1
|
Thakur GCN, Uday A, Cebecauer M, Roos WH, Cwiklik L, Hof M, Jurkiewicz P, Melcrová A. Charge of a transmembrane peptide alters its interaction with lipid membranes. Colloids Surf B Biointerfaces 2024; 235:113765. [PMID: 38309153 DOI: 10.1016/j.colsurfb.2024.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Transmembrane (TM) proteins interact closely with the surrounding membrane lipids. Lipids in the vicinity of TM proteins were reported to have hindered mobility, which has been associated with lipids being caught up in the rough surface of the TM domains. These reports, however, neglect one important factor that largely influences the membrane behavior - electrostatics of the TM peptides that are usually positively charged at their cytosolic end. Here, we study on the example of a neutral and a positively charged WALP peptide, how the charge of a TM peptide influences the membrane. We investigate both its dynamics and mechanics by: (i) time dependent fluorescent shift in combination with classical and FRET generalized polarization to evaluate the mobility of lipids at short and long-range distance from the peptide, (ii) atomic force microscopy to observe the mechanical stability of the peptide-containing membranes, and (iii) molecular dynamics simulations to analyze the peptide-lipid interactions. We show that both TM peptides lower lipid mobility in their closest surroundings. The peptides cause lateral heterogeneity in lipid mobility, which in turn prevents free lipid rearrangement and lowers the membrane ability to seal ruptures after mechanical indentations. Introduction of a positive charge to the peptide largely enhances these effects, affecting the whole membrane. We thus highlight that unspecific peptide-lipid interactions, especially the electrostatics, should not be overlooked as they have a great impact on the mechanics and dynamics of the whole membrane.
Collapse
Affiliation(s)
- Garima C N Thakur
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; University of Chemical and Technology, Technická 5, Dejvice, 160 00 Prague 6, Czech Republic
| | - Arunima Uday
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; University of Chemical and Technology, Technická 5, Dejvice, 160 00 Prague 6, Czech Republic
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Wouter H Roos
- Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic.
| | - Adéla Melcrová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 182 23 Prague 8, Czech Republic; Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Mainali L, Raguz M, Subczynski WK. Quantification of Age-Related Changes in the Lateral Organization of the Lipid Portion of the Intact Membranes Isolated from the Left and Right Eye Lenses of the Same Human Donor. MEMBRANES 2023; 13:189. [PMID: 36837692 PMCID: PMC9958954 DOI: 10.3390/membranes13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The continuous wave EPR spin-labeling method was used to evaluate age-related changes in the amounts of phospholipids (PLs) and cholesterol (Chol) in domains present in intact, cortical, and nuclear fiber cell plasma membranes isolated separately from the left and right eye lenses of the same human donor. The relative amounts of boundary plus trapped PLs were evaluated with the PL analog 12-doxylstearic acid spin label (12-SASL) and the relative amounts of trapped Chol with the Chol analog androstane spin label (ASL). The donors ranged in age from 15 to 70 years. Both the left and right eye lenses from donors aged 60, 65, and 70 years had nuclear cataracts; additionally, the right eye lens only of the 60-year-old donor had a cortical cataract. In transparent lenses, the relative amounts of boundary plus trapped PLs increase monotonously with donor age, and, at all ages, this amount was greater in nuclear compared with cortical membranes. Moreover, in transparent lenses, the relative amount of trapped Chol increases with age in nuclear membranes. However, the EPR spectrum of ASL from cortical membranes of 15- to 60-year-old donors shows only the weakly immobilized component assigned to ASL in the bulk plus Chol bilayer domain. Only the cortical membranes of 61- to 70-year-old donors contain both weakly and strongly immobilized components. The strongly immobilized component is assigned to ASL in trapped lipids. We speculate that the age of 60 years may be considered as a "threshold" for appearance of trapped lipids in cortical membranes. The relative amounts of boundary plus trapped PLs in lenses with nuclear cataracts is lower than that predicted from the tendency of the age-dependent increase observed for transparent lenses. The differences in amounts of lipids in the indicated left and right eye domains of each donor are smaller than the differences in single donors of a similar age.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia
| | | |
Collapse
|
3
|
Gómez-Fernández JC, Goñi FM. The Myth of The Annular Lipids. Biomedicines 2022; 10:2672. [PMID: 36359192 PMCID: PMC9687668 DOI: 10.3390/biomedicines10112672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/08/2023] Open
Abstract
In the early 1970s, the existence of a "lipid annulus" stably surrounding the individual intrinsic protein molecules was proposed by several authors. They referred to a number of lipid molecules in slow exchange with the bulk lipid in the bilayer, i.e., more or less protein-bound, and more ordered than the bulk lipid. The annular lipids would control enzyme activity. This idea was uncritically accepted by most scientists working with intrinsic membrane proteins at the time, so that the idea operated like a myth in the field. However, in the following decade, hard spectroscopic and biochemical evidence showed that the proposed annular lipids were not immobilized for a sufficiently long time to influence enzyme or transporter activity, nor were they ordered by the protein. Surprisingly, forty years later, the myth survives, and the term 'annular lipid' is still in use, in a different, but even more illogical sense.
Collapse
Affiliation(s)
- Juan C. Gómez-Fernández
- Department of Biochemistry and Molecular Biology (A), Faculty of Veterinary Science, Universidad de Murcia, 30100 Murcia, Spain;
| | - Félix M. Goñi
- Instituto Biofisika (CSIC, UPV/EHU), Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| |
Collapse
|
4
|
Subczynski WK, Widomska J, Raguz M, Pasenkiewicz-Gierula M. Molecular oxygen as a probe molecule in EPR spin-labeling studies of membrane structure and dynamics. OXYGEN (BASEL, SWITZERLAND) 2022; 2:295-316. [PMID: 36852103 PMCID: PMC9965258 DOI: 10.3390/oxygen2030021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular oxygen (O2) is the perfect probe molecule for membrane studies carried out using the saturation recovery EPR technique. O2 is a small, paramagnetic, hydrophobic enough molecule that easily partitions into a membrane's different phases and domains. In membrane studies, the saturation recovery EPR method requires two paramagnetic probes: a lipid-analog nitroxide spin label and an oxygen molecule. The experimentally derived parameters of this method are the spin-lattice relaxation times (T 1s) of spin labels and rates of bimolecular collisions between O2 and the nitroxide fragment. Thanks to the long T 1 of lipid spin labels (from 1 to 10 μs), the approach is very sensitive to changes of the local (around the nitroxide fragment) O2 diffusion-concentration product. Small variations in the lipid packing affect O2 solubility and O2 diffusion, which can be detected by the shortening of T 1 of spin labels. Using O2 as a probe molecule and a different lipid spin label inserted into specific phases of the membrane and membrane domains allows data about the lateral arrangement of lipid membranes to be obtained. Moreover, using a lipid spin label with the nitroxide fragment attached to its head group or a hydrocarbon chain at different positions also enables data about molecular dynamics and structure at different membrane depths to be obtained. Thus, the method can be used to investigate not only the lateral organization of the membrane (i.e., the presence of membrane domains and phases), but also the depth-dependent membrane structure and dynamics, and, hence, the membrane properties in three dimensions.
