1
|
VanBelzen J, Sakelaris B, Brickner DG, Marcou N, Riecke H, Mangan N, Brickner JH. Chromatin endogenous cleavage provides a global view of yeast RNA polymerase II transcription kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602535. [PMID: 39026809 PMCID: PMC11257477 DOI: 10.1101/2024.07.08.602535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Chromatin immunoprecipitation (ChIP-seq) is the most common approach to observe global binding of proteins to DNA in vivo. The occupancy of transcription factors (TFs) from ChIP-seq agrees well with an alternative method, chromatin endogenous cleavage (ChEC-seq2). However, ChIP-seq and ChEC-seq2 reveal strikingly different patterns of enrichment of yeast RNA polymerase II. We hypothesized that this reflects distinct populations of RNAPII, some of which are captured by ChIP-seq and some of which are captured by ChEC-seq2. RNAPII association with enhancers and promoters - predicted from biochemical studies - is detected well by ChEC-seq2 but not by ChIP-seq. Enhancer/promoter bound RNAPII correlates with transcription levels and matches predicted occupancy based on published rates of enhancer recruitment, preinitiation assembly, initiation, elongation and termination. The occupancy from ChEC-seq2 allowed us to develop a stochastic model for global kinetics of RNAPII transcription which captured both the ChEC-seq2 data and changes upon chemical-genetic perturbations to transcription. Finally, RNAPII ChEC-seq2 and kinetic modeling suggests that a mutation in the Gcn4 transcription factor that blocks interaction with the NPC destabilizes promoter-associated RNAPII without altering its recruitment to the enhancer.
Collapse
Affiliation(s)
- Jake VanBelzen
- Department of Molecular Biosciences, Northwestern University
| | - Bennet Sakelaris
- Department of Engineering Sciences and Applied Mathematics, Northwestern University
| | | | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern University
- Current address: Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Hermann Riecke
- Department of Engineering Sciences and Applied Mathematics, Northwestern University
| | - Niall Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University
| | | |
Collapse
|
2
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
3
|
Wang L, Zheng Z, Zheng J, Zhang G, Wang Z. The Potential Significance of the EMILIN3 Gene in Augmenting the Aggressiveness of Low-Grade Gliomas is Noteworthy. Cancer Manag Res 2024; 16:711-730. [PMID: 38952353 PMCID: PMC11215280 DOI: 10.2147/cmar.s463694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose Low-grade gliomas (LGG) are common brain tumors with high mortality rates. Cancer cell invasion is a significant factor in tumor metastasis. Novel biomarkers are urgently needed to predict LGG prognosis effectively. Methods The data for LGG were obtained from the Bioinformatics database. A consensus clustering analysis was performed to identify molecular subtypes linked with invasion in LGG. Differential expression analysis was performed to identify differentially expressed genes (DEGs) between the identified clusters. Enrichment analyses were then conducted to explore the function for DEGs. Prognostic signatures were placed, and their predictive power was assessed. Furthermore, the invasion-related prognostic signature was validated using the CGGA dataset. Subsequently, clinical specimens were procured in order to validate the expression levels of the distinct genes examined in this research, and to further explore the impact of these genes on the glioma cell line LN229 and HS-683. Results Two invasion-related molecular subtypes of LGG were identified, and we sifted 163 DEGs between them. The enrichment analyses indicated that DEGs are mainly related to pattern specification process. Subsequently, 10 signature genes (IGF2BP2, SRY, CHI3L1, IGF2BP3, MEOX2, ABCC3, HOXC4, OTP, METTL7B, and EMILIN3) were sifted out to construct a risk model. Besides, the survival (OS) in the high-risk group was lower. The performance of the risk model was verified. Furthermore, a highly reliable nomogram was generated. Cellular experiments revealed the ability to promote cell viability, value-addedness, migratory ability, invasive ability, and colony-forming ability of the glioma cell line LN229 and HS-683. The qRT-PCR analysis of clinical glioma samples showed that these 10 genes were expressed at higher levels in high-grade gliomas than in low-grade gliomas, suggesting that these genes are associated with poor prognosis of gliomas. Conclusion Our study sifted out ten invasion-related biomarkers of LGG, providing a reference for treatments and prognostic prediction in LGG.
Collapse
Affiliation(s)
- Li`ao Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300203, People’s Republic of China
| | - Zhiming Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Jia Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, 252004, People’s Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People’s Republic of China
| |
Collapse
|
4
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
5
|
Vollen K, Zhao C, Alonso JM, Stepanova AN. Sourcing DNA parts for synthetic biology applications in plants. Curr Opin Biotechnol 2024; 87:103140. [PMID: 38723389 DOI: 10.1016/j.copbio.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Transgenic approaches are now standard in plant biology research aiming to characterize gene function or improve crops. Recent advances in DNA synthesis and assembly make constructing transgenes a routine task. What remains nontrivial is the selection of the DNA parts and optimization of the transgene design. Early career researchers and seasoned molecular biologists alike often face difficult decisions on what promoter or terminator to use, what tag to include, and where to place it. This review aims to inform about the current approaches being employed to identify and characterize DNA parts with the desired functionalities and give general advice on basic construct design. Furthermore, we hope to share the excitement about new experimental and computational tools being developed in this field.
Collapse
Affiliation(s)
- Katie Vollen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Xie G, Du X, Hu H, Du J. Molecular mechanisms of the RNA polymerases in plant RNA-directed DNA methylation. Trends Biochem Sci 2024; 49:247-256. [PMID: 38072749 DOI: 10.1016/j.tibs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 03/10/2024]
Abstract
In plants, two atypical DNA-dependent RNA polymerases, RNA polymerase IV (Pol IV) and Pol V, and an RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) together produce noncoding RNAs (ncRNAs) to guide the plant-specific RNA-directed DNA methylation (RdDM). Although both Pol IV and Pol V have evolved from the canonical Pol II, they have adapted to different roles in RdDM. The mechanisms of their adaptation are key to understanding plant DNA methylation and the divergent evolution of polymerases. In this review, we summarize insights that have emerged from recent structural studies of Pol IV, Pol V, and RDR2 and discuss their structural features critical for efficient ncRNA production in RdDM.
Collapse
Affiliation(s)
- Guohui Xie
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuan Du
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
Jacobs RQ, Schneider DA. Transcription elongation mechanisms of RNA polymerases I, II, and III and their therapeutic implications. J Biol Chem 2024; 300:105737. [PMID: 38336292 PMCID: PMC10907179 DOI: 10.1016/j.jbc.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
8
|
Hardtke HA, Zhang YJ. Collaborators or competitors: the communication between RNA polymerase II and the nucleosome during eukaryotic transcription. Crit Rev Biochem Mol Biol 2024; 59:1-19. [PMID: 38288999 PMCID: PMC11209794 DOI: 10.1080/10409238.2024.2306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 04/22/2024]
Abstract
Decades of scientific research have been devoted to unraveling the intricacies of eukaryotic transcription since the groundbreaking discovery of eukaryotic RNA polymerases in the late 1960s. RNA polymerase II, the polymerase responsible for mRNA synthesis, has always attracted the most attention. Despite its structural resemblance to its bacterial counterpart, eukaryotic RNA polymerase II faces a unique challenge in progressing transcription due to the presence of nucleosomes that package DNA in the nuclei. In this review, we delve into the impact of RNA polymerase II and histone signaling on the progression of eukaryotic transcription. We explore the pivotal points of interactions that bridge the RNA polymerase II and histone signaling systems. Finally, we present an analysis of recent cryo-electron microscopy structures, which captured RNA polymerase II-nucleosome complexes at different stages of the transcription cycle. The combination of the signaling crosstalk and the direct visualization of RNA polymerase II-nucleosome complexes provides a deeper understanding of the communication between these two major players in eukaryotic transcription.
