1
|
Bell JT, Zhang X. The hepatitis B virus surface antigen: An evolved perfection and its unresolved mysteries. Virology 2025; 608:110527. [PMID: 40220401 DOI: 10.1016/j.virol.2025.110527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
The Hepatitis B Virus has long afflicted the human race, with a widespread impact on the global health system and profound medical implications for those who are chronically infected. Despite its relatively recent discovery, over the last 50 years great advancements have been made towards the characterisation of this complex etiological agent. The virus itself has a highly evolved genome which encodes for seven viral proteins, three of which (the surface antigens) were consequential in the initial discovery and isolation of the virus. These surface antigens are ubiquitously important throughout the viral lifecycle, from capsid envelopment through to receptor-mediated invasion into the hepatocytes. The hepatitis B surface antigens (in particular, the large protein) adopt complex topological folds and tertiary structures, and it is this topological intricacy which facilitates the diverse roles the three surface antigens play in HBV maturation and infection. Here, the biochemical and topological attributes of the three surface antigens are reviewed in detail, with particular focus on their relevance to the establishment of infection. Further research is still required to elucidate the coordinates of the antigen loop and the dynamic topological changes of key motifs during entry and viral morphogenesis; these in turn may provide new leads for therapeutics which may potentiate a functional cure for chronic hepatitis B.
Collapse
Affiliation(s)
- Jack Thomas Bell
- Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Xiaonan Zhang
- Faculty of Science and Technology, University of Canberra, ACT, Australia.
| |
Collapse
|
2
|
Petrov GV, Koldina AM, Ledenev OV, Tumasov VN, Nazarov AA, Syroeshkin AV. Nanoparticles and Nanomaterials: A Review from the Standpoint of Pharmacy and Medicine. Pharmaceutics 2025; 17:655. [PMID: 40430945 DOI: 10.3390/pharmaceutics17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Nanoparticles (NPs) represent a unique class of structures in the modern world. In comparison to macro- and microparticles, NPs exhibit advantages due to their physicochemical properties. This has resulted in their extensive application not only in technical and engineering sciences, but also in pharmacy and medicine. A recent analysis of the scientific literature revealed that the number of articles related to the search term "nanoparticle drugs" has exceeded 65,000 in the last decade alone, according to PubMed. The growth of scientific publications on NPs and nanomaterials (NMs) in pharmacy demonstrates the rapidly developing interest of scientists in exploring alternative ways to deliver drugs, thereby improving their pharmacokinetic and pharmacodynamic properties, and the increased biocompatibility of many nanopharmaceuticals is a unique key to two mandatory pharmaceutical requirements-drug efficacy and safety. A comprehensive review of the literature indicates that the modern pharmaceutical industry is increasingly employing nanostructures. The exploration of their physicochemical properties with a subsequent modern approach to quality control remains the main task of modern pharmaceutical chemistry. The primary objective of this review is to provide a comprehensive overview of data on NPs, their physicochemical properties, and modern approaches to their synthesis, modification of their surface, and application in pharmacy.
Collapse
Affiliation(s)
- Gleb V Petrov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Alena M Koldina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Oleg V Ledenev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Vladimir N Tumasov
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Medicine, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Aleksandr A Nazarov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Anton V Syroeshkin
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
3
|
Choudry MW, Riaz R, Raza MH, Nawaz P, Ahmad B, Jahan N, Rafique S, Afzal S, Amin I, Shahid M. Development of non-viral targeted RNA delivery vehicles - a key factor in success of therapeutic RNA. J Drug Target 2025; 33:171-184. [PMID: 39392510 DOI: 10.1080/1061186x.2024.2416241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Decade-long efforts in medicinal biotechnology have enabled large-scale in-vitro production of optimised therapeutic RNA constructs for stable in-vivo delivery and modify the expression of disease-related genes. The success of lipid nanoparticle-formulated mRNA vaccines against Severe acute respiratory syndrome Coronavirus-2 (SARS-Cov2) has opened a new era of RNA therapeutics and non-viral drug delivery systems. The major limiting factor in the clinical translation of RNA-based drugs is the availability of suitable delivery vehicles that can protect RNA payloads from degradation, offer controlled release, and pose minimal inherent toxicity. Unwanted immune response, payload size constraints, genome integration, and non-specific tissue targeting limit the application of conventional viral drug-delivery vehicles. This review summarises current research on nano-sized drug carriers, including lipid nanoparticles, polymer-based formulations, cationic nanoemulsion, and cell-penetrating peptides, for targeted therapeutic RNA delivery. Further, this paper highlights the biomimetic approaches (i.e. mimicking naturally occurring bio-compositions, molecular designs, and systems), including virus-like particles (VLPs), exosomes, and selective endogenous eNcapsidation (SEND) technology being explored as safer and more efficient alternatives.
Collapse
Affiliation(s)
- Muhammad Waqas Choudry
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Rabia Riaz
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Hassan Raza
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Pashma Nawaz
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Bilal Ahmad
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Neelam Jahan
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Garg S, Ochetto A, Hu J, Wang JCY. Unveiling the Molecular Architecture of HBV Spherical Subviral Particles: Structure, Symmetry, and Lipid Dynamics. Viruses 2024; 17:48. [PMID: 39861834 PMCID: PMC11768703 DOI: 10.3390/v17010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability. In this review, recent progress in understanding the molecular architecture of HBV SVPs is consolidated, focusing on their symmetry, lipid organization, and disassembly-reassembly dynamics. High-resolution structural models reveal unique lipid arrangements that stabilize hydrophobic residues, preserve antigenicity, and contribute to SVP functionality. These findings highlight the significance of hydrophobic interactions and lipid-protein dynamics in HBV SVP assembly and stability, offering valuable perspectives for optimizing SVP-based vaccine platforms and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA; (S.G.); (A.O.); (J.H.)
| |
Collapse
|
5
|
Norizwan JAM, Tan WS. Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100317. [PMID: 39717209 PMCID: PMC11665419 DOI: 10.1016/j.crmicr.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The threat of influenza A virus (IAV) remains an annual health concern, as almost 500,000 people die each year due to the seasonal flu. Current flu vaccines are highly dependent on embryonated chicken eggs for production, which is time consuming and costly. These vaccines only confer moderate protections in elderly people, and they lack cross-protectivity; thereby requiring annual reformulation to ensure effectiveness against contemporary circulating strains. To address current limitations, new strategies are being sought, with great emphasis given on exploiting IAV's conserved antigens for vaccine development, and by using different vaccine technologies to enhance immunogenicity and expedite vaccine production. Among these technologies, there are growing pre-clinical and clinical studies involving virus-like particles (VLPs), as they are capable to display multiple conserved IAV antigens and augment their immune responses. In this review, we outline recent findings involving broadly effective IAV antigens and strategies to display these antigens on VLPs. Current production systems for IAV VLP vaccines are comprehensively reviewed. Pain-free methods for administration of IAV VLP vaccines through intranasal and transdermal routes, as well as the mechanisms in stimulating immune responses are discussed in detail. The future perspectives of VLPs in IAV vaccine development are discussed, particularly concerning their potentials in overcoming current immunological limitations of IAV vaccines, and their inherent advantages in exploring intranasal vaccination studies. We also propose avenues to expedite VLP vaccine production, as we envision that there will be more clinical trials involving IAV VLP vaccines, leading to commercialization of these vaccines in the near future.