Collapse
Affiliation(s)
- Witold K. Subczynski
- Department of Biophysics, Medical College on Wisconsin, Milwaukee, United States
| | - Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Lublin, Poland
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia
| | | |
Collapse
|
5
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022; 61:e202114167. [PMID: 34982497 PMCID: PMC9303963 DOI: 10.1002/anie.202114167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Indexed: 01/16/2023]
Abstract
Numerous key biological processes rely on the concept of multivalency, where ligands achieve stable binding only upon engaging multiple receptors. These processes, like viral entry or immune synapse formation, occur on the diffusive cellular membrane. One crucial, yet underexplored aspect of multivalent binding is the mobility of coupled receptors. Here, we discuss the consequences of mobility in multivalent processes from four perspectives: (I) The facilitation of receptor recruitment by the multivalent ligand due to their diffusivity prior to binding. (II) The effects of receptor preassembly, which allows their local accumulation. (III) The consequences of changes in mobility upon the formation of receptor/ligand complex. (IV) The changes in the diffusivity of lipid environment surrounding engaged receptors. We demonstrate how understanding mobility is essential for fully unravelling the principles of multivalent membrane processes, leading to further development in studies on receptor interactions, and guide the design of new generations of multivalent ligands.
Collapse
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| |
Collapse
|
6
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| |
Collapse
|
7
|
Timsina R, Mainali L. Association of Alpha-Crystallin with Fiber Cell Plasma Membrane of the Eye Lens Accompanied by Light Scattering and Cataract Formation. MEMBRANES 2021; 11:447. [PMID: 34203836 PMCID: PMC8232717 DOI: 10.3390/membranes11060447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/04/2023]
Abstract
α-crystallin is a major protein found in the mammalian eye lens that works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye lens. These functions of α-crystallin are significant for maintaining lens transparency. However, with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light scattering. The purpose of this review is to summarize previous and recent findings of the role of the: (1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol (Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0; formally MIP26) and connexins, and (2) α-crystallin mutations and post-translational modifications (PTMs) in the association of α-crystallin to the eye lens's fiber cell plasma membrane, providing thorough insights into a molecular basis of such an association. Furthermore, this review highlights the current knowledge and need for further studies to understand the fundamental molecular processes involved in the association of α-crystallin to the lens membrane, potentially leading to new avenues for preventing cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA;
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
8
|
Stein N, Subczynski WK. Differences in the properties of porcine cortical and nuclear fiber cell plasma membranes revealed by saturation recovery EPR spin labeling measurements. Exp Eye Res 2021; 206:108536. [PMID: 33716012 DOI: 10.1016/j.exer.2021.108536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
Eye lens membranes are complex biological samples. They consist of a variety of lipids that form the lipid bilayer matrix, integral proteins embedded into the lipid bilayer, and peripheral proteins. This molecular diversity in membrane composition induces formation of lipid domains with particular physical properties that are responsible for the maintenance of proper membrane functions. These domains can be, and have been, effectively described in terms of the rotational diffusion of lipid spin labels and oxygen collision with spin labels using the saturation recovery (SR) electron paramagnetic resonance method and, now, using stretched exponential function for the analysis of SR signals. Here, we report the application of the stretched exponential function analysis of SR electron paramagnetic resonance signals coming from cholesterol analog, androstane spin label (ASL) in the lipid bilayer portion of intact fiber cell plasma membranes (IMs) isolated from the cortex and nucleus of porcine eye lenses. Further, we compare the properties of these IMs with model lens lipid membranes (LLMs) derived from the total lipids extracted from cortical and nuclear IMs. With this approach, the IM can be characterized by the continuous probability density distribution of the spin-lattice relaxation rates associated with the rotational diffusion of a spin label, and by the distribution of the oxygen transport parameter within the IM (i.e., the collision rate of molecular oxygen with the spin label). We found that the cortical and nuclear LLMs possess very different, albeit homogenous, spin lattice relaxation rates due to the rotational diffusion of ASL, indicating that the local rigidity around the spin label in nuclear LLMs is considerably greater than that in cortical LLMs. However, the oxygen transport parameter around the spin label is very similar and slightly heterogenous for LLMs from both sources. This heterogeneity was previously missed when distinct exponential analysis was used. The spin lattice relaxation rates due to either the rotational diffusion of ASL or the oxygen collision with the spin label in nuclear IMs have slower values and wider distributions compared with those of cortical IMs. From this evidence, we conclude that lipids in nuclear IMs are less fluid and more heterogeneous than those in cortical membranes. Additionally, a comparison of properties of IMs with corresponding LLMs, and lipid and protein composition analysis, allow us to conclude that the decreased lipid-to-protein ratio not only induces greater rigidity of nuclear IMs, but also creates domains with the considerably decreased and variable oxygen accessibility. The advantages and disadvantages of this method, as well as its use for the cluster analysis, are discussed.
Collapse
Affiliation(s)
- Natalia Stein
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
9
|
General and specific interactions of the phospholipid bilayer with P-type ATPases. Biophys Rev 2019; 11:353-364. [PMID: 31073955 DOI: 10.1007/s12551-019-00533-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Protein structure and function are modulated via interactions with their environment, representing both the surrounding aqueous media and lipid membranes that have an active role in shaping the structural topology of membrane proteins. Compared to a decade ago, there is now an abundance of crystal structural data on membrane proteins, which together with their functional studies have enhanced our understanding of the salient features of lipid-protein interactions. It is now important to recognize that membrane proteins are regulated by both (1) general lipid-protein interactions, where the general physicochemical properties of the lipid environment affect the conformational flexibility of a membrane protein, and (2) by specific lipid-protein interactions, where lipid molecules directly interact via chemical interactions with specific lipid-binding sites located on the protein. However, due to local differences in membrane composition, thickness, and lipid packing, local membrane physical properties and hence the associated lipid-protein interactions also differ due to membrane location, even for the same protein. Such a phenomenon has been shown to be true for one family of integral membrane ion pumps, the P2-type adenosine triphosphatases (ATPases). Despite being highly homologous, individual members of this family have distinct structural and functional activity and are an excellent candidate to highlight how the local membrane physical properties and specific lipid-protein interactions play a vital role in facilitating the structural rearrangements of these proteins necessary for their activity. Hence in this review, we focus on both the general and specific lipid-protein interactions and will mostly discuss the structure-function relationships of the following P2-type ATPases, Na+,K+-ATPase (NKA), gastric H+,K+-ATPase (HKA), and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), in concurrence with their lipid environment.
