1
|
Liu Q, Wang L, Su Y, Dong W, Wang H, Liu Y, Liu H, Liu L, Wang Y. Ultrahigh Enzyme Loading Metal-Organic Frameworks for Deep Tissue Pancreatic Cancer Photoimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305131. [PMID: 37875640 DOI: 10.1002/smll.202305131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/12/2023] [Indexed: 10/26/2023]
Abstract
Protein drugs hold promise in treating multiple complex diseases, including cancer. The priority of protein drug application is precise delivery of substantial bioactive protein into tumor site. Metal-organic-framework (MOF) is widely considered as a promising carrier to encapsulate protein drug owing to the noncovalent interaction between carrier and protein. However, limited loading efficiency and potential toxicity of metal ion in MOF restrict its application in clinical research. Herein, a tumor targeted collagenase-encapsulating MOF via protein-metal ion-organic ligand coordination (PMOCol ) for refining deep tissue pancreatic cancer photoimmunotherapy is developed. By an expedient method in which the ratio of metal ion, histidine residues of protein and ligand is precisely controlled, PMOCol is constructed with ultrahigh encapsulation efficiency (80.3 wt%) and can release collagenase with high enzymatic activity for tumor extracellular matrix (ECM) regulation after reaching tumor microenvironment (TME). Moreover, PMOcol exhibits intensively poorer toxicity than the zeolitic imidazolate framework-8 biomineralized protein. After treatment, the pancreatic tumor with abundant ECM shows enhanced immunocyte infiltration owing to extracellular matrix degradation that improves suppressive TME. By integrating hyperthermia agent with strong near-infrared absorption (1064 nm), PMOCol can induce acute immunogenicity to host immunity activation and systemic immune memory production to prevent tumor development and recurrence.
Collapse
Affiliation(s)
- Qian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, P. R. China
| | - Li Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yitan Su
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Wang Dong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huiru Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, P. R. China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
2
|
Freeman R, Boekhoven J, Dickerson MB, Naik RR, Stupp SI. Biopolymers and supramolecular polymers as biomaterials for biomedical applications. MRS BULLETIN 2015; 40:1089-1101. [PMID: 26989295 PMCID: PMC4790466 DOI: 10.1557/mrs.2015.270] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein- and peptide-based structural biopolymers are abundant building blocks of biological systems. Either in their natural forms, such as collagen, silk or fibronectin, or as related synthetic materials they can be used in various technologies. An emerging area is that of biomimetic materials inspired by protein-based biopolymers, which are made up of small molecules rather than macromolecules and can therefore be described as supramolecular polymers. These materials are very useful in biomedical applications because of their ability to imitate the extracellular matrix both in architecture and their capacity to signal cells. This article describes important features of the natural extracellular matrix and highlight how these features are being incorporated into biomaterials composed of biopolymers and supramolecular polymers. We particularly focus on the structures, properties, and functions of collagen, fibronectin, silk, and the supramolecular polymers inspired by them as biomaterials for regenerative medicine.
Collapse
Affiliation(s)
- Ronit Freeman
- Simpson Querrey Institute of BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Job Boekhoven
- Simpson Querrey Institute of BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Matthew B Dickerson
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702
| | - Rajesh R Naik
- 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702
| | - Samuel I Stupp
- Simpson Querrey Institute of BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Departments of Materials and Science & Engineering, Chemistry, Medicine, and Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
3
|
|
4
|
Sado DM, Flett AS, Moon JC. Novel imaging techniques for diffuse myocardial fibrosis. Future Cardiol 2012; 7:643-50. [PMID: 21929344 DOI: 10.2217/fca.11.45] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diffuse myocardial fibrosis (DMF) is an important marker in many cardiac diseases, but its utility has been limited by the need for biopsy for its assessment. An accurate noninvasive method for DMF assessment could transform cardiology. This review explores the basic biology of DMF and then discusses the ability of various cardiac imaging modalities to evaluate this variable, speculating on how this area of research may develop over the next few years.