Collapse
Affiliation(s)
- Jaffar Ali Muhamad Norizwan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
7
|
Crow MK, Smolen JS. Charles L Christian: Model Physician Scientist and Mentor. Rheum Dis Clin North Am 2024; 50:47-55. [PMID: 37973285 DOI: 10.1016/j.rdc.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Dr Charles L Christian arrived in New York City in 1953, having grown up in Wichita, Kansas, and graduating from medical school at Case Western Reserve in Cleveland, Ohio. In New York, Dr Christian embarked on training in internal medicine at Columbia's Presbyterian Hospital where he met an individual who would shape the course of his career, Dr Charles Ragan, a founder of the Arthritis Foundation. Dr Christian, or Chuck as he was usually called, went on to shape the developing field of rheumatology, advancing understanding of our most complex diseases as an investigator, master clinician, mentor, and academic leader. During an era when the cellular and humoral features of the immune system were just coming into focus, Chuck performed laboratory experiments with precision and creativity to achieve new understanding of 3 significant diseases: rheumatoid arthritis, systemic lupus erythematosus, and vasculitis. Review of his publications from the 1950s and 1960s provides a window into a time when figures were hand drawn and papers often had a single author. While the tools of technology that we rely on today were not available to Chuck, his insights have had a sustained impact on how we understand and treat autoimmune rheumatic diseases. His talents and his dedication to patients, colleagues, science, and medicine supported a lifetime of remarkable contributions.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY 10021, USA.
| | - Josef S Smolen
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
8
|
Petrov GV, Galkina DA, Koldina AM, Grebennikova TV, Eliseeva OV, Chernoryzh YY, Lebedeva VV, Syroeshkin AV. Controlling the Quality of Nanodrugs According to Their New Property-Radiothermal Emission. Pharmaceutics 2024; 16:180. [PMID: 38399241 PMCID: PMC10891502 DOI: 10.3390/pharmaceutics16020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Previous studies have shown that complexly shaped nanoparticles (NPs) have their intrinsic radiothermal emission in the millimeter range. This article presents a method for controlling the quality of nanodrugs-immunobiological preparations (IBPs)-based on the detection of their intrinsic radiothermal emissions. The emissivity of interferon (IFN) medicals, determined without opening the primary package, is as follows (µW/m2): IFN-α2b-80 ± 9 (105 IU per package), IFN-β1a-40 ± 5 (24 × 106 IU per package), IFN-γ-30 ± 4 (105 IU per package). The emissivity of virus-like particles (VLP), determined using vaccines Gam-VLP-multivac (120 μg) in an injection bottle (crimp cap vials), was as follows: 12 ± 1 µW/m2, Gam-VLP-rota vaccines-9 ± 1 µW/m2. This study shows the reproducibility of emissivity over the course of a year, subject to the storage conditions of the immunobiological products. It has been shown that accelerated aging and a longer shelf life are accompanied by the coagulation of active NPs, and lead to a manyfold drop in emissivity. The dependence of radiothermal emission on temperature has a complex, non-monotonic nature. The emission intensity depends on the form of dosage, but remains within the order of magnitude for IFN-α2b for intranasal aqueous solution, ointments, and suppositories. The possibility of the remote quantitative control of the first phases of the immune response (increased synthesis of IFNs) to the intranasal administration of VLP vaccines has been demonstrated in experimental animals.
Collapse
Affiliation(s)
- Gleb V. Petrov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Daria A. Galkina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Alena M. Koldina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Tatiana V. Grebennikova
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Olesya V. Eliseeva
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Yana Yu. Chernoryzh
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Varvara V. Lebedeva
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Anton V. Syroeshkin
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
9
|
Dang M, Wu LJ, Zhang SR, Zhu JR, Hu YZ, Yang CX, Zhang XY. MS2 Virus-like Particles as a Versatile Peptide Presentation Platform: Insights into the Deterministic Abilities for Accommodating Heterologous Peptide Lengths. ACS Synth Biol 2023; 12:3704-3715. [PMID: 37946498 PMCID: PMC10729756 DOI: 10.1021/acssynbio.3c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Virus-like particles (VLPs) are nanostructures with the potential to present heterologous peptides at high density, thereby triggering heightened immunogenicity. RNA bacteriophage MS2 VLPs are a compelling delivery platform among them. However, a notable hurdle arises from the immune response toward MS2 coat protein, swiftly eliminating subsequent vaccinations via the same vector. Although larger inserts effectively mask carrier epitopes, current research predominantly focuses on displaying short conserved peptides (<30 aa). A systematic evaluation regarding the deterministic ability of MS2 VLPs as a platform for presenting heterologous peptides remains a gap. In light of this, we employed the "single-chain dimer" paradigm to scrutinize the tolerance of MS2 VLPs for peptide/protein insertions. The results unveiled functional MS2 VLP assembly solely for inserts smaller than 91 aa. Particularly noteworthy is the largest insertion achieved on the MS2 VLPs to date: the RNA helicase A (RHA) dsRNA-binding domains (dsRBD1). Attempts to introduce additional linkers or empty coat subunits fail to augment the expression level or assembly of the MS2 VLPs displaying dsRBD1, affirming 91 aa as the upper threshold for exogenous protein presentation. By illuminating the precise confines of MS2 VLPs in accommodating distinct peptide lengths, our study informs the selection of appropriate peptide and protein dimensions. This revelation not only underscores the scope of MS2 VLPs but also establishes a pivotal reference point, facilitating the strategic manipulation of MS2 VLPs to design next-generation epitope/antibody-based therapeutics.
Collapse
Affiliation(s)
- Mei Dang
- Qinba
State Key Laboratory of Biological Resources and Ecological Environment,
College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
- Department
of Biological Sciences, Faculty of Science, National University of Singapore, 10 Keng Ridge Crescent, 119260, Singapore
| | - Long J. Wu
- Qinba
State Key Laboratory of Biological Resources and Ecological Environment,
College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Si R. Zhang
- Xi’an
Middle School of Shaanxi Province, Fengcheng Wulu 69, Weiyang, Xi’an 710006, China
- Department
of Genetics, Stanford University, Palo Alto, California 94304, United States
- HSS,
Stanford University, Palo Alto, California 94305, United States
| | - Jian R. Zhu
- School of
Pharmacy, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yu Z. Hu
- Qinba
State Key Laboratory of Biological Resources and Ecological Environment,
College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Chen X. Yang
- Qinba
State Key Laboratory of Biological Resources and Ecological Environment,
College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Xiao Y. Zhang
- Qinba
State Key Laboratory of Biological Resources and Ecological Environment,
College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
- Centre
of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
- Department
of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Ruzzi F, Semprini MS, Scalambra L, Palladini A, Angelicola S, Cappello C, Pittino OM, Nanni P, Lollini PL. Virus-like Particle (VLP) Vaccines for Cancer Immunotherapy. Int J Mol Sci 2023; 24:12963. [PMID: 37629147 PMCID: PMC10454695 DOI: 10.3390/ijms241612963] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer vaccines are increasingly being studied as a possible strategy to prevent and treat cancers. While several prophylactic vaccines for virus-caused cancers are approved and efficiently used worldwide, the development of therapeutic cancer vaccines needs to be further implemented. Virus-like particles (VLPs) are self-assembled protein structures that mimic native viruses or bacteriophages but lack the replicative material. VLP platforms are designed to display single or multiple antigens with a high-density pattern, which can trigger both cellular and humoral responses. The aim of this review is to provide a comprehensive overview of preventive VLP-based vaccines currently approved worldwide against HBV and HPV infections or under evaluation to prevent virus-caused cancers. Furthermore, preclinical and early clinical data on prophylactic and therapeutic VLP-based cancer vaccines were summarized with a focus on HER-2-positive breast cancer.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Maria Sofia Semprini
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Laura Scalambra
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Angelicola
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Chiara Cappello
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Olga Maria Pittino
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Patrizia Nanni
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Pier-Luigi Lollini
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| |
Collapse
|
11
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Filipić B, Pantelić I, Nikolić I, Majhen D, Stojić-Vukanić Z, Savić S, Krajišnik D. Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines. Vaccines (Basel) 2023; 11:1172. [PMID: 37514991 PMCID: PMC10385383 DOI: 10.3390/vaccines11071172] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Ever since the development of the first vaccine, vaccination has had the great impact on global health, leading to the decrease in the burden of numerous infectious diseases. However, there is a constant need to improve existing vaccines and develop new vaccination strategies and vaccine platforms that induce a broader immune response compared to traditional vaccines. Modern vaccines tend to rely on certain nanotechnology platforms but are still expected to be readily available and easy for large-scale manufacturing and to induce a durable immune response. In this review, we present an overview of the most promising nanoadjuvants and nanoparticulate delivery systems and discuss their benefits from tehchnological and immunological standpoints as well as their objective drawbacks and possible side effects. The presented nano alums, silica and clay nanoparticles, nanoemulsions, adenoviral-vectored systems, adeno-associated viral vectors, vesicular stomatitis viral vectors, lentiviral vectors, virus-like particles (including bacteriophage-based ones) and virosomes indicate that vaccine developers can now choose different adjuvants and/or delivery systems as per the requirement, specific to combatting different infectious diseases.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
- Section of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
GhaderiShekhiAbadi P, Irani M, Noorisepehr M, Maleki A. Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: a review. NANOTECHNOLOGY 2023; 34:272001. [PMID: 36996779 DOI: 10.1088/1361-6528/acc8da] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Infectious diseases such as novel coronavirus (SARS-CoV-2), Influenza, HIV, Ebola, etc kill many people around the world every year (SARS-CoV-2 in 2019, Ebola in 2013, HIV in 1980, Influenza in 1918). For example, SARS-CoV-2 has plagued higher than 317 000 000 people around the world from December 2019 to January 13, 2022. Some infectious diseases do not yet have not a proper vaccine, drug, therapeutic, and/or detection method, which makes rapid identification and definitive treatments the main challenges. Different device techniques have been used to detect infectious diseases. However, in recent years, magnetic materials have emerged as active sensors/biosensors for detecting viral, bacterial, and plasmids agents. In this review, the recent applications of magnetic materials in biosensors for infectious viruses detection have been discussed. Also, this work addresses the future trends and perspectives of magnetic biosensors.