Collapse
Affiliation(s)
- Haley A. Hardtke
- Department of Molecular Biosciences, University of Texas, Austin
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin
| |
Collapse
|
9
|
Fenstermaker TK, Petruk S, Mazo A. An emerging paradigm in epigenetic marking: coordination of transcription and replication. Transcription 2024; 15:22-37. [PMID: 38378467 DOI: 10.1080/21541264.2024.2316965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.
Collapse
Affiliation(s)
- Tyler K Fenstermaker
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Daiß JL, Griesenbeck J, Tschochner H, Engel C. Synthesis of the ribosomal RNA precursor in human cells: mechanisms, factors and regulation. Biol Chem 2023; 404:1003-1023. [PMID: 37454246 DOI: 10.1515/hsz-2023-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The ribosomal RNA precursor (pre-rRNA) comprises three of the four ribosomal RNAs and is synthesized by RNA polymerase (Pol) I. Here, we describe the mechanisms of Pol I transcription in human cells with a focus on recent insights gained from structure-function analyses. The comparison of Pol I-specific structural and functional features with those of other Pols and with the excessively studied yeast system distinguishes organism-specific from general traits. We explain the organization of the genomic rDNA loci in human cells, describe the Pol I transcription cycle regarding structural changes in the enzyme and the roles of human Pol I subunits, and depict human rDNA transcription factors and their function on a mechanistic level. We disentangle information gained by direct investigation from what had apparently been deduced from studies of the yeast enzymes. Finally, we provide information about how Pol I mutations may contribute to developmental diseases, and why Pol I is a target for new cancer treatment strategies, since increased rRNA synthesis was correlated with rapidly expanding cell populations.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
12
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Pikaard CS, Chandrasekhara C, McKinlay A, Enganti R, Fultz D. Reaching for the off switch in nucleolar dominance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1185-1192. [PMID: 37228042 PMCID: PMC10524600 DOI: 10.1111/tpj.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Nucleolus organizer regions (NORs) are eukaryotic chromosomal loci where ribosomal RNA (rRNA) genes are clustered, typically in hundreds to thousands of copies. Transcription of these rRNA genes by RNA polymerase I and processing of their transcripts results in the formation of the nucleolus, the sub-nuclear domain in which ribosomes are assembled. Approximately 90 years ago, cytogenetic observations revealed that NORs inherited from the different parents of an interspecific hybrid sometimes differ in morphology at metaphase. Fifty years ago, those chromosomal differences were found to correlate with differences in rRNA gene transcription and the phenomenon became known as nucleolar dominance. Studies of the past 30 years have revealed that nucleolar dominance results from selective rRNA gene silencing, involving repressive chromatin modifications, and occurs in pure species as well as hybrids. Recent evidence also indicates that silencing depends on the NOR in which an rRNA gene is located, and not on the gene's sequence. In this perspective, we discuss how our thinking about nucleolar dominance has shifted over time from the kilobase scale of individual genes to the megabase scale of NORs and chromosomes and questions that remain unanswered in the search for a genetic and biochemical understanding of the off switch.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana, USA
| | - Chinmayi Chandrasekhara
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Anastasia McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana, USA
| | - Ramya Enganti
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana, USA
| | - Dalen Fultz
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
14
|
Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem 2023; 299:104966. [PMID: 37380076 PMCID: PMC10424219 DOI: 10.1016/j.jbc.2023.104966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.
Collapse
Affiliation(s)
- Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
15
|
Chiliński M, Lipiński J, Agarwal A, Ruan Y, Plewczynski D. Enhanced performance of gene expression predictive models with protein-mediated spatial chromatin interactions. Sci Rep 2023; 13:11693. [PMID: 37474564 PMCID: PMC10359366 DOI: 10.1038/s41598-023-38865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
There have been multiple attempts to predict the expression of the genes based on the sequence, epigenetics, and various other factors. To improve those predictions, we have decided to investigate adding protein-specific 3D interactions that play a significant role in the condensation of the chromatin structure in the cell nucleus. To achieve this, we have used the architecture of one of the state-of-the-art algorithms, ExPecto, and investigated the changes in the model metrics upon adding the spatially relevant data. We have used ChIA-PET interactions that are mediated by cohesin (24 cell lines), CTCF (4 cell lines), and RNAPOL2 (4 cell lines). As the output of the study, we have developed the Spatial Gene Expression (SpEx) algorithm that shows statistically significant improvements in most cell lines. We have compared ourselves to the baseline ExPecto model, which obtained a 0.82 Spearman's rank correlation coefficient (SCC) score, and 0.85, which is reported by newer Enformer were able to obtain the average correlation score of 0.83. However, in some cases (e.g. RNAPOL2 on GM12878), our improvement reached 0.04, and in some cases (e.g. RNAPOL2 on H1), we reached an SCC of 0.86.
Collapse
Affiliation(s)
- Mateusz Chiliński
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | | | - Abhishek Agarwal
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA
- Life Sciences Institute, Zhejiang University, Zhejiang, Hangzhou, China
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662, Warsaw, Poland.
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland.
| |
Collapse
|
16
|
Li C, Li Z, Wu Z, Lu H. Phase separation in gene transcription control. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1052-1063. [PMID: 37265348 PMCID: PMC10415188 DOI: 10.3724/abbs.2023099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Phase separation provides a general mechanism for the formation of biomolecular condensates, and it plays a vital role in regulating diverse cellular processes, including gene expression. Although the role of transcription factors and coactivators in regulating transcription has long been understood, how phase separation is involved in this process is just beginning to be explored. In this review, we highlight recent advance in elucidating the molecular mechanisms and functions of transcriptional condensates in gene expression control. We discuss the different condensates formed at each stage of the transcription cycle and how they are dynamically regulated in response to diverse cellular and extracellular cues that cause rapid changes in gene expression. Furthermore, we present new findings regarding the dysregulation of transcription condensates and their implications in human diseases.
Collapse
Affiliation(s)
- Chengyu Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Zhuo Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Zhibing Wu
- Department of OncologyAffiliated Zhejiang HospitalZhejiang University School of MedicineHangzhou310058China
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhou310058China
| |
Collapse
|
17
|
Gerber A, van Otterdijk S, Bruggeman FJ, Tutucci E. Understanding spatiotemporal coupling of gene expression using single molecule RNA imaging technologies. Transcription 2023; 14:105-126. [PMID: 37050882 PMCID: PMC10807504 DOI: 10.1080/21541264.2023.2199669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Across all kingdoms of life, gene regulatory mechanisms underlie cellular adaptation to ever-changing environments. Regulation of gene expression adjusts protein synthesis and, in turn, cellular growth. Messenger RNAs are key molecules in the process of gene expression. Our ability to quantitatively measure mRNA expression in single cells has improved tremendously over the past decades. This revealed an unexpected coordination between the steps that control the life of an mRNA, from transcription to degradation. Here, we provide an overview of the state-of-the-art imaging approaches for measurement and quantitative understanding of gene expression, starting from the early visualizations of single genes by electron microscopy to current fluorescence-based approaches in single cells, including live-cell RNA-imaging approaches to FISH-based spatial transcriptomics across model organisms. We also highlight how these methods have shaped our current understanding of the spatiotemporal coupling between transcriptional and post-transcriptional events in prokaryotes. We conclude by discussing future challenges of this multidisciplinary field.Abbreviations: mRNA: messenger RNA; rRNA: ribosomal rDNA; tRNA: transfer RNA; sRNA: small RNA; FISH: fluorescence in situ hybridization; RNP: ribonucleoprotein; smFISH: single RNA molecule FISH; smiFISH: single molecule inexpensive FISH; HCR-FISH: Hybridization Chain-Reaction-FISH; RCA: Rolling Circle Amplification; seqFISH: Sequential FISH; MERFISH: Multiplexed error robust FISH; UTR: Untranslated region; RBP: RNA binding protein; FP: fluorescent protein; eGFP: enhanced GFP, MCP: MS2 coat protein; PCP: PP7 coat protein; MB: Molecular beacons; sgRNA: single guide RNA.