Collapse
Affiliation(s)
- Daniel M Sado
- Department of Inherited Cardiac Disease, The Heart Hospital, 16-18 Westmoreland Street, London, W1G 8PH, UK
| | | | | |
Collapse
|
5
|
Horejs C, Ristl R, Tscheliessnig R, Sleytr UB, Pum D. Single-molecule force spectroscopy reveals the individual mechanical unfolding pathways of a surface layer protein. J Biol Chem 2011; 286:27416-24. [PMID: 21690085 PMCID: PMC3149335 DOI: 10.1074/jbc.m111.251322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Indexed: 12/14/2022] Open
Abstract
Surface layers (S-layers) represent an almost universal feature of archaeal cell envelopes and are probably the most abundant bacterial cell proteins. S-layers are monomolecular crystalline structures of single protein or glycoprotein monomers that completely cover the cell surface during all stages of the cell growth cycle, thereby performing their intrinsic function under a constant intra- and intermolecular mechanical stress. In gram-positive bacteria, the individual S-layer proteins are anchored by a specific binding mechanism to polysaccharides (secondary cell wall polymers) that are linked to the underlying peptidoglycan layer. In this work, atomic force microscopy-based single-molecule force spectroscopy and a polyprotein approach are used to study the individual mechanical unfolding pathways of an S-layer protein. We uncover complex unfolding pathways involving the consecutive unfolding of structural intermediates, where a mechanical stability of 87 pN is revealed. Different initial extensibilities allow the hypothesis that S-layer proteins adapt highly stable, mechanically resilient conformations that are not extensible under the presence of a pulling force. Interestingly, a change of the unfolding pathway is observed when individual S-layer proteins interact with secondary cell wall polymers, which is a direct signature of a conformational change induced by the ligand. Moreover, the mechanical stability increases up to 110 pN. This work demonstrates that single-molecule force spectroscopy offers a powerful tool to detect subtle changes in the structure of an individual protein upon binding of a ligand and constitutes the first conformational study of surface layer proteins at the single-molecule level.
Collapse
Affiliation(s)
| | - Robin Ristl
- From the Department for Nanobiotechnology and
| | - Rupert Tscheliessnig
- the Austrian Centre of Industrial Biotechnology, c/o Institute for Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | | | - Dietmar Pum
- From the Department for Nanobiotechnology and
| |
Collapse
|
6
|
Prodanov L, te Riet J, Lamers E, Domanski M, Luttge R, van Loon JJWA, Jansen JA, Walboomers XF. The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior. Biomaterials 2011; 31:7758-65. [PMID: 20647152 DOI: 10.1016/j.biomaterials.2010.06.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022]
Abstract
Osteoblasts respond to mechanical stimulation by changing morphology, gene expression and matrix mineralization. Introducing surface topography on biomaterials, independently of mechanical loading, has been reported to give similar effects. In the current study, using a nanotextured surface, and mechanical loading, we aimed to develop a multi-factorial model in which both parameters interact. Mechanical stimulation to osteoblast-like cells was applied by longitudinal stretch in parallel direction to the nanotexture (300 nm wide and 60 nm deep grooves), with frequency of 1 Hz and stretch magnitude varying from 1% to 8%. Scanning electron microscopy showed that osteoblast-like cells subjected to mechanical loading oriented perpendicularly to the stretch direction. When cultured on nanotextured surfaces, cells aligned parallel to the texture. However, the parallel cell direction to the nanotextured surface was lost and turned to perpendicular when parallel stretch to the nanotexture, greater than 3% was applied to the cells. This phenomenon could not be achieved when a texture with micro-sized dimensions was used. Moreover, a significant synergistic effect on upregulation of fibronectin and Cfba was observed when dual stimulation was used. These findings can lead to a development of new biomimetic materials that can guide morphogenesis in tissue repair and bone remodeling.