Collapse
|
10
|
Mainali L, O'Brien WJ, Subczynski WK. Detection of cholesterol bilayer domains in intact biological membranes: Methodology development and its application to studies of eye lens fiber cell plasma membranes. Exp Eye Res 2018; 178:72-81. [PMID: 30278157 DOI: 10.1016/j.exer.2018.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022]
Abstract
Four purported lipid domains are expected in plasma membranes of the eye lens fiber cells. Three of these domains, namely, bulk, boundary, and trapped lipids, have been detected. The cholesterol bilayer domain (CBD), which has been detected in lens lipid membranes prepared from the total lipids extracted from fiber cell plasma membranes, has not yet been detected in intact fiber cell plasma membranes. Here, a saturation-recovery electron paramagnetic resonance spin-labeling method has been developed that allows identification of CBDs in intact fiber cell plasma membranes of eye lenses. This method is based on saturation-recovery signal measurements of the cholesterol-analog spin label located in the lipid bilayer portion of intact fiber cell membranes as a function of the partial pressure of molecular oxygen with which the samples are equilibrated. The capabilities and limitations of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses where CBDs were detected in porcine nuclear intact membranes for which CBDs were also detected in lens lipid membranes. CBDs were not detected in porcine cortical intact and lens lipid membranes. CBDs were detected in intact membranes isolated from both cortical and nuclear fiber cells of lenses obtained from human donors. The cholesterol content in fiber cell membranes of these donors was always high enough to induce the formation of CBDs in cortical as well as nuclear lens lipid membranes. The results obtained for intact membranes, when combined with those obtained for lens lipid membranes, advance our understanding of the role of high cholesterol content and CBDs in lens biology, aging, and/or cataract formation.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, USA
| | - William J O'Brien
- Department of Ophthalmology and Visual Science, Eye Institute, Medical College of Wisconsin, Milwaukee, USA
| | | |
Collapse
|
11
|
Luies L, Reenen MV, Ronacher K, Walzl G, Loots DT. Predicting tuberculosis treatment outcome using metabolomics. Biomark Med 2017; 11:1057-1067. [DOI: 10.2217/bmm-2017-0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Laneke Luies
- School for Physical & Chemical Sciences, Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| | - Mari van Reenen
- School for Physical & Chemical Sciences, Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| | - Katharina Ronacher
- Division of Molecular Biology & Human Genetics, Faculty of Medicine & Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular & Cellular Biology, Stellenbosch University, Tygerberg 7505, South Africa
- Mater Medical Research Institute, The University of Queensland, Brisbane, Australia
| | - Gerhard Walzl
- Division of Molecular Biology & Human Genetics, Faculty of Medicine & Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular & Cellular Biology, Stellenbosch University, Tygerberg 7505, South Africa
| | - Du Toit Loots
- School for Physical & Chemical Sciences, Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom 2531, South Africa
| |
Collapse
|
12
|
Mainali L, Camenisch TG, Hyde JS, Subczynski WK. Saturation recovery EPR spin-labeling method for quantification of lipids in biological membrane domains. APPLIED MAGNETIC RESONANCE 2017; 48:1355-1373. [PMID: 29805201 PMCID: PMC5967259 DOI: 10.1007/s00723-017-0921-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/15/2017] [Indexed: 06/02/2023]
Abstract
The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain [M. Raguz, L. Mainali, W. J. O'Brien, and W. K. Subczynski (2015), Exp. Eye Res., 140:179-186]. Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student's t-test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant (P ≤ 0.05) and can be attributed to sources other than preparation/technique.
Collapse
Affiliation(s)
| | | | | | - Witold K. Subczynski
- Corresponding Author: Witold K. Subczynski, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA, Tel: (414) 955-4038; Fax: (414) 955-6512;
| |
Collapse
|
13
|
Goiko M, de Bruyn JR, Heit B. Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane. Sci Rep 2016; 6:34987. [PMID: 27725698 PMCID: PMC5057110 DOI: 10.1038/srep34987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
The plasma membrane is a heterogeneous environment characterized by anomalous diffusion and the presence of microdomains that are molecularly distinct from the bulk membrane. Using single particle tracking of the C-type lectin CD93, we have identified for the first time the transient trapping of transmembrane proteins in cage-like microdomains which restrict protein diffusion. These cages are stabilized by actin-dependent confinement regions, but are separate structures with sizes and lifespans uncorrelated to those of the underlying actin corral. These membrane cages require cholesterol for their strength and stability, with cholesterol depletion decreasing both. Despite this, cages are much larger in size and are longer lived than lipid rafts, suggesting instead that cholesterol-dependent effects on membrane fluidity or molecular packing play a role in cage formation. This diffusional compartment in the plasma membrane has characteristics of both a diffusional barrier and a membrane microdomain, with a size and lifespan intermediate between short-lived microdomains such as lipid rafts and long-lasting diffusional barriers created by the actin cytoskeleton.
Collapse
Affiliation(s)
- Maria Goiko
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 Canada
| | - John R de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Centre for Human Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada
| |
Collapse
|
14
|
Domanska MK, Dunning RA, Dryden KA, Zawada KE, Yeager M, Kasson PM. Hemagglutinin Spatial Distribution Shifts in Response to Cholesterol in the Influenza Viral Envelope. Biophys J 2016; 109:1917-24. [PMID: 26536268 DOI: 10.1016/j.bpj.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/29/2015] [Accepted: 09/18/2015] [Indexed: 12/18/2022] Open
Abstract
Influenza virus delivers its genome to the host cytoplasm via a process of membrane fusion mediated by the viral hemagglutinin protein. Optimal fusion likely requires multiple hemagglutinin trimers, so the spatial distribution of hemagglutinin on the viral envelope may influence fusion mechanism. We have previously shown that moderate depletion of cholesterol from the influenza viral envelope accelerates fusion kinetics even though it decreases fusion efficiency, both in a reversible manner. Here, we use electron cryo-microscopy to measure how the hemagglutinin lateral density in the viral envelope changes with cholesterol extraction. We extract this information by measuring the radial distribution function of electron density in >4000 viral images per sample, assigning hemagglutinin density by comparing images with and without anti-HA Fab bound. On average, hemagglutinin trimers move closer together: we estimate that the typical trimer-trimer spacing reduces from 94 to 84 Å when ∼90% of cholesterol is removed from the viral membrane. Upon restoration of viral envelope cholesterol, this spacing once again expands. This finding can qualitatively explain the observed changes to fusion kinetics: contemporary models from single-virus microscopy are that fusion requires the engagement of several hemagglutinin trimers in close proximity. If removing cholesterol increases the lateral density of hemagglutinin, this should result in an increase in the rate of fusion.
Collapse
Affiliation(s)
- Marta K Domanska
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Rebecca A Dunning
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Kelly A Dryden
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Katarzyna E Zawada
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Mark Yeager
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Peter M Kasson
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
15
|
Subczynski WK, Mainali L, Raguz M, O'Brien WJ. Organization of lipids in fiber-cell plasma membranes of the eye lens. Exp Eye Res 2016; 156:79-86. [PMID: 26988627 DOI: 10.1016/j.exer.2016.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/02/2016] [Accepted: 03/07/2016] [Indexed: 11/15/2022]
Abstract
The plasma membrane together with the cytoskeleton forms the only supramolecular structure of the matured fiber cell which accounts for mostly all fiber cell lipids. The purpose of this review is to inform researchers about the importance of the lipid bilayer portion of the lens fiber cell plasma membranes in the maintaining lens homeostasis, and thus protecting against cataract development.
Collapse
Affiliation(s)
- Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: Methodology development and its application to studies of porcine lens membranes. Exp Eye Res 2015; 140:179-186. [PMID: 26384651 DOI: 10.1016/j.exer.2015.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/29/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
An electron paramagnetic resonance spin-labeling method has been developed that allows quantitative evaluation of the amounts of phospholipids and cholesterol in lipid domains of intact fiber-cell plasma membranes isolated from cortical and nuclear regions of eye lenses. The long term goal of this research is the assessment of organizational changes in human lens fiber cell membranes that occur with age and during cataract development. The measurements needed to be performed on lens membranes prepared from eyes of single donors and from single eyes. For these types of studies it is necessary to separate the age/cataract related changes from preparation/technique related changes. Human lenses differ not only because of age, but also because of the varying health histories of the donors. To solve these problems the sample-to-sample preparation/technique related changes were evaluated for cortical and nuclear lens membranes prepared from single porcine eyes. It was assumed that the differences due to the age (animals were two year old) and environmental conditions for raising these animals were minimal. Mean values and standard deviations from preparation/technique changes for measured amounts of lipids in membrane domains were calculated. Statistical analysis (Student's t-test) of the data also allowed determining the differences of mean values which were statistically significant with P ≤ 0.05. These differences defined for porcine lenses will be used for comparison of amounts of lipids in domains in human lens membranes prepared from eyes of single donors and from single eyes. Greater separations will indicate that differences were statistically significant with (P ≤ 0.05) and that they came from different than preparation/technique sources. Results confirmed that in nuclear porcine membranes the amounts of lipids in domains created due to the presence of membrane proteins were greater than those in cortical membranes and the differences were larger than the differences observed for human intact fiber cell membranes [Raguz, M. Mainali, L., O'Brien, W.J., and Subczynski, W.K. (2015) Exp. Eye Res.]. Lipids in porcine nuclear fiber cell plasma membranes were more rigid and less permeable to oxygen than in human nuclear membranes. Most likely the significant differences in the lipid composition were responsible for the observed differences.
