1
|
Depenveiller C, Baud S, Belloy N, Bochicchio B, Dandurand J, Dauchez M, Pepe A, Pomès R, Samouillan V, Debelle L. Structural and physical basis for the elasticity of elastin. Q Rev Biophys 2024; 57:e3. [PMID: 38501287 DOI: 10.1017/s0033583524000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Elastin function is to endow vertebrate tissues with elasticity so that they can adapt to local mechanical constraints. The hydrophobicity and insolubility of the mature elastin polymer have hampered studies of its molecular organisation and structure-elasticity relationships. Nevertheless, a growing number of studies from a broad range of disciplines have provided invaluable insights, and several structural models of elastin have been proposed. However, many questions remain regarding how the primary sequence of elastin (and the soluble precursor tropoelastin) governs the molecular structure, its organisation into a polymeric network, and the mechanical properties of the resulting material. The elasticity of elastin is known to be largely entropic in origin, a property that is understood to arise from both its disordered molecular structure and its hydrophobic character. Despite a high degree of hydrophobicity, elastin does not form compact, water-excluding domains and remains highly disordered. However, elastin contains both stable and labile secondary structure elements. Current models of elastin structure and function are drawn from data collected on tropoelastin and on elastin-like peptides (ELPs) but at the tissue level, elasticity is only achieved after polymerisation of the mature elastin. In tissues, the reticulation of tropoelastin chains in water defines the polymer elastin that bears elasticity. Similarly, ELPs require polymerisation to become elastic. There is considerable interest in elastin especially in the biomaterials and cosmetic fields where ELPs are widely used. This review aims to provide an up-to-date survey of/perspective on current knowledge about the interplay between elastin structure, solvation, and entropic elasticity.
Collapse
Affiliation(s)
- Camille Depenveiller
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Stéphanie Baud
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Nicolas Belloy
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - Jany Dandurand
- CIRIMAT UMR 5085, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Manuel Dauchez
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Valérie Samouillan
- CIRIMAT UMR 5085, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Laurent Debelle
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
2
|
Tsukano C, Uchino A, Irie K. Synthesis and applications of symmetric amino acid derivatives. Org Biomol Chem 2024; 22:411-428. [PMID: 37877370 DOI: 10.1039/d3ob01379k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Symmetric α-amino acid derivatives can be used for the synthesis of intermolecularly linked peptides such as dimer-type peptides, and modified peptides in which two amino acids are intramolecularly linked. They are also synthetic intermediates for the total synthesis of natural products and functional molecules. These symmetric amino acid derivatives must be prepared based on organic synthesis. It is necessary to develop an optimal synthetic strategy for constructing the target symmetric amino acid derivative. In this review, we will introduce strategies for synthesizing symmetric amino acid derivatives. Additionally, selected applications of these amino acids in the life sciences will be described.
Collapse
Affiliation(s)
- Chihiro Tsukano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Ayumi Uchino
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
3
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
4
|
Anzawa R, Shiratsuchi E, Miyanari K, Chick CN, Mikagi A, Yamada M, Usuki T. LC–MS/MS analysis of desmosine and isodesmosine in skipjack tuna “Katsuo” elastin. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
5
|
Mikagi A, Tashiro R, Inoue T, Anzawa R, Imura A, Tanigawa T, Ishida T, Inoue T, Niizuma K, Tominaga T, Usuki T. Isotope-dilution LC-MS/MS analysis of the elastin crosslinkers desmosine and isodesmosine in acute cerebral stroke patients. RSC Adv 2022; 12:31769-31777. [PMID: 36380946 PMCID: PMC9639221 DOI: 10.1039/d2ra06009d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/29/2022] [Indexed: 06/25/2024] Open
Abstract
Utilizing chemically synthesized an isotopically labeled internal standard, isodesmosine-13C3,15N1, an isotope-dilution LC-MS/MS method was established. Concentrations of desmosine and isodesmosine in plasma of acute cerebral stroke patients and healthy controls were determined. The concentration of desmosines was markedly higher in plasma from acute stroke patients compared with healthy controls. Desmosines are thus novel biomarkers for evaluating the extent of vascular injury after acute cerebral stroke.