Collapse
Affiliation(s)
- Alan Gerber
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Sander van Otterdijk
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Evelina Tutucci
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Abas AH, Tallei TE, Fatimawali F, Celik I, Alhumaydhi FA, Emran TB, Dhama K, Rabaan AA, Garout MA, Halwani MA, Al Mutair A, Alhumaid S, Harapan H. 4’-fluorouridine as a potential COVID-19 oral drug?: a review. F1000Res 2023; 11:410. [DOI: 10.12688/f1000research.109701.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The available antiviral drugs against coronavirus disease 2019 (COVID-19) are limited. Oral drugs that can be prescribed to non-hospitalized patients are required. The 4′-fluoruridine, a nucleoside analog similar to remdesivir, is one of the promising candidates for COVID-19 oral therapy due to its ability to stall viral RdRp. Available data suggested that 4'-fluorouridine has antiviral activity against the respiratory syncytial virus, hepatitis C virus, lymphocytic choriomeningitis virus, and other RNA viruses, including SARS-CoV-2. In vivo study revealed that SARS-CoV-2 is highly susceptible to 4'-fluorouridine and was effective with a single daily dose versus molnupiravir administered twice daily. Although 4'-fluorouridine is considered as strong candidates, further studies are required to determine its efficacy in the patients and it’s genetic effects on humans. In this review, we the antiviral activity of 4′-fluorouridine is reviewed and compared it to other drugs currently in development. The current literature on 4′-fluorouridine's antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is compiled and discussed.
Collapse
|
19
|
Chiliński M, Lipiński J, Agarwal A, Ruan Y, Plewczynski D. Enhanced performance of gene expression predictive models with protein-mediated spatial chromatin interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535849. [PMID: 37066361 PMCID: PMC10104055 DOI: 10.1101/2023.04.06.535849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
There have been multiple attempts to predict the expression of the genes based on the sequence, epigenetics, and various other factors. To improve those predictions, we have decided to investigate adding protein-specific 3D interactions that play a major role in the compensation of the chromatin structure in the cell nucleus. To achieve this, we have used the architecture of one of the state-of-the-art algorithms, ExPecto (J. Zhou et al., 2018), and investigated the changes in the model metrics upon adding the spatially relevant data. We have used ChIA-PET interactions that are mediated by cohesin (24 cell lines), CTCF (4 cell lines), and RNAPOL2 (4 cell lines). As the output of the study, we have developed the Spatial Gene Expression (SpEx) algorithm that shows statistically significant improvements in most cell lines.
Collapse
|
20
|
Xie G, Du X, Hu H, Li S, Cao X, Jacobsen SE, Du J. Structure and mechanism of the plant RNA polymerase V. Science 2023; 379:1209-1213. [PMID: 36893216 PMCID: PMC10041816 DOI: 10.1126/science.adf8231] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In addition to the conserved RNA polymerases I to III (Pols I to III) in eukaryotes, two atypical polymerases, Pols IV and V, specifically produce noncoding RNA in the RNA-directed DNA methylation pathway in plants. Here, we report on the structures of cauliflower Pol V in the free and elongation conformations. A conserved tyrosine residue of NRPE2 stacks with a double-stranded DNA branch of the transcription bubble to potentially attenuate elongation by inducing transcription stalling. The nontemplate DNA strand is captured by NRPE2 to enhance backtracking, thereby increasing 3'-5' cleavage, which likely underpins Pol V's high fidelity. The structures also illuminate the mechanism of Pol V transcription stalling and enhanced backtracking, which may be important for Pol V's retention on chromatin to serve its function in tethering downstream factors for RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Guohui Xie
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuan Du
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Hongmiao Hu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sisi Li
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Role of E2F transcription factor in Oral cancer: Recent Insight and Advancements. Semin Cancer Biol 2023; 92:28-41. [PMID: 36924812 DOI: 10.1016/j.semcancer.2023.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The family of mammalian E2F transcription factors (E2Fs) comprise of 8 members (E2F1-E2F8) classified as activators (E2F1-E2F3) and repressors (E2F4-E2F8) primarily regulating the expression of several genes related to cell proliferation, apoptosis and differentiation, mainly in a cell cycle-dependent manner. E2F activity is frequently controlled via the retinoblastoma protein (pRb), cyclins, p53 and the ubiquitin-proteasome pathway. Additionally, genetic or epigenetic changes result in the deregulation of E2F family genes expression altering S phase entry and apoptosis, an important hallmark for the onset and development of cancer. Although studies reveal E2Fs to be involved in several human malignancies, the mechanisms underlying the role of E2Fs in oral cancer lies nascent and needs further investigations. This review focuses on the role of E2Fs in oral cancer and the etiological factors regulating E2Fs activity, which in turn transcriptionally control the expression of their target genes, thus contributing to cell proliferation, metastasis, and drug/therapy resistance. Further, we will discuss therapeutic strategies for E2Fs, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
|
22
|
Li Y, Huang J, Bao L, Zhu J, Duan W, Zheng H, Wang H, Jiang Y, Liu W, Zhang M, Yu Y, Yi C, Ji X. RNA Pol II preferentially regulates ribosomal protein expression by trapping disassociated subunits. Mol Cell 2023; 83:1280-1297.e11. [PMID: 36924766 DOI: 10.1016/j.molcel.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/12/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023]
Abstract
RNA polymerase II (RNA Pol II) has been recognized as a passively regulated multi-subunit holoenzyme. However, the extent to which RNA Pol II subunits might be important beyond the RNA Pol II complex remains unclear. Here, fractions containing disassociated RPB3 (dRPB3) were identified by size exclusion chromatography in various cells. Through a unique strategy, i.e., "specific degradation of disassociated subunits (SDDS)," we demonstrated that dRPB3 functions as a regulatory component of RNA Pol II to enable the preferential control of 3' end processing of ribosomal protein genes directly through its N-terminal domain. Machine learning analysis of large-scale genomic features revealed that the little elongation complex (LEC) helps to specialize the functions of dRPB3. Mechanistically, dRPB3 facilitates CBC-PCF11 axis activity to increase the efficiency of 3' end processing. Furthermore, RPB3 is dynamically regulated during development and diseases. These findings suggest that RNA Pol II gains specific regulatory functions by trapping disassociated subunits in mammalian cells.
Collapse
Affiliation(s)
- Yuanjun Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lijun Bao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junyi Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wenjia Duan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Weiwei Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yang Yu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat Rev Mol Cell Biol 2023; 24:204-220. [PMID: 36180603 PMCID: PMC9974566 DOI: 10.1038/s41580-022-00534-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.
