1
|
Aggarwal SD, Lloyd AJ, Yerneni SS, Narciso AR, Shepherd J, Roper DI, Dowson CG, Filipe SR, Hiller NL. A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2021; 118:e2018089118. [PMID: 33785594 PMCID: PMC8040666 DOI: 10.1073/pnas.2018089118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Survival in the human host requires bacteria to respond to unfavorable conditions. In the important Gram-positive pathogen Streptococcus pneumoniae, cell wall biosynthesis proteins MurM and MurN are tRNA-dependent amino acyl transferases which lead to the production of branched muropeptides. We demonstrate that wild-type cells experience optimal growth under mildly acidic stressed conditions, but ΔmurMN strain displays growth arrest and extensive lysis. Furthermore, these stress conditions compromise the efficiency with which alanyl-tRNAAla synthetase can avoid noncognate mischarging of tRNAAla with serine, which is toxic to cells. The observed growth defects are rescued by inhibition of the stringent response pathway or by overexpression of the editing domain of alanyl-tRNAAla synthetase that enables detoxification of tRNA misacylation. Furthermore, MurM can incorporate seryl groups from mischarged Seryl-tRNAAlaUGC into cell wall precursors with exquisite specificity. We conclude that MurM contributes to the fidelity of translation control and modulates the stress response by decreasing the pool of mischarged tRNAs. Finally, we show that enhanced lysis of ΔmurMN pneumococci is caused by LytA, and the murMN operon influences macrophage phagocytosis in a LytA-dependent manner. Thus, MurMN attenuates stress responses with consequences for host-pathogen interactions. Our data suggest a causal link between misaminoacylated tRNA accumulation and activation of the stringent response. In order to prevent potential corruption of translation, consumption of seryl-tRNAAla by MurM may represent a first line of defense. When this mechanism is overwhelmed or absent (ΔmurMN), the stringent response shuts down translation to avoid toxic generation of mistranslated/misfolded proteins.
Collapse
Affiliation(s)
- Surya D Aggarwal
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adrian J Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom;
| | | | - Ana Rita Narciso
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 1099-085 Oeiras, Portugal
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-149 Caparica, Portugal
| | - Jennifer Shepherd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christopher G Dowson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sergio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 1099-085 Oeiras, Portugal;
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-149 Caparica, Portugal
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213;
| |
Collapse
|
2
|
Rietmeyer L, Fix-Boulier N, Le Fournis C, Iannazzo L, Kitoun C, Patin D, Mengin-Lecreulx D, Ethève-Quelquejeu M, Arthur M, Fonvielle M. Partition of tRNAGly isoacceptors between protein and cell-wall peptidoglycan synthesis in Staphylococcus aureus. Nucleic Acids Res 2021; 49:684-699. [PMID: 33367813 PMCID: PMC7826273 DOI: 10.1093/nar/gkaa1242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
The sequence of tRNAs is submitted to evolutionary constraints imposed by their multiple interactions with aminoacyl-tRNA synthetases, translation elongation factor Tu in complex with GTP (EF-Tu•GTP), and the ribosome, each being essential for accurate and effective decoding of messenger RNAs. In Staphylococcus aureus, an additional constraint is imposed by the participation of tRNAGly isoacceptors in the addition of a pentaglycine side chain to cell-wall peptidoglycan precursors by transferases FmhB, FemA and FemB. Three tRNAGly isoacceptors poorly interacting with EF-Tu•GTP and the ribosome were previously identified. Here, we show that these ‘non-proteogenic’ tRNAs are preferentially recognized by FmhB based on kinetic analyses and on synthesis of stable aminoacyl-tRNA analogues acting as inhibitors. Synthesis of chimeric tRNAs and of helices mimicking the tRNA acceptor arms revealed that this discrimination involves identity determinants exclusively present in the D and T stems and loops of non-proteogenic tRNAs, which belong to an evolutionary lineage only present in the staphylococci. EF-Tu•GTP competitively inhibited FmhB by sequestration of ‘proteogenic’ aminoacyl-tRNAs in vitro. Together, these results indicate that competition for the Gly-tRNAGly pool is restricted by both limited recognition of non-proteogenic tRNAs by EF-Tu•GTP and limited recognition of proteogenic tRNAs by FmhB.
Collapse
Affiliation(s)
- Lauriane Rietmeyer
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Nicolas Fix-Boulier
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Chloé Le Fournis
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Laura Iannazzo
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS UMR 8601, Paris F-75006 France
| | - Camelia Kitoun
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS UMR 8601, Paris F-75006 France
| | - Delphine Patin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Dominique Mengin-Lecreulx
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS UMR 8601, Paris F-75006 France
| | - Michel Arthur
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Matthieu Fonvielle
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| |
Collapse
|
3
|
The Ribosome as a Missing Link in Prebiotic Evolution III: Over-Representation of tRNA- and rRNA-Like Sequences and Plieofunctionality of Ribosome-Related Molecules Argues for the Evolution of Primitive Genomes from Ribosomal RNA Modules. Int J Mol Sci 2019; 20:ijms20010140. [PMID: 30609737 PMCID: PMC6337102 DOI: 10.3390/ijms20010140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/18/2022] Open
Abstract
We propose that ribosomal RNA (rRNA) formed the basis of the first cellular genomes, and provide evidence from a review of relevant literature and proteonomic tests. We have proposed previously that the ribosome may represent the vestige of the first self-replicating entity in which rRNAs also functioned as genes that were transcribed into functional messenger RNAs (mRNAs) encoding ribosomal proteins. rRNAs also encoded polymerases to replicate itself and a full complement of the transfer RNAs (tRNAs) required to translate its genes. We explore here a further prediction of our “ribosome-first” theory: the ribosomal genome provided the basis for the first cellular genomes. Modern genomes should therefore contain an unexpectedly large percentage of tRNA- and rRNA-like modules derived from both sense and antisense reading frames, and these should encode non-ribosomal proteins, as well as ribosomal ones with key cell functions. Ribosomal proteins should also have been co-opted by cellular evolution to play extra-ribosomal functions. We review existing literature supporting these predictions. We provide additional, new data demonstrating that rRNA-like sequences occur at significantly higher frequencies than predicted on the basis of mRNA duplications or randomized RNA sequences. These data support our “ribosome-first” theory of cellular evolution.
