1
|
Abate-Shen C, Politi K. The Evolution of Mouse Models of Cancer: Past, Present, and Future. Cold Spring Harb Perspect Med 2025; 15:a041736. [PMID: 38772706 PMCID: PMC12047742 DOI: 10.1101/cshperspect.a041736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
In the nearly 50 years since the original models of cancer first hit the stage, mouse models have become a major contributor to virtually all aspects of cancer research, and these have evolved well beyond simple transgenic or xenograft models to encompass a wide range of more complex models. As the sophistication of mouse models has increased, an explosion of new technologies has expanded the potential to both further develop and apply these models to address major challenges in cancer research. In the current era, cancer modeling has expanded to include nongermline genetically engineered mouse models (GEMMs), patient-derived models, organoids, and adaptations of the models better suited for cancer immunology research. New technologies that have transformed the field include the application of CRISPR-Cas9-mediated genome editing, in vivo imaging, and single-cell analysis to cancer modeling. Here, we provide a historical perspective on the evolution of mouse models of cancer, focusing on how far we have come in a relatively short time and how new technologies will shape the future development of mouse models of cancer.
Collapse
Affiliation(s)
- Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Pathology and Cell Biology, Medicine, and Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Katerina Politi
- Departments of Pathology and Internal Medicine (Section of Medical Oncology) and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06405, USA
| |
Collapse
|
2
|
Qiang H, Wang Y, Zhang Y, Li J, Zhang L, Du H, Ling X, Cao S, Zhou Y, Zhong R, Zhong H. Efficacy of first-line chemotherapy combined with immunotherapy or anti-angiogenic therapy in advanced KRAS-mutant non-small cell lung cancer. Transl Oncol 2025; 53:102317. [PMID: 39904280 PMCID: PMC11846584 DOI: 10.1016/j.tranon.2025.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Approximately 30 % non-small cell lung cancer (NSCLC) patients carry KRAS mutations in western countries. First-line chemotherapy combined with immunotherapy has been the standard therapeutic regimen for KRAS-mutant NSCLC patients. This population could also benefit from chemotherapy combined with anti-angiogenic therapy. However, few studies has reported on head-to-head efficacy comparisons between these two treatment strategies. METHODS We selected stage IV KRAS-mutated NSCLC patients diagnosed from 2017 to 2022. Their clinical baseline characteristics, first-line treatment strategy, whether combined TP53 or STK11 mutation, PD-L1 expression level, etc. were evaluated. The correlation between these factors and progression-free survival (PFS) and overall survival (OS) were analyzed. RESULTS A total of 273 patients received first-line systematic therapy. The most common mutation was KRAS G12C (34.3 %). First-line chemotherapy combined with immunotherapy brought significant survival benefits (mPFS: 11.0 months vs. 4.0 months, P = 0.0003; mOS: 17.0 months vs. 9.0 months, P = 0.0002) compared with first-line chemotherapy combined with anti-angiogenic therapy. Among the 203 patients who received first-line chemotherapy combined with immunotherapy, PD-L1 positive NSCLC patients responded better than PD-L1 negative patients (mPFS: 11.0 months vs. 4.0 months, P = 0.0004; mOS: 21.0 months vs. 11.0 months, P = 0.0005). ECOG PS score of 0-1 (HR=0.201, P = 0.001) and first-line chemotherapy combined with immunotherapy (HR=0.333, P = 0.009) were independent predictors of OS. CONCLUSIONS Compared with first-line chemotherapy combined with anti-angiogenic therapy, first-line chemotherapy combined with immunotherapy has brought significant survival benefit to advanced KRAS mutant NSCLC patients, especially for PD-L1 positive patients.
Collapse
Affiliation(s)
- Huiping Qiang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yue Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yao Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jingwen Li
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lincheng Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Huawei Du
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xuxinyi Ling
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shuhui Cao
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Lee JW, Chen EY, Hu T, Perret R, Chaffee ME, Martinov T, Mureli S, McCurdy CL, Jones LA, Gafken PR, Chanana P, Su Y, Chapuis AG, Bradley P, Schmitt TM, Greenberg PD. Overcoming immune evasion from post-translational modification of a mutant KRAS epitope to achieve TCR-T cell-mediated antitumor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.612965. [PMID: 39345486 PMCID: PMC11429761 DOI: 10.1101/2024.09.18.612965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
T cell receptor (TCR)-T cell immunotherapy, in which T cells are engineered to express a TCR targeting a tumor epitope, is a form of adoptive cell therapy (ACT) that has exhibited promise against various tumor types. Mutants of oncoprotein KRAS, particularly at glycine-12 (G12), are frequent drivers of tumorigenicity, making them attractive targets for TCR-T cell therapy. However, class I-restricted TCRs specifically targeting G12-mutant KRAS epitopes in the context of tumors expressing HLA-A2, the most common human HLA-A allele, have remained elusive despite evidence an epitope encompassing such mutations can bind HLA-A2 and induce T cell responses. We report post-translational modifications (PTMs) on this epitope may allow tumor cells to evade immunologic pressure from TCR-T cells. A lysine side chain-methylated KRAS G12V peptide, rather than the unmodified epitope, may be presented in HLA-A2 by tumor cells and impact TCR recognition. Using a novel computationally guided approach, we developed by mutagenesis TCRs that recognize this methylated peptide, enhancing tumor recognition and destruction. Additionally, we identified TCRs with similar functional activity in normal repertoires from primary T cells by stimulation with modified peptide, clonal expansion, and selection. Mechanistically, a gene knockout screen to identify mechanism(s) by which tumor cells methylate/demethylate this epitope unveiled SPT6 as a demethylating protein that could be targeted to improve effectiveness of these new TCRs. Our findings highlight the role of PTMs in immune evasion and suggest identifying and targeting such modifications should make effective ACTs available for a substantially greater range of tumors than the current therapeutic landscape. One-sentence summary Tumor cell methylation of KRAS G12V epitope in HLA-A2 permits immune evasion, and new TCRs were generated to overcome this with engineered cell therapy.
Collapse
|
4
|
Erickson HL, Taniguchi S, Raman A, Leitenberger JJ, Malhotra SV, Oshimori N. Cancer stem cells release interleukin-33 within large oncosomes to promote immunosuppressive differentiation of macrophage precursors. Immunity 2024; 57:1908-1922.e6. [PMID: 39079535 PMCID: PMC11324407 DOI: 10.1016/j.immuni.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
In squamous cell carcinoma (SCC), macrophages responding to interleukin (IL)-33 create a TGF-β-rich stromal niche that maintains cancer stem cells (CSCs), which evade chemotherapy-induced apoptosis in part via activation of the NRF2 antioxidant program. Here, we examined how IL-33 derived from CSCs facilitates the development of an immunosuppressive microenvironment. CSCs with high NRF2 activity redistributed nuclear IL-33 to the cytoplasm and released IL-33 as cargo of large oncosomes (LOs). Mechanistically, NRF2 increased the expression of the lipid scramblase ATG9B, which exposed an "eat me" signal on the LO surface, leading to annexin A1 (ANXA1) loading. These LOs promoted the differentiation of AXNA1 receptor+ myeloid precursors into immunosuppressive macrophages. Blocking ATG9B's scramblase activity or depleting ANXA1 decreased niche macrophages and hindered tumor progression. Thus, IL-33 is released from live CSCs via LOs to promote the differentiation of alternatively activated macrophage, with potential relevance to other settings of inflammation and tissue repair.
Collapse
Affiliation(s)
- Hannah L Erickson
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sachiko Taniguchi
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Anish Raman
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Justin J Leitenberger
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sanjay V Malhotra
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Center for Experimental Therapeutics, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Naoki Oshimori
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Otolaryngology, Head & Neck Surgery, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
5
|
Makhoul P, Galas S, Paniagua-Gayraud S, Deleuze-Masquefa C, Hajj HE, Bonnet PA, Richaud M. Uncovering the Molecular Pathways Implicated in the Anti-Cancer Activity of the Imidazoquinoxaline Derivative EAPB02303 Using a Caenorhabditis elegans Model. Int J Mol Sci 2024; 25:7785. [PMID: 39063027 PMCID: PMC11277376 DOI: 10.3390/ijms25147785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Imiqualines are analogues of the immunomodulatory drug imiquimod. EAPB02303, the lead of the second-generation imiqualines, is characterized by significant anti-tumor effects with IC50s in the nanomolar range. We used Caenorhabditis elegans transgenic and mutant strains of two key signaling pathways (PI3K-Akt and Ras-MAPK) disrupted in human cancers to investigate the mode of action of EAPB02303. The ability of this imiqualine to inhibit the insulin/IGF1 signaling (IIS) pathway via the PI3K-Akt kinase cascade was explored through assessing the lifespan of wild-type worms. Micromolar doses of EAPB02303 significantly enhanced longevity of N2 strain and led to the nuclear translocation and subsequent activation of transcription factor DAF-16, the only forkhead box transcription factor class O (Fox O) homolog in C. elegans. Moreover, EAPB02303 significantly reduced the multivulva phenotype in let-60/Ras mutant strains MT2124 and MT4698, indicative of its mode of action through the Ras pathway. In summary, we showed that EAPB02303 potently reduced the activity of IIS and Ras-MAPK signaling in C. elegans. Our results revealed the mechanism of action of EAPB02303 against human cancers associated with hyperactivated IIS pathway and oncogenic Ras mutations.
Collapse
Affiliation(s)
- Perla Makhoul
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
- Department of Biology, Faculty of Sciences, GSBT Laboratory, Lebanese University, R. Hariri Campus, Hadath 1533, Lebanon
| | - Simon Galas
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
| | - Stéphanie Paniagua-Gayraud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
| | - Carine Deleuze-Masquefa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Riad El-Solh, P.O. Box 11-0236, Beirut 1107, Lebanon;
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
| | - Myriam Richaud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (P.M.); (S.G.); (S.P.-G.); (C.D.-M.)
| |
Collapse
|
6
|
Mercurio L, Bailey J, Glick AB, Dellambra E, Scarponi C, Pallotta S, Albanesi C, Madonna S. RAS-activated PI3K/AKT signaling sustains cellular senescence via P53/P21 axis in experimental models of psoriasis. J Dermatol Sci 2024; 115:21-32. [PMID: 38926058 DOI: 10.1016/j.jdermsci.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin disease in which upper epidermal keratinocytes exhibit a senescent-like phenotype. In psoriatic skin, a variety of inflammatory cytokines can activate intracellular pathways including phosphatidylinositol 3-kinase (PI3K)/AKT signaling and RAS effectors. AKT and RAS participate to cellular senescence, but currently their role in senescence responses occurring in psoriasis have not yet been investigated. OBJECTIVE The role of AKT molecular axis and RAS activation was evaluated in the context of cellular senescence in psoriasis disease. METHODS RAS/AKT involvement in senescence was analyzed in psoriatic keratinocytes cultures subjected to multiple passages to promote senescence in vitro, as well as in skin lesions of patients affected by psoriasis. The impact of pharmacological inhibition of PI3K/AKT pathway on senescence and inflammation responses was tested in senescent psoriatic keratinocytes and in a psoriasiform dermatitis murine model induced by RAS overexpression in the upper epidermis of mice. RESULTS We found AKT hyperactivation associated to the upregulation of senescence markers, in senescent psoriatic keratinocyte cultures, as well as in skin lesions of psoriatic patients. AKT-induced senescence was sustained by constitutive RAS activation, and down-stream responses were mediated by P53/P21 axis. PI3K/AKT inhibition contrasted senescence processes induced by cytokines in psoriatic keratinocytes. Additionally, RAS-induced psoriasis-like dermatitis in mice was accompanied by AKT upregulation, increase of senescence marker expression and by skin inflammation. In this model, both senescence and inflammation were significantly reduced by selective AKT inhibition. CONCLUSION Therefore, targeting RAS-AKT pathway could be a promising novel strategy to counteract multiple psoriasis symptoms.
