. Pearson correlation coefficients were computed to assess the correlation between the different variables. RESULTS We included 23 manifest HD patients for analysis. There was no significant correlation between central bio-energetics and peripheral mitochondrial function. Central mitochondrial function at rest correlated significantly to the UHDRS total motor score (R = -0.45 and -0.48), which increased in a subgroup with the largest number of CAG repeats. DISCUSSION We did not observe a correlation between peripheral and central mitochondrial function. Central, but not peripheral, mitochondrial function correlated to clinical function. Muscle mitochondrial function is a promising biomarker to evaluate disease-modifying compounds that improve mitochondrial function, but Huntington researchers should use central mitochondrial function to demonstrate proof-of-pharmacology of disease-modifying compounds.
Collapse
Affiliation(s)
| | - Ellen P Hart
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Emma M Coppen
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica Y Winder
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Hermien Kan
- Gorter Centre for High-field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Radiology Research Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Gorter Centre for High-field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Wajner M, Vargas CR, Amaral AU. Disruption of mitochondrial functions and oxidative stress contribute to neurologic dysfunction in organic acidurias. Arch Biochem Biophys 2020; 696:108646. [PMID: 33098870 DOI: 10.1016/j.abb.2020.108646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
Organic acidurias (OADs) are inherited disorders of amino acid metabolism biochemically characterized by accumulation of short-chain carboxylic acids in tissues and biological fluids of the affected patients and clinically by predominant neurological manifestations. Some of these disorders are amenable to treatment, which significantly decreases mortality and morbidity, but it is still ineffective to prevent long-term neurologic and systemic complications. Although pathogenesis of OADs is still poorly established, recent human and animal data, such as lactic acidosis, mitochondrial morphological alterations, decreased activities of respiratory chain complexes and altered parameters of oxidative stress, found in tissues from patients and from genetic mice models with these diseases indicate that disruption of critical mitochondrial functions and oxidative stress play an important role in their pathophysiology. Furthermore, organic acids that accumulate in the most prevalent OADs were shown to compromise bioenergetics, by decreasing ATP synthesis, mitochondrial membrane potential, reducing equivalent content and calcium retention capacity, besides inducing mitochondrial swelling, reactive oxygen and nitrogen species generation and apoptosis. It is therefore presumed that secondary mitochondrial dysfunction and oxidative stress caused by major metabolites accumulating in OADs contribute to tissue damage in these pathologies.
Collapse
Affiliation(s)
- Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| |
Collapse
|
33
|
Chen D, Zhang T, Lee TH. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020; 10:biom10081158. [PMID: 32784556 PMCID: PMC7464852 DOI: 10.3390/biom10081158] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are the second most common cause of death and characterized by progressive impairments in movement or mental functioning in the central or peripheral nervous system. The prevention of neurodegenerative disorders has become an emerging public health challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways. Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this review, we summarize current knowledge on the regulation, molecular mechanisms and biological functions of melatonin in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis. We also discuss the clinical application of melatonin in neurodegenerative disorders. This information will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic options for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dongmei Chen
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| | | | - Tae Ho Lee
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| |
Collapse
|
34
|
Singh S, Singh TG. Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr Neuropharmacol 2020; 18:918-935. [PMID: 32031074 PMCID: PMC7709146 DOI: 10.2174/1570159x18666200207120949] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
A transcriptional regulatory nuclear factor kappa B (NF-κB) protein is a modulator of cellular biological activity via binding to a promoter region in the nucleus and transcribing various protein genes. The recent research implicated the intensive role of nuclear factor kappa B (NF-κB) in diseases like autoimmune disorder, inflammatory, cardiovascular and neurodegenerative diseases. Therefore, targeting the nuclear factor kappa B (NF-κB) protein offers a new opportunity as a therapeutic approach. Activation of IκB kinase/NF-κB signaling pathway leads to the development of various pathological conditions in human beings, such as neurodegenerative, inflammatory disorders, autoimmune diseases, and cancer. Therefore, the transcriptional activity of IκB kinase/NF- κB is strongly regulated at various cascade pathways. The nuclear factor NF-kB pathway plays a major role in the