Collapse
|
4
|
Frechin M, Enkler L, Tetaud E, Laporte D, Senger B, Blancard C, Hammann P, Bader G, Clauder-Münster S, Steinmetz L, Martin R, di Rago JP, Becker H. Expression of Nuclear and Mitochondrial Genes Encoding ATP Synthase Is Synchronized by Disassembly of a Multisynthetase Complex. Mol Cell 2014; 56:763-76. [DOI: 10.1016/j.molcel.2014.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 09/04/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
|
5
|
Pang YLJ, Poruri K, Martinis SA. tRNA synthetase: tRNA aminoacylation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:461-80. [PMID: 24706556 DOI: 10.1002/wrna.1224] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 01/14/2014] [Accepted: 02/06/2014] [Indexed: 01/20/2023]
Abstract
The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases has also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases.
Collapse
Affiliation(s)
- Yan Ling Joy Pang
- Department of Biochemistry, University of Illinois at Urbana, Urbana, IL, USA
| | | | | |
Collapse
|
6
|
Shepherd J, Ibba M. Direction of aminoacylated transfer RNAs into antibiotic synthesis and peptidoglycan-mediated antibiotic resistance. FEBS Lett 2013; 587:2895-904. [PMID: 23907010 DOI: 10.1016/j.febslet.2013.07.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/30/2022]
Abstract
Prokaryotic aminoacylated-transfer RNAs often need to be efficiently segregated between translation and other cellular biosynthetic pathways. Many clinically relevant bacteria, including Streptococcus pneumoniae, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa direct some aminoacylated-tRNA species into peptidoglycan biosynthesis and/or membrane phospholipid modification. Subsequent indirect peptidoglycan cross-linkage or change in membrane permeability is often a prerequisite for high-level antibiotic resistance. In Streptomycetes, aminoacylated-tRNA species are used for antibiotic synthesis as well as antibiotic resistance. The direction of coding aminoacylated-tRNA molecules away from translation and into antibiotic resistance and synthesis pathways are discussed in this review.
Collapse
Affiliation(s)
- Jennifer Shepherd
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
7
|
Rogers TE, Ataide SF, Dare K, Katz A, Seveau S, Roy H, Ibba M. A pseudo-tRNA modulates antibiotic resistance in Bacillus cereus. PLoS One 2012; 7:e41248. [PMID: 22815980 PMCID: PMC3399842 DOI: 10.1371/journal.pone.0041248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/19/2012] [Indexed: 01/18/2023] Open
Abstract
Bacterial genomic islands are often flanked by tRNA genes, which act as sites for the integration of foreign DNA into the host chromosome. For example, Bacillus cereus ATCC14579 contains a pathogenicity island flanked by a predicted pseudo-tRNA, tRNAOther, which does not function in translation. Deletion of tRNAOther led to significant changes in cell wall morphology and antibiotic resistance and was accompanied by changes in the expression of numerous genes involved in oxidative stress responses, several of which contain significant complementarities to sequences surrounding tRNAOther. This suggested that tRNAOther might be expressed as part of a larger RNA, and RACE analysis subsequently confirmed the existence of several RNA species that significantly extend both the 3′ and 5′-ends of tRNAOther. tRNAOther expression levels were found to be responsive to changes in extracellular iron concentration, consistent with the presence of three putative ferric uptake regulator (Fur) binding sites in the 5′ leader region of one of these larger RNAs. Taken together with previous data, this study now suggests that tRNAOther may function by providing a tRNA-like structural element within a larger regulatory RNA. These findings illustrate that while integration of genomic islands often leaves tRNA genes intact and functional, in other instances inactivation may generate tRNA-like elements that are then recruited to other functions in the cell.
Collapse
Affiliation(s)
- Theresa E. Rogers
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Sandro F. Ataide
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Kiley Dare
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Assaf Katz
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Stephanie Seveau
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Hervé Roy
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
| | - Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Roy H. Tuning the properties of the bacterial membrane with aminoacylated phosphatidylglycerol. IUBMB Life 2009; 61:940-53. [PMID: 19787708 DOI: 10.1002/iub.240] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The bacterial envelope is a semi-permeable barrier that protects the cell from the hostilities of the environment. To survive the ever-changing conditions of their surroundings, bacteria need to rapidly adjust the biochemical properties of their cellular envelope. Amino acid (aa) addition to phosphatidylglycerol (PG) of the membrane is one of the mechanisms used by bacteria to lower the net negative charge of their cellular envelope, thereby decreasing its affinity for several antibacterial agents such as the cationic antimicrobial peptides (CAMPs) produced by the innate immune response during host infection. This process requires the activity of an integral membrane protein, called aa-PG synthase (aaPGS), to transfer the aa of aminoacyl-tRNA (aa-tRNA) onto the PG of the membrane. aaPGSs constitute a new family of virulence factors that are found in a wide range of microorganisms. aa-PGs not only provide resistance to CAMPs but also to other classes of antibacterial agents and to environmental stresses such as those encountered during extreme osmotic or acidic conditions. This review will describe the known biochemical properties of aa-PGSs, their specificity for aa-tRNAs and phospholipids, and the growing repertoire of aa used as substrates by these enzymes. Their prevalence in bacteria and the phenotypes and modulations of membrane properties associated with these molecules will be addressed, as well as their regulation as a component of the envelope stress response system in certain bacteria.