Collapse
Affiliation(s)
- Ayame Mikagi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
| | - Ryosuke Tashiro
- Department of Neurosurgery, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi Aoba-ku Sendai 980-8574 Japan
| | - Tomoo Inoue
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi Aoba-ku Sendai 980-8574 Japan
- Department of Neurosurgery, Sendai Medical Center 2-11-12 Miyagino Miyagino-ku Sendai 983-8520 Japan
| | - Riki Anzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
| | - Akiho Imura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
| | - Takahiro Tanigawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
| | - Tomohisa Ishida
- Department of Neurosurgery, Sendai Medical Center 2-11-12 Miyagino Miyagino-ku Sendai 983-8520 Japan
| | - Takashi Inoue
- Department of Neurosurgery, Sendai Medical Center 2-11-12 Miyagino Miyagino-ku Sendai 983-8520 Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University 2-1 Seiryo-machi, Aoba-ku Sendai 980-8575 Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine 2-1 Seiryo-machi, Aoba-ku Sendai 980-8575 Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi Aoba-ku Sendai 980-8574 Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University 7-1 Kioicho Chiyoda-ku Tokyo 102-8554 Japan
| |
Collapse
|
6
|
Total synthesis of merodesmosine. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Synthesis of desmosine-BSA/KLH conjugates via Sonogashira/Negishi cross-coupling reactions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
|
9
|
IsoChichibabin desmosine- 13C 3, 15N 1 synthesis and quantitative LC-MS/MS analysis of desmosine and isodesmosine in human skin. Bioorg Med Chem 2021; 52:116519. [PMID: 34839160 DOI: 10.1016/j.bmc.2021.116519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Desmosine and isodesmosine are crosslinking amino acids of elastin, which is an essential component of the dermal extracellular matrix protein. Quantitative analysis of crosslinker desmosines in human skin dermis has not been fully achieved due to the insoluble nature of elastin protein. In the present study, chemical synthesis of isotopically labeled desmosine, desmosine-13C3,15N1, was carried out via isoChichibabin pyridinium synthesis starting from corresponding isotopically labeled amino acids. Isotope-dilution LC-MS/MS analysis of desmosine and isodesmosine utilizing synthetic desmosine-13C3,15N1 enabled the quantitative analysis of desmosines in human skin for the first time. Thus, ca. 1.43 μg of desmosines was detected from analysis of 1 mg of dry human skin.
Collapse
|
10
|
Parrish PCR, Liu D, Knutsen RH, Billington CJ, Mecham RP, Fu YP, Kozel BA. Whole exome sequencing in patients with Williams-Beuren syndrome followed by disease modeling in mice points to four novel pathways that may modify stenosis risk. Hum Mol Genet 2021; 29:2035-2050. [PMID: 32412588 DOI: 10.1093/hmg/ddaa093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Supravalvular aortic stenosis (SVAS) is a narrowing of the aorta caused by elastin (ELN) haploinsufficiency. SVAS severity varies among patients with Williams-Beuren syndrome (WBS), a rare disorder that removes one copy of ELN and 25-27 other genes. Twenty percent of children with WBS require one or more invasive and often risky procedures to correct the defect while 30% have no appreciable stenosis, despite sharing the same basic genetic lesion. There is no known medical therapy. Consequently, identifying genes that modify SVAS offers the potential for novel modifier-based therapeutics. To improve statistical power in our rare-disease cohort (N = 104 exomes), we utilized extreme-phenotype cohorting, functional variant filtration and pathway-based analysis. Gene set enrichment analysis of exome-wide association data identified increased adaptive immune system variant burden among genes associated with SVAS severity. Additional enrichment, using only potentially pathogenic variants known to differ in frequency between the extreme phenotype subsets, identified significant association of SVAS severity with not only immune pathway genes, but also genes involved with the extracellular matrix, G protein-coupled receptor signaling and lipid metabolism using both SKAT-O and RQTest. Complementary studies in Eln+/-; Rag1-/- mice, which lack a functional adaptive immune system, showed improvement in cardiovascular features of ELN insufficiency. Similarly, studies in mixed background Eln+/- mice confirmed that variations in genes that increase elastic fiber deposition also had positive impact on aortic caliber. By using tools to improve statistical power in combination with orthogonal analyses in mice, we detected four main pathways that contribute to SVAS risk.
Collapse
Affiliation(s)
- Phoebe C R Parrish
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Delong Liu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Russell H Knutsen
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles J Billington
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yi-Ping Fu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Hirose M, Tanaka N, Usuki T. Chichibabin/isoChichibabin pyridinium synthesis of ma'edamines C and D. Bioorg Med Chem Lett 2021; 46:128165. [PMID: 34077773 DOI: 10.1016/j.bmcl.2021.128165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
Ma'edamines C and D were isolated from an Okinawan marine sponge and exhibited a unique tetrasubstituted pyridinium skeleton. The proposed biosynthetic pathway is similar to that of desmosine and isodesmosine, which are elastin-crosslinking amino acids. In this study, first total synthesis of ma'edamines C and D was achieved via Pr(OTf)3-promoted Chichibabin/isoChichibabin pyridinium synthesis starting from the corresponding aldehydes and amine.
Collapse
Affiliation(s)
- Mika Hirose
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Nao Tanaka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
12
|
Mereness JA, Mariani TJ. The critical role of collagen VI in lung development and chronic lung disease. Matrix Biol Plus 2021; 10:100058. [PMID: 34195595 PMCID: PMC8233475 DOI: 10.1016/j.mbplus.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Type VI collagen (collagen VI) is an obligate extracellular matrix component found mainly in the basement membrane region of many mammalian tissues and organs, including skeletal muscle and throughout the respiratory system. Collagen VI is probably most recognized in medicine as the genetic cause of a spectrum of muscular dystrophies, including Ullrich Congenital Myopathy and Bethlem Myopathy. Collagen VI is thought to contribute to myopathy, at least in part, by mediating muscle fiber integrity by anchoring myoblasts to the muscle basement membrane. Interestingly, collagen VI myopathies present with restrictive respiratory insufficiency, thought to be due primarily to thoracic muscular weakening. Although it was recently recognized as one of the (if not the) most abundant collagens in the mammalian lung, there is a substantive knowledge gap concerning its role in respiratory system development and function. A few studies have suggested that collagen VI insufficiency is associated with airway epithelial cell survival and altered lung function. Our recent work suggested collagen VI may be a genomic risk factor for chronic lung disease in premature infants. Using this as motivation, we thoroughly assessed the role of collagen VI in lung development and in lung epithelial cell biology. Here, we describe the state-of-the-art for collagen VI cell and developmental biology within the respiratory system, and reveal its essential roles in normal developmental processes and airway epithelial cell phenotype and intracellular signaling.