Collapse
Affiliation(s)
- Laura Mercurio
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Jacob Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, NY, USA
| | - Adam Bleier Glick
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, PA, USA
| | - Elena Dellambra
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Sabatino Pallotta
- Integrated Center for Research in Psoriasis (CRI-PSO), Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy.
| | - Stefania Madonna
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| |
Collapse
|
7
|
Yuan S, Almagro J, Fuchs E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat Rev Cancer 2024; 24:274-286. [PMID: 38347101 PMCID: PMC11077468 DOI: 10.1038/s41568-023-00660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/17/2024]
Abstract
Cancer has long been viewed as a genetic disease of cumulative mutations. This notion is fuelled by studies showing that ageing tissues are often riddled with clones of complex oncogenic backgrounds coexisting in seeming harmony with their normal tissue counterparts. Equally puzzling, however, is how cancer cells harbouring high mutational burden contribute to normal, tumour-free mice when allowed to develop within the confines of healthy embryos. Conversely, recent evidence suggests that adult tissue cells expressing only one or a few oncogenes can, in some contexts, generate tumours exhibiting many of the features of a malignant, invasive cancer. These disparate observations are difficult to reconcile without invoking environmental cues triggering epigenetic changes that can either dampen or drive malignant transformation. In this Review, we focus on how certain oncogenes can launch a two-way dialogue of miscommunication between a stem cell and its environment that can rewire downstream events non-genetically and skew the morphogenetic course of the tissue. We review the cells and molecules of and the physical forces acting in the resulting tumour microenvironments that can profoundly affect the behaviours of transformed cells. Finally, we discuss possible explanations for the remarkable diversity in the relative importance of mutational burden versus tumour microenvironment and its clinical relevance.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
8
|
Tiwari A, Kumari B, Nandagopal S, Mishra A, Shukla KK, Kumar A, Dutt N, Ahirwar DK. Promises of Protein Kinase Inhibitors in Recalcitrant Small-Cell Lung Cancer: Recent Scenario and Future Possibilities. Cancers (Basel) 2024; 16:963. [PMID: 38473324 DOI: 10.3390/cancers16050963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
SCLC is refractory to conventional therapies; targeted therapies and immunological checkpoint inhibitor (ICI) molecules have prolonged survival only marginally. In addition, ICIs help only a subgroup of SCLC patients. Different types of kinases play pivotal roles in therapeutics-driven cellular functions. Therefore, there is a significant need to understand the roles of kinases in regulating therapeutic responses, acknowledge the existing knowledge gaps, and discuss future directions for improved therapeutics for recalcitrant SCLC. Here, we extensively review the effect of dysregulated kinases in SCLC. We further discuss the pharmacological inhibitors of kinases used in targeted therapies for recalcitrant SCLC. We also describe the role of kinases in the ICI-mediated activation of antitumor immune responses. Finally, we summarize the clinical trials evaluating the potential of kinase inhibitors and ICIs. This review overviews dysregulated kinases in SCLC and summarizes their potential as targeted therapeutic agents. We also discuss their clinical efficacy in enhancing anticancer responses mediated by ICIs.
Collapse
Affiliation(s)
- Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Srividhya Nandagopal
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur 342005, Rajasthan, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur 342005, Rajasthan, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences Jodhpur, Jodhpur 342005, Rajasthan, India
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| |
Collapse
|
9
|
Vanneste M, Venzke A, Guin S, Fuller AJ, Jezewski AJ, Beattie SR, Krysan DJ, Meyers MJ, Henry MD. The anti-cancer efficacy of a novel phenothiazine derivative is independent of dopamine and serotonin receptor inhibition. Front Oncol 2023; 13:1295185. [PMID: 37909019 PMCID: PMC10613967 DOI: 10.3389/fonc.2023.1295185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction An attractive, yet unrealized, goal in cancer therapy is repurposing psychiatric drugs that can readily penetrate the blood-brain barrier for the treatment of primary brain tumors and brain metastases. Phenothiazines (PTZs) have demonstrated anti-cancer properties through a variety of mechanisms. However, it remains unclear whether these effects are entirely separate from their activity as dopamine and serotonin receptor (DR/5-HTR) antagonists. Methods In this study, we evaluated the anti-cancer efficacy of a novel PTZ analog, CWHM-974, that was shown to be 100-1000-fold less potent against DR/5-HTR than its analog fluphenazine (FLU). Results CWHM-974 was more potent than FLU against a panel of cancer cell lines, thus clearly demonstrating that its anti-cancer effects were independent of DR/5-HTR signaling. Our results further suggested that calmodulin (CaM) binding may be necessary, but not sufficient, to explain the anti-cancer effects of CWHM-974. While both FLU and CWHM-974 induced apoptosis, they induced distinct effects on the cell cycle (G0/G1 and mitotic arrest respectively) suggesting that they may have differential effects on CaM-binding proteins involved in cell cycle regulation. Discussion Altogether, our findings indicated that the anti-cancer efficacy of the CWHM-974 is separable from DR/5-HTR antagonism. Thus, reducing the toxicity associated with phenothiazines related to DR/5-HTR antagonism may improve the potential to repurpose this class of drugs to treat brain tumors and/or brain metastasis.
Collapse
Affiliation(s)
- Marion Vanneste
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Anita Venzke
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Soumitra Guin
- Department of Chemistry, Saint Louis University, Saint Louis, MO, United States
| | - Andrew J. Fuller
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Andrew J. Jezewski
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Damian J. Krysan
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marvin J. Meyers
- Department of Chemistry, Saint Louis University, Saint Louis, MO, United States
| | - Michael D. Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
10
|
Girish V, Lakhani AA, Thompson SL, Scaduto CM, Brown LM, Hagenson RA, Sausville EL, Mendelson BE, Kandikuppa PK, Lukow DA, Yuan ML, Stevens EC, Lee SN, Schukken KM, Akalu SM, Vasudevan A, Zou C, Salovska B, Li W, Smith JC, Taylor AM, Martienssen RA, Liu Y, Sun R, Sheltzer JM. Oncogene-like addiction to aneuploidy in human cancers. Science 2023; 381:eadg4521. [PMID: 37410869 PMCID: PMC10753973 DOI: 10.1126/science.adg4521] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy.
Collapse
Affiliation(s)
- Vishruth Girish
- Yale University School of Medicine, New Haven, CT 06511
- Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | | | | | | | | | | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Sophia N. Lee
- Yale University School of Medicine, New Haven, CT 06511
| | | | | | | | - Charles Zou
- Yale University School of Medicine, New Haven, CT 06511
| | | | - Wenxue Li
- Yale University School of Medicine, New Haven, CT 06511
| | - Joan C. Smith
- Yale University School of Medicine, New Haven, CT 06511
| | | | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Yansheng Liu
- Yale University School of Medicine, New Haven, CT 06511
| | - Ruping Sun
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | | |
Collapse
|
11
|
Das A, Ding S, Liu R, Huang C. Quantifying the Growth of Glioblastoma Tumors Using Multimodal MRI Brain Images. Cancers (Basel) 2023; 15:3614. [PMID: 37509277 PMCID: PMC10377296 DOI: 10.3390/cancers15143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Predicting the eventual volume of tumor cells, that might proliferate from a given tumor, can help in cancer early detection and medical procedure planning to prevent their migration to other organs. In this work, a new statistical framework is proposed using Bayesian techniques for detecting the eventual volume of cells expected to proliferate from a glioblastoma (GBM) tumor. Specifically, the tumor region was first extracted using a parallel image segmentation algorithm. Once the tumor region was determined, we were interested in the number of cells that could proliferate from this tumor until its survival time. For this, we constructed the posterior distribution of the tumor cell numbers based on the proposed likelihood function and a certain prior volume. Furthermore, we extended the detection model and conducted a Bayesian regression analysis by incorporating radiomic features to discover those non-tumor cells that remained undetected. The main focus of the study was to develop a time-independent prediction model that could reliably predict the ultimate volume a malignant tumor of the fourth-grade severity could attain and which could also determine if the incorporation of the radiomic properties of the tumor enhanced the chances of no malignant cells remaining undetected.
Collapse
Affiliation(s)
- Anisha Das
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Shengxian Ding
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Rongjie Liu
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Chao Huang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
12
|
Zhao G, Ho W, Chu J, Xiong X, Hu B, Boakye-Yiadom KO, Xu X, Zhang XQ. Inhalable siRNA Nanoparticles for Enhanced Tumor-Targeting Treatment of KRAS-Mutant Non-Small-Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37354089 DOI: 10.1021/acsami.3c05007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Kirsten rat sarcoma (KRAS) is the most commonly mutated oncogene in lung cancers. Gene therapy is emerging as a promising cancer treatment modality; however, the systemic administration of gene therapy has been limited by inefficient delivery to the lungs and systemic toxicity. Herein, we report a noninvasive aerosol inhalation nanoparticle (NP) system, termed "siKRAS@GCLPP NPs," to treat KRAS-mutant non-small-cell lung cancer (NSCLC). The self-assembled siKRAS@GCLPP NPs are capable of maintaining structural integrity during nebulization, with preferential distribution within the tumor-bearing lung. Inhalable siKRAS@GCLPP NPs show not only significant tumor-targeting capability but also enhanced antitumor activity in an orthotopic mouse model of human KRAS-mutant NSCLC. The nebulized delivery of siKRAS@GCLPP NPs demonstrates potent knockdown of mutated KRAS in tumor-bearing lungs without causing any observable adverse effects, exhibiting a better biosafety profile than the systemic delivery approach. The results present a promising inhaled gene therapy approach for the treatment of KRAS-mutant NSCLC and other respiratory diseases.