Collapse
|
17
|
Autzen HE, Siuda I, Sonntag Y, Nissen P, Møller JV, Thøgersen L. Regulation of the Ca(2+)-ATPase by cholesterol: a specific or non-specific effect? Mol Membr Biol 2015; 32:75-87. [PMID: 26260074 DOI: 10.3109/09687688.2015.1073382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Like other integral membrane proteins, the activity of the Sarco/Endoplasmic Reticulum Ca(2+)-ATPase (SERCA) is regulated by the membrane environment. Cholesterol is present in the endoplasmic reticulum membrane at low levels, and it has the potential to affect SERCA activity both through direct, specific interaction with the protein or through indirect interaction through changes of the overall membrane properties. There are experimental data arguing for both modes of action for a cholesterol-mediated regulation of SERCA. In the current study, coarse-grained molecular dynamics simulations are used to address how a mixed lipid-cholesterol membrane interacts with SERCA. Candidates for direct regulatory sites with specific cholesterol binding modes are extracted from the simulations. The binding pocket for thapsigargin, a nanomolar inhibitor of SERCA, has been suggested as a cholesterol binding site. However, the thapsigargin binding pocket displayed very little cholesterol occupation in the simulations. Neither did atomistic simulations of cholesterol in the thapsigargin binding pocket support any specific interaction. The current study points to a non-specific effect of cholesterol on SERCA activity, and offers an alternative interpretation of the experimental results used to argue for a specific effect.
Collapse
Affiliation(s)
- Henriette Elisabeth Autzen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Iwona Siuda
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,c Bioinformatics Research Centre (BiRC) , Aarhus , Denmark , and
| | - Yonathan Sonntag
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Poul Nissen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Jesper Vuust Møller
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,d Department of Biomedicine , Aarhus University , Aarhus , Denmark
| | - Lea Thøgersen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,c Bioinformatics Research Centre (BiRC) , Aarhus , Denmark , and
| |
Collapse
|
18
|
General and specific lipid-protein interactions in Na,K-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1729-43. [PMID: 25791351 DOI: 10.1016/j.bbamem.2015.03.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/20/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
The molecular activity of Na,K-ATPase and other P2 ATPases like Ca(2+)-ATPase is influenced by the lipid environment via both general (physical) and specific (chemical) interactions. Whereas the general effects of bilayer structure on membrane protein function are fairly well described and understood, the importance of the specific interactions has only been realized within the last decade due particularly to the growing field of membrane protein crystallization, which has shed new light on the molecular details of specific lipid-protein interactions. It is a remarkable observation that specific lipid-protein interactions seem to be evolutionarily conserved, and conformations of specifically bound lipids at the lipid-protein surface within the membrane are similar in crystal structures determined with different techniques and sources of the protein, despite the rather weak lipid-protein interaction energy. Studies of purified detergent-soluble recombinant αβ or αβFXYD Na,K-ATPase complexes reveal three separate functional effects of phospholipids and cholesterol with characteristic structural selectivity. The observations suggest that these three effects are exerted at separate binding sites for phophatidylserine/cholesterol (stabilizing), polyunsaturated phosphatidylethanolamine (stimulatory), and saturated PC or sphingomyelin/cholesterol (inhibitory), which may be located within three lipid-binding pockets identified in recent crystal structures of Na,K-ATPase. The findings point to a central role of direct and specific interactions of different phospholipids and cholesterol in determining both stability and molecular activity of Na,K-ATPase and possible implications for physiological regulation by membrane lipid composition. This article is part of a special issue titled "Lipid-Protein Interactions."
Collapse
|
19
|
Raguz M, Mainali L, O'Brien WJ, Subczynski WK. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups. Exp Eye Res 2015; 132:78-90. [PMID: 25617680 DOI: 10.1016/j.exer.2015.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/05/2015] [Accepted: 01/20/2015] [Indexed: 02/02/2023]
Abstract
The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors' age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors' age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber cell plasma membrane resistance to oxygen permeation.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
20
|
Inhibition of diabetic-cataract by vitamin K1 involves modulation of hyperglycemia-induced alterations to lens calcium homeostasis. Exp Eye Res 2014; 128:73-82. [PMID: 25257692 DOI: 10.1016/j.exer.2014.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 11/22/2022]
Abstract
This study investigated the potential of vitamin K1 against streptozotocin-induced diabetic cataract in Wistar rats. A single, intraperitoneal injection of streptozotocin (STZ) (35 mg/kg) resulted in hyperglycemia, accumulation of sorbitol and formation of advanced glycation end product (AGE) in eye lens. Hyperglycemia in lens also resulted in superoxide anion and hydroxyl radical generation and less reduced glutathione suggesting oxidative stress in lens. Hyperglycemia also resulted in increase in lens Ca2+ and significant inhibition of lens Ca2+ ATPase activity. These changes were associated with cataract formation in diabetic animals. By contrast treatment of diabetic rats with vitamin K1 (5 mg/kg, sc, twice a week) resulted in animals with partially elevated blood glucose and with transparent lenses having normal levels of sorbitol, AGE, Ca2+ ATPase, Ca2+, and oxidative stress. Vitamin K 1 may function to protect against cataract formation in the STZ induced diabetic rat by affecting the homeostasis of blood glucose and minimizing subsequent oxidative and osmotic stress. Thus, these results show that Vitamin K1 inhibits diabetic-cataract by modulating lens Ca2+ homeostasis and its hypoglycemic effect through its direct action on the pancreas.