Collapse
Affiliation(s)
| | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Noorisepehr
- Environmental Health Engineering Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
14
|
Yuan B, Liu Y, Lv M, Sui Y, Hou S, Yang T, Belhadj Z, Zhou Y, Chang N, Ren Y, Sun C. Virus-like particle-based nanocarriers as an emerging platform for drug delivery. J Drug Target 2023; 31:433-455. [PMID: 36940208 DOI: 10.1080/1061186x.2023.2193358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
New nanocarrier technologies are emerging, and they have great potential for improving drug delivery, targeting efficiency, and bioavailability. Virus-like particles (VLPs) are natural nanoparticles from animal and plant viruses and bacteriophages. Hence, VLPs present several great advantages, such as morphological uniformity, biocompatibility, reduced toxicity, and easy functionalisation. VLPs can deliver many active ingredients to the target tissue and have great potential as a nanocarrier to overcome the limitations associated with other nanoparticles. This review will focus primarily on the construction and applications of VLPs, particularly as a novel nanocarrier to deliver active ingredients. Herein, the main methods for the construction, purification, and characterisation of VLPs, as well as various VLP-based materials used in delivery systems are summarised. The biological distribution of VLPs in drug delivery, phagocyte-mediated clearance, and toxicity are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No.100, Kexue Avenue, Zhengzhou 450001, China
| | - Meilin Lv
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yilei Sui
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Shenghua Hou
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Tinghui Yang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Naidan Chang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yachao Ren
- Harbin Medical University-Daqing, Daqing 163319, China.,School of Chemistry and Chemical Engineering, Tianjin University of Technology, tianjin, 300000, China
| | | |
Collapse
|
15
|
Stiepel RT, Duggan E, Batty CJ, Ainslie KM. Micro and nanotechnologies: The little formulations that could. Bioeng Transl Med 2023; 8:e10421. [PMID: 36925714 PMCID: PMC10013823 DOI: 10.1002/btm2.10421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/22/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
The first publication of micro- and nanotechnology in medicine was in 1798 with the use of the Cowpox virus by Edward Jenner as an attenuated vaccine against Smallpox. Since then, there has been an explosion of micro- and nanotechnologies for medical applications. The breadth of these micro- and nanotechnologies is discussed in this piece, presenting the date of their first report and their latest progression (e.g., clinical trials, FDA approval). This includes successes such as the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines from Pfizer, Moderna, and Janssen (Johnson & Johnson) as well as the most popular nanoparticle therapy, liposomal Doxil. However, the enormity of the success of these platforms has not been without challenges. For example, we discuss why the production of Doxil was halted for several years, and the bankruptcy of BIND therapeutics, which relied on a nanoparticle drug carrier. Overall, the field of micro- and nanotechnology has advanced beyond these challenges and continues advancing new and novel platforms that have transformed therapies, vaccines, and imaging. In this review, a wide range of biomedical micro- and nanotechnology is discussed to serve as a primer to the field and provide an accessible summary of clinically relevant micro- and nanotechnology platforms.
Collapse
Affiliation(s)
- Rebeca T. Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Eliza Duggan
- North Carolina School of Science and MathematicsDurhamNorth CarolinaUSA
| | - Cole J. Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
- Department of Microbiology and Immunology, UNC School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
16
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
17
|
Obozina AS, Komedchikova EN, Kolesnikova OA, Iureva AM, Kovalenko VL, Zavalko FA, Rozhnikova TV, Tereshina ED, Mochalova EN, Shipunova VO. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics 2023; 15:231. [PMID: 36678860 PMCID: PMC9861179 DOI: 10.3390/pharmaceutics15010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. However, there are no targeted drug formulations within the composition of nanoparticles approved by the FDA for use in the clinic, which is associated with the insufficient effectiveness of the developed candidates, the difficulties of their biotechnological production, and inadequate batch-to-batch reproducibility. Targeted protein self-assembling nanoparticles circumvent this problem since proteins are encoded in DNA and the final protein product is produced in only one possible way. We believe that the combination of the endless biomedical potential of protein carriers as nanoparticles and the standardized protein purification protocols will make significant progress in "magic bullet" creation possible, bringing modern biomedicine to a new level. In this review, we are focused on the currently existing platforms for targeted self-assembling protein nanoparticles based on transferrin, lactoferrin, casein, lumazine synthase, albumin, ferritin, and encapsulin proteins, as well as on proteins from magnetosomes and virus-like particles. The applications of these self-assembling proteins for targeted delivery in vitro and in vivo are thoroughly discussed, including bioimaging applications and different therapeutic approaches, such as chemotherapy, gene delivery, and photodynamic and photothermal therapy. A critical assessment of these protein platforms' efficacy in biomedicine is provided and possible problems associated with their further development are described.
Collapse
Affiliation(s)
| | | | | | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Fedor A. Zavalko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Elizaveta N. Mochalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
18
|
Kumar S, Basu M, Ghosh P, Ansari A, Ghosh MK. COVID-19: Clinical status of vaccine development to date. Br J Clin Pharmacol 2022; 89:114-149. [PMID: 36184710 PMCID: PMC9538545 DOI: 10.1111/bcp.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced COVID-19 is a complicated disease. Clinicians are continuously facing difficulties to treat infected patients using the principle of repurposing of drugs as no specific drugs are available to treat COVID-19. To minimize the severity and mortality, global vaccination is the only hope as a potential preventive measure. After a year-long global research and clinical struggle, 165 vaccine candidates have been developed and some are currently still in the pipeline. A total of 28 candidate vaccines have been approved for use and the remainder are in different phases of clinical trials. In this comprehensive report, the authors aim to demonstrate, classify and provide up-to-date clinical trial status of all the vaccines discovered to date and specifically focus on the approved candidates. Finally, the authors specifically focused on the vaccination of different types of medically distinct populations.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder CollegeIndia
| | - Pratyasha Ghosh
- Department of Economics, Bethune CollegeUniversity of CalcuttaKolkataIndia
| | - Aafreen Ansari
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| |
Collapse
|
19
|
Think like a Virus: Toward Improving Nanovaccine Development against SARS-CoV-2. Viruses 2022; 14:v14071553. [PMID: 35891532 PMCID: PMC9318803 DOI: 10.3390/v14071553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
There is no doubt that infectious diseases present global impact on the economy, society, health, mental state, and even political aspects, causing a long-lasting dent, and the situation will surely worsen if and when the viral spread becomes out of control, as seen during the still ongoing coronavirus disease 2019 (COVID-19) pandemic. Despite the considerable achievements made in viral prevention and treatment, there are still significant challenges that can be overcome through careful understanding of the viral mechanism of action to establish common ground for innovating new preventative and treatment strategies. Viruses can be regarded as devil nanomachines, and one innovative approach to face and stop the spread of viral infections is the development of nanoparticles that can act similar to them as drug/vaccine carriers. Moreover, we can use the properties that different viruses have in designing nanoparticles that reassemble the virus conformational structures but that do not present the detrimental threats to human health that native viruses possess. This review discusses the current preventative strategies (i.e., vaccination) used in facing viral infections and the associated limitations, highlighting the importance of innovating new approaches to face viral infectious diseases and discussing the current nanoapplications in vaccine development and the challenges that still face the nanovaccine field.
