1
|
Pan T, Huang Y, Wei J, Lai C, Chen Y, Nan K, Wu W. Implantation of biomimetic polydopamine nanocomposite scaffold promotes optic nerve regeneration through modulating inhibitory microenvironment. J Nanobiotechnology 2024; 22:683. [PMID: 39506841 PMCID: PMC11542345 DOI: 10.1186/s12951-024-02962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Optic nerve regeneration remains challenging worldwide due to the limited intrinsic regenerative capacity of retinal ganglion cells (RGCs) and the inhibitory microenvironment. Oxidative stress, induced by excessive reactive oxygen species (ROS) following optic nerve injury, is associated with prolonged neuroinflammation, resulting in a secondary injury of RGCs and the impairment of axon regeneration. Herein, we developed a bionic nanocomposite scaffold (GA@PDA) with immunoregulatory ability for enhanced optic nerve regeneration. The ice-templating method was employed to fabricate biopolymer-based scaffolds with a directional porous structure, mimicking the optic nerve, which effectively guided the oriented growth of neuronal cells. The incorporation of bioinspired polydopamine nanoparticles (PDA NPs) further confers excellent ROS scavenging ability, thereby modulating the phenotype transformation of microglia/macrophages from pro-inflammatory M1 to anti-inflammatory M2. In a rat optic nerve crush model, the implantation of GA@PDA scaffold enhanced survival of RGCs and promoted axonal regeneration. Our study offers novel insights and holds promising potential for the advancement of engineered biomaterials in facilitating optic nerve regeneration.
Collapse
Affiliation(s)
- Tonghe Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yate Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jinfei Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chen Lai
- Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, PKU-HKUST ShenZhen- HongKong Institution, Shenzhen, 518057, Guangdong, China
| | - Yangjun Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Kaihui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Abd Razak NH, Idris J, Hassan NH, Zaini F, Muhamad N, Daud MF. Unveiling the Role of Schwann Cell Plasticity in the Pathogenesis of Diabetic Peripheral Neuropathy. Int J Mol Sci 2024; 25:10785. [PMID: 39409114 PMCID: PMC11476695 DOI: 10.3390/ijms251910785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes that affects a significant proportion of diabetic patients worldwide. Although the pathogenesis of DPN involves axonal atrophy and demyelination, the exact mechanisms remain elusive. Current research has predominantly focused on neuronal damage, overlooking the potential contributions of Schwann cells, which are the predominant glial cells in the peripheral nervous system. Schwann cells play a critical role in neurodevelopment, neurophysiology, and nerve regeneration. This review highlights the emerging understanding of the involvement of Schwann cells in DPN pathogenesis. This review explores the potential role of Schwann cell plasticity as an underlying cellular and molecular mechanism in the development of DPN. Understanding the interplay between Schwann cell plasticity and diabetes could reveal novel strategies for the treatment and management of DPN.
Collapse
Affiliation(s)
- Nurul Husna Abd Razak
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Jalilah Idris
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Nur Hidayah Hassan
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Fazlin Zaini
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Noorzaid Muhamad
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| |
Collapse
|
3
|
Seblani M, Brezun JM, Féron F, Hoquet T. Rethinking plasticity: Analysing the concept of "destructive plasticity" in the light of neuroscience definitions. Eur J Neurosci 2024; 60:4798-4812. [PMID: 39092545 DOI: 10.1111/ejn.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
As a multilevel and multidisciplinary field, neuroscience is designed to interact with various branches of natural and applied sciences as well as with humanities and philosophy. The continental tradition in philosophy, particularly over the past 20 years, tended to establish strong connections with biology and neuroscience findings. This cross fertilization can however be impeded by conceptual intricacies, such as those surrounding the concept of plasticity. The use of this concept has broadened as scientists applied it to explore an ever-growing range of biological phenomena. Here, we examine the consequences of this ambiguity in an interdisciplinary context through the analysis of the concept of "destructive plasticity" in the philosophical writings of Catherine Malabou. The term "destructive plasticity" was coined by Malabou in 2009 to refer to all processes leading to psycho-cognitive and emotional alterations following traumatic or nontraumatic brain injuries or resulting from neurodevelopmental disorders. By comparing it with the neuroscientific definitions of plasticity, we discuss the epistemological obstacles and possibilities related to the integration of this concept into neuroscience. Improving interdisciplinary exchanges requires an advanced and sophisticated manipulation of neurobiological concepts. These concepts are not only intended to guide research programmes within neuroscience but also to organize and frame the dialogue between different theoretical backgrounds.