Collapse
Affiliation(s)
- Jared A. Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Thomas J. Mariani
- Corresponding author. Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
Schmelzer CEH, Duca L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J 2021; 289:3704-3730. [PMID: 33896108 DOI: 10.1111/febs.15899] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023]
Abstract
Elastic fibers are extracellular components of higher vertebrates and confer elasticity and resilience to numerous tissues and organs such as large blood vessels, lungs, and skin. Their formation and maturation take place in a complex multistage process called elastogenesis. It requires interactions between very different proteins but also other molecules and leads to the deposition and crosslinking of elastin's precursor on a scaffold of fibrillin-rich microfibrils. Mature fibers are exceptionally resistant to most influences and, under healthy conditions, retain their biomechanical function over the life of the organism. However, due to their longevity, they accumulate damages during aging. These are caused by proteolytic degradation, formation of advanced glycation end products, calcification, oxidative damage, aspartic acid racemization, lipid accumulation, carbamylation, and mechanical fatigue. The resulting changes can lead to diminution or complete loss of elastic fiber function and ultimately affect morbidity and mortality. Particularly, the production of elastokines has been clearly shown to influence several life-threatening diseases. Moreover, the structure, distribution, and abundance of elastic fibers are directly or indirectly influenced by a variety of inherited pathological conditions, which mainly affect organs and tissues such as skin, lungs, or the cardiovascular system. A distinction can be made between microfibril-related inherited diseases that are the result of mutations in diverse microfibril genes and indirectly affect elastogenesis, and elastinopathies that are linked to changes in the elastin gene. This review gives an overview on the formation, structure, and function of elastic fibers and their fate over the human lifespan in health and disease.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Sante, Université de Reims Champagne-Ardenne, France
| |
Collapse
|
14
|
Svärd A, Hammerman M, Eliasson P. Elastin levels are higher in healing tendons than in intact tendons and influence tissue compliance. FASEB J 2020; 34:13409-13418. [PMID: 32794252 DOI: 10.1096/fj.202001255r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/11/2022]
Abstract
Elastic fibers containing elastin play an important role in tendon functionality, but the knowledge on presence and function of elastin during tendon healing is limited. The aim of this study was to investigate elastin content and distribution in intact and healing Achilles tendons and to understand how elastin influence the viscoelastic properties of tendons. The right Achilles tendon was completely transected in 81 Sprague-Dawley rats. Elastin content was quantified in intact and healing tendons (7, 14, and 28 days post-surgery) and elastin distribution was visualized by immunohistochemistry at 14 days post-surgery. Degradation of elastin by elastase incubation was used to study the role of elastin on viscoelastic properties. Mechanical testing was either performed as a cyclic test (20× 10 N) or as a creep test. We found significantly higher levels of elastin in healing tendons at all time-points compared to intact tendons (4% in healing tendons 28 days post-surgery vs 2% in intact tendons). The elastin was more widely distributed throughout the extracellular matrix in the healing tendons in contrast to the intact tendon where the distribution was not so pronounced. Elastase incubation reduced the elastin levels by approximately 30% and led to a 40%-50% reduction in creep. This reduction was seen in both intact and healing tendons. Our results show that healing tendons contain more elastin and is more compliable than intact tendons. The role of elastin in tendon healing and tissue compliance indicates a protective role of elastic fibers to prevent re-injuries during early tendon healing. PLAIN LANGUAGE SUMMARY: Tendons transfer high loads from muscles to bones during locomotion. They are primarily made by the protein collagen, a protein that provide strength to the tissues. Besides collagen, tendons also contain other building blocks such as, for example, elastic fibers. Elastic fibers contain elastin and elastin is important for the extensibility of the tendon. When a tendon is injured and ruptured the tissue heals through scar formation. This scar tissue is different from a normal intact tendon and it is important to understand how the tendons heal. Little is known about the presence and function of elastin during healing of tendon injuries. We have shown, in animal experiments, that healing tendons have higher amounts of elastin compared to intact tendons. The elastin is also spread throughout the tissue. When we reduced the levels of this protein, we discovered altered mechanical properties of the tendon. The healing tendon can normally extend quite a lot, but after elastin removal this extensibility was less obvious. The ability of the healing tissue to extend is probably important to protect the tendon from re-injuries during the first months after rupture. We therefore propose that the tendons heal with a large amount of elastin to prevent re-ruptures during early locomotion.