Collapse
|
20
|
Castillo F, Corbi-Verge C, Murciano-Calles J, Candel AM, Han Z, Iglesias-Bexiga M, Ruiz-Sanz J, Kim PM, Harty RN, Martinez JC, Luque I. Phage display identification of nanomolar ligands for human NEDD4-WW3: Energetic and dynamic implications for the development of broad-spectrum antivirals. Int J Biol Macromol 2022; 207:308-323. [PMID: 35257734 DOI: 10.1016/j.ijbiomac.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
The recognition of PPxY viral Late domains by the third WW domain of the human HECT-E3 ubiquitin ligase NEDD4 (NEDD4-WW3) is essential for the budding of many viruses. Blocking these interactions is a promising strategy to develop broad-spectrum antivirals. As all WW domains, NEDD4-WW3 is a challenging therapeutic target due to the low binding affinity of its natural interactions, its high conformational plasticity, and its complex thermodynamic behavior. In this work, we set out to investigate whether high affinity can be achieved for monovalent ligands binding to the isolated NEDD4-WW3 domain. We show that a competitive phage-display set-up allows for the identification of high-affinity peptides showing inhibitory activity of viral budding. A detailed biophysical study combining calorimetry, nuclear magnetic resonance, and molecular dynamic simulations reveals that the improvement in binding affinity does not arise from the establishment of new interactions with the domain, but is associated to conformational restrictions imposed by a novel C-terminal -LFP motif in the ligand, unprecedented in the PPxY interactome. These results, which highlight the complexity of WW domain interactions, provide valuable insight into the key elements for high binding affinity, of interest to guide virtual screening campaigns for the identification of novel therapeutics targeting NEDD4-WW3 interactions.
Collapse
Affiliation(s)
- Francisco Castillo
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Carles Corbi-Verge
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain; Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics & Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Javier Murciano-Calles
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Adela M Candel
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | - Manuel Iglesias-Bexiga
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics & Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | - Jose C Martinez
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| |
Collapse
|
21
|
Tornesello AL, Tagliamonte M, Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like Particles as Preventive and Therapeutic Cancer Vaccines. Vaccines (Basel) 2022; 10:227. [PMID: 35214685 PMCID: PMC8879290 DOI: 10.3390/vaccines10020227] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Virus-like particles (VLPs) are self-assembled viral protein complexes that mimic the native virus structure without being infectious. VLPs, similarly to wild type viruses, are able to efficiently target and activate dendritic cells (DCs) triggering the B and T cell immunities. Therefore, VLPs hold great promise for the development of effective and affordable vaccines in infectious diseases and cancers. Vaccine formulations based on VLPs, compared to other nanoparticles, have the advantage of incorporating multiple antigens derived from different proteins. Moreover, such antigens can be functionalized by chemical modifications without affecting the structural conformation or the antigenicity. This review summarizes the current status of preventive and therapeutic VLP-based vaccines developed against human oncoviruses as well as cancers.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Maria Tagliamonte
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (M.T.); (L.B.)
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (M.T.); (L.B.)
| |
Collapse
|
22
|
Balkrishna A, Arya V, Rohela A, Kumar A, Verma R, Kumar D, Nepovimova E, Kuca K, Thakur N, Thakur N, Kumar P. Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines. Vaccines (Basel) 2021; 9:1129. [PMID: 34696237 PMCID: PMC8537718 DOI: 10.3390/vaccines9101129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 claimed numerous lives and put nations on high alert. The lack of antiviral medications and the small number of approved vaccines, as well as the recurrence of adverse effects, necessitates the development of novel treatment ways to combat COVID-19. In this context, using databases such as PubMed, Google Scholar, and Science Direct, we gathered information about nanotechnology's involvement in the prevention, diagnosis and virus-like particle vaccine development. This review revealed that various nanomaterials like gold, polymeric, graphene and poly amino ester with carboxyl group coated magnetic nanoparticles have been explored for the fast detection of SARS-CoV-2. Personal protective equipment fabricated with nanoparticles, such as gloves, masks, clothes, surfactants, and Ag, TiO2 based disinfectants played an essential role in halting COVID-19 transmission. Nanoparticles are used not only in vaccine delivery, such as lipid nanoparticles mediated transport of mRNA-based Pfizer and Moderna vaccines, but also in the development of vaccine as the virus-like particles elicit an immune response. There are now 18 virus-like particle vaccines in pre-clinical development, with one of them, developed by Novavax, reported being in phase 3 trials. Due to the probability of upcoming COVID-19 waves, and the rise of new diseases, the future relevance of virus-like particles is imperative. Furthermore, psychosocial variables linked to vaccine reluctance constitute a critical problem that must be addressed immediately to avert pandemic.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Akansha Rohela
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur 177001, India; (N.T.); (N.T.); (P.K.)
| | - Nikesh Thakur
- Department of Physics, Career Point University, Hamirpur 177001, India; (N.T.); (N.T.); (P.K.)
| | - Pankaj Kumar
- Department of Physics, Career Point University, Hamirpur 177001, India; (N.T.); (N.T.); (P.K.)
| |
Collapse
|
23
|
Crow MK. Charles L Christian: model physician scientist and mentor. Ann Rheum Dis 2021; 80:685-688. [PMID: 33853826 DOI: 10.1136/annrheumdis-2019-216630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
24
|
Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. ACTA ACUST UNITED AC 2021; 29:e00605. [PMID: 33732633 PMCID: PMC7937989 DOI: 10.1016/j.btre.2021.e00605] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Virus-like particles (VLPs) are a class of structures formed by the self-assembly of viral capsid protein subunits and contain no infective viral genetic material. The Hepatitis B core (HBc) antigen is capable of assembling into VLPs that can elicit strong immune responses and has been licensed as a commercial vaccine against Hepatitis B. The HBc VLPs have also been employed as a platform for the presentation of foreign epitopes to the immune system and have been used to develop vaccines against, for example, influenza A and Foot-and-mouth disease. Plant expression systems are rapid, scalable and safe, and are capable of providing correct post-translational modifications and reducing upstream production costs. The production of HBc-based virus-like particles in plants would thus greatly increase the efficiency of vaccine production. This review investigates the application of plant-based HBc VLP as a platform for vaccine production.
Collapse
|
25
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 424] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
26
|
Al-Mahtab M, Roy PP, Khan MSI, Akbar SM. Nobel Prize for the Discovery of Hepatitis B and C: A Brief History in Time. Euroasian J Hepatogastroenterol 2021; 10:98-100. [PMID: 33511072 PMCID: PMC7801893 DOI: 10.5005/jp-journals-10018-1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In 2020, the Noble Prize for Medicine jointly went to three scientists for hepatitis C virus-related discoveries. Earlier in 1976, an American scientist won this award for the discovery of hepatitis B virus. The Noble Prize, constituted as per the will of Alfred Noble, is awarded every year for achievements that benefit human beings in the best possible way. Although humans have known hepatitis as a deadly disease for hundreds of years, it was the discovery of hepatitis B and C viruses that changed the way we knew the hepatitis viruses forever and paved the way for saving millions of lives all over the world, the reason why the Noble Committee has on two different occasions picked up the great minds behind the discovery of these two hepatitis viruses and recognized them by conferring them with the highest recognition that one dreams of. How to cite this article: Al-Mahtab M, Roy PP, Khan MSI, et al. Nobel Prize for the Discovery of Hepatitis B and C: A Brief History in Time. Euroasian J Hepatogastroenterol 2020;10(2):98-100.