Collapse
Affiliation(s)
- Ljupcho Prodanov
- Radboud University Nijmegen Medical Centre, Department of Biomaterials, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. NATURE MATERIALS 2009; 8:457-70. [PMID: 19458646 DOI: 10.1038/nmat2441] [Citation(s) in RCA: 1132] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The molecular and physical information coded within the extracellular milieu is informing the development of a new generation of biomaterials for tissue engineering. Several powerful extracellular influences have already found their way into cell-instructive scaffolds, while others remain largely unexplored. Yet for commercial success tissue engineering products must be not only efficacious but also cost-effective, introducing a potential dichotomy between the need for sophistication and ease of production. This is spurring interest in recreating extracellular influences in simplified forms, from the reduction of biopolymers into short functional domains, to the use of basic chemistries to manipulate cell fate. In the future these exciting developments are likely to help reconcile the clinical and commercial pressures on tissue engineering.
Collapse
Affiliation(s)
- Elsie S Place
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
8
|
Papp S, Fadel MP, Michalak M, Opas M. Analysis of the suitability of calreticulin inducible HEK cells for adhesion studies: microscopical and biochemical comparisons. Mol Cell Biochem 2007; 307:237-48. [PMID: 17909946 DOI: 10.1007/s11010-007-9602-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 08/27/2007] [Indexed: 01/10/2023]
Abstract
Calreticulin is a Ca(2+)-buffering ER chaperone that also modulates cell adhesiveness. In order to study the effect of calreticulin on the expression of adhesion-related genes, we created a calreticulin inducible Human Embryonic Kidney (HEK) 293 cell line. We found that fibronectin mRNA and both intra- and extra-cellular fibronectin protein levels increased following calreticulin induction. However, despite this increase in fibronectin, HEK293 cells did not assemble an extracellular fibrillar fibronectin matrix regardless of the level of calreticulin expression. Furthermore, HEK293 cells exhibited a poorly organized actin cytoskeleton, did not have clustered fibronectin receptors at the cell surface, and did not form focal contacts. This likely accounts for the lack of fibronectin matrix deposition by these cells regardless of calreticulin expression level. Vinculin abundance did not appreciably increase upon calreticulin induction and the level of active c-Src, a regulatory kinase of focal contacts, was found to be abundant and unregulated by calreticulin induction in these cells. The inability to form stable focal contacts and to commence fibronectin fibrillogenesis due to high c-Src activity may be responsible for the poor adhesive phenotype of HEK 293 cells. Thus, we show here that HEK293 cells are not suitable for microscopical studies of cell-substratum adhesions, but are best suited for biochemical studies.
Collapse
Affiliation(s)
- Sylvia Papp
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
9
|
De Jong KL, MacLeod HC, Norton PR, Petersen NO. Fibronectin organization under and near cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:695-708. [PMID: 16944124 DOI: 10.1007/s00249-006-0081-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 03/17/2006] [Indexed: 10/25/2022]
Abstract
Polymerization of soluble fibronectin molecules results in fibres that are visible as networks using fluorescently labelled fibronectin protomers or by antibody labelling. Displacement of fibres composed of modified protomers in living cells provides information regarding matrix structure, organization, and movement. A static analysis of fibronectin structures and patterns of organization provide insight into their reorganization during adhesion and motility. Confocal microscopy and atomic force microscopy (AFM) reveal fibronectin-containing networks aligned in arrays perpendicular to the retracting cell edge and in apparently disordered networks of fibres under the cell. The change in patterns suggests a reorganization of fibronectin from disordered arrays used for adhesion into ordered arrays during movement of the cell. Comparison of confocal images with corresponding AFM images confirms that the fibres left on the surface as the cell moves away do contain fibronectin. The orientation of these fibres relative to the tail (uropod) and the receding edges of the cell leads us to propose that cells generate a force on the fibres that exceeds the adhesion force of the fibres to the surface causing them to pull fibronectin fibres into straight arrays. However, when the fibres are parallel to the direction of pull, the fibres remain attached to the surface. The data supports the hypothesis that disorganized, linear fibres are the product of Fn polymerization induced by the cell beneath it and serve to adhere the cell to the substrate as the cell spreads, whereas arrays of fibres found outside the cell are formed as existing fibrils and reorganize during cell motility.