Collapse
Affiliation(s)
- Anna Svärd
- Division of Surgery, Orthopedics and Oncology, Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden.,Cardiovascular Research Centre (CVRC), School of Medical Sciences, Örebro University, Örebro, Sweden.,Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Malin Hammerman
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Pernilla Eliasson
- Division of Surgery, Orthopedics and Oncology, Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| |
Collapse
|
15
|
Hirose M, Yokoo R, Watanabe D, Suzuki R, Tanigawa M, Usuki T. Synthesis of Multi‐Deuterated Desmosine. ChemistrySelect 2020. [DOI: 10.1002/slct.202000507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mika Hirose
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| | - Reiko Yokoo
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| | - Daisuke Watanabe
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| | - Rina Suzuki
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| | - Miho Tanigawa
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences Faculty of Science and TechnologySophia University 7-1 Kioicho, Chiyoda-ku Tokyo 102–8554 Japan
| |
Collapse
|
16
|
Baut DA, Tanaka N, Yokoo R, Usuki T. Preparation of isodesmosine-KLH conjugate for ELISA system. Chirality 2020; 32:431-436. [PMID: 32027414 DOI: 10.1002/chir.23175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a degenerative condition with limited diagnostic detection efficiency. Currently with no available cure, COPD is associated with irreversible elastic tissue degradation in lungs, which results in release of unusual amino acids, isodesmosine and desmosine. These biomarkers are potential key elements in enzyme-linked immunosorbent assay (ELISA), an analytical method, which can detect certain compounds including antigens and proteins in easy and affordable manner. In order to target a biomarker with ELISA, it is necessary to prepare its specific antibody, which can be achieved by immunization of host organism with appropriate antigen containing the biomarker. Although preparation of these types of conjugates has been published, desmosine and isodesmosine used by researchers are obtained from natural sources such as animal tissues. Here, we report the first synthetic preparation of isodesmosine and keyhole limpet hemocyanin (KLH) conjugate from commercially available chiral amino acids and carrier protein. Formation of the core pyridinium of isodesmosine was achieved through key reaction-Chichibabin pyridinium synthesis-to deliver a 1,2,3,5-tetrasubstituted pyridinium amino acid selectively. Further modifications involving KLH and maleimide linker provided the target conjugate, which could potentially invoke an immune response to produce anti-isodesmosine antibody for the ELISA system.
Collapse
Affiliation(s)
- Daria A Baut
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Nao Tanaka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Reiko Yokoo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
17
|
Gaar J, Naffa R, Brimble M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org Chem Front 2020. [DOI: 10.1039/d0qo00624f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review summarized the enzymatic and non-enzymatic crosslinks found in collagen and elastin and their organic synthesis.
Collapse
Affiliation(s)
- Jakob Gaar
- School of Chemical Sciences
- The University of Auckland
- Auckland Central 1010
- New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery
| | - Rafea Naffa
- New Zealand Leather and Shoe Research Association
- Palmerston North
- New Zealand
| | - Margaret Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland Central 1010
- New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
18
|
Schmelzer CEH, Hedtke T, Heinz A. Unique molecular networks: Formation and role of elastin cross-links. IUBMB Life 2019; 72:842-854. [PMID: 31834666 DOI: 10.1002/iub.2213] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/30/2019] [Indexed: 01/11/2023]
Abstract
Elastic fibers are essential assemblies of vertebrates and confer elasticity and resilience to various organs including blood vessels, lungs, skin, and ligaments. Mature fibers, which comprise a dense and insoluble elastin core and a microfibrillar mantle, are extremely resistant toward intrinsic and extrinsic influences and maintain elastic function over the human lifespan in healthy conditions. The oxidative deamination of peptidyl lysine to peptidyl allysine in elastin's precursor tropoelastin is a crucial posttranslational step in their formation. The modification is catalyzed by members of the family of lysyl oxidases and the starting point for subsequent manifold condensation reactions that eventually lead to the highly cross-linked elastomer. This review summarizes the current understanding of the formation of cross-links within and between the monomer molecules, the molecular sites, and cross-link types involved and the pathological consequences of abnormalities in the cross-linking process.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tobias Hedtke
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Kurimoto SI, Seino S, Fromont J, Kobayashi J, Kubota T. Ma’edamines C and D, New Bromotyrosine Alkaloids Possessing a Unique Tetrasubstituted Pyridinium Moiety from an Okinawan Marine Sponge Suberea sp. Org Lett 2019; 21:8824-8826. [DOI: 10.1021/acs.orglett.9b03457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shin-ichiro Kurimoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Satsuki Seino
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Jane Fromont
- Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia
| | - Jun’ichi Kobayashi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takaaki Kubota
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
20
|
Preparation of Protected 13C n-Labeled Isodesmosines: Mechanistic Insight of Isodesmosine Formation. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19849967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
|
22
|
|
23
|
Mikagi A, Tokairin D, Usuki T. Suzuki-Miyaura cross-coupling reaction of monohalopyridines and l-aspartic acid derivative. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Copper as the most likely pathogenic divergence factor between lung fibrosis and emphysema. Med Hypotheses 2018; 120:49-54. [DOI: 10.1016/j.mehy.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/04/2018] [Indexed: 01/17/2023]