Collapse
Affiliation(s)
- Guolin Zhao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - William Ho
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jinxian Chu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojian Xiong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Hu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kofi Oti Boakye-Yiadom
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Lam KK, Low YS, Lo M, Wong M, Leong Tang C, Tan E, Chok AY, Seow-En I, Wong SH, Cheah PY. KRAS-specific antibody binds to KRAS protein inside colorectal adenocarcinoma cells and inhibits its localization to the plasma membrane. Front Oncol 2023; 13:1036871. [PMID: 37051535 PMCID: PMC10084885 DOI: 10.3389/fonc.2023.1036871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third highest incidence cancer and a leading cause of cancer mortality worldwide. To date, chemotherapeutic treatment of advanced CRC that has metastasized has a dismayed success rate of less than 30%. Further, most (80%) sporadic CRCs are microsatellite-stable and are refractory to immune checkpoint blockade therapy. KRAS is a gatekeeper gene in colorectal tumorigenesis. Nevertheless, KRAS is ‘undruggable’ due to its structure. Thus, focus has been diverted to develop small molecule inhibitors for its downstream effector such as ERK/MAPK. Despite intense research efforts for the past few decades, no small molecule inhibitor has been in clinical use for CRC. Antibody targeting KRAS itself is an attractive alternative. We developed a transient ex vivo patient-derived matched mucosa-tumor primary culture to assess whether anti-KRAS antibody can be internalized to bind and inactivate KRAS. We showed that anti-KRAS antibody can enter live mucosa-tumor cells and specifically aggregate KRAS in the cytoplasm, thus hindering its translocation to the inner plasma membrane. The mis-localization of KRAS reduces KRAS dwelling time at the site where it tethers to activate downstream effectors. We previously showed that expression of SOX9 was KRAS-mutation-dependent and possibly a better effector than ERK in CRC. Herein, we showed that anti-KRAS antibody treated tumor cells have less intense SOX9 cytoplasmic and nuclear staining compared to untreated cells. Our results demonstrated that internalized anti-KRAS antibody inhibits KRAS function in tumor. With an efficient intracellular antibody delivery system, this can be further developed as combinatorial therapeutics for CRC and other KRAS-driven cancers.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Yee Syuen Low
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Michelle Lo
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Michelle Wong
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Choong Leong Tang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Emile Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Aik Yong Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Isaac Seow-En
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | | | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- *Correspondence: Peh Yean Cheah,
| |
Collapse
|
14
|
Girish V, Lakhani AA, Scaduto CM, Thompson SL, Brown LM, Hagenson RA, Sausville EL, Mendelson BE, Lukow DA, Yuan ML, Kandikuppa PK, Stevens EC, Lee SN, Salovska B, Li W, Smith JC, Taylor AM, Martienssen RA, Liu Y, Sun R, Sheltzer JM. Oncogene-like addiction to aneuploidy in human cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523344. [PMID: 36711674 PMCID: PMC9882055 DOI: 10.1101/2023.01.09.523344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses TP53 signaling, and we show that TP53 mutations are mutually-exclusive with 1q aneuploidy in human cancers. Thus, specific aneuploidies play essential roles in tumorigenesis, raising the possibility that targeting these "aneuploidy addictions" could represent a novel approach for cancer treatment.
Collapse
Affiliation(s)
- Vishruth Girish
- Yale University School of Medicine, New Haven, CT 06511
- Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | | | | | | | | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | | | - Sophia N. Lee
- Yale University School of Medicine, New Haven, CT 06511
| | | | - Wenxue Li
- Yale University School of Medicine, New Haven, CT 06511
| | - Joan C. Smith
- Yale University School of Medicine, New Haven, CT 06511
| | | | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yansheng Liu
- Yale University School of Medicine, New Haven, CT 06511
| | - Ruping Sun
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | | |
Collapse
|
15
|
Nasrin M, Ahmed O, Han X, Nojebuzzaman M, Abo-Ahmed AI, Yazawa S, Osawa M. Generation of Pmel-dependent conditional and inducible Cre-driver mouse line for melanocytic-targeted gene manipulation. Pigment Cell Melanoma Res 2023; 36:53-70. [PMID: 36318272 DOI: 10.1111/pcmr.13074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Conditional and inducible gene targeting using Cre/loxP-mediated recombination is a powerful reverse genetics approach used to study spatiotemporal gene functions in specified cell types. To enable temporal gene manipulation in the melanocyte lineage, we established a novel inducible Cre-driver mouse line by targeting an all-in-one tetracycline/doxycycline (Dox)-inducible Cre expression cassette into the Pmel locus (PmelP2A-TetON3G-TRE3G-iCre ), a gene locus preferentially expressed in pigment cells. By crossing these Cre-driver mice with a strong Cre-reporter mouse line, Gt(ROSA)26Sortm9(CAG-tdTomato)Hze , we show the effectiveness of the PmelP2A-TetON3G-TRE3G-iCre mouse line in facilitating Dox-inducible Cre/loxP recombination in a wide variety of pigment cell lineages including hair follicle melanocytes and their stem cells. Furthermore, to demonstrate proof of concept, we ablated Notch signaling postnatally in the PmelP2A-TetON3G-TRE3G-iCre mice. In agreement with the previously reported phenotype, induced ablation of Notch signaling in the melanocyte lineage resulted in premature hair graying, demonstrating the utility of the PmelP2A-TetON3G-TRE3G-iCre allele. Therefore, the PmelP2A-TetON3G-TRE3G-iCre mouse line is suitable for assessing gene functions in melanocytes using an in vivo inducible reverse genetics approach. Furthermore, we unexpectedly identified previously unrecognized PMEL-expressing cells in non-pigmentary organs in the mice, suggesting unanticipated functions of PMEL other than melanosome formation.
Collapse
Affiliation(s)
- Morsheda Nasrin
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Osama Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Xujun Han
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Md Nojebuzzaman
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ahmed I Abo-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Shigenobu Yazawa
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masatake Osawa
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
16
|
Bai S, Hu S, Dai Y, Jin R, Zhang C, Yao F, Weng Q, Zhai P, Zhao B, Wu X, Chen Y. NRAS promotes the proliferation of melanocytes to increase melanin deposition in Rex rabbits. Genome 2023; 66:1-10. [PMID: 36440769 DOI: 10.1139/gen-2021-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melanocytes play a major role in the formation of mammalian fur color and are regulated by several genes. Despite playing the pivotal role in the study of melanoma, the mechanistic role of NRAS (neuroblastoma RAS viral oncogene homolog) in the formation of mammalian epidermal color is still elusive. First of all, the expression levels of NRAS mRNA and protein in the dorsal skin of different colored Rex rabbits were detected by qRT-PCR and Western blot. Then, the subcellular localization of NRAS was identified in melanocytes by indirect immunofluorescence. Next, the expression of NRAS was overexpressed and knocked down in melanocytes, and its efficiency was verified by qRT-PCR and Western blot. Subsequently, NaOH, CCK-8, and Annexin V-FITC were used to verify the changes in melanin content, proliferation, and apoptosis in melanocytes. Finally, we analyzed the regulation of NRAS on other genes (MITF, TYR, DCT, PMEL, and CREB) that affect melanin production. In silico studies showed NRAS as a stable and hydrophilic protein, and it is localized in the cytoplasm and nucleus of melanocytes. The mRNA and protein expression levels of NRAS were significantly different in skin of different colored Rex rabbits, and the highest level was found in black skin (P < 0.01). Moreover, the NRAS demonstrated impact on the proliferation, apoptosis, and melanin production of melanocytes (P < 0.05), and the strong correlation of NRAS with melanin-related genes was evidently observed (P < 0.05). Our results suggested that NRAS can be used as a gene that regulates melanin production and controls melanocyte proliferation and apoptosis, providing a new theoretical basis for studying the mechanism of mammalian fur color formation.
Collapse
Affiliation(s)
- Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Rongshuai Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Chen Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Fan Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qiaoqin Weng
- Yuyao Xinnong Rabbit Industry Co., Ltd, Ningbo 315400, China
| | - Pin Zhai
- Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
17
|
Zhu S, Li Z, Zheng D, Yu Y, Xiang J, Ma X, Xu D, Qiu J, Yang Z, Wang Z, Li J, Sun H, Chen W, Meng X, Lu Y, Ren Q. A cancer cell membrane coated, doxorubicin and microRNA co-encapsulated nanoplatform for colorectal cancer theranostics. Mol Ther Oncolytics 2022; 28:182-196. [PMID: 36820302 PMCID: PMC9937835 DOI: 10.1016/j.omto.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Endogenous microRNAs (miRNA) in tumors are currently under exhaustive investigation as potential therapeutic agents for cancer treatment. Nevertheless, RNase degradation, inefficient and untargeted delivery, limited biological effect, and currently unclear side effects remain unsettled issues that frustrate clinical application. To address this, a versatile targeted delivery system for multiple therapeutic and diagnostic agents should be adapted for miRNA. In this study, we developed membrane-coated PLGA-b-PEG DC-chol nanoparticles (m-PPDCNPs) co-encapsulating doxorubicin (Dox) and miRNA-190-Cy7. Such a system showed low biotoxicity, high loading efficiency, and superior targeting ability. Systematic delivery of m-PPDCNPs in mouse models showed exceptionally specific tumor accumulation. Sustained release of miR-190 inhibited tumor angiogenesis, tumor growth, and migration by regulating a large group of angiogenic effectors. Moreover, m-PPDCNPs also enhanced the sensitivity of Dox by suppressing TGF-β signal in colorectal cancer cell lines and mouse models. Together, our results demonstrate a stimulating and promising m-PPDCNPs nanoplatform for colorectal cancer theranostics.
Collapse
Affiliation(s)
- Sihao Zhu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ziyuan Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dongye Zheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yue Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Xiang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiao Ma
- Research Group Signal Transduction, Department of Psychiatry, Ludwig Maximilian University of Munich, Nussbaumstr.7, 80336 Munich, Germany
| | - Dongqing Xu
- Department of Pediatric Hematology/Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiajun Qiu
- Department of Otolaryngology Head and Neck Surgery, the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ziyu Yang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiyi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Li
- Laboratory Animal Center, Peking University, Beijing 100871, China
| | - Hongfang Sun
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu Province, China,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, Gansu Province, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing 100142, China,Corresponding author.
| | - Yanye Lu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China,Corresponding author.