Collapse
Affiliation(s)
- Mostafa Seblani
- Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM), CNRS, Aix Marseille Univ, UMR 7287, Campus Scientifique de Luminy, Marseille Cedex 09, France
- Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille University, UMR 7051, Marseille Cedex 5, France
- Department of Philosophy, University Paris Nanterre, Nanterre Cedex, France
| | - Jean-Michel Brezun
- Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM), CNRS, Aix Marseille Univ, UMR 7287, Campus Scientifique de Luminy, Marseille Cedex 09, France
| | - François Féron
- Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille University, UMR 7051, Marseille Cedex 5, France
| | - Thierry Hoquet
- Department of Philosophy, University Paris Nanterre, Nanterre Cedex, France
| |
Collapse
|
4
|
Guest JD, Santamaria AJ, Solano JP, de Rivero Vaccari JP, Dietrich WD, Pearse DD, Khan A, Levi AD. Challenges in advancing Schwann cell transplantation for spinal cord injury repair. Cytotherapy 2024:S1465-3249(24)00827-2. [PMID: 39387736 DOI: 10.1016/j.jcyt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AIMS In this article we aimed to provide an expert synthesis of the current status of Schwann cell (SC)therapeutics and potential steps to increase their clinical utility. METHODS We provide an expert synthesis based on preclinical, clinical and manufacturing experience. RESULTS Schwann cells (SCs) are essential for peripheral nerve regeneration and are of interest in supporting axonal repair after spinal cord injury (SCI). SCs can be isolated and cultivated in tissue culture from adult nerve biopsies or generated from precursors and neural progenitors using specific differentiation protocols leading to expanded quantities. In culture, they undergo dedifferentiation to a state similar to "repair" SCs. The known repertoire of SC functions is increasing beyond axon maintenance, myelination, and axonal regeneration to include immunologic regulation and the release of potentially therapeutic extracellular vesicles. Recently, autologous human SC cultures purified under cGMP conditions have been tested in both nerve repair and subacute and chronic SCI clinical trials. Although the effects of SCs to support nerve regeneration are indisputable, their efficacy for clinical SCI has been limited according to the outcomes examined. CONCLUSIONS This review discusses the current limitations of transplanted SCs within the damaged spinal cord environment. Limitations include limited post-transplant cell survival, the inability of SCs to migrate within astrocytic parenchyma, and restricted axonal regeneration out of SC-rich graft regions. We describe steps to amplify the survival and integration of transplanted SCs and to expand the repertoire of uses of SCs, including SC-derived extracellular vesicles. The relative merits of transplanting autologous versus allogeneic SCs and the role that endogenous SCs play in spinal cord repair are described. Finally, we briefly describe the issues requiring solutions to scale up SC manufacturing for commercial use.