Collapse
Affiliation(s)
- Mamun Al-Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Partho P Roy
- Shaheed Suhrawardi Medical College, Dhaka, Bangladesh
| | - Md Sakirul I Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Sheikh Mf Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.,Miyakawa Memorial Research Foundation, Tokyo, Japan
| |
Collapse
|
27
|
Zhang Q, Wu W, Zhang J, Xia X. Merits of the 'good' viruses: the potential of virus-based therapeutics. Expert Opin Biol Ther 2020; 21:731-740. [PMID: 33322950 DOI: 10.1080/14712598.2021.1865304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Although viruses have generally been considered as pathogens ever since their discovery, recent research has revealed that they might assume a more important role in the survival and evolution of their hosts. Besides this, they also hold the potential as therapies for the treatment of infections, cancers, and other diseases, with several of them already commercially available on the market. In this review, we will focus on the use of different viruses for treating diseases.Areas covered: This is a comprehensive review of the application of viruses or virus-based strategies (including bacteriophages, oncolytic viruses, viral vector-based delivery, virus-like particles, and virosomes) for therapeutic purposes. The article provides an overview of the status quo of currently available virus-based therapeutics.Expert Opinion: The efficacy of virus-based therapies has been emphasized repeatedly in the clinical trials for virotherapy, gene delivery, and virus-like particles (VLPs), with multiple therapeutics approved and marketed. Compared with chemical and biological drugs, viruses represent a unique 'research niche.' As more virus-based therapeutics are moving down the pipeline, we shall expect to see a more diversified collection of related products being recognized and applied in clinical settings in the future.
Collapse
Affiliation(s)
- Qianyu Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Wen Wu
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Xuefeng Xia
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
28
|
Kim J, Oh J, Kang CS, Choi YS. Virus-like Particle (VLP) Mediated Antigen Delivery as a Sensitization Tool of Experimental Allergy Mouse Models. Immune Netw 2020; 20:e35. [PMID: 32895622 PMCID: PMC7458801 DOI: 10.4110/in.2020.20.e35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
Antigen delivery systems play critical roles in determining the quality and quantity of Ab responses in vivo. Induction of protective antibodies by B cells is essential in the development of vaccines against infectious pathogens, whereas production of IgE antibodies is prerequisite for investigation of allergic responses, or type 1 hypersensitivity reactions. Virus-like particles (VLPs) are efficient platforms for expression of proteins of interest in highly repetitive manners, which grants strong Ab responses to target antigens. Here, we report that delivery of hen egg lysozyme (HEL), a model allergen, through VLP could provoke strong HEL specific IgE Ab responses in mice. Moreover, acute allergic responses were robustly induced in the mice sensitized with VLPs that express HEL, when challenged with recombinant HEL protein. Our data show that antigen delivery in the context of VLPs could function as a platform for sensitization of mice and for subsequent examination of allergic reactions to molecules of interest.
Collapse
Affiliation(s)
- Juhyung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jeein Oh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, Rural Development Administration (RDA), Wanju 55365, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Transplant Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
29
|
Intracellular Trafficking of HBV Particles. Cells 2020; 9:cells9092023. [PMID: 32887393 PMCID: PMC7563130 DOI: 10.3390/cells9092023] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
The human hepatitis B virus (HBV), that is causative for more than 240 million cases of chronic liver inflammation (hepatitis), is an enveloped virus with a partially double-stranded DNA genome. After virion uptake by receptor-mediated endocytosis, the viral nucleocapsid is transported towards the nuclear pore complex. In the nuclear basket, the nucleocapsid disassembles. The viral genome that is covalently linked to the viral polymerase, which harbors a bipartite NLS, is imported into the nucleus. Here, the partially double-stranded DNA genome is converted in a minichromosome-like structure, the covalently closed circular DNA (cccDNA). The DNA virus HBV replicates via a pregenomic RNA (pgRNA)-intermediate that is reverse transcribed into DNA. HBV-infected cells release apart from the infectious viral parrticle two forms of non-infectious subviral particles (spheres and filaments), which are assembled by the surface proteins but lack any capsid and nucleic acid. In addition, naked capsids are released by HBV replicating cells. Infectious viral particles and filaments are released via multivesicular bodies; spheres are secreted by the classic constitutive secretory pathway. The release of naked capsids is still not fully understood, autophagosomal processes are discussed. This review describes intracellular trafficking pathways involved in virus entry, morphogenesis and release of (sub)viral particles.
Collapse
|
30
|
Yu Q, Tan S, Ren Y, He M, Fu X, Peng Y, Tang X. Bibliometric analysis of the 100 most-cited articles in the field of hepatology. GASTROENTEROLOGIA Y HEPATOLOGIA 2020; 43:349-357. [PMID: 32241600 DOI: 10.1016/j.gastrohep.2019.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/16/2019] [Accepted: 11/20/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Bibliometric search of citation classics can function as a tool to identify extraordinary landmark articles and advanced research studies. We aimed to examine and characterize the 100 most-cited published articles in the field of hepatology. PATIENTS AND METHODS A comprehensive list of the 100 most-cited articles published from 1950 to 2017 in the field of hepatology was compiled after searching the Web of Science with relevant terms, including "liver," "hepatitis," "hepatic," "hepatocellular," "hepatology," "cirrhosis," and "steatohepatitis." The articles were ranked according to their citation counts and were evaluated for characteristics including country, institution, authorship, publication year, subspecialty and others. RESULTS The database search returned 323,291 articles associated with liver disease published between 1950 and 2017. The 100 most-cited articles were from 21 major journals, with the highest number of articles being published in Hepatology (n=20). The average number of citations of the 100 most-cited articles was 1946.8; among these articles, the most frequently cited article received 5515 citations, and the least frequently cited article received 1155 citations. In total, 60 were original articles among the 100 most-cited articles. The most frequently represented specialties were hepatitis, hepatocellular carcinoma, and nonalcoholic fatty liver disease, which accounted for 53.3%, 23.3%, and 11.7% of these articles, respectively. DISCUSSION Our study identified citation classics and provided a review of the most advanced studies in the field of hepatology. This can help to guide clinical treatment and future academic research resulting in advancements in hepatology.
Collapse
Affiliation(s)
- Qiuyu Yu
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shali Tan
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yutang Ren
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, China
| | - Manrong He
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yan Peng
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
31
|
Abstract
Hepatitis C virus (HCV) accounts for hepatitis, cirrhosis, hepatocellular carcinoma, and liver transplantation. Every year, millions of people develop chronic liver diseases. This article provides novel insights into the major breakthroughs in the discovery of hepatitis C virus. 2020 Nobel Prize in Medicine was awarded to Michael Houghton, Harvey Alter, and Charles Rice for their outstanding contribution in the discovery of HCV. Also, this article deals with current findings, challenges, and future prospects in the diagnosis of HCV infection. DAA, along with protease inhibitors, is found to have higher SVR and is a promising drug to treat HCV infection. However, with regard to the emergence of resistance to DAAs, CRISPR-Cas can be the future technique in preventing resistance. Although the current knowledge of molecular mechanisms associated with HCV infection is insufficient, the better understanding of it provides better hope in the treatment of HCV. Lymphoma A cancer causing infection on lymphocytes. Fulminant hepatitis A decrease in the size of the liver accompanied even by the death of liver parenchyma with the onset of infection with hepatitis virus. Transfection The process of introducing nucleic acids into eukaryotic cells without using viral methods. Huh-7 cells A type of liver cells grown in the laboratory for research purposes. Immunoscreening A biomedical method that helps to detect a protein produced from a cloned gene after it undergoes transcription, followed by the translation process within the cell. cDNA library A group of only the genes that are encoded into proteins by an organism. Sustained virologic response Absence of any evidence of the presence of HCV in the blood of patients with chronic HCV infection after undergoing antiviral treatment. Pegylated interferon A covalent conjugate of recombinant interferon and polyethylene glycol, used as an antiviral and antineoplastic agent. Immunoelectron microscopy A technique to localize ultrastructure antigens or antibodies in cells or tissues for the diagnosis of viral infections. Stellate cells A major type of liver cell involved in liver cirrhosis. Hepatitis C virus (HCV) accounts for hepatitis, liver cirrhosis, hepatocellular carcinoma, and liver transplantation. This virus is a single-stranded RNA virus that belongs to the Flaviviridae family. According to the WHO, about 71 million people have chronic HCV infections around the globe in 2020, and hence, it is a plague of humankind. The credit of discovery of HCV goes to Michael Houghton, Harvey Alter, and Charles Rice for which they are awarded 2020 Nobel Prize in Medicine. Their contribution has given better hope to mankind to cure HCV for the first time in the history. With the use of pegylated interferon and ribavirin jointly, higher SVR has been found comparatively, even in patients with chronic liver diseases. However, due to excessive pain tolerated by patients, interferon (IFN)-based therapy is rapidly being replaced with IFN-free DAA regimens. With the onset of resistance to DAA drugs, CRISPR-Cas system can be used to modify the viral genome to impair their ability to develop resistance. How to cite this article: Laugi H. Discovery of Hepatitis C Virus: 2020 Nobel Prize in Medicine. Euroasian J Hepato-Gastroenterol 2020;10(2): 105–108.