expression of pro-inflammatory genes, including cytokines, chemokines, and adhesion molecules. In response to the diverse stimuli, the cytosolic sequestered NF-κB in an inactivated form by binding with an inhibitor molecule protein (IkB) gets phosphorylated and translocated into the nucleus further transcribing various genes necessary for modifying various cellular functions. The various researches confirmed the role of different family member proteins of NF-κB implicated in expressing various genes products and mediating various cellular cascades. MicroRNAs, as regulators of NF- κB microRNAs play important roles in the regulation of the inflammatory process. Therefore, the inhibitor of NF-κB and its family members plays a novel therapeutic target in preventing various diseases. Regulation of NF- κB signaling pathway may be a safe and effective treatment strategy for various disorders.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
35
|
Lin YH, Maaroufi HO, Ibrahim E, Kucerova L, Zurovec M. Expression of Human Mutant Huntingtin Protein in Drosophila Hemocytes Impairs Immune Responses. Front Immunol 2019; 10:2405. [PMID: 31681295 PMCID: PMC6805700 DOI: 10.3389/fimmu.2019.02405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/25/2019] [Indexed: 01/30/2023] Open
Abstract
The pathogenic effect of mutant HTT (mHTT) which causes Huntington disease (HD) are not restricted to nervous system. Such phenotypes include aberrant immune responses observed in the HD models. However, it is still unclear how this immune dysregulation influences the innate immune response against pathogenic infection. In the present study, we used transgenic Drosophila melanogaster expressing mutant HTT protein (mHTT) with hemocyte-specific drivers and examined the immune responses and hemocyte function. We found that mHTT expression in the hemocytes did not affect fly viability, but the numbers of circulating hemocytes were significantly decreased. Consequently, we observed that the expression of mHTT in the hemocytes compromised the immune responses including clot formation and encapsulation which lead to the increased susceptibility to entomopathogenic nematode and parasitoid wasp infections. In addition, mHTT expression in Drosophila macrophage-like S2 cells in vitro reduced ATP levels, phagocytic activity and the induction of antimicrobial peptides. Further effects observed in mHTT-expressing cells included the altered production of cytokines and activation of JAK/STAT signaling. The present study shows that the expression of mHTT in Drosophila hemocytes causes deficient cellular and humoral immune responses against invading pathogens. Our findings provide the insight into the pathogenic effects of mHTT in the immune cells.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Houda Ouns Maaroufi
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Emad Ibrahim
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Kucerova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
36
|
Essa MM, Moghadas M, Ba-Omar T, Walid Qoronfleh M, Guillemin GJ, Manivasagam T, Justin-Thenmozhi A, Ray B, Bhat A, Chidambaram SB, Fernandes AJ, Song BJ, Akbar M. Protective Effects of Antioxidants in Huntington’s Disease: an Extensive Review. Neurotox Res 2019; 35:739-774. [DOI: 10.1007/s12640-018-9989-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023]
|
37
|
Jędrak P, Mozolewski P, Węgrzyn G, Więckowski MR. Mitochondrial alterations accompanied by oxidative stress conditions in skin fibroblasts of Huntington's disease patients. Metab Brain Dis 2018; 33:2005-2017. [PMID: 30120672 PMCID: PMC6244791 DOI: 10.1007/s11011-018-0308-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/12/2018] [Indexed: 01/08/2023]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder manifesting as progressive impairment of motor function and different neuropsychiatric symptoms caused by an expansion of CAG repeats in huntingtin gene (HTT). Mitochondrial dysfunction and bioenergetic defects can contribute to the course of the disease, however, the molecular mechanism underlying this process is still largely unknown. In this study, we aimed to determine several mitochondrial parameters in HD fibroblasts and assess their relevance to the disease progression as well as to value mitochondrial pathology in peripheral cells as disease potential biomarker. We showed that HD fibroblasts demonstrate significantly lower growth rate compared to control fibroblasts despite the lack of cell cycle perturbations. In order to investigate mitochondrial contribution to cell growth differences between HD and healthy cells, we provided insight into various mitochondrial parameters. Conducted experiments have revealed a significant reduction of the ATP level in HD fibroblasts accompanied by a decrease in mitochondrial metabolic activity in relation to the cells from healthy donors. Importantly, there were no differences in the mitochondrial membrane potential (mtΔΨ) and OXPHOS complexes' levels. Slightly increased level of mitochondrial superoxide (mt. O2•-), but not cytosolic reactive oxygen species (cyt. ROS), has been demonstrated. We have also observed significantly elevated levels of some antioxidant enzymes (SOD2 and GR) which may serve as an indicator of antioxidant defense system in HD patients. Thus, we suggest that mitochondrial alterations in skin fibroblasts of Huntington's disease patients might be helpful in searching for novel disease biomarkers.