Collapse
Affiliation(s)
- Kathy L De Jong
- Department of Chemistry, University of Western Ontario, London, ON, Canada
| | | | | | | |
Collapse
|
10
|
Ensenberger MG, Annis DS, Mosher DF. Actions of the functional upstream domain of protein F1 of Streptococcus pyogenes on the conformation of fibronectin. Biophys Chem 2005; 112:201-7. [PMID: 15572249 DOI: 10.1016/j.bpc.2004.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 07/01/2004] [Indexed: 11/28/2022]
Abstract
Fibronectin (Fn), discovered by Harvard's Plasma Protein Program as plasma "cold-insoluble globulin" in the 1940s, has attracted much interest over the past three decades. One of the most interesting features of Fn is its ability to change shape in response to various environmental conditions and interactions with other substances found in the extra-cellular space. Here we examine the potential of the functional upstream domain (FUD) of Streptococcus pyogenes protein F1 to bring about changes in structure of Fn. In particular, we investigate the accessibility of Fn's 10th type III module that contains the integrin binding RGD motif. By use of monoclonal antibodies in a competitive ELISA assay, we found that FUD interacts with the amino-terminal type I modules of Fn to unveil the cell-binding region of Fn. This conformational change was achieved at sub-equimolar ratios of FUD/Fn monomer. We discuss the functional relevance of the interaction for both Fn and S. pyogenes and correlate the results with a conformational model of Fn that arose out of a collaboration between our laboratory and that of John Ferry.
Collapse
|
11
|
Kneller JM, Elvingson C, Arteca GA. Shape transitions induced by mechanical external stretching of grafted self-attractive wormlike chains. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.03.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Li Z, Arteca GA. Simulated force-induced unfolding of α-helices: dependence of stretching stability on primary sequence. Phys Chem Chem Phys 2005; 7:2018-26. [DOI: 10.1039/b413131b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Li L, Huang HHL, Badilla CL, Fernandez JM. Mechanical Unfolding Intermediates Observed by Single-molecule Force Spectroscopy in a Fibronectin Type III Module. J Mol Biol 2005; 345:817-26. [PMID: 15588828 DOI: 10.1016/j.jmb.2004.11.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 11/10/2004] [Indexed: 11/19/2022]
Abstract
Domain 10 of type III fibronectin (10FNIII) is known to play a pivotal role in the mechanical interactions between cell surface integrins and the extracellular matrix. Recent molecular dynamics simulations have predicted that 10FNIII, when exposed to a stretching force, unfolds along two pathways, each with a distinct, mechanically stable intermediate. Here, we use single-molecule force spectroscopy combined with protein engineering to test these predictions by probing the mechanical unfolding pathway of 10FNIII. Stretching single polyproteins containing the 10FNIII module resulted in sawtooth patterns where 10FNIII was seen unfolding in two consecutive steps. The native state unfolded at 100(+/-20) pN, elongating (10)FNIII by 12(+/-2) nm and reaching a clearly marked intermediate that unfolded at 50(+/-20) pN. Unfolding of the intermediate completed the elongation of the molecule by extending another 19(+/-2) nm. Site-directed mutagenesis of residues in the A and B beta-strands (E9P and L19P) resulted in sawtooth patterns with all-or-none unfolding events that elongated the molecule by 19(+/-2) nm. In contrast, mutating residues in the G beta-strand gave results that were dependent on amino acid position. The mutation I88P in the middle of the G beta-strand resulted in native like unfolding sawtooth patterns showing an intact intermediate state. The mutation Y92P, which is near the end of G beta-strand, produced sawtooth patterns with all-or-none unfolding events that lengthened the molecule by 17(+/-2) nm. These results are consistent with the view that 10FNIII can unfold in two different ways. Along one pathway, the detachment of the A and B beta-strands from the body of the folded module constitute the first unfolding event, followed by the unfolding of the remaining beta-sandwich structure. Along the second pathway, the detachment of the G beta-strands is involved in the first unfolding event. These results are in excellent agreement with the sequence of events predicted by molecular dynamics simulations of the 10FNIII module.