|
25
|
Tanaka N, Kurita M, Murakami Y, Usuki T. Chichibabin and IsoChichibabin Pyridinium Syntheses of Isodesmosine, Desmosine, and their Derivatives. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nao Tanaka
- Department of Materials and Life Sciences; Faculty of Science and Technology; Sophia University; 7-1 Kioicho 102-8554 Chiyoda-ku Tokyo Japan
| | - Manami Kurita
- Department of Materials and Life Sciences; Faculty of Science and Technology; Sophia University; 7-1 Kioicho 102-8554 Chiyoda-ku Tokyo Japan
| | - Yuko Murakami
- Department of Materials and Life Sciences; Faculty of Science and Technology; Sophia University; 7-1 Kioicho 102-8554 Chiyoda-ku Tokyo Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences; Faculty of Science and Technology; Sophia University; 7-1 Kioicho 102-8554 Chiyoda-ku Tokyo Japan
| |
Collapse
|
26
|
Schräder CU, Heinz A, Majovsky P, Karaman Mayack B, Brinckmann J, Sippl W, Schmelzer CEH. Elastin is heterogeneously cross-linked. J Biol Chem 2018; 293:15107-15119. [PMID: 30108173 DOI: 10.1074/jbc.ra118.004322] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/12/2018] [Indexed: 01/30/2023] Open
Abstract
Elastin is an essential vertebrate protein responsible for the elasticity of force-bearing tissues such as those of the lungs, blood vessels, and skin. One of the key features required for the exceptional properties of this durable biopolymer is the extensive covalent cross-linking between domains of its monomer molecule tropoelastin. To date, elastin's exact molecular assembly and mechanical properties are poorly understood. Here, using bovine elastin, we investigated the different types of cross-links in mature elastin to gain insight into its structure. We purified and proteolytically cleaved elastin from a single tissue sample into soluble cross-linked and noncross-linked peptides that we studied by high-resolution MS. This analysis enabled the elucidation of cross-links and other elastin modifications. We found that the lysine residues within the tropoelastin sequence were simultaneously unmodified and involved in various types of cross-links with different other domains. The Lys-Pro domains were almost exclusively linked via lysinonorleucine, whereas Lys-Ala domains were found to be cross-linked via lysinonorleucine, allysine aldol, and desmosine. Unexpectedly, we identified a high number of intramolecular cross-links between lysine residues in close proximity. In summary, we show on the molecular level that elastin formation involves random cross-linking of tropoelastin monomers resulting in an unordered network, an unexpected finding compared with previous assumptions of an overall beaded structure.
Collapse
Affiliation(s)
- Christoph U Schräder
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Andrea Heinz
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany.,the Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Petra Majovsky
- the Proteome Analytics Research Group, Leibniz Institute for Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Berin Karaman Mayack
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Jürgen Brinckmann
- the Institute of Virology and Cell Biology, Department of Dermatology, University of Lübeck, Lübeck 23538, Germany, and
| | - Wolfgang Sippl
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Christian E H Schmelzer
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany, .,the Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale) 06120, Germany
| |
Collapse
|
27
|
Duque Lasio ML, Kozel BA. Elastin-driven genetic diseases. Matrix Biol 2018; 71-72:144-160. [PMID: 29501665 DOI: 10.1016/j.matbio.2018.02.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
Abstract
Elastic fibers provide recoil to tissues that undergo repeated deformation, such as blood vessels, lungs and skin. Composed of elastin and its accessory proteins, the fibers are produced within a restricted developmental window and are stable for decades. Their eventual breakdown is associated with a loss of tissue resiliency and aging. Rare alteration of the elastin (ELN) gene produces disease by impacting protein dosage (supravalvar aortic stenosis, Williams Beuren syndrome and Williams Beuren region duplication syndrome) and protein function (autosomal dominant cutis laxa). This review highlights aspects of the elastin molecule and its assembly process that contribute to human disease and also discusses potential therapies aimed at treating diseases of elastin insufficiency.
Collapse
Affiliation(s)
| | - Beth A Kozel
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
28
|
Mecham RP. Elastin in lung development and disease pathogenesis. Matrix Biol 2018; 73:6-20. [PMID: 29331337 DOI: 10.1016/j.matbio.2018.01.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/07/2018] [Indexed: 12/24/2022]
Abstract
Elastin is expressed in most tissues that require elastic recoil. The protein first appeared coincident with the closed circulatory system, and was critical for the evolutionary success of the vertebrate lineage. Elastin is expressed by multiple cell types in the lung, including mesothelial cells in the pleura, smooth muscle cells in airways and blood vessels, endothelial cells, and interstitial fibroblasts. This highly crosslinked protein associates with fibrillin-containing microfibrils to form the elastic fiber, which is the physiological structure that functions in the extracellular matrix. Elastic fibers can be woven into many different shapes depending on the mechanical needs of the tissue. In large pulmonary vessels, for example, elastin forms continuous sheets, or lamellae, that separate smooth muscle layers. Outside of the vasculature, elastic fibers form an extensive fiber network that originates in the central bronchi and inserts into the distal airspaces and visceral pleura. The fibrous cables form a looping system that encircle the alveolar ducts and terminal air spaces and ensures that applied force is transmitted equally to all parts of the lung. Normal lung function depends on proper secretion and assembly of elastin, and either inhibition of elastin fiber assembly or degradation of existing elastin results in lung dysfunction and disease.