Collapse
Affiliation(s)
- James D Guest
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P Solano
- Pediatric Critical Care, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P de Rivero Vaccari
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William D Dietrich
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aisha Khan
- The Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Allan D Levi
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
5
|
Nain A, Chakraborty S, Barman SR, Gavit P, Indrakumar S, Agrawal A, Lin ZH, Chatterjee K. Progress in the development of piezoelectric biomaterials for tissue remodeling. Biomaterials 2024; 307:122528. [PMID: 38522326 DOI: 10.1016/j.biomaterials.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Piezoelectric biomaterials have demonstrated significant potential in the past few decades to heal damaged tissue and restore cellular functionalities. Herein, we discuss the role of bioelectricity in tissue remodeling and explore ways to mimic such tissue-like properties in synthetic biomaterials. In the past decade, biomedical engineers have adopted emerging functional biomaterials-based tissue engineering approaches using innovative bioelectronic stimulation protocols based on dynamic stimuli to direct cellular activation, proliferation, and differentiation on engineered biomaterial constructs. The primary focus of this review is to discuss the concepts of piezoelectric energy harvesting, piezoelectric materials, and their application in soft (skin and neural) and hard (dental and bone) tissue regeneration. While discussing the prospective applications as an engineered tissue, an important distinction has been made between piezoceramics, piezopolymers, and their composites. The superiority of piezopolymers over piezoceramics to circumvent issues such as stiffness mismatch, biocompatibility, and biodegradability are highlighted. We aim to provide a comprehensive review of the field and identify opportunities for the future to develop clinically relevant and state-of-the-art biomaterials for personalized and remote health care.
Collapse
Affiliation(s)
- Amit Nain
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| | - Srishti Chakraborty
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Snigdha Roy Barman
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Pratik Gavit
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India; School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sushma Indrakumar
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Akhilesh Agrawal
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipe, 10617, Taiwan.
| | - Kaushik Chatterjee
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India; Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
6
|
Nekanti U, Sakthivel PS, Zahedi A, Creasman DA, Nishi RA, Dumont CM, Piltti KM, Guardamondo GL, Hernandez N, Chen X, Song H, Lin X, Martinez J, On L, Lakatos A, Pawar K, David BT, Guo Z, Seidlits SK, Xu X, Shea LD, Cummings BJ, Anderson AJ. Multichannel bridges and NSC synergize to enhance axon regeneration, myelination, synaptic reconnection, and recovery after SCI. NPJ Regen Med 2024; 9:12. [PMID: 38499577 PMCID: PMC10948859 DOI: 10.1038/s41536-024-00356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
Regeneration in the injured spinal cord is limited by physical and chemical barriers. Acute implantation of a multichannel poly(lactide-co-glycolide) (PLG) bridge mechanically stabilizes the injury, modulates inflammation, and provides a permissive environment for rapid cellularization and robust axonal regrowth through this otherwise inhibitory milieu. However, without additional intervention, regenerated axons remain largely unmyelinated (<10%), limiting functional repair. While transplanted human neural stem cells (hNSC) myelinate axons after spinal cord injury (SCI), hNSC fate is highly influenced by the SCI inflammatory microenvironment, also limiting functional repair. Accordingly, we investigated the combination of PLG scaffold bridges with hNSC to improve histological and functional outcome after SCI. In vitro, hNSC culture on a PLG scaffold increased oligodendroglial lineage selection after inflammatory challenge. In vivo, acute PLG bridge implantation followed by chronic hNSC transplantation demonstrated a robust capacity of donor human cells to migrate into PLG bridge channels along regenerating axons and integrate into the host spinal cord as myelinating oligodendrocytes and synaptically integrated neurons. Axons that regenerated through the PLG bridge formed synaptic circuits that connected the ipsilateral forelimb muscle to contralateral motor cortex. hNSC transplantation significantly enhanced the total number of regenerating and myelinated axons identified within the PLG bridge. Finally, the combination of acute bridge implantation and hNSC transplantation exhibited robust improvement in locomotor recovery. These data identify a successful strategy to enhance neurorepair through a temporally layered approach using acute bridge implantation and chronic cell transplantation to spare tissue, promote regeneration, and maximize the function of new axonal connections.
Collapse
Affiliation(s)
- Usha Nekanti
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA.