Collapse
|
24
|
Corman A, Sirozh O, Lafarga V, Fernandez-Capetillo O. Targeting the nucleolus as a therapeutic strategy in human disease. Trends Biochem Sci 2023; 48:274-287. [PMID: 36229381 DOI: 10.1016/j.tibs.2022.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
The nucleolus is the site of ribosome biogenesis, one of the most resource-intensive processes in eukaryotic cells. Accordingly, nucleolar morphology and activity are highly responsive to growth signaling and nucleolar insults which are collectively included in the actively evolving concept of nucleolar stress. Importantly, nucleolar alterations are a prominent feature of multiple human pathologies, including cancer and neurodegeneration, as well as being associated with aging. The past decades have seen numerous attempts to isolate compounds targeting different facets of nucleolar activity. We provide an overview of therapeutic opportunities for targeting nucleoli in different pathologies and currently available therapies.
Collapse
Affiliation(s)
- Alba Corman
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
25
|
Cheng R, Van Bortle K. RNA polymerase III transcription and cancer: A tale of two RPC7 subunits. Front Mol Biosci 2023; 9:1073795. [PMID: 36710885 PMCID: PMC9877311 DOI: 10.3389/fmolb.2022.1073795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
RNA polymerase III composition is shaped by the mutually exclusive incorporation of two paralogous subunits, RPC7α and RPC7β, encoded by genes POLR3G and POLR3GL in vertebrates. The expression of POLR3G and POLR3GL is spatiotemporally regulated during development, and multiple reports point to RPC7α-enhanced Pol III activity patterns, indicating that Pol III identity may underly dynamic Pol III transcription patterns observed in higher eukaryotes. In cancer, upregulation of POLR3G, but not POLR3GL, is associated with poor survival outcomes among patients, suggesting differences between RPC7α and RPC7β further influence disease progression and may translate into future biomarkers and therapeutic strategies. Here, we outline our current understanding of Pol III identity and transcription and reexamine the distinct protein characteristics of Pol III subunits RPC7α and RPC7β. Drawing on both structural and genomic studies, we discuss differences between RPC7α and RPC7β and the potential mechanisms by which Pol III identity may establish differential activities during development and disease.
Collapse
Affiliation(s)
- Ruiying Cheng
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
26
|
Khan FS, Goher F, Zhang D, Shi P, Li Z, Htwe YM, Wang Y. Is CRISPR/Cas9 a way forward to fast-track genetic improvement in commercial palms? Prospects and limits. FRONTIERS IN PLANT SCIENCE 2022; 13:1042828. [PMID: 36578341 PMCID: PMC9791139 DOI: 10.3389/fpls.2022.1042828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Commercially important palms (oil palm, coconut, and date palm) are widely grown perennial trees with tremendous commercial significance due to food, edible oil, and industrial applications. The mounting pressure on the human population further reinforces palms' importance, as they are essential crops to meet vegetable oil needs around the globe. Various conventional breeding methods are used for the genetic improvement of palms. However, adopting new technologies is crucial to accelerate breeding and satisfy the expanding population's demands. CRISPR/Cas9 is an efficient genome editing tool that can incorporate desired traits into the existing DNA of the plant without losing common traits. Recent progress in genome editing in oil palm, coconut and date palm are preliminarily introduced to potential readers. Furthermore, detailed information on available CRISPR-based genome editing and genetic transformation methods are summarized for researchers. We shed light on the possibilities of genome editing in palm crops, especially on the modification of fatty acid biosynthesis in oil palm. Moreover, the limitations in genome editing, including inadequate target gene screening due to genome complexities and low efficiency of genetic transformation, are also highlighted. The prospects of CRISPR/Cas9-based gene editing in commercial palms to improve sustainable production are also addressed in this review paper.
Collapse
Affiliation(s)
- Faiza Shafique Khan
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Dapeng Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Peng Shi
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Zhiying Li
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yin Min Htwe
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yong Wang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| |
Collapse
|
27
|
Liu S, Li X, Liu X, Wang J, Li L, Kong D. RNA polymerase III directly participates in DNA homologous recombination. Trends Cell Biol 2022; 32:988-995. [PMID: 35811227 DOI: 10.1016/j.tcb.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
A recent study showed that RNA transcription is directly involved in DNA homologous recombination (HR). The first step in HR is end resection, which degrades a few kilobases or more from the 5'-end strand at DNA breaks, but the 3'-end strand remains strictly intact. Such protection of the 3'-end strand is achieved by the transient formation of an RNA-DNA hybrid structure. The RNA strand in the hybrid is newly synthesized by RNA polymerase III. The revelation of the existence of an RNA-DNA hybrid intermediate should further help resolve several long-standing questions of HR. In this article, we also put forward our views on some controversial issues related to RNA-DNA hybrids, RNA polymerases, and the protection of 3'-end strands.
Collapse
Affiliation(s)
- Sijie Liu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Xizhou Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Xiaoqin Liu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Institute of Brain Science, Shanxi Datong University, Datong 037009, China
| | - Jingna Wang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lingyan Li
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
Okuda M, Tsunaka Y, Nishimura Y. Dynamic structures of intrinsically disordered proteins related to the general transcription factor TFIIH, nucleosomes, and histone chaperones. Biophys Rev 2022; 14:1449-1472. [PMID: 36659983 PMCID: PMC9842849 DOI: 10.1007/s12551-022-01014-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in structural analysis by cryogenic electron microscopy (cryo-EM) and X-ray crystallography have revealed the tertiary structures of various chromatin-related proteins, including transcription factors, RNA polymerases, nucleosomes, and histone chaperones; however, the dynamic structures of intrinsically disordered regions (IDRs) in these proteins remain elusive. Recent studies using nuclear magnetic resonance (NMR), together with molecular dynamics (MD) simulations, are beginning to reveal dynamic structures of the general transcription factor TFIIH complexed with target proteins including the general transcription factor TFIIE, the tumor suppressor p53, the cell cycle protein DP1, the DNA repair factors XPC and UVSSA, and three RNA polymerases, in addition to the dynamics of histone tails in nucleosomes and histone chaperones. In complexes of TFIIH, the PH domain of the p62 subunit binds to an acidic string formed by the IDR in TFIIE, p53, XPC, UVSSA, DP1, and the RPB6 subunit of three RNA polymerases by a common interaction mode, namely extended string-like binding of the IDR on the positively charged surface of the PH domain. In the nucleosome, the dynamic conformations of the N-tails of histones H2A and H2B are correlated, while the dynamic conformations of the N-tails of H3 and H4 form a histone tail network dependent on their modifications and linker DNA. The acidic IDRs of the histone chaperones of FACT and NAP1 play important roles in regulating the accessibility to histone proteins in the nucleosome.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528 Japan
| |
Collapse
|
29
|
Jiang Y, Huang J, Tian K, Yi X, Zheng H, Zhu Y, Guo T, Ji X. Cross-regulome profiling of RNA polymerases highlights the regulatory role of polymerase III on mRNA transcription by maintaining local chromatin architecture. Genome Biol 2022; 23:246. [PMID: 36443871 PMCID: PMC9703767 DOI: 10.1186/s13059-022-02812-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mammalian cells have three types of RNA polymerases (Pols), Pol I, II, and III. However, the extent to which these polymerases are cross-regulated and the underlying mechanisms remain unclear. RESULTS We employ genome-wide profiling after acute depletion of Pol I, Pol II, or Pol III to assess cross-regulatory effects between these Pols. We find that these enzymes mainly affect the transcription of their own target genes, while certain genes are transcribed by the other polymerases. Importantly, the most active type of crosstalk is exemplified by the fact that Pol III depletion affects Pol II transcription. Pol II genes with transcription changes upon Pol III depletion are enriched in diverse cellular functions, and Pol III binding sites are found near their promoters. However, these Pol III binding sites do not correspond to transfer RNAs. Moreover, we demonstrate that Pol III regulates Pol II transcription and chromatin binding of the facilitates chromatin transcription (FACT) complex to alter local chromatin structures, which in turn affects the Pol II transcription rate. CONCLUSIONS Our results support a model suggesting that RNA polymerases show cross-regulatory effects: Pol III affects local chromatin structures and the FACT-Pol II axis to regulate the Pol II transcription rate at certain gene loci. This study provides a new perspective for understanding the dysregulation of Pol III in various tissues affected by developmental diseases.