Collapse
Affiliation(s)
- Robert P Mecham
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
High sensitivity HPLC method for determination of the allysine concentration in tissue by use of a naphthol derivative. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:7-13. [PMID: 28886479 DOI: 10.1016/j.jchromb.2017.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
Abstract
Common to all fibrotic and metastatic diseases is the uncontrollable remodeling of tissue that leads to the accumulation of fibrous connective tissue components such as collagen and elastin. Build-up of fibrous tissue occurs through the cross-linking of collagen or elastin monomers, which is initiated through the oxidation of lysine residues to form α-aminoadipic-δ-semialdehyde (allysine). To provide a measure of the extent of collagen oxidation in disease models of fibrosis or metastasis, a rapid, sensitive HPLC method was developed to quantify the amount of allysine present in tissue. Allysine was reacted with sodium 2-naphthol-7-sulfonate under conditions typically applied for acid hydrolysis of tissues (6M HCl, 110°C, 24h) to prepare AL-NP, a fluorescent bis-naphthol derivative of allysine. High performance liquid chromatography was applied for analysis of allysine content. Under optimal reaction and detection conditions, successful separation of AL-NP was achieved with excellent analytical performance attained. Good linear relationship (R2=0.994) between peak area and concentration for AL-NP was attained for 0.35-175pmol of analyte. A detection limit of 0.02pmol in the standard sample with a 20μL injection was achieved for AL-NP, with satisfactory recovery from 88 to 100% determined. The method was applied in the quantification of allysine in healthy and fibrotic mouse lung tissue, with the fibrotic tissue showing a 2.5 fold increase in the content of allysine.
Collapse
|
30
|
Ogawa K, Hayashi T, Lin YY, Usuki T. Synthesis of desmosine-containing cyclic peptide for the possible elucidation of elastin crosslinking structure. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Synthesis of desmosine-d4: Improvement of isotopic purity by D-H exchange of amino groups. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Heterocycles of Natural Origin as Non-Toxic Reagents for Cross-Linking of Proteins and Polysaccharides. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2016-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Ragnoni E, Palombo F, Green E, Winlove CP, Di Donato M, Lapini A. Coacervation of α-elastin studied by ultrafast nonlinear infrared spectroscopy. Phys Chem Chem Phys 2016; 18:27981-27990. [DOI: 10.1039/c6cp04049g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elastin is the main protein to confer elasticity to biological tissues, through the formation of a hierarchical network of fibres.
Collapse
Affiliation(s)
- Elena Ragnoni
- LENS, European Laboratory for Nonlinear Spectroscopies
- Via Nello Carrara 1
- I-50019 Sesto Fiorentino
- Italy
- Department of Physics
| | | | - Ellen Green
- School of Physics and Astronomy
- University of Exeter
- Exeter EX4 4QJ
- UK
| | - C. Peter Winlove
- School of Physics and Astronomy
- University of Exeter
- Exeter EX4 4QJ
- UK
| | - Mariangela Di Donato
- LENS, European Laboratory for Nonlinear Spectroscopies
- Via Nello Carrara 1
- I-50019 Sesto Fiorentino
- Italy
- Department of Chemistry
| | - Andrea Lapini
- LENS, European Laboratory for Nonlinear Spectroscopies
- Via Nello Carrara 1
- I-50019 Sesto Fiorentino
- Italy
- INO
| |
Collapse
|
34
|
Murakami Y, Suzuki R, Yanuma H, He J, Ma S, Turino GM, Lin YY, Usuki T. Synthesis and LC-MS/MS analysis of desmosine-CH2, a potential internal standard for the degraded elastin biomarker desmosine. Org Biomol Chem 2015; 12:9887-94. [PMID: 25355397 DOI: 10.1039/c4ob01438c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Desmosine-CH2, an analog of the elastic tissue degradation biomarker desmosine, can be regarded as a potential internal standard for precise quantification of desmosines by LC-MS/MS. In this study, the chemical synthesis of desmosine-CH2 was completed in 22% overall yield in five steps. The LC-MS/MS analysis of desmosine-CH2 was also achieved.
Collapse
Affiliation(s)
- Yuko Murakami
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sampedro I, Kato J, Hill JE. Elastin degradation product isodesmosine is a chemoattractant for Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2015; 161:1496-503. [PMID: 25855762 PMCID: PMC10727130 DOI: 10.1099/mic.0.000090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/24/2022]
Abstract
Previous studies have demonstrated that Pseudomonas aeruginosa PAO1 is chemotactic towards proteinogenic amino acids, however, the chemotaxis response of this strain towards non-proteinogenic amino acids and the specific chemoreceptors involved in this response are essentially unknown. In this study, we analysed the chemotactic response of PAO1 towards two degradation products of elastin, the lysine-rich, non-proteinogenic amino acids, desmosine and isodesmosine. We observed that isodesmosine, a potential biomarker for different diseases, served as a chemoattractant for PAO1. A screen of 251methyl-accepting chemotaxis proteins mutants of PAO1 identified PctA as the chemoreceptor for isodesmosine. We also showed that the positive chemotactic response to isodesmosine is potentially common by demonstrating chemoattraction in 12 of 15 diverse (in terms of source of isolation) clinical isolates, suggesting that the chemotactic response to this non-proteinogenic amino acid might be a conserved feature of acute infection isolates and thus could influence the colonization of potential infection sites.