Collapse
Affiliation(s)
- Hervé Roy
- Department of Microbiology, Ohio State Biochemistry Program, Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA.
| |
Collapse
|
9
|
Giannouli S, Kyritsis A, Malissovas N, Becker HD, Stathopoulos C. On the role of an unusual tRNAGly isoacceptor in Staphylococcus aureus. Biochimie 2008; 91:344-51. [PMID: 19014993 DOI: 10.1016/j.biochi.2008.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 10/16/2008] [Indexed: 11/17/2022]
Abstract
In the available Staphylococcus aureus genomes, four different genes have been annotated to encode tRNA(Gly) isoacceptors. Besides their prominent role in protein synthesis, some of them also participate in the formation of pentaglycine bridges during cell wall synthesis. However, until today, it is not known how many and which of them are actually involved in this essential procedure. In the present study we identified, apart from the four annotated tRNA(Gly) genes, a putative pseudogene which encodes and expresses an unusual fifth tRNA(Gly) isoacceptor in S. aureus (as detected via RT-PCR and subsequent direct sequencing analysis). All the in vitro transcribed tRNA(Gly) molecules (including the "pseudogene-encoded" tRNA(Gly)) can be efficiently aminoacylated by the recombinant S. aureus glycyl-tRNA synthetase. Furthermore, bioinformatic analysis suggests that the "pseudo"-tRNA(Gly(UCC)) identified in the present study and two of the annotated isoacceptors bearing the same anticodon carry specific sequence elements that do not favour the strong interaction with EF-Tu that proteinogenic tRNAs would promote. This observation was verified by the differential capacity of Gly-tRNA(Gly) molecules to form ternary complexes with activated S. aureus EF-Tu.GTP. These tRNA(Gly) molecules display high sequence similarities with their S. epidermidis orthologs which also actively participate in cell wall synthesis. Both bioinformatic and biochemical data suggest that in S. aureus these three glycylated tRNA(Gly) isoacceptors that are weak EF-Tu binders, possibly escape protein synthesis and serve as glycine donors for the formation of pentaglycine bridges that are essential for stabilization of the staphylococcal cell wall.
Collapse
Affiliation(s)
- Stamatina Giannouli
- Department of Biochemistry & Biotechnology, University of Thessaly, 26 Ploutonos St, 41221 Larissa, Greece
| | | | | | | | | |
Collapse
|
10
|
Giegé R. Toward a more complete view of tRNA biology. Nat Struct Mol Biol 2008; 15:1007-14. [PMID: 18836497 DOI: 10.1038/nsmb.1498] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 09/09/2008] [Indexed: 12/11/2022]
Abstract
Transfer RNAs are ancient molecules present in all domains of life. In addition to translating the genetic code into protein and defining the second genetic code together with aminoacyl-tRNA synthetases, tRNAs act in many other cellular functions. Robust phenomenological observations on the role of tRNAs in translation, together with massive sequence and crystallographic data, have led to a deeper physicochemical understanding of tRNA architecture, dynamics and identity. In vitro studies complemented by cell biology data already indicate how tRNA behaves in cellular environments, in particular in higher Eukarya. From an opposite approach, reverse evolution considerations suggest how tRNAs emerged as simplified structures from the RNA world. This perspective discusses what basic questions remain unanswered, how these answers can be obtained and how a more rational understanding of the function and dysfunction of tRNA can have applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Richard Giegé
- Département Machineries Traductionnelles, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France.
| |
Collapse
|
11
|
RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proc Natl Acad Sci U S A 2008; 105:4667-72. [PMID: 18305156 DOI: 10.1073/pnas.0800006105] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple peptide resistance (MprF) virulence factors control cellular permeability to cationic antibiotics by aminoacylating inner membrane lipids. It has been shown previously that one class of MprF can use Lys-tRNA(Lys) to modify phosphatidylglycerol (PG), but the mechanism of recognition and possible role of other MprFs are unknown. Here, we used an in vitro reconstituted lipid aminoacylation system to investigate the two phylogenetically distinct MprF paralogs (MprF1 and MprF2) found in the bacterial pathogen Clostridium perfringens. Although both forms of MprF aminoacylate PG, they do so with different amino acids; MprF1 is specific for Ala-tRNA(Ala), and MprF2 utilizes Lys-tRNA(Lys). This provides a mechanism by which the cell can fine tune the charge of the inner membrane by using the neutral amino acid alanine, potentially providing resistance to a broader range of antibiotics than offered by lysine modification alone. Mutation of tRNA(Ala) and tRNA(Lys) had little effect on either MprF activity, indicating that the aminoacyl moiety is the primary determinant for aminoacyl-tRNA recognition. The lack of discrimination of the tRNA is consistent with the role of MprF as a virulence factor, because species-specific differences in tRNA sequence would not present a barrier to horizontal gene transfer. Taken together, our findings reveal how the MprF proteins provide a potent virulence mechanism by which pathogens can readily acquire resistance to chemically diverse antibiotics.