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China,Corresponding author.
| |
Collapse
|
18
|
Yuan S, Stewart KS, Yang Y, Abdusselamoglu MD, Parigi SM, Feinberg TY, Tumaneng K, Yang H, Levorse JM, Polak L, Ng D, Fuchs E. Ras drives malignancy through stem cell crosstalk with the microenvironment. Nature 2022; 612:555-563. [PMID: 36450983 PMCID: PMC9750880 DOI: 10.1038/s41586-022-05475-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022]
Abstract
Squamous cell carcinomas are triggered by marked elevation of RAS-MAPK signalling and progression from benign papilloma to invasive malignancy1-4. At tumour-stromal interfaces, a subset of tumour-initiating progenitors, the cancer stem cells, obtain increased resistance to chemotherapy and immunotherapy along this pathway5,6. The distribution and changes in cancer stem cells during progression from a benign state to invasive squamous cell carcinoma remain unclear. Here we show in mice that, after oncogenic RAS activation, cancer stem cells rewire their gene expression program and trigger self-propelling, aberrant signalling crosstalk with their tissue microenvironment that drives their malignant progression. The non-genetic, dynamic cascade of intercellular exchanges involves downstream pathways that are often mutated in advanced metastatic squamous cell carcinomas with high mutational burden7. Coupling our clonal skin HRASG12V mouse model with single-cell transcriptomics, chromatin landscaping, lentiviral reporters and lineage tracing, we show that aberrant crosstalk between cancer stem cells and their microenvironment triggers angiogenesis and TGFβ signalling, creating conditions that are conducive for hijacking leptin and leptin receptor signalling, which in turn launches downstream phosphoinositide 3-kinase (PI3K)-AKT-mTOR signalling during the benign-to-malignant transition. By functionally examining each step in this pathway, we reveal how dynamic temporal crosstalk with the microenvironment orchestrated by the stem cells profoundly fuels this path to malignancy. These insights suggest broad implications for cancer therapeutics.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Katherine S Stewart
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Yihao Yang
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Merve Deniz Abdusselamoglu
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - S Martina Parigi
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Tamar Y Feinberg
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Volastra Therapeutics, New York, NY, USA
| | - Karen Tumaneng
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Sanofi, Cambridge, MA, USA
| | - Hanseul Yang
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - John M Levorse
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Temple University, Philadelphia, PA, USA
| | - Lisa Polak
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - David Ng
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
19
|
Lavacchi D, Fancelli S, Roviello G, Castiglione F, Caliman E, Rossi G, Venturini J, Pellegrini E, Brugia M, Vannini A, Bartoli C, Cianchi F, Pillozzi S, Antonuzzo L. Mutations matter: An observational study of the prognostic and predictive value of KRAS mutations in metastatic colorectal cancer. Front Oncol 2022; 12:1055019. [PMID: 36523988 PMCID: PMC9745189 DOI: 10.3389/fonc.2022.1055019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND About half of metastatic colorectal cancers (CRCs) harbor Rat Sarcoma (RAS) activating mutations as oncogenic driver, but the prognostic role of RAS mutations is not fully elucidated. Interestingly, specific hotspot mutations have been identified as potential candidates for novel targeted therapies in several malignancies as per G12C. This study aims at evaluating the association between KRAS hotspot mutations and patient characteristics, prognosis and response to antiangiogenic drugs. METHODS Data from RAS-mutated CRC patients referred to Careggi University Hospital, between January 2017 and April 2022 were retrospectively and prospectively collected. Tumor samples were assessed for RAS mutation status using MALDI-TOF Mass Spectrometry, Myriapod NGS-56G Onco Panel, or Myriapod NGS Cancer Panel DNA. RESULTS Among 1047 patients with available RAS mutational status, 183 KRAS-mutated patients with advanced CRC had adequate data for clinicopathological and survival analysis. KRAS mutations occurred at codon 12 in 67.2% of cases, codon 13 in 23.5%, codon 61 in 2.2%, and other codons in 8.2%. G12C mutation was identified in 7.1% of patients and exon 4 mutations in 7.1%. KRAS G12D mutation, as compared to other mutations, was significantly associated with liver metastases (1-sided p=0.005) and male sex (1-sided p=0.039), KRAS G12C mutation with peritoneal metastases (1-sided p=0.035), KRAS G12V mutation with female sex (1-sided p=0.025) and no surgery for primary tumor (1-sided p=0.005). No associations were observed between specific KRAS variants and age, ECOG PS, site of primary tumor, pattern of recurrence for resected patients, and lung, distant lymph node, bone, or brain metastases.Overall survival (OS) was significantly longer in patients with KRAS exon 4 mutations than in those with other KRAS mutations (mOS 43.6 months vs 20.6 months; HR 0.45 [0.21-0.99], p=0.04). No difference in survival was observed for mutations at codon 12/13/61 (p=0.1). Treatment with bevacizumab (BV) increased significatively mPFS (p=0.036) and mOS (p=0.019) of the entire population with a substantial benefit in mOS for G12V mutation (p=0.031). CONCLUSIONS Patterns of presentation and prognosis among patients with specific RAS hotspot mutations deserve to be extensively studied in large datasets, with a specific attention to the uncommon isoforms and the role of anti-angiogenic drugs.
Collapse
Affiliation(s)
- Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Sara Fancelli
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Francesca Castiglione
- Pathologic Histology and Molecular diagnostic Unit, Careggi University Hospital, Florence, Italy
| | - Enrico Caliman
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gemma Rossi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Jacopo Venturini
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Elisa Pellegrini
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Marco Brugia
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Agnese Vannini
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Caterina Bartoli
- Pathologic Histology and Molecular diagnostic Unit, Careggi University Hospital, Florence, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
20
|
Peng X, Zhang T, Jia X, Wang T, Lin H, Li G, Li R, Zhang A. Impact of a haplotype (composed of the APC, KRAS, and TP53 genes) on colorectal adenocarcinoma differentiation and patient prognosis. Cancer Genet 2022; 268-269:115-123. [PMID: 36288643 DOI: 10.1016/j.cancergen.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Many types of gene mutation are associated with the drug resistance of cancer cells. XELOX is a new and efficient surgical adjuvant chemotherapy for colorectal adenocarcinoma. However, drug-resistant related genetic mutations associated with this treatment remain unknown. METHODS Next-generation sequencing (NGS) was performed on 36 colorectal cancer patients to identify mutations among patients with residual tumors following preoperative chemotherapy. Enrichment and prognosis of these mutations were evaluated in a TCGA cohort. The pathology of cases with poor prognosis-related mutations was also determined. RESULTS A sequence of SNPs associated with the APC, KRAS, and TP53 genes in 13 of 19 subjects with residual tumors after preoperative chemotherapy was identified. Using survival analysis data from 317 cases in the TCGA database, a prognosis-related haplotype composed of SNPs from APC, KRAS, and TP53 was assembled. Colorectal cancer patients with these mutations had a lower 5-year tumor-specific survival rate than those without (p < 0.05). Most patients with these mutations were at a higher clinical stage (III-IV) of disease. Enrolled subjects with the identified haplotype tended to have poor cancer cell differentiation. CONCLUSIONS The prognosis-related haplotype can be used as a marker of drug resistance and prognosis in colorectal cancer patients after preoperative chemotherapy.
Collapse
Affiliation(s)
- Xinyu Peng
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Tao Zhang
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Xiongjie Jia
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Tong Wang
- General Surgery Department, Laiyuan County Hospital, No. 299, Zhongxin Road, Laiyuan County, Baoding City, Hebei Province, PR China 074399
| | - Hengxue Lin
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Gang Li
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Riheng Li
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000.
| | - Aimin Zhang
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| |
Collapse
|
21
|
Kloeber JA, Lou Z. Critical DNA damaging pathways in tumorigenesis. Semin Cancer Biol 2022; 85:164-184. [PMID: 33905873 PMCID: PMC8542061 DOI: 10.1016/j.semcancer.2021.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
The acquisition of DNA damage is an early driving event in tumorigenesis. Premalignant lesions show activated DNA damage responses and inactivation of DNA damage checkpoints promotes malignant transformation. However, DNA damage is also a targetable vulnerability in cancer cells. This requires a detailed understanding of the cellular and molecular mechanisms governing DNA integrity. Here, we review current work on DNA damage in tumorigenesis. We discuss DNA double strand break repair, how repair pathways contribute to tumorigenesis, and how double strand breaks are linked to the tumor microenvironment. Next, we discuss the role of oncogenes in promoting DNA damage through replication stress. Finally, we discuss our current understanding on DNA damage in micronuclei and discuss therapies targeting these DNA damage pathways.
Collapse
Affiliation(s)
- Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
22
|
Pallara C, Cabot D, Rivas J, Brun S, Seco J, Abuasaker B, Tarragó T, Jaumot M, Prades R, Agell N. Peptidomimetics designed to bind to RAS effector domain are promising cancer therapeutic compounds. Sci Rep 2022; 12:15810. [PMID: 36138080 PMCID: PMC9499927 DOI: 10.1038/s41598-022-19703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Oncogenic RAS proteins are important for driving tumour formation, and for maintenance of the transformed phenotype, and thus their relevance as a cancer therapeutic target is undeniable. We focused here on obtaining peptidomimetics, which have good pharmacological properties, to block Ras–effector interaction. Computational analysis was used to identify hot spots of RAS relevant for these interactions and to screen a library of peptidomimetics. Nine compounds were synthesized and assayed for their activity as RAS inhibitors in cultured cells. Most of them induced a reduction in ERK and AKT activation by EGF, a marker of RAS activity. The most potent inhibitor disrupted Raf and PI3K interaction with oncogenic KRAS, corroborating its mechanism of action as an inhibitor of protein–protein interactions, and thus validating our computational methodology. Most interestingly, improvement of one of the compounds allowed us to obtain a peptidomimetic that decreased the survival of pancreatic cancer cell lines harbouring oncogenic KRAS.
Collapse
Affiliation(s)
- Chiara Pallara
- Iproteos S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Debora Cabot
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, C/Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Rivas
- Iproteos S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Sonia Brun
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, C/Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jesús Seco
- Iproteos S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Baraa Abuasaker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, C/Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Montserrat Jaumot
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, C/Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roger Prades
- Iproteos S.L., Barcelona Science Park, Baldiri Reixac 10, 08028, Barcelona, Spain.
| | - Neus Agell
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, C/Casanova 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
23
|
Baker SJ, Poulikakos PI, Irie HY, Parekh S, Reddy EP. CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer 2022; 13:21-45. [PMID: 36051751 PMCID: PMC9426627 DOI: 10.18632/genesandcancer.221] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The cell cycle is regulated in part by cyclins and their associated serine/threonine cyclin-dependent kinases, or CDKs. CDK4, in conjunction with the D-type cyclins, mediates progression through the G1 phase when the cell prepares to initiate DNA synthesis. Although Cdk4-null mutant mice are viable and cell proliferation is not significantly affected in vitro due to compensatory roles played by other CDKs, this gene plays a key role in mammalian development and cancer. This review discusses the role that CDK4 plays in cell cycle control, normal development and tumorigenesis as well as the current status and utility of approved small molecule CDK4/6 inhibitors that are currently being used as cancer therapeutics.