Collapse
|
21
|
Raguz M, Mainali L, O'Brien WJ, Subczynski WK. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens. Exp Eye Res 2014; 120:138-51. [PMID: 24486794 DOI: 10.1016/j.exer.2014.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022]
Abstract
The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
22
|
Goonasekara CL, Balse E, Hatem S, Steele DF, Fedida D. Cholesterol and cardiac arrhythmias. Expert Rev Cardiovasc Ther 2014; 8:965-79. [DOI: 10.1586/erc.10.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z, Kasai RS, Suzuki KGN. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model. Annu Rev Cell Dev Biol 2012; 28:215-50. [PMID: 22905956 DOI: 10.1146/annurev-cellbio-100809-151736] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent rapid accumulation of knowledge on the dynamics and structure of the plasma membrane has prompted major modifications of the textbook fluid-mosaic model. However, because the new data have been obtained in a variety of research contexts using various biological paradigms, the impact of the critical conceptual modifications on biomedical research and development has been limited. In this review, we try to synthesize our current biological, chemical, and physical knowledge about the plasma membrane to provide new fundamental organizing principles of this structure that underlie every molecular mechanism that realizes its functions. Special attention is paid to signal transduction function and the dynamic aspect of the organizing principles. We propose that the cooperative action of the hierarchical three-tiered mesoscale (2-300 nm) domains--actin-membrane-skeleton induced compartments (40-300 nm), raft domains (2-20 nm), and dynamic protein complex domains (3-10 nm)--is critical for membrane function and distinguishes the plasma membrane from a classical Singer-Nicolson-type model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kusumi A, Fujiwara TK, Morone N, Yoshida KJ, Chadda R, Xie M, Kasai RS, Suzuki KGN. Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol 2012; 23:126-44. [PMID: 22309841 DOI: 10.1016/j.semcdb.2012.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 01/09/2023]
Abstract
Virtually all biological membranes on earth share the basic structure of a two-dimensional liquid. Such universality and peculiarity are comparable to those of the double helical structure of DNA, strongly suggesting the possibility that the fundamental mechanisms for the various functions of the plasma membrane could essentially be understood by a set of simple organizing principles, developed during the course of evolution. As an initial effort toward the development of such understanding, in this review, we present the concept of the cooperative action of the hierarchical three-tiered meso-scale (2-300 nm) domains in the plasma membrane: (1) actin membrane-skeleton-induced compartments (40-300 nm), (2) raft domains (2-20 nm), and (3) dynamic protein complex domains (3-10nm). Special attention is paid to the concept of meso-scale domains, where both thermal fluctuations and weak cooperativity play critical roles, and the coupling of the raft domains to the membrane-skeleton-induced compartments as well as dynamic protein complexes. The three-tiered meso-domain architecture of the plasma membrane provides an excellent perspective for understanding the membrane mechanisms of signal transduction.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yue T, Zhang X. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:011917. [PMID: 22400601 DOI: 10.1103/physreve.85.011917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/02/2012] [Indexed: 05/31/2023]
Abstract
One key question in signal transduction is how the signal is relayed from the outer leaflet of a cellular membrane to the inner leaflet. Using a simulation model, a mechanism for the mediation of signal transduction is proposed here in which the coupling between membrane proteins in different leaflets can be achieved by the clustering of anchored proteins, without recruiting transmembrane proteins. Depending on the hydrophobic length of the anchored proteins, three coupling patterns, including face-to-face clustering, interdigitated clustering, and weak-coupled clustering, are observed in this work. This observation provides a possible explanation of how a particular downstream signaling pathway is selected.
Collapse
Affiliation(s)
- Tongtao Yue
- Division of Molecular and Materials Simulation, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | | |
Collapse
|
26
|
Kusumi A, Suzuki KGN, Kasai RS, Ritchie K, Fujiwara TK. Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 2011; 36:604-15. [PMID: 21917465 DOI: 10.1016/j.tibs.2011.08.001] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 11/27/2022]
Abstract
Based on recent single-molecule imaging results in the living cell plasma membrane, we propose a hierarchical architecture of three-tiered mesoscale (2-300nm) domains to represent the fundamental functional organization of the plasma membrane: (i) membrane compartments of 40-300nm in diameter due to the partitioning of the entire plasma membrane by the actin-based membrane skeleton 'fence' and transmembrane protein 'pickets' anchored to the fence; (ii) raft domains (2-20nm); and (iii) dimers/oligomers and greater complexes of membrane-associated proteins (3-10nm). The basic molecular interactions required for the signal transduction function of the plasma membrane can be fundamentally understood and conveniently summarized as the cooperative actions of these mesoscale domains, where thermal fluctuations/movements of molecules and weak cooperativity play crucial roles.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|
27
|
Qiu L, Buie C, Reay A, Vaughn MW, Cheng KH. Molecular dynamics simulations reveal the protective role of cholesterol in β-amyloid protein-induced membrane disruptions in neuronal membrane mimics. J Phys Chem B 2011; 115:9795-812. [PMID: 21740063 PMCID: PMC3163122 DOI: 10.1021/jp2012842] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interactions of β-amyloid (Aβ) peptides with neuronal membranes have been associated with the pathogenesis of Alzheimer's disease (AD); however, the molecular details remain unclear. We used atomistic molecular dynamics (MD) simulations to study the interactions of Aβ(40) and Aβ(42) with model neuronal membranes. The differences between cholesterol-enriched and depleted lipid domains were investigated by the use of model phosphatidylcholine (PC) lipid bilayers with and without 40 mol % cholesterol. A total of 16 independent 200 ns simulation replicates were investigated. The surface area per lipid, bilayer thickness, water permeability barrier, and lipid order parameter, which are sensitive indicators of membrane disruption, were significantly altered by the inserted state of the protein. We conclude that cholesterol protects Aβ-induced membrane disruption and inhibits β-sheet formation of Aβ on the lipid bilayer. The latter could represent a two-dimensional (2D) seeding template for the formation of toxic oligomeric Aβ in the pathogenesis of AD.
Collapse
Affiliation(s)
- Liming Qiu
- Department of Physics, Texas Tech University, Lubbock, Texas 79409
| | - Creighton Buie
- Department of Physics, Texas Tech University, Lubbock, Texas 79409
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409
| | - Andrew Reay
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409
| | - Mark W. Vaughn
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409
| | - Kwan Hon Cheng
- Department of Physics, Texas Tech University, Lubbock, Texas 79409
| |
Collapse
|
28
|
Abstract
The sarcoplasmic (SERCA 1a) Ca2+-ATPase is a membrane protein abundantly present in skeletal muscles where it functions as an indispensable component of the excitation-contraction coupling, being at the expense of ATP hydrolysis involved in Ca2+/H+ exchange with a high thermodynamic efficiency across the sarcoplasmic reticulum membrane. The transporter serves as a prototype of a whole family of cation transporters, the P-type ATPases, which in addition to Ca2+ transporting proteins count Na+, K+-ATPase and H+, K+-, proton- and heavy metal transporting ATPases as prominent members. The ability in recent years to produce and analyze at atomic (2·3-3 Å) resolution 3D-crystals of Ca2+-transport intermediates of SERCA 1a has meant a breakthrough in our understanding of the structural aspects of the transport mechanism. We describe here the detailed construction of the ATPase in terms of one membraneous and three cytosolic domains held together by a central core that mediates coupling between Ca2+-transport and ATP hydrolysis. During turnover, the pump is present in two different conformational states, E1 and E2, with a preference for the binding of Ca2+ and H+, respectively. We discuss how phosphorylated and non-phosphorylated forms of these conformational states with cytosolic, occluded or luminally exposed cation-binding sites are able to convert the chemical energy derived from ATP hydrolysis into an electrochemical gradient of Ca2+ across the sarcoplasmic reticulum membrane. In conjunction with these basic reactions which serve as a structural framework for the transport function of other P-type ATPases as well, we also review the role of the lipid phase and the regulatory and thermodynamic aspects of the transport mechanism.