Collapse
|
12
|
Lloyd AJ, Gilbey AM, Blewett AM, De Pascale G, El Zoeiby A, Levesque RC, Catherwood AC, Tomasz A, Bugg TDH, Roper DI, Dowson CG. Characterization of tRNA-dependent peptide bond formation by MurM in the synthesis of Streptococcus pneumoniae peptidoglycan. J Biol Chem 2007; 283:6402-17. [PMID: 18077448 DOI: 10.1074/jbc.m708105200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MurM is an aminoacyl ligase that adds l-serine or l-alanine as the first amino acid of a dipeptide branch to the stem peptide lysine of the pneumococcal peptidoglycan. MurM activity is essential for clinical pneumococcal penicillin resistance. Analysis of peptidoglycan from the highly penicillin-resistant Streptococcus pneumoniae strain 159 revealed that in vivo and in vitro, in the presence of the appropriate acyl-tRNA, MurM(159) alanylated the peptidoglycan epsilon-amino group of the stem peptide lysine in preference to its serylation. However, in contrast, identical analyses of the penicillin-susceptible strain Pn16 revealed that MurM(Pn16) activity supported serylation more than alanylation both in vivo and in vitro. Interestingly, both MurM(Pn16) acylation activities were far lower than the alanylation activity of MurM(159). The resulting differing stem peptide structures of 159 and Pn16 were caused by the profoundly greater catalytic efficiency of MurM(159) compared with MurM(Pn16) bought about by sequence variation between these enzymes and, to a lesser extent, differences in the in vivo tRNA(Ala):tRNA(Ser) ratio in 159 and Pn16. Kinetic analysis revealed that MurM(159) acted during the lipid-linked stages of peptidoglycan synthesis, that the d-alanyl-d-alanine of the stem peptide and the lipid II N-acetylglucosaminyl group were not essential for substrate recognition, that epsilon-carboxylation of the lysine of the stem peptide was not tolerated, and that lipid II-alanine was a substrate, suggesting an evolutionary link to staphylococcal homologues of MurM such as FemA. Kinetic analysis also revealed that MurM recognized the acceptor stem and/or the TPsiC loop stem of the tRNA(Ala). It is anticipated that definition of the minimal structural features of MurM substrates will allow development of novel resistance inhibitors that will restore the efficacy of beta-lactams for treatment of pneumococcal infection.
Collapse
Affiliation(s)
- Adrian J Lloyd
- Departments of Biological Sciences and Chemistry, University of Warwick, Gibbet Hill Road, Coventry, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Roy H, Becker HD, Mazauric MH, Kern D. Structural elements defining elongation factor Tu mediated suppression of codon ambiguity. Nucleic Acids Res 2007; 35:3420-30. [PMID: 17478519 PMCID: PMC1904265 DOI: 10.1093/nar/gkm211] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In most prokaryotes Asn-tRNAAsn and Gln-tRNAGln are formed by amidation of aspartate and glutamate mischarged onto tRNAAsn and tRNAGln, respectively. Coexistence in the organism of mischarged Asp-tRNAAsn and Glu-tRNAGln and the homologous Asn-tRNAAsn and Gln-tRNAGln does not, however, lead to erroneous incorporation of Asp and Glu into proteins, since EF-Tu discriminates the misacylated tRNAs from the correctly charged ones. This property contrasts with the canonical function of EF-Tu, which is to non-specifically bind the homologous aa-tRNAs, as well as heterologous species formed in vitro by aminoacylation of non-cognate tRNAs. In Thermus thermophilus that forms the Asp-tRNAAsn intermediate by the indirect pathway of tRNA asparaginylation, EF-Tu must discriminate the mischarged aminoacyl-tRNAs (aa-tRNA). We show that two base pairs in the tRNA T-arm and a single residue in the amino acid binding pocket of EF-Tu promote discrimination of Asp-tRNAAsn from Asn-tRNAAsn and Asp-tRNAAsp by the protein. Our analysis suggests that these structural elements might also contribute to rejection of other mischarged aa-tRNAs formed in vivo that are not involved in peptide elongation. Additionally, these structural features might be involved in maintaining a delicate balance of weak and strong binding affinities between EF-Tu and the amino acid and tRNA moieties of other elongator aa-tRNAs.
Collapse
MESH Headings
- Base Pairing
- Codon
- Escherichia coli Proteins/metabolism
- Models, Molecular
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/metabolism
- Protein Binding
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/metabolism
- Thermus thermophilus/genetics
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
| | | | | | - Daniel Kern
- *To whom correspondence should be addressed. Tel: +33-3-8841-7092; Fax: +33-3-8860-2218;
| |
Collapse
|
14
|
Kim SH. Three-dimensional structure of transfer RNA and its functional implications. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 46:279-315. [PMID: 205095 DOI: 10.1002/9780470122914.ch4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Soffer RL. Aminoacyl-tRNA transferases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 40:91-139. [PMID: 4599413 DOI: 10.1002/9780470122853.ch4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Kerr SJ, Borek E. The tRNA methyltransferases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 36:1-27. [PMID: 4563428 DOI: 10.1002/9780470122815.ch1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Ojha S, Sirois M, Macinnes JI. Identification of Actinobacillus suis genes essential for the colonization of the upper respiratory tract of swine. Infect Immun 2005; 73:7032-9. [PMID: 16177387 PMCID: PMC1230937 DOI: 10.1128/iai.73.10.7032-7039.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actinobacillus suis has emerged as an important opportunistic pathogen of high-health-status swine. A colonization challenge method was developed, and using PCR-based signature-tagged transposon mutagenesis, 13 genes belonging to 9 different functional classes were identified that were necessary for A. suis colonization of the upper respiratory tract of swine.