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
| | - Pooja S Sakthivel
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Atena Zahedi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Dana A Creasman
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Rebecca A Nishi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katja M Piltti
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Glenn L Guardamondo
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Norbert Hernandez
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Xingyuan Chen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Hui Song
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Xiaoxiao Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Joshua Martinez
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Lillian On
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Anita Lakatos
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Kiran Pawar
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Zhiling Guo
- Department of Medicine & Susan Samueli Integrative Health Institute, University of California, Irvine, CA, USA
| | - Stephanie K Seidlits
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Center for Neural Circuit Mapping, University of California Irvine, Irvine, CA, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brian J Cummings
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
- Institute for Memory Impairments & Neurological Disorder, University of California Irvine, Irvine, CA, USA
| | - Aileen J Anderson
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA.
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.
- Institute for Memory Impairments & Neurological Disorder, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Jagrit V, Koffler J, Dulin JN. Combinatorial strategies for cell transplantation in traumatic spinal cord injury. Front Neurosci 2024; 18:1349446. [PMID: 38510468 PMCID: PMC10951004 DOI: 10.3389/fnins.2024.1349446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Spinal cord injury (SCI) substantially reduces the quality of life of affected individuals. Recovery of function is therefore a primary concern of the patient population and a primary goal for therapeutic interventions. Currently, even with growing numbers of clinical trials, there are still no effective treatments that can improve neurological outcomes after SCI. A large body of work has demonstrated that transplantation of neural stem/progenitor cells (NSPCs) can promote regeneration of the injured spinal cord by providing new neurons that can integrate into injured host neural circuitry. Despite these promising findings, the degree of functional recovery observed after NSPC transplantation remains modest. It is evident that treatment of such a complex injury cannot be addressed with a single therapeutic approach. In this mini-review, we discuss combinatorial strategies that can be used along with NSPC transplantation to promote spinal cord regeneration. We begin by introducing bioengineering and neuromodulatory approaches, and highlight promising work using these strategies in integration with NSPCs transplantation. The future of NSPC transplantation will likely include a multi-factorial approach, combining stem cells with biomaterials and/or neuromodulation as a promising treatment for SCI.
Collapse
Affiliation(s)
- Vipin Jagrit
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jacob Koffler
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Veterans Affairs Medical Center, San Diego, CA, United States
| | - Jennifer N. Dulin
- Department of Biology, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Rose SC, Larsen M, Xie Y, Sharfstein ST. Salivary Gland Bioengineering. Bioengineering (Basel) 2023; 11:28. [PMID: 38247905 PMCID: PMC10813147 DOI: 10.3390/bioengineering11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Salivary gland dysfunction affects millions globally, and tissue engineering may provide a promising therapeutic avenue. This review delves into the current state of salivary gland tissue engineering research, starting with a study of normal salivary gland development and function. It discusses the impact of fibrosis and cellular senescence on salivary gland pathologies. A diverse range of cells suitable for tissue engineering including cell lines, primary salivary gland cells, and stem cells are examined. Moreover, the paper explores various supportive biomaterials and scaffold fabrication methodologies that enhance salivary gland cell survival, differentiation, and engraftment. Innovative engineering strategies for the improvement of vascularization, innervation, and engraftment of engineered salivary gland tissue, including bioprinting, microfluidic hydrogels, mesh electronics, and nanoparticles, are also evaluated. This review underscores the promising potential of this research field for the treatment of salivary gland dysfunction and suggests directions for future exploration.