Collapse
Affiliation(s)
- Lewyn Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
14
|
Giles RH, Voest EE. Tumor suppressors APC and VHL: gatekeepers of the intestine and kidney. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 40:151-81. [PMID: 17153484 DOI: 10.1007/3-540-27671-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Rachel H Giles
- Department Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
15
|
Boldt A, Wetzel U, Lauschke J, Weigl J, Gummert J, Hindricks G, Kottkamp H, Dhein S. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart 2004; 90:400-5. [PMID: 15020515 PMCID: PMC1768173 DOI: 10.1136/hrt.2003.015347] [Citation(s) in RCA: 351] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2003] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To examine the hypothesis that major extracellular matrix (ECM) proteins are expressed differently in the left atrial tissue of patients in sinus rhythm (SR), lone atrial fibrillation (AF), and AF with underlying mitral valve disease (MVD). DESIGN Case-control study. PATIENTS 118 patients with lone AF, MVD+AF, and SR. MAIN OUTCOME MEASURES Collagen I, collagen III, and fibronectin protein expression measured by quantitative western blotting techniques and immunohistochemical methods. RESULTS Protein concentrations increased in patients with AF (all forms) compared with those in SR (all forms): collagen I (1.15 (0.11) v 0.45 (0.28), respectively; p = 0.002), collagen III (0.74 (0.05) v 0.46 (0.11); p = 0.002, and fibronectin (0.88 (0.06) v 0.62 (0.13); p = 0.08). Especially, collagen I was similarly enhanced in both lone AF (1.49 (0.15) and MVD+AF (1.53 (0.16) compared with SR (0.56 (0.28); both p = 0.01). Collagen III was not significantly increased in lone AF but was significantly increased in AF combined with MVD (0.84 (0.07) both compared with SR (0.46 (0.11); p = 0.01). The concentration of fibronectin was not significantly increased in lone AF and MVD+AF (both compared with SR). Furthermore, there was a similar degree of enhanced collagen expression in paroxysmal AF and chronic AF. CONCLUSIONS AF is associated with fibrosis. Forms of AF differ from each other in collagen III expression. However, there was no systematic difference in ECM expression between paroxysmal AF and chronic AF. Enhanced concentrations of ECM proteins may have a role in structural remodelling and the pathogenesis of AF as a result of separation of the cells by fibrotic depositions.
Collapse
Affiliation(s)
- A Boldt
- Heart Centre, Cardiovascular Surgery, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lanthier J, Desrosiers RR. Protein L-isoaspartyl methyltransferase repairs abnormal aspartyl residues accumulated in vivo in type-I collagen and restores cell migration. Exp Cell Res 2004; 293:96-105. [PMID: 14729060 DOI: 10.1016/j.yexcr.2003.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abnormal aspartyl residue formation such as L-isoaspartates occurs frequently during aging in long-lived proteins, resulting in the alteration of their structures and biological functions. In this study, we investigated the alteration of aspartyl residues in extracellular matrix (ECM) proteins, type-I collagen and fibronectin, and in integrin- and ECM-binding motifs during aging, as well as the resulting effects on cell biological functions such as migration and attachment. Using protein L-isoaspartyl methyltransferase (PIMT) to monitor the presence of L-isoaspartyl residues, we showed their accumulation during in vivo aging in type-I collagen from rats. In vitro aging of fibronectin as well as of peptides containing an integrin- or ECM-binding motif such as RGDSR, KDGEA and KDDL also resulted in the formation of L-isoaspartyl residues. While aged fibronectin does not alter cell adhesion and migration, type-I collagen aged 20 months reduced by 65% cell motility, but not adhesion, when compared to 3-month-aged type-I collagen. Finally, by repairing 20-month-old type-I collagen with recombinant PIMT (rPIMT), cell migration was recovered by 72%. These results strongly suggest that L-isoaspartyl residue formation in ECM proteins such as type-I collagen could play an important role in reducing cell migration and that PIMT could be a therapeutic tool to restore normal cell migration in pathological conditions where cell motility is crucial.