Collapse
|
18
|
|
19
|
Beukes M, Hastings JW. Self-protection against cell wall hydrolysis in Streptococcus milleri NMSCC 061 and analysis of the millericin B operon. Appl Environ Microbiol 2001; 67:3888-96. [PMID: 11525982 PMCID: PMC93106 DOI: 10.1128/aem.67.9.3888-3896.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus milleri NMSCC 061 produces an endopeptidase, millericin B, which hydrolyzes the peptide moiety of susceptible cell wall peptidoglycan. The nucleotide sequence of a 4.9-kb chromosomal region showed three open reading frames (ORFs) and a putative tRNA(Leu) sequence. The three ORFs encode a millericin B preprotein (MilB), a putative immunity protein (MilF), and a putative transporter protein (MilT). The milB gene encodes a 277-amino-acid preprotein with an 18-amino-acid signal peptide with a consensus IIGG cleavage motif. The predicted protein encoded by milT is homologous to ABC (ATP-binding cassette) transporters of several bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. These similarities strongly suggest that the milT gene product is involved in the translocation of millericin B. The gene milF encodes a protein of 302 amino acids that shows similarities to the FemA and FemB proteins of Staphylococcus aureus, which are involved in the addition of glycine to a pentapeptide peptidoglycan precursor. Comparisons of the cell wall mucopeptide of S. milleri NMSCC 061(resistant to lysis by millericin B) and S. milleri NMSCC 051(sensitive) showed a single amino acid difference. Serial growth of S. milleri NMSCC 051 in a cell wall minimal medium containing an increased concentration of leucine resulted in the in vivo substitution of leucine for threonine in the mucopeptide of the cell wall. A cell wall variant of S. milleri NMSCC 051 (sensitive) that contained an amino acid substitution (leucine for threonine) within its peptidoglycan cross bridge showed partial susceptibility to millericin B. The putative tRNA(Leu) sequence located upstream of milB may be a cell wall-specific tRNA and could together with the milF protein, play a potential role in the addition of leucine to the pentapeptide peptidoglycan precursor and thereby, contributing to self-protection to millericin B in the producer strain.
Collapse
Affiliation(s)
- M Beukes
- School of Molecular and Cellular Biosciences, University of Natal, Pietermaritzburg, Scottsville 3209, South Africa
| | | |
Collapse
|
20
|
Fuller TE, Martin S, Teel JF, Alaniz GR, Kennedy MJ, Lowery DE. Identification of Actinobacillus pleuropneumoniae virulence genes using signature-tagged mutagenesis in a swine infection model. Microb Pathog 2000; 29:39-51. [PMID: 10873489 DOI: 10.1006/mpat.2000.0364] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actinobacillus pleuropneumoniae is a significant respiratory pathogen of swine causing a severe and often fatal fibrinous hemorrhagic bronchopneumonia with significant economic losses resulting from chronic as well as acute infections. This study describes the application of a signature-tagged mutagenesis (STM) system to identify in vivo critical genes of A. pleuropneumoniae. Twenty pools representing over 800 A. pleuropneumoniae mutants were screened in a natural-host porcine infection model and presumptive attenuated mutants were selected. The identity of the disrupted gene in each mutant was determined using an inverse PCR approach to amplify DNA sequences adjacent to the transposon insertion, followed by sequencing of the PCR product and comparison to bacterial databases. In vitro and in vivo competitive indices were determined for each unique mutant, and a total of 20 unique, attenuating gene disruptions were identified including insertions into homologues of genes involved in biosynthesis, virulence determinants, regulation, translation and unknown functions. Three of the genes required for virulence of A. pleuropneumoniae in this study were also identified in a previous STM study of Pasteurella multocida. Seven of the STM-derived mutants were also evaluated for their potential as live vaccine strains and provided good protection against homologous challenge.
Collapse
Affiliation(s)
- T E Fuller
- Animal Health Discovery Research, Pharmacia & Upjohn, Kalamazoo, MI 49001, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 925] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
22
|
Ton-That H, Labischinski H, Berger-Bächi B, Schneewind O. Anchor structure of staphylococcal surface proteins. III. Role of the FemA, FemB, and FemX factors in anchoring surface proteins to the bacterial cell wall. J Biol Chem 1998; 273:29143-9. [PMID: 9786923 DOI: 10.1074/jbc.273.44.29143] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surface proteins of Staphylococcus aureus are covalently linked to the bacterial cell wall by a mechanism requiring a COOH-terminal sorting signal with a conserved LPXTG motif. Cleavage between the threonine and the glycine of the LPXTG motif liberates the carboxyl of threonine to form an amide bond with the pentaglycyl cross-bridge in the staphylococcal peptidoglycan. Here, we asked whether altered peptidoglycan cross-bridges interfere with the sorting reaction and investigated surface protein anchoring in staphylococcal fem mutants. S. aureus strains carrying mutations in the femA, femB, femAB, or the femAX genes synthesize altered cross-bridges, and each of these strains displayed decreased sorting activity. Characterization of cell wall anchor structures purified from the fem mutants revealed that surface proteins were linked to cross-bridges containing one, three, or five glycyl residues, but not to the epsilon-amino of lysyl in muropeptides without glycine. When tested in a femAB strain synthesizing cross-bridges with mono-, tri-, and pentaglycyl as well as tetraglycyl-monoseryl, surface proteins were found anchored mostly to the five-residue cross-bridges (pentaglycyl or tetraglycyl-monoseryl). Thus, although wild-type peptidoglycan appears to be the preferred substrate for the sorting reaction, altered cell wall cross-bridges can be linked to the COOH-terminal end of surface proteins.