Collapse
|
32
|
Abstract
Evidence for the existence of another hepatitis-causing pathogen, other than the known hepatitis A and B viruses, emerged in the mid-1970s. A frustrating search of 15 years was ended by the identification of the hepatitis C virus in 1989 using a recombinant DNA immunoscreening method. This discovery quickly led to blood tests that eliminated posttransfusion hepatitis C and could show the partial efficacy of type 1 interferon-based therapies. Subsequent knowledge of the viral replication cycle then led to the development of effective direct-acting antivirals targeting its serine protease, polymerase, and nonstructural protein 5A that resulted in the approval of orally available drug combinations that can cure patients within a few months with few side effects. Meanwhile, vaccine strategies have been shown to be feasible, and they are still required to effectively control this global epidemic.
Collapse
Affiliation(s)
- Michael Houghton
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
33
|
Li H, Yan L, Shi Y, Lv D, Shang J, Bai L, Tang H. Hepatitis B Virus Infection: Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:1-16. [PMID: 31741331 DOI: 10.1007/978-981-13-9151-4_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatitis B virus (HBV) is a DNA virus, belonging to the Hepadnaviridae family. It is a partially double-stranded DNA virus with a small viral genome (3.2 kb). Chronic HBV infection remains a global public health problem. If left untreated, chronic HBV infection can progress to end-stage liver disease, such as liver cirrhosis and hepatocellular carcinoma (HCC). In recent years, tremendous advances in the field of HBV basic and clinical research have been achieved, ranging from the HBV biological characteristics, immunopathogenesis, and animal models to the development of new therapeutic strategies and new drugs against HBV. In this overview, we begin with a brief history of HBV discovery and treatment milestones. We then briefly summarize the HBV research advances, which will be detailed in the following chapters.
Collapse
Affiliation(s)
- Hong Li
- Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Libo Yan
- Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Shi
- Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Duoduo Lv
- Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Shang
- Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lang Bai
- Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Tang
- Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Recent trends and advances in microbe-based drug delivery systems. ACTA ACUST UNITED AC 2019; 27:799-809. [PMID: 31376116 DOI: 10.1007/s40199-019-00291-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Since more than a decade, pharmaceutical researchers endeavor to develop an effective, safe and target-specific drug delivery system to potentiate the therapeutic actions and reduce the side effects. The conventional drug delivery systems (DDSs) show the improvement in the lifestyle of the patients suffering from non-communicable diseases, autoimmune diseases but sometimes, drug resistance developed during the treatment is a major concern for clinicians to find an alternative and more advanced transport systems. Advancements in drug delivery facilitate the development of active carrier for targeted action with improved pharmacokinetic behavior. This review article focuses on microbe-based drug delivery systems to provide safe, non-toxic, site-specific targeted action with lesser side effects. Pharmaceutical researchers play a vital part in microbe-based drug delivery systems as a therapeutic agent and carrier. The properties of microorganisms like self-propulsion, in-situ production of therapeutics, penetration into the tumor cells, increase in immunity, etc. are of interest for development of highly effective delivery carrier. Lactococcus lactis is therapeutically helpful in Inflammatory Bowel Disease (IBD) and is under investigation of phase I clinical trial. Moreover, bacteria, anti-cancer oncolytic viruses, viral vectors (gene therapy) and viral immunotherapy are the attractive areas of biotechnological research. Virus acts as a distinctive candidate for imaging of tumor and accumulation of active in tumor. Graphical abstract Classification of microbe-based drug delivery system.
Collapse
|
35
|
Amir F, Siddiqui ZI, Farooqui SR, Anwer A, Khan S, Azmi MI, Mehmankhah M, Dohare R, Khan LA, Kazim SN. Impact of length of replication competent genome of hepatitis B virus over the differential antigenic secretion. J Cell Biochem 2019; 120:17858-17871. [PMID: 31310366 DOI: 10.1002/jcb.29054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Hepatitis B virus (HBV) genome consists of circular partially double stranded DNA of 3.2 kb size which gets converted into covalently closed circular DNA (cccDNA) during its life cycle. It then acts as a template for formation of pregenomicRNA (pgRNA) of 3.5 kb. Absence of appropriate animal models prompted a need to establish a better in vitro culture system to uncover the propagation and survival mechanisms of the virus. There is scarcity of data to represent the significance of varying length of replication competent viral genome on the secretion of viral secretory proteins/antigens and in turn on the overall effects on the accomplishment of the viral life cycle. The present study was undertaken to ascertain a suitable replication competent construct in which the viral life cycle of HBV with varying clinical relevance can be studied efficiently. Two constructs (pHBV 1.3 and pHBV 1X) of different sizes were used to transfect hepatoma cells and consequently the secretory antigens were monitored. In vector free approach (pHBV 1X), 3.2 kb viral DNA is directly transfected in the culture system whereas in vector mediated approach more than full length of viral genome is cloned in a vector (pHBV 1.3X) and transfected to obtain a 3.5 kb pgRNA intermediate. HBV secretes two important antigens; HBsAg and HBeAg. HBsAg is a hallmark of infection and is the first to be secreted in the blood stream whereas HBeAg is a secretory protein and remains associated with the viral replication. The construct pHBV 1.3X referring to as more than full length, by virtue of being capable of undergoing transcription without the synthesis of cccDNA intermediate (unlike the clinical situation where an intermediate step of cccDNA synthesis is an essential component to initiate the viral life cycle) appears to be better system for studying viral life cycle in in vitro culture system. The reasons could be assigned to the fact that as low as 100 ng of viral DNA was shown to quantify the replicative phenotypes with this construct. The better efficiency of this construct at prima facie, appears to be mediated through the significantly higher levels of pgRNA transcript during the viral life cycle.
Collapse
Affiliation(s)
- Fatima Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Zaheenul Islam Siddiqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sabihur Rahman Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Ayesha Anwer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saniya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Iqbal Azmi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Mahboubeh Mehmankhah
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
36
|
Yang C, Huang K. Clinical Applications of Virus-like Particles: Opportunities and Challenges. Curr Protein Pept Sci 2019; 20:488-489. [PMID: 30942144 DOI: 10.2174/138920372005190327120752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
37
|
Slifka MK, Amanna IJ. Role of Multivalency and Antigenic Threshold in Generating Protective Antibody Responses. Front Immunol 2019; 10:956. [PMID: 31118935 PMCID: PMC6504826 DOI: 10.3389/fimmu.2019.00956] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/15/2019] [Indexed: 12/03/2022] Open
Abstract
Vaccines play a vital role in protecting our communities against infectious disease. Unfortunately, some vaccines provide only partial protection or in some cases vaccine-mediated immunity may wane rapidly, resulting in either increased susceptibility to that disease or a requirement for more booster vaccinations in order to maintain immunity above a protective level. The durability of antibody responses after infection or vaccination appears to be intrinsically determined by the structural biology of the antigen, with multivalent protein antigens often providing more long-lived immunity than monovalent antigens. This forms the basis for the Imprinted Lifespan model describing the differential survival of long-lived plasma cell populations. There are, however, exceptions to this rule with examples of highly attenuated live virus vaccines that are rapidly cleared and elicit only short-lived immunity despite the expression of multivalent surface epitopes. These exceptions have led to the concept that multivalency alone may not reliably determine the duration of protective humoral immune responses unless a minimum number of long-lived plasma cells are generated by reaching an appropriate antigenic threshold of B cell stimulation. Examples of long-term and in some cases, potentially lifelong antibody responses following immunization against human papilloma virus (HPV), Japanese encephalitis virus (JEV), Hepatitis B virus (HBV), and Hepatitis A virus (HAV) provide several lessons in understanding durable serological memory in human subjects. Moreover, studies involving influenza vaccination provide the unique opportunity to compare the durability of hemagglutinin (HA)-specific antibody titers mounted in response to antigenically repetitive whole virus (i.e., multivalent HA), or detergent-disrupted “split” virus, in comparison to the long-term immune responses induced by natural influenza infection. Here, we discuss the underlying mechanisms that may be associated with the induction of protective immunity by long-lived plasma cells and their importance in future vaccine design.