Collapse
Affiliation(s)
- Stacey J. Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Hanna Y. Irie
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| |
Collapse
|
24
|
Molecular Biology and Therapeutic Perspectives for K-Ras Mutant Non-Small Cell Lung Cancers. Cancers (Basel) 2022; 14:cancers14174103. [PMID: 36077640 PMCID: PMC9454753 DOI: 10.3390/cancers14174103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/28/2022] Open
Abstract
In non-small cell lung cancer (NSCLC) the most common alterations are identified in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene, accounting for approximately 30% of cases in Caucasian patients. The majority of mutations are located in exon 2, with the c.34G > T (p.G12C) change being the most prevalent. The clinical relevance of KRAS mutations in NSCLC was not recognized until a few years ago. What is now emerging is a dual key role played by KRAS mutations in the management of NSCLC patients. First, recent data report that KRAS-mutant lung AC patients generally have poorer overall survival (OS). Second, a KRAS inhibitor specifically targeting the c.34G > T (p.G12C) variant, Sotorasib, has been approved by the U.S. Food and Drug Administration (FDA) and by the European Medicines Agency. Another KRAS inhibitor targeting c.34G > T (p.G12C), Adagrasib, is currently being reviewed by the FDA for accelerated approval. From the description of the biology of KRAS-mutant NSCLC, the present review will focus on the clinical aspects of KRAS mutations in NSCLC, in particular on the emerging efficacy data of Sotorasib and other KRAS inhibitors, including mechanisms of resistance. Finally, the interaction between KRAS mutations and immune checkpoint inhibitors will be discussed.
Collapse
|
25
|
Targeting oncogenic KRAS with molecular brush-conjugated antisense oligonucleotides. Proc Natl Acad Sci U S A 2022; 119:e2113180119. [PMID: 35858356 PMCID: PMC9304022 DOI: 10.1073/pnas.2113180119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The mutant form of the guanosine triphosphatase (GTPase) KRAS is a key driver in human tumors but remains a challenging therapeutic target, making KRASMUT cancers a highly unmet clinical need. Here, we report a class of bottlebrush polyethylene glycol (PEG)-conjugated antisense oligonucleotides (ASOs) for potent in vivo KRAS depletion. Owing to their highly branched architecture, these molecular nanoconstructs suppress nearly all side effects associated with DNA-protein interactions and substantially enhance the pharmacological properties of the ASO, such as plasma pharmacokinetics and tumor uptake. Systemic delivery to mice bearing human non-small-cell lung carcinoma xenografts results in a significant reduction in both KRAS levels and tumor growth, and the antitumor performance well exceeds that of current popular ASO paradigms, such as chemically modified oligonucleotides and PEGylation using linear or slightly branched PEG. Importantly, these conjugates relax the requirement on the ASO chemistry, allowing unmodified, natural phosphodiester ASOs to achieve efficacy comparable to that of chemically modified ones. Both the bottlebrush polymer and its ASO conjugates appear to be safe and well tolerated in mice. Together, these data indicate that the molecular brush-ASO conjugate is a promising therapeutic platform for the treatment of KRAS-driven human cancers and warrant further preclinical and clinical development.
Collapse
|
26
|
Song Z, Ren G, Wang X, Hu L. The Effect of the Kirsten Rat Sarcoma Viral Oncogene Homolog ( Kras) Proto-Oncogene, GTPase Genetic Polymorphism on the Safety and Efficacy of Bevacizumab Combination Treatment Regimens for Patients with Nonsquamous, Non-Small Cell Lung Cancer with Brain Metastases. Genet Test Mol Biomarkers 2022; 26:290-297. [PMID: 35638910 PMCID: PMC9150132 DOI: 10.1089/gtmb.2021.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Non-small cell lung cancer with brain metastasis (NSCLCBM) is normally observed in advanced-stage patients. Bevacizumab has shown to improve survival in the first-line treatment of metastatic brain NSCLC when added as a bolus plus irinotecan. However, a better understanding of the molecular mechanism is required to further drive progress in this field. Methods: A total of 155 patients were selected, including 42.10% with Kirsten rat sarcoma viral oncogene homolog (Kras)-mutant tumors. Of the 155 patients, 62.04% had developed brain metastasis (BM). Seven functional single-nucleotide polymorphisms (SNPs) in the Kras gene were extracted from the HapMap SNP database and were used for genotyping. The haplologit command in Statistical Software for Data Science (STATA) was used to model the association between haplotypes and case status. A Cox analysis was used to evaluate the prognostic value of the SNPs. Results: Among the patients treated with combination regimens, recurrence after local treatment was more frequent in those with two types of Kras mutations (odds ratio [OR] = 2.033 [0.5015-4.2552], p = 0.009). Among the patients with untreated BM, overall survival was shorter than that of patients with Kras mutations according to univariate analysis (OR = 5.130 [1.240-41.012], p = 0.033). Conclusions: Kras mutations have a predictive role for BM recurrence and outcome in patients with NSCLC treated with bevacizumab combination regimens.
Collapse
Affiliation(s)
- Zizheng Song
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Guanying Ren
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Xiaolei Wang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Ling Hu
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
- Address correspondence to: Ling Hu, MD, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| |
Collapse
|
27
|
Ulaganathan VK. Membrane anchorage-induced (MAGIC) knock-down of non-synonymous point mutations. Chembiochem 2022; 23:e202100637. [PMID: 35352864 DOI: 10.1002/cbic.202100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Indexed: 11/08/2022]
Abstract
The promise of personalized medicine for monogenic and complex polygenic diseases depends on the availability of strategies for targeted inhibition of disease-associated polymorphic protein variants. A large majority of disease-causing genetic alterations are non-synonymous single nucleotide genetic variations (nsSNVs). Yet a general strategy for inhibiting the expression of nsSNVs without editing the human genome is currently lacking. Here, we reveal that upon intracellular delivery of lipid conjugated point mutation-specific monoclonal antibodies, a target-specific knockdown of gene expression at both mRNA and protein levels is observed. By harnessing the phenomenon of m embrane a nchorage i ndu c ed (MAGIC) knock-down of epitope-containing protein targets, we reveal a novel approach for inhibiting the expression of amino acid-altering point mutations. This approach opens up a new opportunity for the therapeutic inhibition of undruggable protein variants as well as paves the way for interrogating the nsSNVs in the human genome.
Collapse
Key Words
- membrane anchorage-induced knockdown, nsSNV, 18:0-14:0 PC, lipid-anchor, phospholipid-conjugated mAbs, SNP, SNV, genetic variants, allele varaints, rare variants, common variants, pathogenic mutations, point mutation knockdown, mRNA knockdown
Collapse
Affiliation(s)
- Vijay Kumar Ulaganathan
- University of Lorraine: Universite de Lorraine, NGERE Unit, Faculté de Médecine, Bâtiment C - 2ème étage, 54505, Nancy, FRANCE
| |
Collapse
|
28
|
Shen M, Qi R, Ren J, Lv D, Yang H. Characterization With KRAS Mutant Is a Critical Determinant in Immunotherapy and Other Multiple Therapies for Non-Small Cell Lung Cancer. Front Oncol 2022; 11:780655. [PMID: 35070984 PMCID: PMC8766810 DOI: 10.3389/fonc.2021.780655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a frequent type of cancer, which is mainly characterized clinically by high aggressiveness and high mortality. KRAS oncoprotein is the most common molecular protein detected in NSCLC, accounting for 25% of all oncogenic mutations. Constitutive activation of the KRAS oncoprotein triggers an intracellular cascade in cancer cells, leading to uncontrolled cell proliferation of cancer cells and aberrant cell survival states. The results of multiple clinical trials have shown that different KRAS mutation subtypes exhibit different sensitivities to different chemotherapy regimens. Meanwhile, anti-angiogenic drugs have shown differential efficacy for different subtypes of KRAS mutated lung cancer. It was explored to find if the specificity of the KRAS mutation subtype would affect PD-L1 expression, so immunotherapy would be of potential clinical value for the treatment of some types of KRAS mutations. It was discovered that the specificity of the KRAS mutation affected PD-L1, which opened up immunotherapy as a potential clinical treatment option. After several breakthrough studies, the preliminary test data of many early clinical trials showed that it is possible to directly inhibit KRAS G12C mutation, which has been proved to be a targeted treatment that is suitable for about 10%-12% of patients with advanced NSCLC, having a significant impact on the prolongation of their survival and the improvement of their quality of life. This article reviews the latest progress of treatments for NSCLC with KRAS mutation, in order to gain insight into the biological diversity of lung cancer cells and their potential clinical implications, thereby enabling individualized treatment for patients with KRAS-mutant NSCLC.
Collapse
Affiliation(s)
- Mo Shen
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongbin Qi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
- Department of Respiratory Medicine, Enze Hospital, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Justin Ren
- Biological Sciences, Northwestern University, Evanston, Evanston, IL, United States
| | - Dongqing Lv
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
- Department of Respiratory Medicine, Enze Hospital, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
- Department of Radiation Oncology, Enze Hospital, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| |
Collapse
|
29
|
Oncogenic KRAS promotes growth of lung cancer cells expressing SLC3A2-NRG1 fusion via ADAM17-mediated shedding of NRG1. Oncogene 2022; 41:280-292. [PMID: 34743207 DOI: 10.1038/s41388-021-02097-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022]
Abstract
We previously found the SLC3A2-NRG1 (S-N) fusion gene in a lung adenocarcinoma specimen without known driver mutations and validated this in 59 invasive mucinous adenocarcinoma (IMA) samples. Interestingly, KRAS mutation coexisted (62.5%) in 10 out of 16 NRG1 fusions. In this study, we examined the role of mutant KRAS in regulating the S-N fusion protein in KRAS mutant (H358) and wild-type (Calu-3) cells. KRAS mutation-mediated increase in MEK1/2 and ERK1/2 activity enhanced disintegrin and metalloproteinase (ADAM)17 activity, which increased the shedding of NRG1 from the S-N fusion protein. The cleavage of NRG1 also increased the phosphorylation of ERBB2-ERBB3 heterocomplex receptors and their downstream signalling pathways, including PI3K/Akt/mTOR, even under activated KRAS mutation signalling. The concurrence of S-N fusion and KRAS mutation synergistically increased cell proliferation, colony formation, tumour growth, and the cells' resistance to EGFR kinase inhibitors more than KRAS mutation alone. Targeted inhibition of MEK1/2, and ADAM17 significantly induced apoptosis singly and when combined with each mutation singly or with chemotherapy in both the concurrent KRAS mutant and S-N fusion xenograft and lung orthotopic models. Taken together, this is the first study to report that KRAS mutation increased NRG1 cleavage from the S-N fusion protein through ADAM17, thereby enhancing the Ras/Raf/MEK/ERK and ERBB/PI3K/Akt/mTOR pathways. Moreover, the coexistence of KRAS mutant and S-N fusion in lung tumours renders them vulnerable to MEK1/2 and/or ADAM17 inhibitors, at least in part, due to their dependency on the strong positive loop between KRAS mutation and S-N fusion.