Collapse
Affiliation(s)
- H Ton-That
- Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
23
|
Becker HD, Reinbolt J, Kreutzer R, Giegé R, Kern D. Existence of two distinct aspartyl-tRNA synthetases in Thermus thermophilus. Structural and biochemical properties of the two enzymes. Biochemistry 1997; 36:8785-97. [PMID: 9220965 DOI: 10.1021/bi970392v] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two aspartyl-tRNA synthetases (AspRSs) were isolated from Thermus thermophilus HB8. Both are alpha2 dimers but differ in the length of their polypeptide chains (AspRS1, 68 kDa; and AspRS2, 51 kDa). Both chains start with Met and are deprived of common sequences to a significant extent. This rules out the possibility that AspRS2 is derived from AspRS1 by proteolysis, in agreement with specific recognition of each AspRS by the homologous antibodies. DNA probes derived from N-terminal amino acid sequences hybridize specifically to different genomic DNA fragments, revealing that the two AspRSs are encoded by distinct genes. Both enzymes are present in various strains from T. thermophilus and along the growth cycle of the bacteria, suggesting that they are constitutive. Kinetic investigations show that the two enzymes are specific for aspartic acid activation and tRNAAsp charging. tRNA aspartylation by the thermostable AspRSs is governed by thermodynamic parameters which values are similar to those measured for mesophilic aspartylation systems. Both thermophilic AspRSs are deprived of species specificity for tRNA aspartylation and exhibit N-terminal sequence signatures found in other AspRSs, suggesting that they are evolutionarily related to AspRSs from mesophilic prokaryotes and eukaryotes. Comparison of the efficiency of tRNA aspartylation by each enzyme under conditions approaching the physiological ones suggests that in vivo tRNAAsp charging is essentially ensured by AspRS1, although AspRS2 is the major species. The physiological significance of the two different AspRSs in T. thermophilus is discussed.
Collapse
Affiliation(s)
- H D Becker
- Unité Propre de Recherche 9002, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
24
|
Rich JJ, Willis DK. Multiple loci of Pseudomonas syringae pv. syringae are involved in pathogenicity on bean: restoration of one lesion-deficient mutant requires two tRNA genes. J Bacteriol 1997; 179:2247-58. [PMID: 9079910 PMCID: PMC178961 DOI: 10.1128/jb.179.7.2247-2258.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A mutational analysis of lesion-forming ability was undertaken in Pseudomonas syringae pv. syringae B728a, causal agent of bacterial brown spot disease of bean. Following a screen of 6,401 Tn5-containing derivatives of B728a on bean pods, 26 strains that did not form disease lesions were identified. Nine of the mutant strains were defective in the ability to elicit the hypersensitive reaction (HR) and were shown to contain Tn5 insertions within the P. syringae pv. syringae hrp region. Ten HR+ mutants were defective in the production of the toxin syringomycin, and a region of the chromosome implicated in the biosynthesis of syringomycin was deleted in a subset of these mutants. The remaining seven lesion-defective mutants retained the ability to produce protease and syringomycin. Marker exchange mutagenesis confirmed that the Tn5 insertion was causal to the mutant phenotype in several lesion-defective, HR+ strains. KW239, a lesion- and syringomycin-deficient mutant, was characterized at the molecular level. Sequence analysis of the chromosomal region flanking the Tn5 within KW239 revealed strong similarities to a number of known Escherichia coli gene products and DNA sequences: the nusA operon, including the complete initiator tRNA(Met) gene, metY; a tRNA(Leu) gene; the tpiA gene product; and the MrsA protein. Removal of sequences containing the two potential tRNA genes prevented restoration of mutant KW239 in trans. The Tn5 insertions within the lesion-deficient strains examined, including KW239, were not closely linked to each other or to the lemA or gacA genes previously identified as involved in lesion formation by P. syringae pv. syringae.
Collapse
Affiliation(s)
- J J Rich
- Department of Plant Pathology, University of Wisconsin-Madison, 53706, USA
| | | |
Collapse
|
25
|
Ajitkumar P, Cherayil JD. Thionucleosides in transfer ribonucleic acid: diversity, structure, biosynthesis, and function. Microbiol Rev 1988; 52:103-13. [PMID: 3280963 PMCID: PMC372707 DOI: 10.1128/mr.52.1.103-113.1988] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Lawlor EJ, Baylis HA, Chater KF. Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev 1987; 1:1305-10. [PMID: 2448187 DOI: 10.1101/gad.1.10.1305] [Citation(s) in RCA: 204] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In Streptomyces coelicolor, bldA mutants are defective in antibiotic production and the development of aerial hyphae and spores. Subcloning analysis showed that sequences spanning an NcoI site in cloned bldA+ DNA were needed to allow complementation of a bldA mutant. Nucleotide sequencing revealed a tRNA-like sequence 9 bp downstream from the NcoI site. Five independent bldA mutations all fell in a 16-bp region in the tRNA-like sequence, one of them changing the putative anticodon. In RNA dot-blot analysis, hybridization was detected with a probe specific for the tRNA-like transcript but not with a probe for "anti-tRNA-like" transcripts. The transcripts detected were all in the salt-soluble RNA fraction and accumulated relatively late in growth. It is postulated that bldA specifies a tRNA that would recognize the codon UUA (for leucine). This codon is very rare in Streptomyces genes [which generally contain greater than 70 mole% (G + C)], suggesting a possible role for bldA in translational control of development.