Collapse
Affiliation(s)
- Julie Lanthier
- Laboratoire de Médecine Moléculaire, Université du Québec à Montréal, Québec, Canada
| | | |
Collapse
|
17
|
Boyd ND, Chan BMC, Petersen NO. β1integrins are distributed in adhesion structures with fibronectin and caveolin and in coated pits. Biochem Cell Biol 2003; 81:335-48. [PMID: 14569297 DOI: 10.1139/o03-063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Integrins are found in adhesion structures, which link the extracelullar matrix to cytoskeletal proteins. Here, we attempt to further define the distribution of β1integrins in the context of their association with matrix proteins and other cell surface molecules relevant to the endocytic process. We find that β1integrins colocalize with fibronectin in fibrillar adhesion structures. A fraction of caveolin is also organized along these adhesion structures. The extracellular matrix protein laminin is not concentrated in these structures. The α4β1integrin exhibits a distinct distribution from other β1integrins after cells have adhered for 1 h to extracellular matrix proteins but is localized in adhesion structures after 24 h of adhesion. There are differences between the fibronectin receptors: α5β1integrins colocalize with adaptor protein-2 in coated pits, while α4β1integrins do not. This parallels our earlier observation that of the two laminin receptors, α1β1and α6β1, only αaβ1integrins colocalize with adaptor protein-2 in coated pits. Calcium chelation or inhibition of mitogen-activated protein kinase kinase, protein kinase C, or src did not affect localization of α1β1and α5β1integrins in coated pits. Likewise, the integrity of coated-pit structures or adhesion structures is not required for integrin and adaptor protein-2 colocalization. This suggests a robust and possibly constitutive interaction between these integrins and coated pits.Key words: adhesion, endocytosis, extracellular matrix, microscopy, confocal, signalling.
Collapse
Affiliation(s)
- Nikhat D Boyd
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | | | |
Collapse
|
18
|
Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran SA. Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 2002; 83:1380-94. [PMID: 12202364 PMCID: PMC1302237 DOI: 10.1016/s0006-3495(02)73909-x] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Forces exerted by stationary cells have been investigated on the level of single focal adhesions by combining elastic substrates, fluorescence labeling of focal adhesions, and the assumption of localized force when solving the inverse problem of linear elasticity theory. Data simulation confirms that the inverse problem is ill-posed in the presence of noise and shows that in general a regularization scheme is needed to arrive at a reliable force estimate. Spatial and force resolution are restricted by the smoothing action of the elastic kernel, depend on the details of the force and displacement patterns, and are estimated by data simulation. Corrections arising from the spatial distribution of force and from finite substrate size are treated in the framework of a force multipolar expansion. Our method is computationally cheap and could be used to study mechanical activity of cells in real time.