Collapse
|
29
|
de Meyer FJM, Rodgers JM, Willems TF, Smit B. Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions. Biophys J 2011; 99:3629-38. [PMID: 21112287 DOI: 10.1016/j.bpj.2010.09.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 12/01/2022] Open
Abstract
Experiments and molecular simulations have shown that the hydrophobic mismatch between proteins and membranes contributes significantly to lipid-mediated protein-protein interactions. In this article, we discuss the effect of cholesterol on lipid-mediated protein-protein interactions as function of hydrophobic mismatch, protein diameter and protein cluster size, lipid tail length, and temperature. To do so, we study a mesoscopic model of a hydrated bilayer containing lipids and cholesterol in which proteins are embedded, with a hybrid dissipative particle dynamics-Monte Carlo method. We propose a mechanism by which cholesterol affects protein interactions: protein-induced, cholesterol-enriched, or cholesterol-depleted lipid shells surrounding the proteins affect the lipid-mediated protein-protein interactions. Our calculations of the potential of mean force between proteins and protein clusters show that the addition of cholesterol dramatically reduces repulsive lipid-mediated interactions between proteins (protein clusters) with positive mismatch, but does not affect attractive interactions between proteins with negative mismatch. Cholesterol has only a modest effect on the repulsive interactions between proteins with different mismatch.
Collapse
Affiliation(s)
- Frédérick J-M de Meyer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA.
| | | | | | | |
Collapse
|
30
|
|
31
|
A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells. Cell Signal 2010; 23:497-505. [PMID: 21062642 DOI: 10.1016/j.cellsig.2010.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/19/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux.
Collapse
|
32
|
Borchman D, Yappert MC. Lipids and the ocular lens. J Lipid Res 2010; 51:2473-88. [PMID: 20407021 PMCID: PMC2918433 DOI: 10.1194/jlr.r004119] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/29/2010] [Indexed: 11/20/2022] Open
Abstract
The unusually high levels of saturation and thus order contribute to the uniqueness of human lens membranes. In addition, and unlike in most biomembranes, most of the lens lipids are associated with proteins, thus reducing their mobility. The major phospholipid of the human lens is dihydrosphingomyelin. Found in significant quantities only in primate lenses, particularly human ones, this lipid is so extremely stable that it was reported to be the only lipid remaining in a frozen mammoth 40,000 years after its death. Unusually high levels of cholesterol add peculiarity to the composition of lens membranes. Beyond the lateral segregation of lipids into dynamic domains known as rafts, the high abundance of cholesterol in the human lens leads to the formation of patches of pure cholesterol. Changes in human lens lipid composition with age and disease as well as differences among species are greater than those observed for any other biomembrane. The relationships among lens membrane composition, structure, and lipid conformation reviewed in this article are unique to the mammalian lens and offer exciting insights into lens membrane function. This review focuses on findings reported over the last two decades that demonstrate the uniqueness of mammalian lens membranes regarding their morphology and composition. Because the membranes of human lenses do undergo the most dramatic changes with age and cataractogenesis, the final sections of this review address our current knowledge of the unusual composition and organization of adult human lens membranes with and without opacification. Finally, the questions that still remain to be answered are presented.
Collapse
Affiliation(s)
- Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
33
|
Taraschi T, Mendelsohn R. Lipid-protein interaction in the glycophorin-dipalmitoylphosphatidylcholine system: Raman spectroscopic investigation. Proc Natl Acad Sci U S A 2010; 77:2362-6. [PMID: 16592811 PMCID: PMC349397 DOI: 10.1073/pnas.77.5.2362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Raman spectra have been recorded as a function of temperature for lipid-protein complexes of glycophorin isolated from erythrocyte membranes reconstituted with dipalmitoylphosphatidylcholine (DPPC) and its chain perdeuterated analogue ([(2)H(62)]DPPC). The conformation of the phospholipid hydrocarbon chains in the vicinity of protein is drastically altered from that in pure lipid dispersions. Analysis of the chain C-(2)H stretching vibrations for complexes of [(2)H(62)]-DPPC-glycophorin shows that at lipid:protein mole ratios of 125:1, a broad melting event occurs that is not observable by calorimetric techniques. The midpoint occurs at temperatures about 15 degrees C below that of the gel/liquid crystal phase transition for [(2)H(62)]DPPC in multilamellar dispersions. The same number of gauche rotamers form in the phospholipid hydrocarbon chains during the melting process as in the phase transition of the unperturbed molecule. Analysis of the C-H stretching region of the Raman spectrum in DPPC-glycophorin complexes indicates that lateral interactions between phospholipid chains in the complex are reduced so that interchain vibrational coupling is minimized. The observed differences between the Raman melting curves and the calorimetric endothermic transitions arise because different populations of phospholipid molecules are sampled in the two experiments. The advantages of Raman spectroscopy for the study of lipid-protein interaction are demonstrated in the current work. Implications for the structure of the lipid in the immediate vicinity of membrane protein are discussed.
Collapse
Affiliation(s)
- T Taraschi
- Department of Chemistry, Olson Laboratories, Newark College of Arts and Sciences, Rutgers University, Newark, New Jersey 07102
| | | |
Collapse
|
34
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
35
|
Kimelberg HK, Mayhew EG, Gregoriadis G. Properties and Biological Effects of Liposomes and their uses in Pharmacology and Toxicology. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/10408447809029333] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Chintalapati S, Al Kurdi R, van Scheltinga ACT, Kühlbrandt W. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. J Mol Biol 2008; 378:581-95. [PMID: 18374940 DOI: 10.1016/j.jmb.2008.01.094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 12/29/2022]
Abstract
We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting P(IB)-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH metal-binding motif in TM6 and a histidine-rich N-terminal metal-binding domain. We have cloned both copper pumps, expressed them in Escherichia coli and characterized them functionally. CtrA2 is activated by Ag(+) and Cu(+) and presumably transports reduced Cu(+), while CtrA3 is activated by, and presumably transports, the oxidized copper ion. Both CtrA2 and CtrA3 are thermophilic proteins with an activity maximum at 75 degrees C. Electron cryomicroscopy of two-dimensional crystals of CtrA3 yielded a projection map at approximately 7 A resolution with density peaks, indicating eight membrane-spanning alpha-helices per monomer. A fit of the Ca-ATPase structure to the projection map indicates that the arrangement of the six central helices surrounding the ion-binding site in the membrane is conserved, and suggests the position of the two additional N-terminal transmembrane helices that are characteristic of the heavy metal, eight-helix P(1B)-type ATPases.