Collapse
Affiliation(s)
- Inmaculada Sampedro
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Jane E. Hill
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| |
Collapse
|
36
|
Koseki Y, Sugimura T, Ogawa K, Suzuki R, Yamada H, Suzuki N, Masuyama Y, Lin YY, Usuki T. Total Synthesis of Isodesmosine by Stepwise, Regioselective Negishi and Sonogashira Cross-Coupling Reactions. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Yamada H, Hayashi T, Usuki T. Total Synthesis of the COPD Biomarker Desmosine via Stepwise Sonogashira Cross-Coupling Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20140394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Haruka Yamada
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| | - Takahiro Hayashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| |
Collapse
|
38
|
Tanigawa T, Komatsu A, Usuki T. [(13)C3,(15)N1]-labeled isodesmosine: A potential internal standard for LC-MS/MS analysis of desmosines in elastin degradation. Bioorg Med Chem Lett 2015; 25:2046-9. [PMID: 25890800 DOI: 10.1016/j.bmcl.2015.03.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022]
Abstract
Isodesmosine and desmosine are crosslinking amino acids that are present only in elastin. They are useful biomarkers for the degradation of elastin, which occurs during the progression of chronic obstructive pulmonary disease (COPD) and related diseases. This Letter describes the synthesis of [(13)C3,(15)N1]-labeled isodesmosine, using Chichibabin pyridine synthesis as a key reaction. The labeled isodesmosine is a potential internal standard for the quantitative LC-MS/MS analysis of desmosines in elastin degradation.
Collapse
Affiliation(s)
- Takahiro Tanigawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Komatsu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
39
|
Syntheses of natural and deuterated desmosines via palladium-catalyzed cross-coupling reactions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Sugimura T, Komatsu A, Koseki Y, Usuki T. Pr(OTf)3-promoted Chichibabin pyridine synthesis of isodesmosine in H2O/MeOH. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.09.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Usuki T, Sugimura T, Komatsu A, Koseki Y. Biomimetic Chichibabin pyridine synthesis of the COPD biomarkers and elastin cross-linkers isodesmosine and desmosine. Org Lett 2014; 16:1672-5. [PMID: 24597689 DOI: 10.1021/ol500333t] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The tetrasubstituted pyridinium amino acids isodesmosine and desmosine are cross-linkers of elastin and are attractive biomarkers for the diagnosis of chronic obstructive pulmonary disease (COPD). In this study, the biomimetic total synthesis of isodesmosine and desmosine via a lanthanide-promoted Chichibabin pyridine synthesis using the corresponding aldehyde and amine hydrochloride is reported.
Collapse
Affiliation(s)
- Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University , 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | | | | | | |
Collapse
|
42
|
Usuki T, Yanuma H, Hayashi T, Yamada H, Suzuki N, Masuyama Y. Improved Negishi Cross-Coupling Reactions of an Organozinc Reagent Derived froml-Aspartic Acid with Monohalopyridines. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology; Sophia University; 7-1 Kioicho, Chiyoda-ku Tokyo 102-8554 Japan
| | - Hiroto Yanuma
- Department of Materials and Life Sciences, Faculty of Science and Technology; Sophia University; 7-1 Kioicho, Chiyoda-ku Tokyo 102-8554 Japan
| | - Takahiro Hayashi
- Department of Materials and Life Sciences, Faculty of Science and Technology; Sophia University; 7-1 Kioicho, Chiyoda-ku Tokyo 102-8554 Japan
| | - Haruka Yamada
- Department of Materials and Life Sciences, Faculty of Science and Technology; Sophia University; 7-1 Kioicho, Chiyoda-ku Tokyo 102-8554 Japan
| | - Noriyuki Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology; Sophia University; 7-1 Kioicho, Chiyoda-ku Tokyo 102-8554 Japan
| | - Yoshiro Masuyama
- Department of Materials and Life Sciences, Faculty of Science and Technology; Sophia University; 7-1 Kioicho, Chiyoda-ku Tokyo 102-8554 Japan
| |
Collapse
|
43
|
Usuki T. Preparation of Crosslinking Amino Acids of Elastin for Diagnosis of COPD by the Biomarker. J SYN ORG CHEM JPN 2013. [DOI: 10.5059/yukigoseikyokaishi.71.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Usuki T, Yanuma H. Synthesis of Neodesmosine, a Crosslinking Pyridinium Amino Acid of Elastin, via a Negishi Cross-Coupling. HETEROCYCLES 2013. [DOI: 10.3987/com-12-12600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
|
46
|
Yanuma H, Usuki T. Total synthesis of the COPD biomarker desmosine via Sonogashira and Negishi cross-coupling reactions. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.08.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Maquart FX, Borel JP. [50 years of connective tissue research: from the French Connective Tissue Club to the French Society of Extracellular Matrix Biology]. Biol Aujourdhui 2012; 206:73-8. [PMID: 22748045 DOI: 10.1051/jbio/2012011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Indexed: 11/14/2022]
Abstract