Collapse
Affiliation(s)
- Paulina Jędrak
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Paweł Mozolewski
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Mariusz R Więckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
38
|
Gardiner SL, Milanese C, Boogaard MW, Buijsen RAM, Hogenboom M, Roos RAC, Mastroberardino PG, van Roon-Mom WMC, Aziz NA. Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset. NEUROLOGY-GENETICS 2018; 4:e275. [PMID: 30338295 PMCID: PMC6186024 DOI: 10.1212/nxg.0000000000000275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022]
Abstract
Objective We aimed to assess whether differences in energy metabolism in fibroblast cell lines derived from patients with Huntington disease were associated with age at onset independent of the cytosine-adenine-guanine (CAG) repeat number in the mutant allele. Methods For this study, we selected 9 pairs of patients with Huntington disease matched for mutant CAG repeat size and sex, but with a difference of at least 10 years in age at onset, using the Leiden Huntington disease database. From skin biopsies, we isolated fibroblasts in which we (1) quantified the ATP concentration before and after a hydrogen-peroxide challenge and (2) measured mitochondrial respiration and glycolysis in real time, using the Seahorse XF Extracellular Flux Analyzer XF24. Results The ATP concentration in fibroblasts was significantly lower in patients with Huntington disease with an earlier age at onset, independent of calendar age and disease duration. Maximal respiration, spare capacity, and respiration dependent on complex II activity, and indices of mitochondrial respiration were significantly lower in patients with Huntington disease with an earlier age at onset, again independent of calendar age and disease duration. Conclusions A less efficient bioenergetics profile was found in fibroblast cells from patients with Huntington disease with an earlier age at onset independent of mutant CAG repeat size. Thus, differences in bioenergetics could explain part of the residual variation in age at onset in Huntington disease.
Collapse
Affiliation(s)
- Sarah L Gardiner
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Chiara Milanese
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Merel W Boogaard
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Ronald A M Buijsen
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Marye Hogenboom
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Raymund A C Roos
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Pier G Mastroberardino
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - Willeke M C van Roon-Mom
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| | - N Ahmad Aziz
- Department of Neurology (S.L.G., M.H., R.A.C.R., N.A.A.), Department of Human Genetic (S.L.G., R.A.M.B., W.M.C.v.R.-M.), and Department of Clinical Genetics (M.W.B.), Leiden University Medical Centre, Leiden; Department of Molecular Genetics (C.M., P.G.M.), Erasmus Medical Centre, Rotterdam, The Netherlands; and German Center for Neurodegenerative Diseases (DZNE) (N.A.A.), Bonn, Germany
| |
Collapse
|
39
|
Increased nuclear DNA damage precedes mitochondrial dysfunction in peripheral blood mononuclear cells from Huntington's disease patients. Sci Rep 2018; 8:9817. [PMID: 29959348 PMCID: PMC6026140 DOI: 10.1038/s41598-018-27985-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disorder primarily affecting the basal ganglia and is caused by expanded CAG repeats in the huntingtin gene. Except for CAG sizing, mitochondrial and nuclear DNA (mtDNA and nDNA) parameters have not yet proven to be representative biomarkers for disease and future therapy. Here, we identified a general suppression of genes associated with aerobic metabolism in peripheral blood mononuclear cells (PBMCs) from HD patients compared to controls. In HD, the complex II subunit SDHB was lowered although not sufficiently to affect complex II activity. Nevertheless, we found decreased level of factors associated with mitochondrial biogenesis and an associated dampening of the mitochondrial DNA damage frequency in HD, implying an early defect in mitochondrial activity. In contrast to mtDNA, nDNA from HD patients was four-fold more modified than controls and demonstrated that nDNA integrity is severely reduced in HD. Interestingly, the level of nDNA damage correlated inversely with the total functional capacity (TFC) score; an established functional score of HD. Our data show that PBMCs are a promising source to monitor HD progression and highlights nDNA damage and diverging mitochondrial and nuclear genome responses representing early cellular impairments in HD.