Collapse
Affiliation(s)
- Sivaram Chintalapati
- Max Planck Institute of Biophysics, Max von Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
37
|
Braco L, Abad C. Phosphatidylcholine-Gramicidin a Interaction Study in Non-Aqueous Solvent with a new HPLC-SEC Column. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/01483918508067100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
|
39
|
Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. ACTA ACUST UNITED AC 2005; 34:351-78. [PMID: 15869394 DOI: 10.1146/annurev.biophys.34.040204.144637] [Citation(s) in RCA: 807] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advancements in single-molecule tracking methods with nanometer-level precision now allow researchers to observe the movement, recruitment, and activation of single molecules in the plasma membrane in living cells. In particular, on the basis of the observations by high-speed single-particle tracking at a frame rate of 40,000 frames s(1), the partitioning of the fluid plasma membrane into submicron compartments throughout the cell membrane and the hop diffusion of virtually all the molecules have been proposed. This could explain why the diffusion coefficients in the plasma membrane are considerably smaller than those in artificial membranes, and why the diffusion coefficient is reduced upon molecular complex formation (oligomerization-induced trapping). In this review, we first describe the high-speed single-molecule tracking methods, and then we critically review a new model of a partitioned fluid plasma membrane and the involvement of the actin-based membrane-skeleton "fences" and anchored-transmembrane protein "pickets" in the formation of compartment boundaries.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Kusumi Membrane Organizer Project, Exploratory Research for Advanced Technology Organization, Department of Biological Science and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kusumi A, Koyama-Honda I, Suzuki K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 2004; 5:213-30. [PMID: 15030563 DOI: 10.1111/j.1600-0854.2004.0178.x] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have evaluated the sizes and lifetimes of rafts in the plasma membrane from the existing literature, with a special attention paid to their intrinsically broad distributions and the limited time and space scales that are covered by the observation methods used for these studies. Distinguishing the rafts in the steady state (reserve rafts) from those after stimulation or unintentional crosslinking of raft molecules (stabilized receptor-cluster rafts) is critically important. In resting cells, the rafts appear small and unstable, and the consensus now is that their sizes are smaller than the optical diffraction limit (250 nm). Upon stimulation, the raft-preferring receptors are clustered, inducing larger, stabilized rafts, probably by coalescing small, unstable rafts or cholesterol-glycosphingolipid complexes in the receptor clusters. This receptor-cluster-induced conversion of raft types may be caused by suppression of alkyl chain isomerization and the lipid lateral diffusion in the cluster, with the aid of exclusion of cholesterol from the bulk domain and the boundary region of the majority of transmembrane proteins. We critically inspected the possible analogy to the boundary lipid concept. Finally, we propose a hypothesis for the coupling of GPI-anchored receptor signals with lipid-anchored signaling molecules in the inner-leaflet raft.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Department of Biological Science and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan.
| | | | | |
Collapse
|
41
|
McConnell HM, Radhakrishnan A. Condensed complexes of cholesterol and phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:159-73. [PMID: 12648771 DOI: 10.1016/s0005-2736(03)00015-4] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is overwhelming evidence that lipid bilayer regions of animal cell membranes are in a liquid state. Quantitative models of these bilayer regions must then be models of liquids. These liquids are highly non-ideal. For example, it has been known for more than 75 years that mixtures of cholesterol and certain phospholipids undergo an area contraction or condensation in lipid monolayers at the air-water interface. In the past 3 years, a thermodynamic model of "condensed complexes" has been proposed to account for this non-ideal behavior. Here we give an overview of the model, its relation to other models, and to modern views of the properties of animal cell membranes.
Collapse
|
42
|
Rice DM, Meadows MD, Scheinman AO, Goni FM, Gomez JC, Moscarello MA, Chapman D, Oldfield E. Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum (calcium(2+), magnesium(2+) ion)-activated ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol. Biochemistry 2002. [DOI: 10.1021/bi00593a021] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
|
44
|
Launikonis BS, Stephenson DG. Effects of membrane cholesterol manipulation on excitation-contraction coupling in skeletal muscle of the toad. J Physiol 2001; 534:71-85. [PMID: 11432993 PMCID: PMC2278681 DOI: 10.1111/j.1469-7793.2001.00071.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Single mechanically skinned fibres and intact bundles of fibres from the twitch region of the iliofibularis muscle of cane toads were used to investigate the effects of membrane cholesterol manipulation on excitation-contraction (E-C) coupling. The cholesterol content of membranes was manipulated with methyl-beta-cyclodextrin (MbetaCD). 2. In mechanically skinned fibres, depletion of membrane cholesterol with MbetaCD caused a dose- and time-dependent decrease in transverse tubular (t)-system depolarization-induced force responses (TSDIFRs). TSDIFRs were completely abolished within 2 min in the presence of 10 mM MbetaCD but were not affected after 2 min in the presence of a 10 mM MbetaCD-1 mM cholesterol complex. There was a very steep dependence between the change in TSDIFRs and the MbetaCD : cholesterol ratio at 10 mM MbetaCD, indicating that the inhibitory effect of MbetaCD was due to membrane cholesterol depletion and not to a pharmacological effect of the agent. Tetanic responses in bundles of intact fibres were abolished after 3-4 h in the presence of 10 mM MbetaCD. 3. The duration of TSDIFRs increased markedly soon (< 2 min) after application of 10 mM MbetaCD and 10 mM MbetaCD-cholesterol complexes, but the Ca(2+) activation properties of the contractile apparatus were minimally affected by 10 mM MbetaCD. The Ca(2+) handling abilities of the sarcoplasmic reticulum appeared to be modified after 10 min exposure to 10 mM MbetaCD. 4. Confocal laser scanning microscopy revealed that the integrity of the t-system was not compromised by either intra- or extracellular application of 10 mM MbetaCD and that a large [Ca(2+)] gradient was maintained across the t-system. 5. Membrane cholesterol depletion caused rapid depolarization of the polarized t-system as shown independently by spontaneous TSDIFRs induced by MbetaCD and by changes in the fluorescence intensity of an anionic potentiometric dye (DiBAC(4)(3)) in the presence of MbetaCD. This rapid depolarization of the t-system by cholesterol depletion was not prevented by blocking the Na(+) channels with TTX (10 microM) or the L-type Ca(2+) channels with Co(2+) (5 mM). 6. The results demonstrate that cholesterol is important for maintaining the functional integrity of the t-system and sarcoplasmic reticulum, probably by having specific effects on different membrane proteins that may be directly or indirectly involved in E-C coupling.
Collapse
Affiliation(s)
- B S Launikonis
- Department of Zoology, La Trobe University, Bundoora, Melbourne, Victoria, 3086, Australia
| | | |
Collapse
|
45
|
Abstract
Proton and/or sodium electrochemical gradients are critical to energy handling at the plasma membranes of all living cells. Sodium gradients are used for animal plasma membranes, all other living organisms use proton gradients. These chemical and electrical gradients are either created by a cation pumping ATPase or are created by photons or redox, used to make ATP. It has been established that both hydrogen and sodium ions leak through lipid bilayers at approximately the same rate at the concentration they occur in living organisms. Although the gradients are achieved by pumping the cations out of the cell, the plasma membrane potential enhances the leakage rate of these cations into the cell because of the orientation of the potential. This review proposes that cells use certain lipids to inhibit cation leakage through the membrane bilayers. It assumes that Na(+) leaks through the bilayer by a defect mechanism. For Na(+) leakage in animal plasma membranes, the evidence suggests that cholesterol is a key inhibitor of Na(+) leakage. Here I put forth a novel mechanism for proton leakage through lipid bilayers. The mechanism assumes water forms protonated and deprotonated clusters in the lipid bilayer. The model suggests how two features of lipid structures may inhibit H(+) leakage. One feature is the fused ring structure of sterols, hopanoids and tetrahymenol which extrude water and therefore clusters from the bilayer. The second feature is lipid structures that crowd the center of the bilayer with hydrocarbon. This can be accomplished either by separating the two monolayers with hydrocarbons such as isoprenes or isopranes in the bilayer's cleavage plane or by branching the lipid chains in the center of the bilayers with hydrocarbon. The natural distribution of lipids that contain these features are examined. Data in the literature shows that plasma membranes exposed to extreme concentrations of cations are particularly rich in the lipids containing the predicted qualities. Prokaryote plasma membranes that reside in extreme acids (acidophiles) contain both hopanoids and iso/anteiso- terminal lipid branching. Plasma membranes that reside in extreme base (alkaliphiles) contain both squalene and iso/anteiso- lipids. The mole fraction of squalene in alkaliphile bilayers increases, as they are cultured at higher pH. In eukaryotes, cation leak inhibition is here attributed to sterols and certain isoprenes, dolichol for lysosomes and peroxysomes, ubiquinone for these in addition to mitochondrion, and plastoquinone for the chloroplast. Phytosterols differ from cholesterol because they contain methyl and ethyl branches on the side chain. The proposal provides a structure-function rationale for distinguishing the structures of the phytosterols as inhibitors of proton leaks from that of cholesterol which is proposed to inhibit leaks of Na(+). The most extensively studied of sterols, cholesterol, occurs only in animal cells where there is a sodium gradient across the plasma membrane. In mammals, nearly 100 proteins participate in cholesterol's biosynthetic and degradation pathway, its regulatory mechanisms and cell-delivery system. Although a fat, cholesterol yields no energy on degradation. Experiments have shown that it reduces Na(+) and K(+) leakage through lipid bilayers to approximately one third of bilayers that lack the sterol. If sterols significantly inhibit cation leakage through the lipids of the plasma membrane, then the general role of all sterols is to save metabolic ATP energy, which is the penalty for cation leaks into the cytosol. The regulation of cholesterol's appearance in the plasma membrane and the evolution of sterols is discussed in light of this proposed role.