Collapse
Affiliation(s)
- E J Lawlor
- Agricultural and Food Research Council Institute of Plant Science Research, John Innes Institute, Norwich, UK
| | | | | |
Collapse
|
27
|
Cline SW, Yarus M, Wier P. Construction of a systematic set of tRNA mutants by ligation of synthetic oligonucleotides into defined single-stranded gaps. DNA (MARY ANN LIEBERT, INC.) 1986; 5:37-51. [PMID: 3514184 DOI: 10.1089/dna.1986.5.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of mutant tRNA genes has been constructed by site-directed mutagenesis in pOP203, a colE1 derivative carrying a transcription unit under control of the lacUV5 promoter. These mutant genes include all possible amber suppressing variants of tRNATrp with single nucleotide substitutions at anticodon loop positions 32, 37, and 38 (numbered from the 5' end), and all possible paired base substitutions in the three base pairs nearest the anticodon loop. G at position 38 was not recovered as a single mutation, but rather in conjunction with an undirected mutation to T at position 32. The singly mutated G38 tRNA may not be active, though all the other tRNA derivatives are functional in the translation of amber codons. To construct the mutants, we ligated a synthetic deoxyoligonucleotide into a precisely formed single-stranded gap covering the anticodon arm region DNA, in an otherwise double-stranded fragment containing the tRNATrp gene. The resulting heteroduplex was then ligated into the plasmid and introduced into Escherichia coli. This method of mutagenesis is simple, reproducible, and highly tolerant of varying degrees of heteroduplex in the gap, variations in temperature of ligation, and changes in the oligonucleotide concentration. Mutagenesis does not require a 5'-phosphorylated oligonucleotide. These qualities suit the gap method for intensive study of a region by site-directed mutagenesis.
Collapse
|
28
|
Abstract
Phylogenetic trees of transfer RNA specific for phenylalanine, methionine initiator glycine and valine are constructed. Although the exact relationships between taxa cannot be obtained from the mere analysis of the sequences some conclusions can be drawn about the evolution of this molecule.
Collapse
|
29
|
Purification and characterization of transfer RNA (guanine-1)methyltransferase from Escherichia coli. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33199-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Kedzierski W, Augustyniak H, Pawelkiewicz J. Aminoacylation of four tRNA species in lupin (Lupinus luteus) cotyledons. PLANTA 1980; 147:439-443. [PMID: 24311166 DOI: 10.1007/bf00380185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/1979] [Accepted: 09/20/1979] [Indexed: 06/02/2023]
Abstract
During germination of lupin seeds, the levels of in-vivo tRNA aminoacylation increase in different ways, depending on the species of tRNA. Column chromatography of tRNA on reverse-phase-chromatography (RPC-5) has shown the presence of 4 peaks of isoleucyl-tRNA, 5 of leucyl-tRNA, 5 of lysyl-tRNA, 2 of tyrosyl-tRNA, and 4 of valyl-tRNA. Cochromatography of periodate treated and control tRNA preparations, labeled with radioactive amino acids, indicates identical aminoacylation in vivo of isoaccepting tRNAs during plant development. One isoacceptor of isoleucine tRNA changes its elution profile after periodate treatment.
Collapse
Affiliation(s)
- W Kedzierski
- Institute of Biochemistry, Academy of Agriculture, Wolyńska 35, PL-60-637, Poznań, Poland
| | | | | |
Collapse
|
31
|
|
32
|
|
33
|
Holler E. Protein biosynthesis: the codon-specific activation of amino acids. ANGEWANDTE CHEMIE (INTERNATIONAL ED. IN ENGLISH) 1978; 17:648-56. [PMID: 101100 DOI: 10.1002/anie.197806481] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Holbrook SR, Sussman JL, Warrant RW, Kim SH. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J Mol Biol 1978; 123:631-60. [PMID: 357743 DOI: 10.1016/0022-2836(78)90210-3] [Citation(s) in RCA: 249] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
|
36
|
Fario M, Cascino A. Regulation of the intracellular concentration of T4 induced tRNA. MOLECULAR & GENERAL GENETICS : MGG 1977; 155:61-5. [PMID: 337117 DOI: 10.1007/bf00268561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have studied the biosynthesis of T4 induced tRNA's upon infection of E. coli BE cells in low phosphate (l.p.) medium (10(-4) M PO---4). Under out experimental conditions the onset of phage DNA synthesis occurs about 15 min after infection, while the first intracellular phage appears one hour later. Amounts of newly synthesized DNA and phage burst size are equivalent to the values obtained in standard (M9) medium (10(-1) M PO---4). We present evidence that the synthesis of mature tRNA's and of at least one dimeric precursor drastically declines 20 min after infection. In addition we show that T4 induced tRNA molecules are stable and that the triphosphate nucleoside precursor pool does not change significantly during infection. Therefore we conclude that T4 induce tRNA molecules behave similarly to other early gene products.