The history of connective tissue research began in the late 18th century. However, it is only 50 years later that the concept of connective tissue was shaped. It took another fifty years before biochemical knowledge of extracellular matrix macromolecules began to emerge in the first half of the 20th century. In 1962, thanks to Ladislas and Barbara Robert, back from the US, the first society called "French Connective Tissue Club" was created in Paris. The first board was constituted of Albert Delaunay, Suzanne Bazin and Ladislas Robert. Very quickly, under the influence of these pioneers, national and international meetings were organized and, in 1967, a "Federation of the European Connective Tissue Clubs" was created at the initiative of Ladislas Robert (Paris) and John Scott (Manchester). It spread rapidly to the major European nations. In 1982 the transformation of "Clubs" in "Societies" occurred, a name more in line with the requirements of the time. In 2008, the "French Connective Tissue Society" became the "French Society of Extracellular Matrix Biology" ("Société Française de Biologie de la Matrice Extracellulaire", SFBMEc), to better highlight the importance of the extracellular matrix in the biology of living organisms. The SFBMEc's mission today is to promote and develop scientific exchanges between academic, industrial, and hospital laboratories involved in research on the extracellular matrix. SFBMEc organizes or subsidizes scientific meetings and awards scholarships to Ph.D. students or post-docs to participate in international conferences. It includes 200 to 250 members from different disciplines, developing strong interactions between scientists, clinicians and pathologists. It is present all around the French territory in many research laboratories. During these last 50 years, the extraordinary advances made possible by the development of new investigation techniques, in particular molecular biology, cell and tissue imaging, molecular modeling, etc., have permitted a considerable increase of the knowledge in the field of connective tissue.
Collapse
Affiliation(s)
- François-Xavier Maquart
- Université de Reims Champagne-Ardenne, CNRS FRE 3481, CHU de Reims, Faculté de Médecine, Reims, France.
| | | |
Collapse
|
48
|
Abstract
SynopsisHuman aortic elastin, purified by autoclaving and alkaline extraction, has been resolved by ultrasonic treatment into individual filaments, which appear, in the electron microscope, to be of constant diameter (25 Å) with junction points at fairly regular intervals (1300)Å.Amino acid analyses on fœtal, normal and old adult elastin showed that the desmosine(s) content remains constant at 3 residues per 105g. of protein which is equivalent to 1100 Å intervals between successive residues, assuming that these are evenly spaced along the polypeptide chain(s). On the other hand the amino acid composition was found to change with age. Thus the aspartic acid and glutamic acid contents increase from 3 and 19 to 11 and 27 residues respectively; histidine and methionine, which are both absent from fœtal elastin are present in small but definite amounts (2 and 3 residues respectively) in older elastins. The lysine content is 9 residues in fœtal elastin and 6 residues in older elastin. Probably the most remarkable feature of this protein is the high content of non-polar amino acids; of 1100 residues in 105g. protein about 1000 (including glycine and proline) have hydrophobic side chains.
Collapse
|
49
|
Bochicchio B, Pepe A. Role of polyproline II conformation in human tropoelastin structure. Chirality 2012; 23:694-702. [PMID: 22135799 DOI: 10.1002/chir.20979] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this review, we present a comprehensive overview of the molecular studies on human tropoelastin domains accomplished by Tamburro and co-workers in the last decade. The used approach is the reductionist approach applied to human tropoelastin and is based on the observation that the tropoelastin gene exhibits a cassette-like organization, with a regular alternation of cross-linking and hydrophobic domains putatively responsible for the elasticity of the protein. The peculiar structure of human tropoelastin gene prompted us to study the isolated domains encoded by the exons of tropoelastin, with the perspective to get deep insights into the structural properties of the whole protein. At the molecular level, the results clearly evidence large flexibility of the polypeptide chains in the hydrophobic domains, which oscillate between rather extended and folded conformations. An important role was assigned to poly-proline II conformation considered as the hinge structure in the dynamic conformational equilibrium suggested for the hydrophobic domains. For the lysine-rich cross-linking domains, the structural studies exactly localized α-helix along the polypeptide sequence. Furthermore, at supramolecular level, these studies showed that several domains are able to self-assemble in two different aggregation patterns, the fibrous elastin-like structure for some proline-rich hydrophobic domains and the amyloid-like for some glycine-rich hydrophobic domains. Accordingly, the studies suggest that the reductionist approach was a valid tool for studying a complex protein, such as elastin, elucidating not only the structure but also the specific role played by its constituent domains.
Collapse
Affiliation(s)
- Brigida Bochicchio
- Laboratory of Protein Chemistry, Department of Chemistry A. M. Tamburro, University of Basilicata, Potenza, Italy.
| | | |
Collapse
|
50
|
Rusciani A, Duca L, Brassart B, Martiny L, Debelle L. From elastin peptides to neuraminidase-1-dependent lactosylceramide generation. CR CHIM 2012. [DOI: 10.1016/j.crci.2011.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|