Collapse
Affiliation(s)
- U S Schwarz
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 2002; 319:433-47. [PMID: 12051919 DOI: 10.1016/s0022-2836(02)00306-6] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mechanically induced conformational changes in proteins such as fibronectin are thought to regulate the assembly of the extracellular matrix and underlie its elasticity and extensibility. Fibronectin contains a region of tandem repeats of up to 15 type III domains that play critical roles in cell binding and self-assembly. Here, we use single-molecule force spectroscopy to examine the mechanical properties of fibronectin (FN) and its individual FNIII domains. We found that fibronectin is highly extensible due to the unfolding of its FNIII domains. We found that the native FNIII region displays strong mechanical unfolding hierarchies requiring 80 pN of force to unfold the weakest domain and 200 pN for the most stable domain. In an effort to determine the identity of the weakest/strongest domain, we engineered polyproteins composed of an individual domain and measured their mechanical stability by single-protein atomic force microscopy (AFM) techniques. In contrast to chemical and thermal measurements of stability, we found that the tenth FNIII domain is mechanically the weakest and that the first and second FNIII domains are the strongest. Moreover, we found that the first FNIII domain can acquire multiple, partially folded conformations, and that their incidence is modulated strongly by its neighbor FNIII domain. The mechanical hierarchies of fibronectin demonstrated here may be important for the activation of fibrillogenesis and matrix assembly.
Collapse
Affiliation(s)
- Andres F Oberhauser
- Department of Physiology and Biophysics, Mayo Foundation, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
Focal contacts, focal complexes and related extracellular matrix adhesions are used by cells to explore their environment. These sites act as mechanosensory 'devices', where internal contractile forces or externally applied force can regulate the assembly of the adhesion site and trigger adhesion-dependent signaling involving Rho-family small G-proteins and other signaling pathways. The molecular mechanisms underlying these processes are discussed.
Collapse
Affiliation(s)
- B Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
21
|
Mukherjee N, Saris DB, Schultz FM, Berglund LJ, An KN, O' Driscoll SW. The enhancement of periosteal chondrogenesis in organ culture by dynamic fluid pressure. J Orthop Res 2001; 19:524-30. [PMID: 11518256 DOI: 10.1016/s0736-0266(00)00045-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cartilage repair by autologous periosteal arthroplasty is enhanced by continuous passive motion (CPM) of the joint after transplantation of the periosteal graft. However, the mechanisms by which CPM stimulate chondrogenesis are unknown. Based on the observation that an oscillating intra-synovial pressure fluctuation has been reported to occur during CPM (0.6-10 kPa), it was hypothesized that the oscillating pressure experienced by the periosteal graft as a result of CPM has a beneficial effect on the chondrogenic response of the graft. We have developed an in vitro model with which dynamic fluid pressures (DFP) that mimic those during CPM can be applied to periosteal explants while they are cultured in agarose gel suspension. In this study periosteal explants were treated with or without DFP during suspension culture in agarose, which is conducive to chondrogenesis. Different DFP application times (30 min, 4 h, 24 h/day) and pressure magnitudes (13, 103 kPa or stepwise 13 to 54 to 103 kPa) were compared for their effects on periosteal chondrogenesis. Low levels of DFP (13 kPa at 0.3 Hz) significantly enhanced chondrogenesis over controls (34 +/- 7% vs 14 +/- 5%; P < 0.05), while higher pressures (103 kPa at 0.3 Hz) completely inhibited chondrogenesis, as determined from the percentage of tissue that was determined to be cartilage by histomorphometry. Application of low levels of DFP to periosteal explants also resulted in significantly increased concentrations of Collagen Type II protein (43 +/- 8% vs 10 +/- 5%; P < 0.05). New proteoglycan synthesis, as measured by 35S-sulphate uptake was increased by 30% in periosteal explants stimulated with DFP (350 +/- 50 DPM vs 250 +/- 75 DPM of 35S-sulphate uptake/microg total protein), when compared to controls though this difference was not statistically significant. The DFP effect at low levels was dose-dependant for time of application as well, with 4 h/day stimulation causing significantly higher chondrogenesis than just 30 min/day (34 +/- 7 vs 12 +/- 4% cartilage; P < 0.05) and not significantly less than that obtained with 24 h/day of DFP (48 +/- 9% cartilage, P > 0.05). These observations may partially explain the beneficial effect on cartilage repair by CPM. They also validate an in vitro model permitting studies aimed at elucidating the mechanisms of action of mechanical factors regulating chondrogenesis. The fact that these tissues were successfully cultured in a mechanical environment for six weeks makes it possible to study the actions of mechanical factors on the entire chondrogenic pathway, from induction to maturation. Finally, these data support the theoretical predictions regarding the role of hydrostatic compression in fracture healing.