Collapse
|
37
|
|
38
|
Waters LC, Mullin BC. Transfer RNA into RNA tumor viruses. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1977; 20:131-60. [PMID: 71747 DOI: 10.1016/s0079-6603(08)60471-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Abstract
The methylation of tRNA is a post-transcriptional modification which is achieved by specific enzymes, the tRNA methylases, with S adenosylmethionine as a methyl donor. The level and pattern of methylation are characteristic of the tRNA species and origin. Abnormally methylated tRNAs have been obtained, in vivo and in vitro, by a variety of methods, and their properties have been studied. The tRNA methylases are found in all cells and tissues. Their activity varies with the differentiation state of the cells, and under the influence of many internal and external factors ; it is especially elevated in embryonic and cancerous tissues. These enzymes are very unstable, and none of them has been purified to homogeneity. We present here their known properties and we propose a theory concerning their specificity. Finally, after reviewing the few available experimental data, we discuss the current hypotheses and speculations about the roles and functions of tRNA methylation.
Collapse
|
40
|
Martin N, Rabinowitz M, Fukuhara H. Isoaccepting mitochondrial glutamyl-tRNA species transcribed from different regions of the mitochondrial genome of Saccharomyces cerevisiae. J Mol Biol 1976; 101:285-96. [PMID: 768489 DOI: 10.1016/0022-2836(76)90148-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Simon RD. The biosynthesis of multi-L-arginyl-poly(L-aspartic acid) in the filamentous cyanobacterium Anabaena cylindrica. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 422:407-18. [PMID: 2311 DOI: 10.1016/0005-2744(76)90151-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cyanobacteria produce multi-L-arginyl-poly (aspartic acid), a high molecular weight (Mr=25 000-125 000) branched polypeptide consisting of a poly(aspartic acid) core with L-arginyl residues peptide bonded to each free carboxyl group of the poly(aspartic acid). An enzyme which will elongate Arg-poly(Asp) has been isolated and purified 92-fold from the filamentous cyanobacterium Anabaena cylindrica. The enzyme incorporates arginine and aspartic acid into Arg-poly(Asp) in a reaction which requires ATP, KCl, MgCl2, and a sulfhydryl reagent. The enzymatic incorporation of arginine is dependent upon the presence of L-aspartic acid but not visa versa, a finding which suggests the order of amino acid addition to the branched polypeptide-aspartic acid is added to the core followed by the attachment of an arginine branch. The elongation of Arg-poly(Asp) in-vitro is insensitive to the addition of protein synthesis inhibitors and to the addition of nucleases. These findings support the notion previosly suggested from in-vivo studies that Arg-poly(Asp) is synthesized via a non-ribosomal route and also demonstrate that amino-acetylated transfer-RNAs play no part in at least one step of the biosynthetic mechanism.
Collapse
|
42
|
Giesbrecht P, Wecke J, Reinicke B. On the morphogenesis of the cell wall of staphylococci. INTERNATIONAL REVIEW OF CYTOLOGY 1976; 44:225-318. [PMID: 770370 DOI: 10.1016/s0074-7696(08)61651-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Daves GD, Cheng CC. The chemistry and biochemistry of C-nucleosides. PROGRESS IN MEDICINAL CHEMISTRY 1976; 13:303-49. [PMID: 801779 DOI: 10.1016/s0079-6468(08)70141-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Kim SH. Three-dimensional structure of transfer RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1976; 17:181-216. [PMID: 778921 DOI: 10.1016/s0079-6603(08)60070-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
McMillian RA, Arceneaux JL. Alteration of tyrosine isoaccepting transfer ribonucleic acid species in wild-type and asporogenous strains of Bacillus subtilis. J Bacteriol 1975; 122:526-31. [PMID: 805123 PMCID: PMC246087 DOI: 10.1128/jb.122.2.526-531.1975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The relative amounts of two isoacceping species of tyrosine transfer ribonucleic acid, tRNATyrI and tRNATyrII, determined from reversed phase 5 profiles of tyrosyl-tRNA, prepared from Bacillus subtilis strain W168, were growth phase and medium dependent. The growth phase-dependent alterations in the relative amounts of tRNATyr species were also demonstrated in 11 asporogenous strains of B. subtilis. The proportion of tRNA-Tyr species and the extent of the alteration in their relative amounts during the transition from the exponential to the stationary phase of growth of these strains was not directly correlated with the formation of spores by strain W168 grown in various media or the stage at which the asporogenous strains are blocked in the process of sporulation.
Collapse
|
46
|
Kawakami M, Tanada S, Takemura S. Properties of alanyl-oligonucleotide, puromycin, and Staphylococcus epidermidis glycyl-tRNA in interaction with elongation factor Tu:GTP complex. FEBS Lett 1975; 51:321-4. [PMID: 1168152 DOI: 10.1016/0014-5793(75)80917-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
|
48
|
Schulman LH, Pelka H, Sundari RM. Structural Requirements for Recognition of Escherichia coli Initiator and Non-Initiator Transfer Ribonucleic Acids by Bacterial T Factor. J Biol Chem 1974. [DOI: 10.1016/s0021-9258(19)42080-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Ofengand J, Bierbaum J. Protein synthetic ability of Escherichia coli valine transfer RNA with pseudouridine, ribothymidine, and other uridine-derived residues replaced by 5-fluorouridine. J Mol Biol 1974; 88:313-25. [PMID: 4616087 DOI: 10.1016/0022-2836(74)90484-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
|