Collapse
|
40
|
Zhao Y, Zurawel AA, Jenkins NP, Duennwald ML, Cheng C, Kettenbach AN, Supattapone S. Comparative Analysis of Mutant Huntingtin Binding Partners in Yeast Species. Sci Rep 2018; 8:9554. [PMID: 29934597 PMCID: PMC6015068 DOI: 10.1038/s41598-018-27900-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease is caused by the pathological expansion of a polyglutamine (polyQ) stretch in Huntingtin (Htt), but the molecular mechanisms by which polyQ expansion in Htt causes toxicity in selective neuronal populations remain poorly understood. Interestingly, heterologous expression of expanded polyQ Htt is toxic in Saccharomyces cerevisiae cells, but has no effect in Schizosaccharomyces pombe, a related yeast species possessing very few endogenous polyQ or Q/N-rich proteins. Here, we used a comprehensive and unbiased mass spectrometric approach to identify proteins that bind Htt in a length-dependent manner in both species. Analysis of the expanded polyQ-associated proteins reveals marked enrichment of proteins that are localized to and play functional roles in nucleoli and mitochondria in S. cerevisiae, but not in S. pombe. Moreover, expanded polyQ Htt appears to interact preferentially with endogenous polyQ and Q/N-rich proteins, which are rare in S. pombe, as well as proteins containing coiled-coil motifs in S. cerevisiae. Taken together, these results suggest that polyQ expansion of Htt may cause cellular toxicity in S. cerevisiae by sequestering endogenous polyQ and Q/N-rich proteins, particularly within nucleoli and mitochondria.
Collapse
Affiliation(s)
- Yanding Zhao
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Ashley A Zurawel
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Nicole P Jenkins
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Martin L Duennwald
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Chao Cheng
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
- Biomedical Data Sciences, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Arminja N Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States
| | - Surachai Supattapone
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States.
- Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, 03755, United States.
| |
Collapse
|
41
|
Abstract
Glaucoma is one of the leading causes of irreversible visual loss, which has been estimated to affect 3.5% of those over 40 years old and projected to affect a total of 112 million people by 2040. Such a dramatic increase in affected patients demonstrates the need for continual improvement in the way we diagnose and treat this condition. Annexin A5 is a 36 kDa protein that is ubiquitously expressed in humans and is studied as an indicator of apoptosis in several fields. This molecule has a high calcium-dependent affinity for phosphatidylserine, a cell membrane phospholipid externalized to the outer cell membrane in early apoptosis. The DARC (Detection of Apoptosing Retinal Cells) project uses fluorescently-labelled annexin A5 to assess glaucomatous degeneration, the inherent process of which is the apoptosis of retinal ganglion cells. Furthermore, this project has conducted investigation of the retinal apoptosis in the neurodegenerative conditions of the eye and brain. In this present study, we summarized the use of annexin A5 as a marker of apoptosis in the eye. We also relayed the progress of the DARC project, developing real-time imaging of retinal ganglion cell apoptosis in vivo from the experimental models of disease and identifying mechanisms underlying neurodegeneration and its treatments, which has been applied to the first human clinical trials. DARC has potential as a biomarker in neurodegeneration, especially in the research of novel treatments, and could be a useful tool for the diagnosis and monitoring of glaucoma.