Collapse
Affiliation(s)
- Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xiao Yi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, 310024, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, 310024, China
| | - Tiannan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, 310024, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Regulation of RNA Polymerase I Stability and Function. Cancers (Basel) 2022; 14:cancers14235776. [PMID: 36497261 PMCID: PMC9737084 DOI: 10.3390/cancers14235776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase I is a highly processive enzyme with fast initiation and elongation rates. The structure of Pol I, with its in-built RNA cleavage ability and incorporation of subunits homologous to transcription factors, enables it to quickly and efficiently synthesize the enormous amount of rRNA required for ribosome biogenesis. Each step of Pol I transcription is carefully controlled. However, cancers have highjacked these control points to switch the enzyme, and its transcription, on permanently. While this provides an exceptional benefit to cancer cells, it also creates a potential cancer therapeutic vulnerability. We review the current research on the regulation of Pol I transcription, and we discuss chemical biology efforts to develop new targeted agents against this process. Lastly, we highlight challenges that have arisen from the introduction of agents with promiscuous mechanisms of action and provide examples of agents with specificity and selectivity against Pol I.
Collapse
|
31
|
Jacobs RQ, Carter ZI, Lucius AL, Schneider DA. Uncovering the mechanisms of transcription elongation by eukaryotic RNA polymerases I, II, and III. iScience 2022; 25:105306. [PMID: 36304104 PMCID: PMC9593817 DOI: 10.1016/j.isci.2022.105306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/01/2022] Open
Abstract
Eukaryotes express three nuclear RNA polymerases (Pols I, II, and III) that are essential for cell survival. Despite extensive investigation of the three Pols, significant knowledge gaps regarding their biochemical properties remain because each Pol has been evaluated independently under disparate experimental conditions and methodologies. To advance our understanding of the Pols, we employed identical in vitro transcription assays for direct comparison of their elongation rates, elongation complex (EC) stabilities, and fidelities. Pol I is the fastest, most likely to misincorporate, forms the least stable EC, and is most sensitive to alterations in reaction buffers. Pol II is the slowest of the Pols, forms the most stable EC, and negligibly misincorporated an incorrect nucleotide. The enzymatic properties of Pol III were intermediate between Pols I and II in all assays examined. These results reveal unique enzymatic characteristics of the Pols that provide new insights into their evolutionary divergence.
Collapse
Affiliation(s)
- Ruth Q. Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zachariah I. Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
32
|
Jacobs RQ, Fuller KB, Cooper SL, Carter ZI, Laiho M, Lucius AL, Schneider DA. RNA Polymerase I Is Uniquely Vulnerable to the Small-Molecule Inhibitor BMH-21. Cancers (Basel) 2022; 14:5544. [PMID: 36428638 PMCID: PMC9688676 DOI: 10.3390/cancers14225544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells require robust ribosome biogenesis to maintain rapid cell growth during tumorigenesis. Because RNA polymerase I (Pol I) transcription of the ribosomal DNA (rDNA) is the first and rate-limiting step of ribosome biogenesis, it has emerged as a promising anti-cancer target. Over the last decade, novel cancer therapeutics targeting Pol I have progressed to clinical trials. BMH-21 is a first-in-class small molecule that inhibits Pol I transcription and represses cancer cell growth. Several recent studies have uncovered key mechanisms by which BMH-21 inhibits ribosome biosynthesis but the selectivity of BMH-21 for Pol I has not been directly measured. Here, we quantify the effects of BMH-21 on Pol I, RNA polymerase II (Pol II), and RNA polymerase III (Pol III) in vitro using purified components. We found that BMH-21 directly impairs nucleotide addition by Pol I, with no or modest effect on Pols II and III, respectively. Additionally, we found that BMH-21 does not affect the stability of any of the Pols' elongation complexes. These data demonstrate that BMH-21 directly exploits unique vulnerabilities of Pol I.
Collapse
Affiliation(s)
- Ruth Q. Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kaila B. Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephanie L. Cooper
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
33
|
Daiß JL, Pilsl M, Straub K, Bleckmann A, Höcherl M, Heiss FB, Abascal-Palacios G, Ramsay EP, Tlučková K, Mars JC, Fürtges T, Bruckmann A, Rudack T, Bernecky C, Lamour V, Panov K, Vannini A, Moss T, Engel C. The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans. Life Sci Alliance 2022; 5:5/11/e202201568. [PMID: 36271492 PMCID: PMC9438803 DOI: 10.26508/lsa.202201568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
We characterize the human RNA polymerase I by evolutionary biochemistry and cryo-EM revealing a built-in structural domain that apparently serves as transcription factor–binding platform in metazoans. Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth, and dysregulation is observed in many cancer types. Here, we present the purification of human Pol I from cells carrying a genomic GFP fusion on the largest subunit allowing the structural and functional analysis of the enzyme across species. In contrast to yeast, human Pol I carries a single-subunit stalk, and in vitro transcription indicates a reduced proofreading activity. Determination of the human Pol I cryo-EM reconstruction in a close-to-native state rationalizes the effects of disease-associated mutations and uncovers an additional domain that is built into the sequence of Pol I subunit RPA1. This “dock II” domain resembles a truncated HMG box incapable of DNA binding which may serve as a downstream transcription factor–binding platform in metazoans. Biochemical analysis, in situ modelling, and ChIP data indicate that Topoisomerase 2a can be recruited to Pol I via the domain and cooperates with the HMG box domain–containing factor UBF. These adaptations of the metazoan Pol I transcription system may allow efficient release of positive DNA supercoils accumulating downstream of the transcription bubble.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Michael Pilsl
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Kristina Straub
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andrea Bleckmann
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Mona Höcherl
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Florian B Heiss
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Guillermo Abascal-Palacios
- Division of Structural Biology, The Institute of Cancer Research, London, UK
- Biofisika Institute (CSIC, UPV/EHU), Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ewan P Ramsay
- Division of Structural Biology, The Institute of Cancer Research, London, UK
- Fondazione Human Technopole, Structural Biology Research Centre, Milan, Italy
| | | | - Jean-Clement Mars
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
- Borden Laboratory, IRIC, Université de Montréal, Montréal, Québec, Canada
| | - Torben Fürtges
- Protein Crystallography, Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Till Rudack
- Protein Crystallography, Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Carrie Bernecky
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Valérie Lamour
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Integrated Structural Biology, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Konstantin Panov
- School of Biological Sciences and PGJCCR, Queen’s University Belfast, Belfast, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, UK
- Fondazione Human Technopole, Structural Biology Research Centre, Milan, Italy
| | - Tom Moss
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, Canada
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Li Y, Huang J, Zhu J, Bao L, Wang H, Jiang Y, Tian K, Wang R, Zheng H, Duan W, Lai W, Yi X, Zhu Y, Guo T, Ji X. Targeted protein degradation reveals RNA Pol II heterogeneity and functional diversity. Mol Cell 2022; 82:3943-3959.e11. [PMID: 36113479 DOI: 10.1016/j.molcel.2022.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
RNA polymerase II (RNA Pol II) subunits are thought to be involved in various transcription-associated processes, but it is unclear whether they play different regulatory roles in modulating gene expression. Here, we performed nascent and mature transcript sequencing after the acute degradation of 12 mammalian RNA Pol II subunits and profiled their genomic binding sites and protein interactomes to dissect their molecular functions. We found that RNA Pol II subunits contribute differently to RNA Pol II cellular localization and transcription processes and preferentially regulate RNA processing (such as RNA splicing and 3' end maturation). Genes sensitive to the depletion of different RNA Pol II subunits tend to be involved in diverse biological functions and show different RNA half-lives. Sequences, associated protein factors, and RNA structures are correlated with RNA Pol II subunit-mediated differential gene expression. These findings collectively suggest that the heterogeneity of RNA Pol II and different genes appear to depend on some of the subunits.