Collapse
Affiliation(s)
- Stephen C. Rose
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA;
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| |
Collapse
|
9
|
Howard EM, Strittmatter SM. Development of neural repair therapy for chronic spinal cord trauma: soluble Nogo receptor decoy from discovery to clinical trial. Curr Opin Neurol 2023; 36:516-522. [PMID: 37865850 PMCID: PMC10841037 DOI: 10.1097/wco.0000000000001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW After traumatic spinal cord injury (SCI), neurological deficits persist due to the disconnection of surviving neurons. While repair of connectivity may restore function, no medical therapy exists today.This review traces the development of the neural repair-based therapeutic AXER-204 from animal studies to the recent clinical trial for chronic cervical SCI. RECENT FINDINGS Molecular studies reveal a Nogo-66 Receptor 1 (NgR1, RTN4R) pathway inhibiting axon regeneration, sprouting, and plasticity in the adult mammalian central nervous system (CNS). Rodent and nonhuman primate studies demonstrate that the soluble receptor decoy NgR(310)ecto-Fc or AXER-204 promotes neural repair and functional recovery in transection and contusion SCI. Recently, this biological agent completed a first-in-human and randomized clinical trial for chronic cervical SCI. The intervention was safe and well tolerated. Across all participants, upper extremity strength did not improve with treatment. However, posthoc and biomarker analyses suggest that AXER-204 may benefit treatment-naïve patients with incomplete SCI in the chronic stage. SUMMARY NgR1 signaling restricts neurological recovery in animal studies of CNS injury. The recent clinical trial of AXER-204 provides encouraging signals supporting future focused trials of this neural repair therapeutic. Further, AXER-204 studies provide a roadmap for the development of additional and synergistic therapies for chronic SCI.
Collapse
Affiliation(s)
- Elisa M. Howard
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
10
|
Estera LA, Walsh SP, Headen JA, Williamson RE, Kalinski AL. Neuroinflammation: Breaking barriers and bridging gaps. Neurosci Res 2023; 197:9-17. [PMID: 34748905 DOI: 10.1016/j.neures.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Neurons are the cells of the nervous system and are responsible for every thought, movement and perception. Immune cells are the cells of the immune system, constantly protecting from foreign pathogens. Understanding the interaction between the two systems is especially important in disease states such as autoimmune or neurodegenerative disease. Unfortunately, this interaction is typically detrimental to the host. However, recent efforts have focused on how neurons and immune cells interact, either directly or indirectly, following traumatic injury to the nervous system. The outcome of this interaction can be beneficial - leading to successful neural repair, or detrimental - leading to functional deficits, depending on where the injury occurs. This review will discuss our understanding of neuron-immune cell interactions after traumatic injury to both the peripheral and central nervous system.
Collapse
Affiliation(s)
- Lora A Estera
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Sam P Walsh
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Jordan A Headen
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | - Ashley L Kalinski
- Department of Biology, Ball State University, Muncie, IN 47306, USA.
| |
Collapse
|
11
|
Santiago AR, Aires ID, Agudo-Barriuso M, Boia R. Editorial: Molecular and cellular players of axonal regeneration in injured CNS. Front Neurosci 2023; 17:1315632. [PMID: 38027499 PMCID: PMC10646573 DOI: 10.3389/fnins.2023.1315632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Ana Raquel Santiago
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- University of Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal
| | - Inês Dinis Aires
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Murcia, Spain
| | - Raquel Boia
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
12
|
Mohebichamkhorami F, Niknam Z, Zali H, Mostafavi E. Therapeutic Potential of Oral-Derived Mesenchymal Stem Cells in Retinal Repair. Stem Cell Rev Rep 2023; 19:2709-2723. [PMID: 37733198 DOI: 10.1007/s12015-023-10626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The retina has restricted regeneration ability to recover injured cell layer because of reduced production of neurotrophic factors and increased inhibitory molecules against axon regrowth. A diseased retina could be regenerated by repopulating the damaged tissue with functional cell sources like mesenchymal stem cells (MSCs). The cells are able to release neurotrophic factors (NFs) to boost axonal regeneration and cell maintenance. In the current study, we comprehensively explore the potential of various types of stem cells (SCs) from oral cavity as promising therapeutic options in retinal regeneration. The oral MSCs derived