Collapse
|
42
|
Tang J, Huang C, Shu J, Zheng J, Ma D, Li J, Yang R. Azoreductase and Target Simultaneously Activated Fluorescent Monitoring for Cytochrome c Release under Hypoxia. Anal Chem 2018; 90:5865-5872. [DOI: 10.1021/acs.analchem.8b00554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jianru Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Caixia Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jinyong Shu
- The First People Hospital of Yueyang, Yueyang, 414000, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dandan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410076, China
| |
Collapse
|
43
|
Mackay JP, Nassrallah WB, Raymond LA. Cause or compensation?-Altered neuronal Ca 2+ handling in Huntington's disease. CNS Neurosci Ther 2018; 24:301-310. [PMID: 29427371 DOI: 10.1111/cns.12817] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder of typically middle-aged onset for which there is no disease-modifying treatment. Caudate and putamen medium-sized spiny projection neurons (SPNs) most severely degenerate in HD. However, it is unclear why mutant huntingtin protein (mHTT) is preferentially toxic to these neurons or why symptoms manifest only relatively late in life. mHTT interacts with numerous neuronal proteins. Likewise, multiple SPN cellular processes have been described as altered in various HD models. Among these, altered neuronal Ca2+ influx and intracellular Ca2+ handling feature prominently and are addressed here. Specifically, we focus on extrasynaptic NMDA-type glutamate receptors, endoplasmic reticulum IP3 receptors, and mitochondria. As mHTT is expressed throughout development, compensatory processes will likely be mounted to mitigate any deleterious effects. Although some compensations can lessen mHTT's disruptive effects, others-such as upregulation of the ER-refilling store-operated Ca2+ channel response-contribute to pathogenesis. A causation-based approach is therefore necessary to decipher the complex sequence of events linking mHTT to neurodegeneration, and to design rational therapeutic interventions. With this in mind, we highlight evidence, or lack thereof, that the above alterations in Ca2+ handling occur early in the disease process, clearly interact with mHTT, and show disease-modifying potential when reversed in animals.
Collapse
Affiliation(s)
- James P Mackay
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wissam B Nassrallah
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Graduate Program in Neuroscience and MD/PhD Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Long L, Huang M, Wang N, Wu Y, Wang K, Gong A, Zhang Z, Sessler JL. A Mitochondria-Specific Fluorescent Probe for Visualizing Endogenous Hydrogen Cyanide Fluctuations in Neurons. J Am Chem Soc 2018; 140:1870-1875. [PMID: 29337546 PMCID: PMC6276372 DOI: 10.1021/jacs.7b12545] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An ability to visualize HCN in mitochondria in real time may permit additional insights into the critical toxicological and physiological roles this classic toxin plays in living organisms. Herein, we report a mitochondria-specific coumarin pyrrolidinium-derived fluorescence probe (MRP1) that permits the real-time ratiometric imaging of HCN in living cells. The response is specific, sensitive (detection limit is ca. 65.6 nM), rapid (within 1 s), and reversible. Probe MRP1 contains a benzyl chloride subunit designed to enhance retention within the mitochondria under conditions where the mitochondria membrane potential is eliminated. It has proved effective in visualizing different concentrations of exogenous HCN in the mitochondria of HepG2 cells, as well as the imaging of endogenous HCN in the mitochondria of PC12 cells and within neurons. Fluctuations in HCN levels arising from the intracellular generation of HCN could be readily detected.