Collapse
Affiliation(s)
- N Mukherjee
- Cartilage and Connective Tissue Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
22
|
Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 2001; 153:1175-86. [PMID: 11402062 PMCID: PMC2192034 DOI: 10.1083/jcb.153.6.1175] [Citation(s) in RCA: 1041] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The transition of cell-matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II-driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein-tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136-143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.
Collapse
Affiliation(s)
- Daniel Riveline
- Laboratory of Physical Spectrometry (CNRS), UMR 5588, Joseph Fourier University, French National Center for Scientific Research, BP87, 38402 Saint-Martin d'Hères Cedex, France
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eli Zamir
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nathalie Q. Balaban
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ulrich S. Schwarz
- Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Toshimasa Ishizaki
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | - Zvi Kam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander D. Bershadsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 2001; 3:466-72. [PMID: 11331874 DOI: 10.1038/35074532] [Citation(s) in RCA: 1417] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanical forces play a major role in the regulation of cell adhesion and cytoskeletal organization. In order to explore the molecular mechanism underlying this regulation, we have investigated the relationship between local force applied by the cell to the substrate and the assembly of focal adhesions. A novel approach was developed for real-time, high-resolution measurements of forces applied by cells at single adhesion sites. This method combines micropatterning of elastomer substrates and fluorescence imaging of focal adhesions in live cells expressing GFP-tagged vinculin. Local forces are correlated with the orientation, total fluorescence intensity and area of the focal adhesions, indicating a constant stress of 5.5 +/- 2 nNmicrom(-2). The dynamics of the force-dependent modulation of focal adhesions were characterized by blocking actomyosin contractility and were found to be on a time scale of seconds. The results put clear constraints on the possible molecular mechanisms for the mechanosensory response of focal adhesions to applied force.
Collapse
Affiliation(s)
- N Q Balaban
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 74:63-91. [PMID: 11106807 DOI: 10.1016/s0079-6107(00)00017-1] [Citation(s) in RCA: 377] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).
Collapse
Affiliation(s)
- M Carrion-Vazquez
- Department of Physiology and Biophysics, Mayo Foundation, 1-159 Medical Sciences Building, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Berry H, Pelta J, Lairez D, Larreta-Garde V. Gel-sol transition can describe the proteolysis of extracellular matrix gels. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1524:110-7. [PMID: 11113557 DOI: 10.1016/s0304-4165(00)00144-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We monitored the cell-free solubilization of extracellular matrix and fibronectin gels, catalyzed by exogenous proteinases. The corresponding measurements could not be interpreted according to usual proteinase kinetics. The observation that this experimental system did not consist in surface but in bulk degradation and appeared specific to gel substrates, incited us to use gelation-related approaches to describe these kinetics. We show that the gel-sol transition theory adequately describes the enzyme reactions. This allowed formulation and experimental confirmation of a power law relating macroscopic changes of the gel to enzyme kinetics. This approach could also be used for other power laws predicted by the gel-sol transition theory, allowing a better understanding of macroscopic modification of the extracellular matrix during proteolysis, which is implied in many biological situations, especially tumor dissemination.
Collapse
Affiliation(s)
- H Berry
- ERRMECE, University of Cergy-Pontoise, Cergy-Pontoise, France
| | | | | | | |
Collapse
|
26
|
Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2000. [PMID: 11106807 DOI: 10.1016/b978-008044031-6/50032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).
Collapse
Affiliation(s)
- M Carrion-Vazquez
- Department of Physiology and Biophysics, Mayo Foundation, 1-159 Medical Sciences Building, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|