Collapse
|
30
|
Taniguchi S, Tanaka Y, Elhance A, Oshimori N. A mechanistic basis for the malignant progression of salivary gland tumors. iScience 2021; 24:103508. [PMID: 34934927 PMCID: PMC8661530 DOI: 10.1016/j.isci.2021.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
Salivary gland tumors are diverse neoplasms, likely reflecting differences in the tissue- and cell-of-origin. 80%-90% of tumors arising in the sublingual gland (SLG) are malignant, whereas the other major glands often form benign tumors. Owing to the lack of experimental models to explore the etiology of salivary gland tumors, the cellular and molecular bases of malignancy remain unknown. Here, we generated a murine model of HRASG12V-driven salivary gland tumors amenable to examine tumor onset and malignant progression. We found that HMGA2 marks the tumor onset, and transformed-SOX2+ stem/progenitor cells expand exclusively in SLG tumors. Lineage tracing experiments showed that SLG tumor cells undergo an extensive epithelial-mesenchymal transition (EMT) and TGF-β-responding tumor cells are a source of mesenchymal tumor cells invading the surrounding stroma. This study advances our understanding of the mechanistic basis of salivary gland malignancy and may help combat this highly heterogeneous cancer.
Collapse
Affiliation(s)
- Sachiko Taniguchi
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yuya Tanaka
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ajit Elhance
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Naoki Oshimori
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Otolaryngology, Head & Neck Surgery, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
31
|
Lam KK, Tang CL, Tan E, Wong SH, Cheah PY. KRAS mutation-independent downregulation of MAPK/PI3K signaling in colorectal cancer. Mol Oncol 2021; 16:1171-1183. [PMID: 34919787 PMCID: PMC8895447 DOI: 10.1002/1878-0261.13163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
KRAS is a gatekeeper gene in human colorectal tumorigenesis. KRAS is ‘undruggable’; hence, efforts have been diverted to inhibit downstream RAF/MEK/ERK and PI3K/Akt signaling. Nevertheless, none of these inhibitors has progressed to clinical use despite extensive trials. We examined levels of phospho‐ERK1/2(T202/Y204) and phospho‐Akt1/2/3(S473) in human colorectal tumor compared to matched mucosa with semi‐quantitative near‐infrared western blot and confocal fluorescence immunohistochemistry imaging. Surprisingly, 75.5% (25/33) of tumors had lower or equivalent phospho‐ERK1/2 and 96.9% (31/32) of tumors had lower phospho‐Akt1/2/3 compared to matched mucosa, irrespective of KRAS mutation status. In contrast, we discovered KRAS‐dependent SOX9 upregulation in 28 of the 31 (90.3%) tumors. These observations were substantiated by analysis of the public domain transcriptomics The Cancer Genome Atlas (TCGA) and NCBI Gene Expression Omnibus (GEO) datasets and proteomics Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset. These data suggest that RAF/MEK/ERK and PI3K/Akt signaling are unlikely to be activated in most human colorectal cancer.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Choong Leong Tang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Emile Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | | | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
32
|
Li H, Fang H, Chang L, Qiu S, Ren X, Cao L, Bian J, Wang Z, Guo Y, Lv J, Sun Z, Wang T, Li B. TC2N: A Novel Vital Oncogene or Tumor Suppressor Gene In Cancers. Front Immunol 2021; 12:764749. [PMID: 34925334 PMCID: PMC8674203 DOI: 10.3389/fimmu.2021.764749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Several C2 domain-containing proteins play key roles in tumorigenesis, signal transduction, and mediating protein–protein interactions. Tandem C2 domains nuclear protein (TC2N) is a tandem C2 domain-containing protein that is differentially expressed in several types of cancers and is closely associated with tumorigenesis and tumor progression. Notably, TC2N has been identified as an oncogene in lung and gastric cancer but as a tumor suppressor gene in breast cancer. Recently, a large number of tumor-associated antigens (TAAs), such as heat shock proteins, alpha-fetoprotein, and carcinoembryonic antigen, have been identified in a variety of malignant tumors. Differences in the expression levels of TAAs between cancer cells and normal cells have led to these antigens being investigated as diagnostic and prognostic biomarkers and as novel targets in cancer treatment. In this review, we summarize the clinical characteristics of TC2N-positive cancers and potential mechanisms of action of TC2N in the occurrence and development of specific cancers. This article provides an exploration of TC2N as a potential target for the diagnosis and treatment of different types of cancers.
Collapse
Affiliation(s)
- Hanyang Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Qiu
- Department of Biobank, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaojun Ren
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jinda Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhenxiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Guo
- Department of Breast Surgery, The Affiliated Hospital Changchun University of Chinese Medicine, Changchun, China
| | - Jiayin Lv
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Tiejun Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Tiejun Wang, ; Bingjin Li,
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Tiejun Wang, ; Bingjin Li,
| |
Collapse
|
33
|
Fitzgerald B, Connolly KA, Cui C, Fagerberg E, Mariuzza DL, Hornick NI, Foster GG, William I, Cheung JF, Joshi NS. A mouse model for the study of anti-tumor T cell responses in Kras-driven lung adenocarcinoma. CELL REPORTS METHODS 2021; 1:100080. [PMID: 34632444 PMCID: PMC8500377 DOI: 10.1016/j.crmeth.2021.100080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023]
Abstract
Kras-driven lung adenocarcinoma (LUAD) is the most common lung cancer. A significant fraction of patients with Kras-driven LUAD respond to immunotherapy, but mechanistic studies of immune responses against LUAD have been limited because of a lack of immunotherapy-responsive models. We report the development of the immunogenic KP × NINJA (inversion inducible joined neoantigen) (KP-NINJA) LUAD model. This model allows temporal uncoupling of antigen and tumor induction, which allows one to wait until after infection-induced inflammation has subsided to induce neoantigen expression by tumors. Neoantigen expression is restricted to EPCAM+ cells in the lung and expression of neoantigen was more consistent between tumors than when neoantigens were encoded on lentiviruses. Moreover, tumors were infiltrated by tumor-specific CD8 T cells. Finally, LUAD cell lines derived from KP-NINJA mice were immunogenic and responded to immune checkpoint therapy (anti-PD1 and anti-CTLA4), providing means for future studies into the immunobiology of therapeutic responses in LUAD.
Collapse
Affiliation(s)
- Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Kelli A. Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Dylan L. Mariuzza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Noah I. Hornick
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Gena G. Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ivana William
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Julie F. Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
34
|
RAS specific protease induces irreversible growth arrest via p27 in several KRAS mutant colorectal cancer cell lines. Sci Rep 2021; 11:17925. [PMID: 34504197 PMCID: PMC8429734 DOI: 10.1038/s41598-021-97422-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ras-specific proteases to degrade RAS within cancer cells are under active development as an innovative strategy to treat tumorigenesis. The naturally occurring biological toxin effector called RAS/RAP1-specific endopeptidase (RRSP) is known to cleave all RAS within a cell, including HRAS, KRAS, NRAS and mutant KRAS G13D. Yet, our understanding of the mechanisms by which RRSP drives growth inhibition are unknown. Here, we demonstrate, using isogenic mouse fibroblasts expressing a single isoform of RAS or mutant KRAS, that RRSP equally inactivates all isoforms of RAS as well as the major oncogenic KRAS mutants. To investigate how RAS processing might lead to varying outcomes in cell fate within cancer cells, we tested RRSP against four colorectal cancer cell lines with a range of cell fates. While cell lines highly susceptible to RRSP (HCT116 and SW1463) undergo apoptosis, RRSP treatment of GP5d and SW620 cells induces G1 cell cycle arrest. In some cell lines, growth effects were dictated by rescued expression of the tumor suppressor protein p27 (Kip1). The ability of RRSP to irreversibly inhibit cancer cell growth highlights the antitumor potential of RRSP, and further warrants investigation as a potential anti-tumor therapeutic.
Collapse
|
35
|
Eddy K, Chen S. Glutamatergic Signaling a Therapeutic Vulnerability in Melanoma. Cancers (Basel) 2021; 13:3874. [PMID: 34359771 PMCID: PMC8345431 DOI: 10.3390/cancers13153874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Like other cancers, melanomas are associated with the hyperactivation of two major cell signaling cascades, the MAPK and PI3K/AKT pathways. Both pathways are activated by numerous genes implicated in the development and progression of melanomas such as mutated BRAF, RAS, and NF1. Our lab was the first to identify yet another driver of melanoma, Metabotropic Glutamate Receptor 1 (protein: mGluR1, mouse gene: Grm1, human gene: GRM1), upstream of the MAPK and PI3K/AKT pathways. Binding of glutamate, the natural ligand of mGluR1, activates MAPK and PI3K/AKT pathways and sets in motion the deregulated cellular responses in cell growth, cell survival, and cell metastasis. In this review, we will assess the proposed modes of action that mediate the oncogenic properties of mGluR1 in melanoma and possible application of anti-glutamatergic signaling modulator(s) as therapeutic strategy for the treatment of melanomas.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
36
|
Willobee BA, Gaidarski AA, Dosch AR, Castellanos JA, Dai X, Mehra S, Messaggio F, Srinivasan S, VanSaun MN, Nagathihalli NS, Merchant NB. Combined Blockade of MEK and CDK4/6 Pathways Induces Senescence to Improve Survival in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2021; 20:1246-1256. [PMID: 34001634 PMCID: PMC8260447 DOI: 10.1158/1535-7163.mct-19-1043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/07/2020] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Activating KRAS mutations, a defining feature of pancreatic ductal adenocarcinoma (PDAC), promote tumor growth in part through the activation of cyclin-dependent kinases (CDK) that induce cell-cycle progression. p16INK4a (p16), encoded by the gene CDKN2A, is a potent inhibitor of CDK4/6 and serves as a critical checkpoint of cell proliferation. Mutations in and subsequent loss of the p16 gene occur in PDAC at a rate higher than that reported in any other tumor type and results in Rb inactivation and unrestricted cellular growth. Therefore, strategies targeting downstream RAS pathway effectors combined with CDK4/6 inhibition (CDK4/6i) may have the potential to improve outcomes in this disease. Herein, we show that expression of p16 is markedly reduced in PDAC tumors compared with normal pancreatic or pre-neoplastic tissues. Combined MEK inhibition (MEKi) and CDK4/6i results in sustained downregulation of both ERK and Rb phosphorylation and a significant reduction in cell proliferation compared with monotherapy in human PDAC cells. MEKi with CDK4/6i reduces tumor cell proliferation by promoting senescence-mediated growth arrest, independent of apoptosis in vitro We show that combined MEKi and CDK4/6i treatment attenuates tumor growth in xenograft models of PDAC and improves overall survival over 200% compared with treatment with vehicle or individual agents alone in Ptf1acre/+ ;LSL-KRASG12D/+ ;Tgfbr2flox/flox (PKT) mice. Histologic analysis of PKT tumor lysates reveal a significant decrease in markers of cell proliferation and an increase in senescence-associated markers without any significant change in apoptosis. These results demonstrate that combined targeting of both MEK and CDK4/6 represents a novel therapeutic strategy to synergistically reduce tumor growth through induction of cellular senescence in PDAC.
Collapse
Affiliation(s)
- Brent A Willobee
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Alexander A Gaidarski
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jason A Castellanos
- Division of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xizi Dai
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Siddharth Mehra
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Fanuel Messaggio
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Supriya Srinivasan
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael N VanSaun
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
37
|
Ras Isoforms from Lab Benches to Lives-What Are We Missing and How Far Are We? Int J Mol Sci 2021; 22:ijms22126508. [PMID: 34204435 PMCID: PMC8233758 DOI: 10.3390/ijms22126508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.