Collapse
Affiliation(s)
- Lingliang Long
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People’s Republic of China
| | - Meiyu Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People’s Republic of China
| | - Ning Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People’s Republic of China
| | - Yanjun Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People’s Republic of China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People’s Republic of China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People’s Republic of China
| | - Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People’s Republic of China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
45
|
Carmo C, Naia L, Lopes C, Rego AC. Mitochondrial Dysfunction in Huntington’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:59-83. [DOI: 10.1007/978-3-319-71779-1_3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Chang KH, Wu YR, Chen CM. Down-regulation of miR-9* in the peripheral leukocytes of Huntington's disease patients. Orphanet J Rare Dis 2017; 12:185. [PMID: 29258536 PMCID: PMC5737985 DOI: 10.1186/s13023-017-0742-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
Background Huntington’s disease (HD), caused by expansion of a polyglutamine tract within HUNTINGTIN (HTT) protein, is an autosomal dominant neurodegenerative disease associated with a progressive neurodegeneration of striatum and cerebral cortex. Although a few studies have identified substantial microRNA (miRNA) alterations in central nervous tissues from HD patients, it will be more accessible to employ these molecular changes in peripheral tissues as biomarkers for HD. Methods We examined the expression levels of 13 miRNAs (miR-1, mirR-9, miR-9*, miR-10b, miR-29a, miR-29b, miR-124a, miR-132, miR-155, miR-196a, miR-196b, miR-330 and miR-615), 10 of which previously demonstrated alterations and 3 of which are potential regulators of differentially-expressed genes in brains of HD patients, in the peripheral leukocytes of 36 HD patients, 8 pre-symptomatic HD carriers and 28 healthy controls. Results We found expression levels of miR-9* was significantly lower in HD patients compared with those in healthy controls, while other miRNAs did not show significant difference between these two groups. However, there was no significant correlation between Unified Huntington’s Disease Rating Scales (UHDRS) and levels of miR-9* in peripheral leukocytes of HD patients. Conclusion Our findings indicate the potential of miR-9* in peripheral leukocyte as a signature of neurodegeneration in HD patients.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
47
|
Altered Aconitase 2 Activity in Huntington's Disease Peripheral Blood Cells and Mouse Model Striatum. Int J Mol Sci 2017; 18:ijms18112480. [PMID: 29160844 PMCID: PMC5713446 DOI: 10.3390/ijms18112480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease (HD) is caused by an unstable cytosine adenine guanine (CAG) trinucleotide repeat expansion encoding a polyglutamine tract in the huntingtin protein. Previously, we identified several up- and down-regulated protein molecules in the striatum of the Hdh(CAG)150 knock-in mice at 16 months of age, a mouse model which is modeling the early human HD stage. Among those molecules, aconitase 2 (Aco2) located in the mitochondrial matrix is involved in the energy generation and susceptible to increased oxidative stress that would lead to inactivation of Aco2 activity. In this study, we demonstrate decreased Aco2 protein level and activity in the brain of both Hdh(CAG)150 and R6/2 mice. Aco2 activity was decreased in striatum of Hdh(CAG)150 mice at 16 months of age as well as R6/2 mice at 7 to 13 weeks of age. Aco2 activity in the striatum of R6/2 mice could be restored by the anti-oxidant, N-acetyl-l-cysteine, supporting that decreased Aco2 activity in HD is probably caused by increased oxidative damage. Decreased Aco2 activity was further found in the peripheral blood mononuclear cells (PBMC) of both HD patients and pre-symptomatic HD mutation (PreHD) carriers, while the decreased Aco2 protein level of PBMC was only present in HD patients. Aco2 activity correlated significantly with motor score, independence scale, and functional capacity of the Unified Huntington’s Disease Rating Scale as well as disease duration. Our study provides a potential biomarker to assess the disease status of HD patients and PreHD carriers.
Collapse
|
48
|
Park M, Min B, Jeon K, Cho S, Park JS, Kim J, Jeon J, Song J, Kim S, Jeong S, Seo H, Kang YK. Age-associated chromatin relaxation is enhanced in Huntington's disease mice. Aging (Albany NY) 2017; 9:803-822. [PMID: 28288000 PMCID: PMC5391233 DOI: 10.18632/aging.101193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/26/2017] [Indexed: 12/13/2022]
Abstract
Expansion of polyglutamine stretch in the huntingtin (HTT) protein is a major cause of Huntington's disease (HD). The polyglutamine part in HTT interacts with various proteins implicated in epigenetic regulation of genes, suggesting that mutant HTT may disturb the integrity of the epigenetic system. Here, we used a PCRseq-based method to examine expression profile of 395 exonic segments from 260 “epi-driver” genes in splenic T lymphocytes from aged HD mice. We identified 67 exonic segments differentially expressed between young and aged HD mice, most of them upregulated in the aged. Polycomb-repressive complex (PRC)-regulated genes (PRGs) were markedly upregulated in aged HD mice, consistent with downregulation of PRC genes. Epi-driver gene categories of lysine-methylation, lysine-demethylation, arginine-methylation, and PRG showed differential age-associated changes between HD and control. Analyzing the pattern of change in epi-driver gene expressions hinted at an enhanced shift in HD chromatin to a more accessible state with age, which was experimentally demonstrated by DNase-I-hypersensitivity sequencing showing increased chromatin accessibility in HD cells compared to control. We suggest the global change can potentially relieve chromatin-induced repression of many genes, and the unintended expressions of some detrimental proteins could alter T cell function to a greater degree in aged HD mice.