Collapse
Affiliation(s)
- Yuanjun Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junyi Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lijun Bao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - WenJia Duan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Weifeng Lai
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiao Yi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Tiannan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
35
|
Wang Q, Daiß JL, Xu Y, Engel C. Snapshots of RNA polymerase III in action - A mini review. Gene 2022; 821:146282. [PMID: 35149153 DOI: 10.1016/j.gene.2022.146282] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
RNA polymerase (Pol) III is responsible for the transcription of tRNAs, 5S rRNA, U6 snRNA, and other non-coding RNAs. Transcription factors such as TFIIIA, -B, -C, SNAPc, and Maf1 are required for promoter recognition, promoter opening, and Pol III activity regulation. Recent developments in cryo-electron microscopy and advanced purification approaches for endogenous multi-subunit complexes accelerated structural studies resulting in detailed structural insights which allowed an in-depth understanding of the molecular mechanisms underlying Pol III transcription. Here, we summarize structural data on Pol III and its regulating factors providing a three-dimensional framework to guide further analysis of RNA polymerase III.
Collapse
Affiliation(s)
- Qianmin Wang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China; Present address: Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Youwei Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
36
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
37
|
Abas AH, Tallei TE, Fatimawali F, Celik I, Alhumaydhi FA, Emran TB, Dhama K, Rabaan AA, Garout MA, Halwani MA, Al Mutair A, Alhumaid S, Harapan H. 4’-fluorouridine and its derivatives as potential COVID-19 oral drugs: a review. F1000Res 2022; 11:410. [DOI: 10.12688/f1000research.109701.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Although vaccination is underway, antiviral drugs against coronavirus disease 2019 (COVID-19) are lacking. Remdesivir, a nucleoside analog that works by inhibiting the viral RNA-dependent RNA polymerase (RdRp), is the only fully approved antiviral for the treatment of COVID-19. However, it is limited to intravenous use and is usually recommended only for hospitalized patients with severe COVID-19; therefore, oral drugs that can be prescribed even to non-hospitalized patients are required. According to a recent study, 4′-fluoruridine, a nucleoside analog similar to remdesivir, is a promising candidate for COVID-19 oral therapy due to its ability to stall viral RdRp. Methods: We examined the antiviral activity of 4′-fluorouridine and compared it to other drugs currently in development. The current literature on 4′-fluorouridine's antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been compiled and discussed in this review. Results: The 4'-fluorouridine has antiviral activity against the respiratory syncytial virus, hepatitis C virus, lymphocytic choriomeningitis virus, and other RNA viruses, including SARS-CoV-2. In vitro studies have shown that SARS-CoV-2 is susceptible to 4'-fluorouridine, with the half-maximal effective concentration (EC50) of 0.2 to 0.6 M, and that the 4′-fluorouridine derivative, 4′-fluorouridine-5′-triphosphate, inhibited RdRp via a mechanism distinct from that of the already approved COVID-19 oral drug, molnupiravir. In addition, an in vivo study revealed that SARS-CoV-2 is highly susceptible to 4'-fluorouridine and was effective with a single daily dose versus molnupiravir administered twice daily. Conclusions: Concerns about the genetic effects of molnupiravir may be resolved by the use of 4′-fluorouridine and its derivative, which, unlike molnupiravir, do not alter genetics, but inhibit RdRp instead. Although they are currently considered as strong candidates, further studies are required to determine the antiviral activity of 4′-fluorouridine and its derivative against SARS-CoV-2 and their genetic effects on humans.
Collapse
|
38
|
Li JW, Zeng T, Xu ZZ, Li JJ, Hu H, Yu Q, Zhou L, Zheng RR, Luo J, Wang CY. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter. PLANT METHODS 2022; 18:32. [PMID: 35292048 PMCID: PMC8925089 DOI: 10.1186/s13007-022-00863-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/24/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Traditional CRISPR/Cas9 systems that rely on U6 or U3 snRNA promoters (RNA polymerase III-dependent promoters) can only achieve constitutive gene editing in plants, hampering the functional analysis of specifically expressed genes. Ribozyme-mediated CRISPR/Cas9 systems increase the types of promoters which can be used to transcribe sgRNA. Therefore, such systems allow specific gene editing; for example, transcription of the artificial gene Ribozyme-sgRNA-Ribozyme (RGR) is initiated by an RNA polymerase II-dependent promoter. Genetic transformation is indispensable for editing plant genes. In certain plant species, including pyrethrum, genetic transformation remains challenging to do, limiting the functional verification of novel CRISPR/Cas9 systems. Thus, this study's aim was to develop a simple Agrobacterium rhizogenes-mediated hairy root transformation system to analyze the function of a ribozyme-mediated CRISPR/Cas9 system in pyrethrum. RESULTS A hairy root transformation system for pyrethrum is described, with a mean transformation frequency of 7%. Transgenic hairy roots transformed with the pBI121 vector exhibited significantly increased beta-glucuronidase staining as a visual marker of transgene expression. Further, a ribozyme-based CRISPR/Cas9 vector was constructed to edit the TcEbFS gene, which catalyzes synthesis of the defense-related compound (E)-β-farnesene in pyrethrum. The vector was transferred into the hairy roots of pyrethrum and two stably transformed hairy root transgenic lines obtained. Editing of the TcEbFS gene in the hairy roots was evaluated by gene sequencing, demonstrating that both hairy root transgenic lines had DNA base loss at the editing target site. Gas chromatography-mass spectrometry showed that the (E)-β-farnesene content was significantly decreased in both hairy root transgenic lines compared with the empty vector control group. Altogether, these results show that RGR can be driven by the CaMV35S promoter to realize TcEbFS gene editing in pyrethrum hairy roots. CONCLUSION An A. rhizogenes-mediated hairy root transformation and ribozyme-mediated CRISPR/Cas9 gene editing system in pyrethrum was established, thereby facilitating gene editing in specific organs or at a particular developmental stage in future pyrethrum research.