Collapse
|
38
|
Abstract
KRAS mutations are the most frequent gain-of-function alterations in patients with lung adenocarcinoma (LADC) in the Western world. Although they have been identified decades ago, prior efforts to target KRAS signaling with single-agent therapeutic approaches such as farnesyl transferase inhibitors, prenylation inhibition, impairment of KRAS downstream signaling, and synthetic lethality screens have been unsuccessful. Moreover, the role of KRAS oncogene in LADC is still not fully understood, and its prognostic and predictive impact with regards to the standard of care therapy remains controversial. Of note, KRAS-related studies that included general non-small cell lung cancer (NSCLC) population instead of LADC patients should be very carefully evaluated. Recently, however, comprehensive genomic profiling and wide-spectrum analysis of other co-occurring genetic alterations have identified unique therapeutic vulnerabilities. Novel targeted agents such as the covalent KRAS G12C inhibitors or the recently proposed combinatory approaches are some examples which may allow a tailored treatment for LADC patients harboring KRAS mutations. This review summarizes the current knowledge about the therapeutic approaches of KRAS-mutated LADC and provides an update on the most recent advances in KRAS-targeted anti-cancer strategies, with a focus on potential clinical implications.
Collapse
|
39
|
40 Years of RAS-A Historic Overview. Genes (Basel) 2021; 12:genes12050681. [PMID: 34062774 PMCID: PMC8147265 DOI: 10.3390/genes12050681] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been over forty years since the isolation of the first human oncogene (HRAS), a crucial milestone in cancer research made possible through the combined efforts of a few selected research groups at the beginning of the 1980s. Those initial discoveries led to a quantitative leap in our understanding of cancer biology and set up the onset of the field of molecular oncology. The following four decades of RAS research have produced a huge pool of new knowledge about the RAS family of small GTPases, including how they regulate signaling pathways controlling many cellular physiological processes, or how oncogenic mutations trigger pathological conditions, including developmental syndromes or many cancer types. However, despite the extensive body of available basic knowledge, specific effective treatments for RAS-driven cancers are still lacking. Hopefully, recent advances involving the discovery of novel pockets on the RAS surface as well as highly specific small-molecule inhibitors able to block its interaction with effectors and/or activators may lead to the development of new, effective treatments for cancer. This review intends to provide a quick, summarized historical overview of the main milestones in RAS research spanning from the initial discovery of the viral RAS oncogenes in rodent tumors to the latest attempts at targeting RAS oncogenes in various human cancers.
Collapse
|
40
|
Ito RE, Oneyama C, Aoki K. Oncogenic mutation or overexpression of oncogenic KRAS or BRAF is not sufficient to confer oncogene addiction. PLoS One 2021; 16:e0249388. [PMID: 33793658 PMCID: PMC8016361 DOI: 10.1371/journal.pone.0249388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Oncogene addiction is a cellular property by which cancer cells become highly dependent on the expression of oncogenes for their survival. Oncogene addiction can be exploited to design molecularly targeted drugs that kill only cancer cells by inhibiting the specific oncogenes. Genes and cell lines exhibiting oncogene addiction, as well as the mechanisms by which cell death is induced when addicted oncogenes are suppressed, have been extensively studied. However, it is still not fully understood how oncogene addiction is acquired in cancer cells. Here, we take a synthetic biology approach to investigate whether oncogenic mutation or oncogene expression suffices to confer the property of oncogene addiction to cancer cells. We employed human mammary epithelium-derived MCF-10A cells expressing the oncogenic KRAS or BRAF. MCF-10A cells harboring an oncogenic mutation in a single-allele of KRAS or BRAF showed weak transformation activity, but no characteristics of oncogene addiction. MCF-10A cells overexpressing oncogenic KRAS demonstrated the transformation activity, but MCF-10A cells overexpressing oncogenic BRAF did not. Neither cell line exhibited any oncogene addiction properties. These results indicate that the introduction of oncogenic mutation or the overexpression of oncogenes is not sufficient for cells to acquire oncogene addiction, and that oncogene addiction is not associated with transformation activity.
Collapse
Affiliation(s)
- Reina E. Ito
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- * E-mail:
| |
Collapse
|
41
|
Smith JL, Rodríguez TC, Mou H, Kwan SY, Pratt H, Zhang XO, Cao Y, Liang S, Ozata DM, Yu T, Yin Q, Hazeltine M, Weng Z, Sontheimer EJ, Xue W. YAP1 Withdrawal in Hepatoblastoma Drives Therapeutic Differentiation of Tumor Cells to Functional Hepatocyte-Like Cells. Hepatology 2021; 73:1011-1027. [PMID: 32452550 PMCID: PMC8500588 DOI: 10.1002/hep.31389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Despite surgical and chemotherapeutic advances, the 5-year survival rate for stage IV hepatoblastoma (HB), the predominant pediatric liver tumor, remains at 27%. Yes-associated protein 1 (YAP1) and β-catenin co-activation occurs in 80% of children's HB; however, a lack of conditional genetic models precludes tumor maintenance exploration. Thus, the need for a targeted therapy remains unmet. Given the predominance of YAP1 and β-catenin activation in HB, we sought to evaluate YAP1 as a therapeutic target in HB. APPROACH AND RESULTS We engineered the conditional HB murine model using hydrodynamic injection to deliver transposon plasmids encoding inducible YAP1S127A , constitutive β-cateninDelN90 , and a luciferase reporter to murine liver. Tumor regression was evaluated using bioluminescent imaging, tumor landscape characterized using RNA and ATAC sequencing, and DNA footprinting. Here we show that YAP1S127A withdrawal mediates more than 90% tumor regression with survival for 230+ days in mice. YAP1S127A withdrawal promotes apoptosis in a subset of tumor cells, and in remaining cells induces a cell fate switch that drives therapeutic differentiation of HB tumors into Ki-67-negative hepatocyte-like HB cells ("HbHeps") with hepatocyte-like morphology and mature hepatocyte gene expression. YAP1S127A withdrawal drives the formation of hbHeps by modulating liver differentiation transcription factor occupancy. Indeed, tumor-derived hbHeps, consistent with their reprogrammed transcriptional landscape, regain partial hepatocyte function and rescue liver damage in mice. CONCLUSIONS YAP1S127A withdrawal, without silencing oncogenic β-catenin, significantly regresses hepatoblastoma, providing in vivo data to support YAP1 as a therapeutic target for HB. YAP1S127A withdrawal alone sufficiently drives long-term regression in HB, as it promotes cell death in a subset of tumor cells and modulates transcription factor occupancy to reverse the fate of residual tumor cells to mimic functional hepatocytes.
Collapse
Affiliation(s)
- Jordan L Smith
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA.,Medical Scientist Training ProgramUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Tomás C Rodríguez
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA.,Medical Scientist Training ProgramUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Haiwei Mou
- Cold Spring Harbor LaboratoryCold Spring HarborNY
| | - Suet-Yan Kwan
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Henry Pratt
- Medical Scientist Training ProgramUniversity of Massachusetts Medical SchoolWorcesterMA.,Program in Bioinformatics and Integrative BiologyUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative BiologyUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Yueying Cao
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Shunqing Liang
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Deniz M Ozata
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Tianxiong Yu
- Department of BioinformaticsSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Qiangzong Yin
- Graduate School of Biomedical SciencesUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Max Hazeltine
- Department of SurgeryUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative BiologyUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Erik J Sontheimer
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA.,Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMA.,Li Weibo Institute for Rare Diseases ResearchUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Wen Xue
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA.,Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMA.,Li Weibo Institute for Rare Diseases ResearchUniversity of Massachusetts Medical SchoolWorcesterMA.,Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMA
| |
Collapse
|
42
|
Ehrlich M, Bacharach E. Oncolytic Virotherapy: The Cancer Cell Side. Cancers (Basel) 2021; 13:cancers13050939. [PMID: 33668131 PMCID: PMC7956656 DOI: 10.3390/cancers13050939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Oncolytic viruses (OVs) are a promising immunotherapy that specifically target and kill cancer cells and stimulate anti-tumor immunity. While different OVs are endowed with distinct features, which enhance their specificity towards tumor cells; attributes of the cancer cell also critically contribute to this specificity. Such features comprise defects in innate immunity, including antiviral responses, and the metabolic reprogramming of the malignant cell. The tumorigenic features which support OV replication can be intrinsic to the transformation process (e.g., a direct consequence of the activity of a given oncogene), or acquired in the course of tumor immunoediting—the selection process applied by antitumor immunity. Oncogene-induced epigenetic silencing plays an important role in negative regulation of immunostimulatory antiviral responses in the cancer cells. Reversal of such silencing may also provide a strong immunostimulant in the form of viral mimicry by activation of endogenous retroelements. Here we review features of the cancer cell that support viral replication, tumor immunoediting and the connection between oncogenic signaling, DNA methylation and viral oncolysis. As such, this review concentrates on the malignant cell, while detailed description of different OVs can be found in the accompanied reviews of this issue. Abstract Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses, including recognition of invading pathogens, inhibition of viral replication, reprogramming of cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation of immunostimulatory inflammation. In tumor development and/or immunotherapy settings, selective pressure applied by the immune system results in tumor immunoediting, a reduction in the immunostimulatory potential of the cancer cell. This editing process comprises the reduced expression and/or function of cell autonomous immunity genes, allowing for immune-evasion of the tumor while concomitantly attenuating anti-viral defenses. Combined with the oncogene-enhanced anabolic nature of cancer-cell metabolism, this attenuation of antiviral defenses contributes to viral replication and to the selectivity of oncolytic viruses (OVs) towards malignant cells. Here, we review the manners by which oncogene-mediated transformation and tumor immunoediting combine to alter the intracellular milieu of tumor cells, for the benefit of OV replication. We also explore the functional connection between oncogenic signaling and epigenetic silencing, and the way by which restriction of such silencing results in immune activation. Together, the picture that emerges is one in which OVs and epigenetic modifiers are part of a growing therapeutic toolbox that employs activation of anti-tumor immunity for cancer therapy.
Collapse
|
43
|
Dey P, Kimmelman AC, DePinho RA. Metabolic Codependencies in the Tumor Microenvironment. Cancer Discov 2021; 11:1067-1081. [PMID: 33504580 DOI: 10.1158/2159-8290.cd-20-1211] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Metabolic reprogramming enables cancer cell growth, proliferation, and survival. This reprogramming is driven by the combined actions of oncogenic alterations in cancer cells and host cell factors acting on cancer cells in the tumor microenvironment. Cancer cell-intrinsic mechanisms activate signal transduction components that either directly enhance metabolic enzyme activity or upregulate transcription factors that in turn increase expression of metabolic regulators. Extrinsic signaling mechanisms involve host-derived factors that further promote and amplify metabolic reprogramming in cancer cells. This review describes intrinsic and extrinsic mechanisms driving cancer metabolism in the tumor microenvironment and how such mechanisms may be targeted therapeutically. SIGNIFICANCE: Cancer cell metabolic reprogramming is a consequence of the converging signals originating from both intrinsic and extrinsic factors. Intrinsic signaling maintains the baseline metabolic state, whereas extrinsic signals fine-tune the metabolic processes based on the availability of metabolites and the requirements of the cells. Therefore, successful targeting of metabolic pathways will require a nuanced approach based on the cancer's genotype, tumor microenvironment composition, and tissue location.