Collapse
Affiliation(s)
- Myungsun Park
- Development and Differentiation Research Center, KRIBB, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Byungkuk Min
- Development and Differentiation Research Center, KRIBB, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Kyuheum Jeon
- Development and Differentiation Research Center, KRIBB, Yuseong-gu, Daejeon, 305-806, South Korea.,Department of Functional Genomics, University of Science and Technology (UST), Yuseong-gu, Daejeon, 305-350, South Korea
| | - Sunwha Cho
- Development and Differentiation Research Center, KRIBB, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, KRIBB, Yuseong-gu, Daejeon, 305-806, South Korea.,Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, South Korea
| | - Jisun Kim
- Department of Molecular and Life Sciences, Hanyang University, Sangnok-gu, Ansan, Gyeonggi-do, 15588, South Korea
| | - Jeha Jeon
- Department of Molecular and Life Sciences, Hanyang University, Sangnok-gu, Ansan, Gyeonggi-do, 15588, South Korea
| | - Jinhoi Song
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, South Korea
| | - Seokho Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, South Korea
| | - Sangkyun Jeong
- Mibyeong Research Center, Korea Institute of Oriental Medicine (KIOM), Yuseong-gu, Daejeon, 305-811, South Korea
| | - Hyemyung Seo
- Department of Molecular and Life Sciences, Hanyang University, Sangnok-gu, Ansan, Gyeonggi-do, 15588, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, KRIBB, Yuseong-gu, Daejeon, 305-806, South Korea.,Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, South Korea.,Department of Functional Genomics, University of Science and Technology (UST), Yuseong-gu, Daejeon, 305-350, South Korea
| |
Collapse
|
49
|
VandenDriessche T, Chuah MK. Hemophilia Gene Therapy: Ready for Prime Time? Hum Gene Ther 2017; 28:1013-1023. [DOI: 10.1089/hum.2017.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
50
|
De M, Ghosh S, Sen T, Shadab M, Banerjee I, Basu S, Ali N. A Novel Therapeutic Strategy for Cancer Using Phosphatidylserine Targeting Stearylamine-Bearing Cationic Liposomes. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:9-27. [PMID: 29499959 PMCID: PMC5723379 DOI: 10.1016/j.omtn.2017.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
There is a pressing need for a ubiquitously expressed antigen or receptor on the tumor surface for successful mitigation of the deleterious side effects of chemotherapy. Phosphatidylserine (PS), normally constrained to the intracellular surface, is exposed on the external surface of tumors and most tumorigenic cell lines. Here we report that a novel PS-targeting liposome, phosphatidylcholine-stearylamine (PC-SA), induced apoptosis and showed potent anticancer effects as a single agent against a majority of cancer cell lines. We experimentally proved that this was due to a strong affinity for and direct interaction of these liposomes with PS. Complexation of the chemotherapeutic drugs doxorubicin and camptothecin in these vesicles demonstrated a manyfold enhancement in the efficacies of the drugs both in vitro and across three advanced tumor models without any signs of toxicity. Both free and drug-loaded liposomes were maximally confined to the tumor site with low tissue concentration. These data indicate that PC-SA is a unique and promising liposome that, alone and as a combination therapy, has anticancer potential across a wide range of cancer types.
Collapse
Affiliation(s)
- Manjarika De
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sneha Ghosh
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Triparna Sen
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Md Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Indranil Banerjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Santanu Basu
- Department of Oncology, ESI Hospital, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India.
| |
Collapse
|