Collapse
Affiliation(s)
- Jia-Wen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Zhi-Zhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Jin Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Hu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Yu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ri-Ru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Cai-Yun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
39
|
Shao W, Bi X, Pan Y, Gao B, Wu J, Yin Y, Liu Z, Peng M, Zhang W, Jiang X, Ren W, Xu Y, Wu Z, Wang K, Zhan G, Lu JY, Han X, Li T, Wang J, Li G, Deng H, Li B, Shen X. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol 2022; 18:70-80. [PMID: 34916619 DOI: 10.1038/s41589-021-00904-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/22/2021] [Indexed: 01/27/2023]
Abstract
An RNA-involved phase-separation model has been proposed for transcription control. However, the molecular links that connect RNA to the transcription machinery remain missing. Here we find that RNA-binding proteins (RBPs) constitute half of the chromatin proteome in embryonic stem cells (ESCs), some being colocalized with RNA polymerase (Pol) II at promoters and enhancers. Biochemical analyses of representative RBPs show that the paraspeckle protein PSPC1 inhibits the RNA-induced premature release of Pol II, and makes use of RNA as multivalent molecules to enhance the formation of transcription condensates and subsequent phosphorylation and release of Pol II. This synergistic interplay enhances polymerase engagement and activity via the RNA-binding and phase-separation activities of PSPC1. In ESCs, auxin-induced acute degradation of PSPC1 leads to genome-wide defects in Pol II binding and nascent transcription. We propose that promoter-associated RNAs and their binding proteins synergize the phase separation of polymerase condensates to promote active transcription.
Collapse
Affiliation(s)
- Wen Shao
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Xianju Bi
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Yixuan Pan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boyang Gao
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Jun Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Yin
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Zhimin Liu
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Mengyuan Peng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhao Zhang
- Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Jiang
- Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenlin Ren
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Yanhui Xu
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Zhongyang Wu
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Kaili Wang
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Ge Zhan
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - J Yuyang Lu
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Xue Han
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Tong Li
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haiteng Deng
- Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaohua Shen
- School of Medicine and School of Life Sciences, Tsinghua University; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
40
|
Schächner C, Merkl PE, Pilsl M, Schwank K, Hergert K, Kruse S, Milkereit P, Tschochner H, Griesenbeck J. Establishment and Maintenance of Open Ribosomal RNA Gene Chromatin States in Eukaryotes. Methods Mol Biol 2022; 2533:25-38. [PMID: 35796980 PMCID: PMC9761505 DOI: 10.1007/978-1-0716-2501-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In growing eukaryotic cells, nuclear ribosomal (r)RNA synthesis by RNA polymerase (RNAP) I accounts for the vast majority of cellular transcription. This high output is achieved by the presence of multiple copies of rRNA genes in eukaryotic genomes transcribed at a high rate. In contrast to most of the other transcribed genomic loci, actively transcribed rRNA genes are largely devoid of nucleosomes adapting a characteristic "open" chromatin state, whereas a significant fraction of rRNA genes resides in a transcriptionally inactive nucleosomal "closed" chromatin state. Here, we review our current knowledge about the nature of open rRNA gene chromatin and discuss how this state may be established.
Collapse
Affiliation(s)
- Christopher Schächner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp E Merkl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
- TUM ForTe, Technische Universität München, Munich, Germany
| | - Michael Pilsl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Katrin Schwank
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Kristin Hergert
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Sebastian Kruse
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Herbert Tschochner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Joachim Griesenbeck
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| |
Collapse
|
41
|
Kavaliauskaitė J, Kazlauskaitė A, Lazutka JR, Mozolevskis G, Stirkė A. Pulsed Electric Fields Alter Expression of NF-κB Promoter-Controlled Gene. Int J Mol Sci 2021; 23:ijms23010451. [PMID: 35008875 PMCID: PMC8745616 DOI: 10.3390/ijms23010451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
The possibility to artificially adjust and fine-tune gene expression is one of the key milestones in bioengineering, synthetic biology, and advanced medicine. Since the effects of proteins or other transgene products depend on the dosage, controlled gene expression is required for any applications, where even slight fluctuations of the transgene product impact its function or other critical cell parameters. In this context, physical techniques demonstrate optimistic perspectives, and pulsed electric field technology is a potential candidate for a noninvasive, biophysical gene regulator, exploiting an easily adjustable pulse generating device. We exposed mammalian cells, transfected with a NF-κB pathway-controlled transcription system, to a range of microsecond-duration pulsed electric field parameters. To prevent toxicity, we used protocols that would generate relatively mild physical stimulation. The present study, for the first time, proves the principle that microsecond-duration pulsed electric fields can alter single-gene expression in plasmid context in mammalian cells without significant damage to cell integrity or viability. Gene expression might be upregulated or downregulated depending on the cell line and parameters applied. This noninvasive, ligand-, cofactor-, nanoparticle-free approach enables easily controlled direct electrostimulation of the construct carrying the gene of interest; the discovery may contribute towards the path of simplification of the complexity of physical systems in gene regulation and create further synergies between electronics, synthetic biology, and medicine.
Collapse
Affiliation(s)
- Justina Kavaliauskaitė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Auksė Kazlauskaitė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Juozas Rimantas Lazutka
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Gatis Mozolevskis
- Laboratory of Prototyping of Electronic and Photonic Devices, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia;
| | - Arūnas Stirkė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Laboratory of Prototyping of Electronic and Photonic Devices, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia;
- Correspondence:
| |
Collapse
|
42
|
Huang K, Wu XX, Fang CL, Xu ZG, Zhang HW, Gao J, Zhou CM, You LL, Gu ZX, Mu WH, Feng Y, Wang JW, Zhang Y. Pol IV and RDR2: A two-RNA-polymerase machine that produces double-stranded RNA. Science 2021; 374:1579-1586. [DOI: 10.1126/science.abj9184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Xian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cheng-Li Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou-Geng Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Wei Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Gao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin-Lin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Xi Gu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Hui Mu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yu Feng
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
43
|
Parsing the transcription factors governing T cell immunity. Nat Immunol 2021; 23:3-4. [PMID: 34937931 DOI: 10.1038/s41590-021-01075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Fang C, Zhang Y. Bacterial MerR family transcription regulators: activationby distortion. Acta Biochim Biophys Sin (Shanghai) 2021; 54:25-36. [PMID: 35130613 PMCID: PMC9909328 DOI: 10.3724/abbs.2021003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Transcription factors (TFs) modulate gene expression by regulating the accessibility of promoter DNA to RNA polymerases (RNAPs) in bacteria. The MerR family TFs are a large class of bacterial proteins unique in their physiological functions and molecular action: they function as transcription repressors under normal circumstances, but rapidly transform to transcription activators under various cellular triggers, including oxidative stress, imbalance of cellular metal ions, and antibiotic challenge. The promoters regulated by MerR TFs typically contain an abnormal long spacer between the -35 and -10 elements, where MerR TFs bind and regulate transcription activity through unique mechanisms. In this review, we summarize the function, ligand reception, DNA recognition, and molecular mechanism of transcription regulation of MerR-family TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yu Zhang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
45
|
Kessler AC, Maraia RJ. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res 2021; 49:12017-12034. [PMID: 34850129 PMCID: PMC8643620 DOI: 10.1093/nar/gkab1145] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
A 1969 report that described biochemical and activity properties of the three eukaryotic RNA polymerases revealed Pol III as highly distinguishable, even before its transcripts were identified. Now known to be the most complex, Pol III contains several stably-associated subunits referred to as built-in transcription factors (BITFs) that enable highly efficient RNA synthesis by a unique termination-associated recycling process. In vertebrates, subunit RPC7(α/β) can be of two forms, encoded by POLR3G or POLR3GL, with differential activity. Here we review promoter-dependent transcription by Pol III as an evolutionary perspective of eukaryotic tRNA expression. Pol III also provides nonconventional functions reportedly by promoter-independent transcription, one of which is RNA synthesis from DNA 3'-ends during repair. Another is synthesis of 5'ppp-RNA signaling molecules from cytoplasmic viral DNA in a pathway of interferon activation that is dysfunctional in immunocompromised patients with mutations in Pol III subunits. These unconventional functions are also reviewed, including evidence that link them to the BITF subunits. We also review data on a fraction of the human Pol III transcriptome that evolved to include vault RNAs and snaRs with activities related to differentiation, and in innate immune and tumor surveillance. The Pol III of higher eukaryotes does considerably more than housekeeping.