Collapse
Affiliation(s)
- Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Ian J Amanna
- Najít Technologies, Inc., Beaverton, OR, United States
| |
Collapse
|
38
|
Karayiannis P. Hepatitis B virus: virology, molecular biology, life cycle and intrahepatic spread. Hepatol Int 2017; 11:500-508. [PMID: 29098564 DOI: 10.1007/s12072-017-9829-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/05/2017] [Indexed: 12/18/2022]
Abstract
Hepatitis B virus is a member of the Hepadnaviridae family and responsible for causing acute and chronic hepatitis in humans. The current estimates of people chronically infected with the virus are put at 250 million worldwide. Immune-mediated liver damage in these individuals may lead to the development of cirrhosis and hepatocellular carcinoma later in life. This review deals with our current understanding of the virology, molecular biology, life cycle and cell-to-cell spread of this very important pathogen, all of which are considered essential for current and future approaches to antiviral treatment.
Collapse
Affiliation(s)
- P Karayiannis
- Medical School, University of Nicosia, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, CY-1700, Nicosia, Cyprus.
| |
Collapse
|
39
|
Changotra H, Vij A. Rotavirus virus-like particles (RV-VLPs) vaccines: An update. Rev Med Virol 2017; 27. [DOI: 10.1002/rmv.1954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Harish Changotra
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Solan Himachal Pradesh India
| | - Avni Vij
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Solan Himachal Pradesh India
| |
Collapse
|
40
|
Valaydon ZS, Locarnini SA. The virological aspects of hepatitis B. Best Pract Res Clin Gastroenterol 2017; 31:257-264. [PMID: 28774407 DOI: 10.1016/j.bpg.2017.04.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 01/31/2023]
Abstract
Human hepatitis B virus (HBV) is a hepatotropic virus that is responsible for a significant burden of disease, causing liver disease and hepatocellular carcinoma. It is a small DNA virus with a replication strategy that is similar to that of a retrovirus. HBV is prone to mutagenesis and under the influence of diverse selection pressures, has evolved into a pool of quasispecies, genotypes and mutants, which confers a significant survival advantage. The genome is small, circular, and compact but has a complex replication strategy. The viral life cycle involves the formation of a covalently closed circular DNA (cccDNA), which is organized into a minichromosome that is the template for the synthesis of viral mRNA. HBV DNA (double-stranded linear form) can also integrate into the host genome, ensuring lifelong persistence of the virus. To date, despite great advances in therapeutics, once HBV is chronically established, it is incurable. This is by virtue of many aspects of its virological structure and viral life cycle. In this review, we aim to discuss important aspects of the virology of HBV with a focus on clinical implications.
Collapse
Affiliation(s)
- Zina S Valaydon
- Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Gastroenterology, St. Vincent's Hospital, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia.
| | - Stephen A Locarnini
- Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Gallagher JR, Torian U, McCraw DM, Harris AK. Characterization of the disassembly and reassembly of the HBV glycoprotein surface antigen, a pliable nanoparticle vaccine platform. Virology 2017; 502:176-187. [PMID: 28061386 DOI: 10.1016/j.virol.2016.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/10/2016] [Accepted: 12/20/2016] [Indexed: 01/19/2023]
Abstract
While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanism of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines.
Collapse
Affiliation(s)
- John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Udana Torian
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Dustin M McCraw
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Fatty acid biosynthesis is involved in the production of hepatitis B virus particles. Biochem Biophys Res Commun 2016; 475:87-92. [PMID: 27178211 DOI: 10.1016/j.bbrc.2016.05.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023]
Abstract
Hepatitis B virus (HBV) proliferates in hepatocytes after infection, but the host factors that contribute to the HBV lifecycle are poorly understood at the molecular level. We investigated whether fatty acid biosynthesis (FABS), which was recently reported to contribute to the genomic replication of hepatitis C virus, plays a role in HBV proliferation. We examined the effects of inhibitors of the enzymes in the FABS pathway on the HBV lifecycle by using recombinant HBV-producing cultured cells and found that the extracellular HBV DNA level, reflecting HBV particle production, was decreased by treatment with inhibitors suppressed the synthesis of long-chain saturated fatty acids with little cytotoxicity. The reduced HBV DNA level was reversed when palmitic acid, which is the product of fatty acid synthase (FAS) during FABS, was used simultaneously with the inhibitor. We also observed that the amount of intracellular HBV DNA in the cells was increased by FAS inhibitor treatment, suggesting that FABS is associated with HBV particle production but not its genome replication. This suggests that FABS might be a potent target for anti-HBV drug with a mode of action different from current HBV therapy.
Collapse
|
43
|
Block TM, Alter HJ, London WT, Bray M. A historical perspective on the discovery and elucidation of the hepatitis B virus. Antiviral Res 2016; 131:109-23. [PMID: 27107897 DOI: 10.1016/j.antiviral.2016.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022]
Abstract
The discovery in 1965 of the "Australia antigen," subsequently identified as the hepatitis B virus surface antigen (HBsAg), was such a watershed event in virology that it is often thought to mark the beginning of hepatitis research, but it is more accurately seen as a critical breakthrough in a long effort to understand the pathogenesis of infectious hepatitis. A century earlier, Virchow provided an authoritative explanation of "catarrhal jaundice," which did not consider an infectious etiology, but the transmission of jaundice by human serum was clearly identified in two outbreaks in 1885, and the distinction between "infectious" and "serum" hepatitis was recognized by the early 1920s. The inability to culture a virus or reproduce either syndrome in laboratory animals led to numerous studies in human volunteers; by the end of World War II, it was known that the diseases were caused by different filterable agents, and the terms "hepatitis A" and "B" were introduced in 1947 (though some long-incubation cases then designated B must in retrospect have been hepatitis C). The development of a number of liver function tests during the 1950s led to the recognition of anicteric infections and the existence of chronic carriers, but little more could be done until an infectious agent had been identified. Once Blumberg and colleagues had found a specific viral marker, the vast amount of accumulated epidemiologic and clinical data, together with huge numbers of stored serum samples, enabled rapid progress in understanding hepatitis B, and revealed the existence of a vast population of chronically infected people in Asia, Oceania and Africa. In this article, we place the identification of the Australia antigen within the historical context of research on viral hepatitis. Following a chronological review from 1865 to 1965, we summarize how the discovery led to improved safety of blood transfusion, the development of a highly effective vaccine and the eventual identification of the hepatitis C, D and E viruses. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for chronic hepatitis B."
Collapse
Affiliation(s)
- Timothy M Block
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| | - Harvey J Alter
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Mike Bray
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Blackadar CB. Historical review of the causes of cancer. World J Clin Oncol 2016; 7:54-86. [PMID: 26862491 PMCID: PMC4734938 DOI: 10.5306/wjco.v7.i1.54] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/31/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
In the early 1900s, numerous seminal publications reported that high rates of cancer occurred in certain occupations. During this period, work with infectious agents produced only meager results which seemed irrelevant to humans. Then in the 1980s ground breaking evidence began to emerge that a variety of viruses also cause cancer in humans. There is now sufficient evidence of carcinogenicity in humans for human T-cell lymphotrophic virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, human papillomavirus, Epstein-Barr virus, and human herpes virus 8 according to the International Agency for Research on Cancer (IARC). Many other causes of cancer have also been identified by the IARC, which include: Sunlight, tobacco, pharmaceuticals, hormones, alcohol, parasites, fungi, bacteria, salted fish, wood dust, and herbs. The World Cancer Research Fund and the American Institute for Cancer Research have determined additional causes of cancer, which include beta carotene, red meat, processed meats, low fibre diets, not breast feeding, obesity, increased adult height and sedentary lifestyles. In brief, a historical review of the discoveries of the causes of human cancer is presented with extended discussions of the difficulties encountered in identifying viral causes of cancer.