Collapse
Affiliation(s)
- Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York. .,Tumor Immunology and Immunotherapy Program, State University of New York (SUNY) at Buffalo, Buffalo, New York
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
44
|
Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, Sanderson MP, Kessler D, Trapani F, Arnhof H, Rumpel K, Botesteanu DA, Ettmayer P, Gerstberger T, Kofink C, Wunberg T, Zoephel A, Fu SC, Teh JL, Böttcher J, Pototschnig N, Schachinger F, Schipany K, Lieb S, Vellano CP, O'Connell JC, Mendes RL, Moll J, Petronczki M, Heffernan TP, Pearson M, McConnell DB, Kraut N. BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discov 2020; 11:142-157. [PMID: 32816843 DOI: 10.1158/2159-8290.cd-20-0142] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph R Marszalek
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | | | | | | | - Szu-Chin Fu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica L Teh
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Simone Lieb
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Christopher P Vellano
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Jurgen Moll
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Timothy P Heffernan
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.
| |
Collapse
|
45
|
Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger JJ, Oshimori N. Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science 2020; 369:eaay1813. [PMID: 32675345 PMCID: PMC10870826 DOI: 10.1126/science.aay1813] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Targeting the cross-talk between tumor-initiating cells (TICs) and the niche microenvironment is an attractive avenue for cancer therapy. We show here, using a mouse model of squamous cell carcinoma, that TICs play a crucial role in creating a niche microenvironment that is required for tumor progression and drug resistance. Antioxidant activity in TICs, mediated by the transcription factor NRF2, facilitates the release of a nuclear cytokine, interleukin-33 (IL-33). This cytokine promotes differentiation of macrophages that express the high-affinity immunoglobulin E receptor FcεRIα and are in close proximity to TICs. In turn, these IL-33-responding FcεRIα+ macrophages send paracrine transforming growth factor β (TGF-β) signals to TICs, inducing invasive and drug-resistant properties and further upregulating IL-33 expression. This TIC-driven, IL-33-TGF-β feedforward loop could potentially be exploited for cancer treatment.
Collapse
Affiliation(s)
- Sachiko Taniguchi
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ajit Elhance
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Avery Van Duzer
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sushil Kumar
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justin J Leitenberger
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Naoki Oshimori
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Otolaryngology - Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
46
|
Sheng SG, Wang YN, Wang SR, Zhao K, Wang YY, Xu XN, Wang QM, Tong L, Chen ZG. [Effects of farnesyltransferase silencing on the migration and invasion of tongue squamous cell carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:177-184. [PMID: 32314892 DOI: 10.7518/hxkq.2020.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to explore the effects of silencing farnesyltransferase (FTase) on the migration and invasion of tongue squamous cell carcinoma (TSCC) through RNA interference. METHODS TSCC cells (CAL27 and SCC-4) were cultured in vitro and then transfected with siRNA to silence FTase expression. The tested cells were categorized as follows: experimental group (three RNA interference groups), negative control group, and blank control group. mRNA expression of FTase and HRAS in each group was analyzed by quantitative real-time polymerase chain reaction. On the basis of FTase mRNA expression, the optimum interference group (highest silencing efficiency) was selected as the experimental group for further study. The protein expression of FTase, HRAS, p65, p-p65(S536), matrix metalloprotein-9 (MMP-9), hypoxia inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) was analyzed by Western blot. The invasion and migration abilities of TSCC cells were determined by Transwell invasion assay and cell wound healing assay. RESULTS The mRNA and protein expression of FTase in the experimental group decreased compared with that in the negative control and blank control groups (P<0.05). The mRNA and protein expression of HRAS was not significantly different among the groups (P>0.05). In the experimental group, the protein expression of p-p65(S536), MMP-9, HIF-1α, and VEGF decreased (P<0.05), whereas that of p65 had no significant change (P>0.05). The migration and invasion abilities of the experimental group were inhibited significantly (P<0.05). CONCLUSIONS Silencing FTase in vitro could effectively downregulate its expression in TSCC cell lines and reduce the migration and invasion abilities to a certain extent. FTase could be a new gene therapy target of TSCC, and this research provided a new idea for the clinical treatment of TSCC.
Collapse
Affiliation(s)
- Shan-Gui Sheng
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Ya-Nan Wang
- Dept. of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital, Qingdao 266000, China
| | - Shao-Ru Wang
- Medical Center of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China;Stomatology College, Dalian Medical University, Dalian 116044, China
| | - Kai Zhao
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yun-Ying Wang
- Central Laboratory of Qingdao Municipal Hospital, Qingdao 266000, China
| | - Xiao-Na Xu
- Central Laboratory of Qingdao Municipal Hospital, Qingdao 266000, China
| | - Qi-Min Wang
- Medical Center of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Lei Tong
- Medical Center of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Zheng-Gang Chen
- Medical Center of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| |
Collapse
|
47
|
González-Ruiz L, González-Moles MÁ, González-Ruiz I, Ruiz-Ávila I, Ayén Á, Ramos-García P. An update on the implications of cyclin D1 in melanomas. Pigment Cell Melanoma Res 2020; 33:788-805. [PMID: 32147907 DOI: 10.1111/pcmr.12874] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Cyclin D1 is a protein encoded by the CCND1 gene, located on 11q13 chromosome, which is a key component of the physiological regulation of the cell cycle. CCND1/cyclin D1 is upregulated in several types of human tumors including melanoma and is currently classified as an oncogene that promotes uncontrolled cell proliferation. Despite the demonstrated importance of CCND1/cyclin D1 as a central oncogene in several types of human tumors, its knowledge in melanoma is still limited. This review examines data published on upregulation of the CCND1 gene and cyclin D1 protein in the melanoma setting, focusing on the pathways and molecular mechanisms involved in the activation of the gene and on the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Lucia González-Ruiz
- Dermatology Service, Ciudad Real General University Hospital, Ciudad Real, Spain
| | | | | | - Isabel Ruiz-Ávila
- Biohealth Research Institute, Granada, Spain.,Pathology Service, San Cecilio Hospital Complex, Granada, Spain
| | - Ángela Ayén
- Dermatology Service, San Cecilio Hospital Complex, Granada, Spain
| | | |
Collapse
|
48
|
MET targeting: time for a rematch. Oncogene 2020; 39:2845-2862. [PMID: 32034310 DOI: 10.1038/s41388-020-1193-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
MET, the receptor tyrosine kinase (RTK) for hepatocyte growth factor, is a proto-oncogene involved in embryonic development and throughout life in homeostasis and tissue regeneration. Deregulation of MET signaling has been reported in numerous malignancies, prompting great interest in MET targeting for cancer therapy. The present review offers a summary of the biology of MET and its known functions in normal physiology and carcinogenesis, followed by an overview of the most relevant MET-targeting strategies and corresponding clinical trials, highlighting both past setbacks and promising future prospects. By placing their efforts on a more precise stratification strategy through the genetic analysis of tumors, modern trials such as the NCI-MATCH trial could revive the past enthusiasm for MET-targeted therapy.
Collapse
|
49
|
Van Duzer A, Taniguchi S, Elhance A, Tsujikawa T, Oshimori N. ADAP1 promotes invasive squamous cell carcinoma progression and predicts patient survival. Life Sci Alliance 2019; 2:2/6/e201900582. [PMID: 31792062 PMCID: PMC6892435 DOI: 10.26508/lsa.201900582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
ADAP1, a GTPase-activating protein (GAP) for the small GTPase ARF6, is a strong predictor of poor survival in early-stage squamous cell carcinoma patients and a critical mediator of TGF-β-induced invasive cell migration by facilitating basement membrane breakdown. Invasive squamous cell carcinoma (SCC) is aggressive cancer with a high risk of recurrence and metastasis, but the critical determinants of its progression remain elusive. Here, we identify ADAP1, a GTPase-activating protein (GAP) for ARF6 up-regulated in TGF-β-responding invasive tumor cells, as a strong predictor of poor survival in early-stage SCC patients. Using a mouse model of SCC, we show that ADAP1 overexpression promotes invasive tumor progression by facilitating cell migration and breakdown of the basement membrane. We found that ADAP1-rich, TGF-β-responding tumor cells exhibit cytoplasmic laminin localization, which correlated with the absence of laminin and type IV collagen from the pericellular basement membrane. Interestingly, although tumors overexpressing a GAP activity-deficient mutant of ADAP1 resulted in morphologically complex tumors, those tumor cells failed to breach the basement membrane. Moreover, Adap1 deletion in tumor cells ameliorated the basement membrane breakdown and had less invading cells in the stroma. Our study demonstrates that ADAP1 is a critical mediator of TGF-β-induced cancer invasion and might be exploited for the treatment of high-risk SCC.
Collapse
Affiliation(s)
- Avery Van Duzer
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Sachiko Taniguchi
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Ajit Elhance
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Takahiro Tsujikawa
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA.,Department of Otolaryngology, Head & Neck Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Naoki Oshimori
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA .,Department of Dermatology, Oregon Health and Science University, Portland, OR, USA.,Department of Otolaryngology, Head & Neck Surgery, Oregon Health and Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
50
|
Li QF, Decker-Rockefeller B, Bajaj A, Pumiglia K. Activation of Ras in the Vascular Endothelium Induces Brain Vascular Malformations and Hemorrhagic Stroke. Cell Rep 2019; 24:2869-2882. [PMID: 30208313 DOI: 10.1016/j.celrep.2018.08.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebrovascular malformations (CVMs) affect approximately 3% of the population, risking hemorrhagic stroke, seizures, and neurological deficits. Recently Ras mutations have been identified in a majority of brain arterio-venous malformations. We generated an endothelial-specific, inducible HRASV12 mouse model, which results in dilated, proliferative blood vessels in the brain, blood-brain barrier breakdown, intracerebral hemorrhage, and rapid lethality. Organoid morphogenesis models revealed abnormal cessation of proliferation, abnormalities in expression of tip and stalk genes, and a failure to properly form elongating tubes. These defects were influenced by both hyperactive PI-3' kinase signaling and altered TGF-β signaling. Several phenotypic changes predicted by the in vitro morphogenesis analysis were validated in the mouse model. These data provide a model of brain vascular malformations induced by mutant Ras and reveal insights into intersecting molecular mechanisms in the pathogenesis of brain vascular malformations.
Collapse
Affiliation(s)
- Qing-Fen Li
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| | | | - Anshika Bajaj
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|