Collapse
Affiliation(s)
- T H Haines
- Department of Chemistry, City College of the City University of New York and Biochemistry, City University of New York Medical School, New York, NY 10031, USA.
| |
Collapse
|
46
|
Zeng J, Zhang Z, Paterson CA, Ferguson-Yankey S, Yappert MC, Borchman D. Ca(2+)-ATPase activity and lens lipid composition in reconstituted systems. Exp Eye Res 1999; 69:323-30. [PMID: 10471340 DOI: 10.1006/exer.1999.0703] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lens lipid composition and lipid hydrocarbon chain structure change with age, region and cataract. Since the lens Ca(2+)-ATPase pump is important to the maintenance of calcium homeostasis and lens clarity, muscle sarcoplasmic reticulum Ca(2+)-ATPase was reconstituted with bovine lens lipids and dihydrosphingomyelin, the rare and major phospholipid of the human lens. Ca(2+)-ATPase activity was found to be about 5 times lower when the pump was reconstituted into dihydrosphingomyelin or lens lipids compared to native sarcoplasmic reticulum lipids. The addition of cholesterol to levels ranging from 13-53 mole%, had no affect on reconstituted Ca(2+)-ATPase activity. Ca(2+)-ATPase activity correlated with the degree of hydrocarbon chain saturation. The greater levels of saturation are a consequence of the high sphingolipid content in the reconstituted systems. These data support the hypothesis that changes in lens lipid composition or structure could affect Ca(2+)-ATPase activity in human lenses. Because the mechanisms governing Ca(2+)-ATPase activity in vivo are much more complex than in these simple reconstituted systems, this study represents an initial step in the elucidation of the relationships of endogenous membrane lipid composition-structure and function.
Collapse
Affiliation(s)
- J Zeng
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, 40202, USA
| | | | | | | | | | | |
Collapse
|
47
|
Chiu SW, Subramaniam S, Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II. Rates and mechanisms of water transport. Biophys J 1999; 76:1939-50. [PMID: 10096892 PMCID: PMC1300170 DOI: 10.1016/s0006-3495(99)77353-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A gramicidin channel in a fluid phase DMPC bilayer with excess lipid and water has been simulated. By use of the formal correspondence between diffusion and random walk, a permeability for water through the channel was calculated, and was found to agree closely with the experimental results of Rosenberg and Finkelstein (Rosenberg, P.A., and A. Finkelstein. 1978. J. Gen. Physiol. 72:327-340; 341-350) for permeation of water through gramicidin in a phospholipid membrane. By using fluctuation analysis, components of resistance to permeation were computed for movement through the channel interior, for the transition step at the channel mouth where the water molecule solvation environment changes, and for the process of diffusion up to the channel mouth. The majority of the resistance to permeation appears to occur in the transition step at the channel mouth. A significant amount is also due to structurally based free energy barriers within the channel. Only small amounts are due to local friction within the channel or to diffusive resistance for approaching the channel mouth.
Collapse
Affiliation(s)
- S W Chiu
- National Center for Supercomputing Applications, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
48
|
Zhang X, Min X, Yang F. Conformational basis of the phospholipid requirement for the activity of SR Ca(2+)-ATPase. Chem Phys Lipids 1998; 97:55-64. [PMID: 10081149 DOI: 10.1016/s0009-3084(98)00092-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The delipidated sarcoplasmic reticulum (SR) Ca(2+)-ATPase was reconstituted into proteoliposomes containing different phospholipids. The result demonstrated the necessity of phosphatidylcholine (PC) for optimal ATPase activity and phosphatidylethanolamine (PE) for the optimal calcium transport activity. Fluorescence intensity of Fluorescein 5-isothiocyanate (FITC)-labeled enzyme at Lys515 as well as the measurement of the distance between 5-((2-[(iodoacetyl) amino] ethyl) amino)naphthalene-1-sulphonic acid (IAEDANS) label sites (Cys674/670) and Pr3+ demonstrated a conformational change of cytoplasmic domain, consequently, leading to the variation of the enzyme function with the proteoliposomes composition. Both the intrinsic fluorescence of Trp and its dynamic quenching by HB decreased with increasing PE content, revealing the conformational change of transmembrane domain. Time-resolved fluorescence study characterized three classes of Trp residues, which showed distinctive variation with the change in phospholipid composition. The phospholipid headgroup size caused the conformational change of SR Ca(2+)-ATPase, subsequent the ATPase activity and Ca2+ uptake.
Collapse
Affiliation(s)
- X Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, People's Republic of China
| | | | | |
Collapse
|
49
|
Affiliation(s)
- J E Thompson
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
50
|
Sciaky N, Presley J, Smith C, Zaal KJ, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol 1997; 139:1137-55. [PMID: 9382862 PMCID: PMC2140213 DOI: 10.1083/jcb.139.5.1137] [Citation(s) in RCA: 380] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1997] [Revised: 10/06/1997] [Indexed: 02/05/2023] Open
Abstract
The Golgi complex is a dynamic organelle engaged in both secretory and retrograde membrane traffic. Here, we use green fluorescent protein-Golgi protein chimeras to study Golgi morphology in vivo. In untreated cells, membrane tubules were a ubiquitous, prominent feature of the Golgi complex, serving both to interconnect adjacent Golgi elements and to carry membrane outward along microtubules after detaching from stable Golgi structures. Brefeldin A treatment, which reversibly disassembles the Golgi complex, accentuated tubule formation without tubule detachment. A tubule network extending throughout the cytoplasm was quickly generated and persisted for 5-10 min until rapidly emptying Golgi contents into the ER within 15-30 s. Both lipid and protein emptied from the Golgi at similar rapid rates, leaving no Golgi structure behind, indicating that Golgi membranes do not simply mix but are absorbed into the ER in BFA-treated cells. The directionality of redistribution implied Golgi membranes are at a higher free energy state than ER membranes. Analysis of its kinetics suggested a mechanism that is analogous to wetting or adsorptive phenomena in which a tension-driven membrane flow supplements diffusive transfer of Golgi membrane into the ER. Such nonselective, flow-assisted transport of Golgi membranes into ER suggests that mechanisms that regulate retrograde tubule formation and detachment from the Golgi complex are integral to the existence and maintenance of this organelle.
Collapse
Affiliation(s)
- N Sciaky
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|