Collapse
|
45
|
Fernandez-Flores A. Aportaciones de la anatomía patológica en el diagnóstico de las infecciones cutáneas: una perspectiva histórica. PIEL 2016. [PMCID: PMC7148901 DOI: 10.1016/j.piel.2015.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
46
|
Subviral Hepatitis B Virus Filaments, like Infectious Viral Particles, Are Released via Multivesicular Bodies. J Virol 2015; 90:3330-41. [PMID: 26719264 DOI: 10.1128/jvi.03109-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/23/2015] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED In addition to infectious viral particles, hepatitis B virus-replicating cells secrete large amounts of subviral particles assembled by the surface proteins, but lacking any capsid and genome. Subviral particles form spheres (22-nm particles) and filaments. Filaments contain a much larger amount of the large surface protein (LHBs) compared to spheres. Spheres are released via the constitutive secretory pathway, while viral particles are ESCRT-dependently released via multivesicular bodies (MVBs). The interaction of virions with the ESCRT machinery is mediated by α-taxilin that connects the viral surface protein LHBs with the ESCRT component tsg101. Since filaments in contrast to spheres contain a significant amount of LHBs, it is unclear whether filaments are released like spheres or like virions. To study the release of subviral particles in the absence of virion formation, a core-deficient HBV mutant was generated. Confocal microscopy, immune electron microscopy of ultrathin sections and isolation of MVBs revealed that filaments enter MVBs. Inhibition of MVB biogenesis by the small-molecule inhibitor U18666A or inhibition of ESCRT functionality by coexpression of transdominant negative mutants (Vps4A, Vps4B, and CHMP3) abolishes the release of filaments while the secretion of spheres is not affected. These data indicate that in contrast to spheres which are secreted via the secretory pathway, filaments are released via ESCRT/MVB pathway like infectious viral particles. IMPORTANCE This study revises the current model describing the release of subviral particles by showing that in contrast to spheres, which are secreted via the secretory pathway, filaments are released via the ESCRT/MVB pathway like infectious viral particles. These data significantly contribute to a better understanding of the viral morphogenesis and might be helpful for the design of novel antiviral strategies.
Collapse
|
47
|
The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 2015; 99:10415-32. [PMID: 26454868 PMCID: PMC7080154 DOI: 10.1007/s00253-015-7000-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously self-assembled by viral structural proteins under appropriate conditions in vitro while excluding the genetic material and potential replication probability. In addition, VLPs possess several features including can be rapidly produced in large quantities through existing expression systems, highly resembling native viruses in terms of conformation and appearance, and displaying repeated cluster of epitopes. Their capsids can be modified via genetic insertion or chemical conjugation which facilitating the multivalent display of a homologous or heterogeneous epitope antigen. Therefore, VLPs are considered as a safe and effective candidate of prophylactic and therapeutic vaccines. VLPs, with a diameter of approximately 20 to 150 nm, also have the characteristics of nanometer materials, such as large surface area, surface-accessible amino acids with reactive moieties (e.g., lysine and glutamic acid residues), inerratic spatial structure, and good biocompatibility. Therefore, assembled VLPs have great potential as a delivery system for specifically carrying a variety of materials. This review summarized recent researches on VLP development as vaccines and biological vehicles, which demonstrated the advantages and potential of VLPs in disease control and prevention and diagnosis. Then, the prospect of VLP biology application in the future is discussed as well.
Collapse
|
48
|
Désiré N, Ngo Y, Franetich JF, Dembele L, Mazier D, Vaillant JC, Poynard T, Thibault V. Definition of an HBsAg to DNA international unit conversion factor by enrichment of circulating hepatitis B virus forms. J Viral Hepat 2015; 22:718-26. [PMID: 25644062 DOI: 10.1111/jvh.12387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/15/2014] [Indexed: 01/04/2023]
Abstract
Hepatitis B (HBV) virus infection is characterized by the overproduction of subviral particles (SVP) over infectious Dane particles (VP). Precise regulation of the ratio between these forms is unknown, but its fluctuation may have a clinical impact. An enrichment method was applied to assess the SVP/VP ratio in chronically infected patients (CHB) and to compare the sensitivity of HBs antigen (HBsAg) and DNA detection methods. Plasmas from 9 genotype A-D CHB patients were fractionated on Nycodenz(®) gradients, and both HBV DNA and HBsAg were quantified in each collected fraction using standardized techniques expressed in IU/mL. Infection of primary human hepatocytes (PHHs) was performed with crude or fractionated plasma. Independently of the genotype, all plasmas showed a similar rate-zonal separation profile characterized by a bottom DNA-enriched peak surmounted by HBsAg-enriched fractions. Inoculation of PHH with plasma-derived VP-enriched fractions led to long-lasting production of virus in cell supernatants with a SVP/VP ratio similar to that observed in patient plasmas. In the VP fraction, one IU of HBsAg corresponded to approximately 5 million IU of HBV DNA. Rate-zonal gradient separation directly applied on patient plasma allows a better insight into the distribution of VP in HBeAg-positive CHB carriers. This study highlights the sensitivity difference of the techniques classically used to monitor HBV infection and indicates that VP-associated HBsAg contributes modestly to the overall amount of total circulating HBsAg in CHB. Such a fractionation approach should help to understand the fine regulation of HBsAg production over replication at different stages of CHB.
Collapse
Affiliation(s)
- N Désiré
- Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Inserm U1135, Paris, France
| | - Y Ngo
- Pitié-Salpêtrière Hospital, Service d'Hépato-Gastro-Entérologie, Université Paris 6, CNRS UMR 8149, AP-HP, Paris, France.,UMR 8149, UPMC Univ Paris 06, Sorbonne Universités, Paris, France
| | - J-F Franetich
- Inserm U1135, Paris, France.,UMR S945, UPMC Univ Paris 06, Sorbonne Universités, Paris, France
| | - L Dembele
- Inserm U1135, Paris, France.,UMR S945, UPMC Univ Paris 06, Sorbonne Universités, Paris, France
| | - D Mazier
- Inserm U1135, Paris, France.,UMR S945, UPMC Univ Paris 06, Sorbonne Universités, Paris, France
| | - J-C Vaillant
- Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - T Poynard
- Pitié-Salpêtrière Hospital, Service d'Hépato-Gastro-Entérologie, Université Paris 6, CNRS UMR 8149, AP-HP, Paris, France.,UMR 8149, UPMC Univ Paris 06, Sorbonne Universités, Paris, France
| | - V Thibault
- Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Inserm U1135, Paris, France
| |
Collapse
|
49
|
Abstract
Virus-like particles (VLPs) are an effective means of establishing both prophylactic and therapeutic immunity against their source virus or heterologous antigens. The particulate nature and repetitive structure of VLPs makes them ideal for stimulating potent immune responses. Epitopes delivered by VLPs can be presented on MHC-II for stimulation of a humoral immune response, or cross-presented onto MHC-I leading to cell-mediated immunity. VLPs as particulate subunit vaccine carriers are showing promise in preclinical and clinical trials for the treatment of many conditions including cancer, autoimmunity, allergies and addiction. Supporting the delivery of almost any form of antigenic material, VLPs are ideal candidate vectors for development of future vaccines.
Collapse
|
50
|
Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology 2015; 479-480:672-86. [PMID: 25759099 PMCID: PMC4424072 DOI: 10.1016/j.virol.2015.02.031] [Citation(s) in RCA: 618] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023]
Abstract
Human hepatitis B virus (HBV) is the prototype of a family of small DNA viruses that productively infect hepatocytes, the major cell of the liver, and replicate by reverse transcription of a terminally redundant viral RNA, the pregenome. Upon infection, the circular, partially double-stranded virion DNA is converted in the nucleus to a covalently closed circular DNA (cccDNA) that assembles into a minichromosome, the template for viral mRNA synthesis. Infection of hepatocytes is non-cytopathic. Infection of the liver may be either transient (<6 months) or chronic and lifelong, depending on the ability of the host immune response to clear the infection. Chronic infections can cause immune-mediated liver damage progressing to cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of carcinogenesis are unclear. Antiviral therapies with nucleoside analog inhibitors of viral DNA synthesis delay sequelae, but cannot cure HBV infections due to the persistence of cccDNA in hepatocytes.
Collapse
|