Collapse
Affiliation(s)
- Alan C Kessler
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Richard J Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
46
|
Berg MD, Isaacson JR, Cozma E, Genereaux J, Lajoie P, Villén J, Brandl CJ. Regulating Expression of Mistranslating tRNAs by Readthrough RNA Polymerase II Transcription. ACS Synth Biol 2021; 10:3177-3189. [PMID: 34726901 PMCID: PMC8765249 DOI: 10.1021/acssynbio.1c00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Transfer RNA (tRNA)
variants that alter the genetic code increase
protein diversity and have many applications in synthetic biology.
Since the tRNA variants can cause a loss of proteostasis, regulating
their expression is necessary to achieve high levels of novel protein.
Mechanisms to positively regulate transcription with exogenous activator
proteins like those often used to regulate RNA polymerase II (RNAP
II)-transcribed genes are not applicable to tRNAs as their expression
by RNA polymerase III requires elements internal to the tRNA. Here,
we show that tRNA expression is repressed by overlapping transcription
from an adjacent RNAP II promoter. Regulating the expression of the
RNAP II promoter allows inverse regulation of the tRNA. Placing either
Gal4- or TetR–VP16-activated promoters downstream of a mistranslating
tRNASer variant that misincorporates serine at proline
codons in Saccharomyces cerevisiae allows
mistranslation at a level not otherwise possible because of the toxicity
of the unregulated tRNA. Using this inducible tRNA system, we explore
the proteotoxic effects of mistranslation on yeast cells. High levels
of mistranslation cause cells to arrest in the G1 phase. These cells
are impermeable to propidium iodide, yet growth is not restored upon
repressing tRNA expression. High levels of mistranslation increase
cell size and alter cell morphology. This regulatable tRNA expression
system can be applied to study how native tRNAs and tRNA variants
affect the proteome and other biological processes. Variations of
this inducible tRNA system should be applicable to other eukaryotic
cell types.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Joshua R. Isaacson
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
47
|
Phan T, Maity P, Ludwig C, Streit L, Michaelis J, Tsesmelis M, Scharffetter-Kochanek K, Iben S. Nucleolar TFIIE plays a role in ribosomal biogenesis and performance. Nucleic Acids Res 2021; 49:11197-11210. [PMID: 34581812 PMCID: PMC8565312 DOI: 10.1093/nar/gkab866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Ribosome biogenesis is a highly energy-demanding process in eukaryotes which requires the concerted action of all three RNA polymerases. In RNA polymerase II transcription, the general transcription factor TFIIH is recruited by TFIIE to the initiation site of protein-coding genes. Distinct mutations in TFIIH and TFIIE give rise to the degenerative disorder trichothiodystrophy (TTD). Here, we uncovered an unexpected role of TFIIE in ribosomal RNA synthesis by RNA polymerase I. With high resolution microscopy we detected TFIIE in the nucleolus where TFIIE binds to actively transcribed rDNA. Mutations in TFIIE affects gene-occupancy of RNA polymerase I, rRNA maturation, ribosomal assembly and performance. In consequence, the elevated translational error rate with imbalanced protein synthesis and turnover results in an increase in heat-sensitive proteins. Collectively, mutations in TFIIE—due to impaired ribosomal biogenesis and translational accuracy—lead to a loss of protein homeostasis (proteostasis) which can partly explain the clinical phenotype in TTD.
Collapse
Affiliation(s)
- Tamara Phan
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Baden-Württemberg, 89081 Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Baden-Württemberg, 89081 Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University Munich, Freising, Bavaria 85354, Germany
| | - Lisa Streit
- Institute of Biophysics, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Miltiadis Tsesmelis
- Institute of Physiological Chemistry, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Baden-Württemberg, 89081 Germany
| |
Collapse
|
48
|
Burgess RR. What is in the black box? The discovery of the sigma factor and the subunit structure of E. coli RNA polymerase. J Biol Chem 2021; 297:101310. [PMID: 34673029 PMCID: PMC8569590 DOI: 10.1016/j.jbc.2021.101310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
This Reflections article is focused on the 5 years while I was a graduate student (1964-1969). During this period, I made some of the most significant discoveries of my career. I have written this article primarily for a protein biochemistry audience, my colleagues who shared this exciting time in science, and the many scientists over the last 50 years who have contributed to our knowledge of transcriptional machinery and their regulation. It is also written for today's graduate students, postdocs, and scientists who may not know much about the discoveries and technical advances that are now taken for granted, to show that even with methods primitive by today's standards, we were still able to make foundational advances. I also hope to provide a glimpse into how fortunate I was to be a graduate student over 50 years ago in the golden age of molecular biology.
Collapse
Affiliation(s)
- Richard R Burgess
- James D. Watson Professor Emeritus of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
49
|
Zhao D, Liu W, Chen K, Wu Z, Yang H, Xu Y. Structure of the human RNA polymerase I elongation complex. Cell Discov 2021; 7:97. [PMID: 34671025 PMCID: PMC8528822 DOI: 10.1038/s41421-021-00335-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 01/29/2023] Open
Abstract
Eukaryotic RNA polymerase I (Pol I) transcribes ribosomal DNA and generates RNA for ribosome synthesis. Pol I accounts for the majority of cellular transcription activity and dysregulation of Pol I transcription leads to cancers and ribosomopathies. Despite extensive structural studies of yeast Pol I, structure of human Pol I remains unsolved. Here we determined the structures of the human Pol I in the pre-translocation, post-translocation, and backtracked states at near-atomic resolution. The single-subunit peripheral stalk lacks contacts with the DNA-binding clamp and is more flexible than the two-subunit stalk in yeast Pol I. Compared to yeast Pol I, human Pol I possesses a more closed clamp, which makes more contacts with DNA. The Pol I structure in the post-cleavage backtracked state shows that the C-terminal zinc ribbon of RPA12 inserts into an open funnel and facilitates “dinucleotide cleavage” on mismatched DNA–RNA hybrid. Critical disease-associated mutations are mapped on Pol I regions that are involved in catalysis and complex organization. In summary, the structures provide new sights into human Pol I complex organization and efficient proofreading.
Collapse
Affiliation(s)
- Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China. .,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology of China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China. .,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
50
|
Hou TY, Kraus WL. Come one, come all? Re-evaluating RNA polymerase II pre-initiation complex assembly using single-molecule microscopy. Mol Cell 2021; 81:3443-3445. [PMID: 34478651 DOI: 10.1016/j.molcel.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Complementary papers by Nguyen et al. (2021) and Baek et al. (2021) track the assembly of the pre-initiation complexes at gene promoters using single-molecule microscopy, revealing dynamic spatiotemporal regulation of transcription initiation.
Collapse
Affiliation(s)
- Tim Y Hou
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|