from cranial neural crest cells (CNCCs) which explains their broad neural differentiation potential and secret rich NFs. They are comprised of dental pulp SCs (DPSCs), SCs from exfoliated deciduous teeth (SHED), SCs from apical papilla (SCAP), periodontal ligament-derived SCs (PDLSCs), gingival MSCs (GMSCs), and dental follicle SCs (DFSCs). The Oral MSCs are becoming a promising source of cells for cell-free or cell-based therapeutic approach to recover degenerated retinal. These cells have various mechanisms of action in retinal regeneration including cell replacement and the paracrine effect. It was demonstrated that they have more neuroprotective and neurotrophic effects on retinal cells than immediate replacement of injured cells in retina. This could be the reason that their therapeutic effects would be weakened over time. It can be concluded that neuronal and retinal regeneration through these cells is most likely due to their NFs that dramatically suppress oxidative stress, inflammation, and apoptosis. Although, oral MSCs are attractive therapeutic options for retinal injuries, more preclinical and clinical investigations are required.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Food Science & Technology, University of California, Davis, CA, 95616, USA
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Zeng CW, Tsai HJ. The Promising Role of a Zebrafish Model Employed in Neural Regeneration Following a Spinal Cord Injury. Int J Mol Sci 2023; 24:13938. [PMID: 37762240 PMCID: PMC10530783 DOI: 10.3390/ijms241813938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in a wide range of physical impairments and disabilities. Despite the advances in our understanding of the biological response to injured tissue, no effective treatments are available for SCIs at present. Some studies have addressed this issue by exploring the potential of cell transplantation therapy. However, because of the abnormal microenvironment in injured tissue, the survival rate of transplanted cells is often low, thus limiting the efficacy of such treatments. Many studies have attempted to overcome these obstacles using a variety of cell types and animal models. Recent studies have shown the utility of zebrafish as a model of neural regeneration following SCIs, including the proliferation and migration of various cell types and the involvement of various progenitor cells. In this review, we discuss some of the current challenges in SCI research, including the accurate identification of cell types involved in neural regeneration, the adverse microenvironment created by SCIs, attenuated immune responses that inhibit nerve regeneration, and glial scar formation that prevents axonal regeneration. More in-depth studies are needed to fully understand the neural regeneration mechanisms, proteins, and signaling pathways involved in the complex interactions between the SCI microenvironment and transplanted cells in non-mammals, particularly in the zebrafish model, which could, in turn, lead to new therapeutic approaches to treat SCIs in humans and other mammals.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
14
|
Bandla AC, Sheth AS, Zarate SM, Uskamalla S, Hager EC, Villarreal VA, González-García M, Ballestero RP. Enhancing structural plasticity of PC12 neurons during differentiation and neurite regeneration with a catalytically inactive mutant version of the zRICH protein. BMC Neurosci 2023; 24:43. [PMID: 37612637 PMCID: PMC10463786 DOI: 10.1186/s12868-023-00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 06/23/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Studies of the molecular mechanisms of nerve regeneration have led to the discovery of several proteins that are induced during successful nerve regeneration. RICH proteins were identified as proteins induced during the regeneration of the optic nerve of teleost fish. These proteins are 2',3'-cyclic nucleotide, 3'-phosphodiesterases that can bind to cellular membranes through a carboxy-terminal membrane localization domain. They interact with the tubulin cytoskeleton and are able to enhance neuronal structural plasticity by promoting the formation of neurite branches. RESULTS PC12 stable transfectant cells expressing a fusion protein combining a red fluorescent protein with a catalytically inactive mutant version of zebrafish RICH protein were generated. These cells were used as a model to analyze effects of the protein on neuritogenesis. Differentiation experiments showed a 2.9 fold increase in formation of secondary neurites and a 2.4 fold increase in branching points. A 2.2 fold increase in formation of secondary neurites was observed in neurite regeneration assays. CONCLUSIONS The use of a fluorescent fusion protein facilitated detection of expression levels. Two computer-assisted morphometric analysis methods indicated that the catalytically inactive RICH protein induced the formation of branching points and secondary neurites both during differentiation and neurite regeneration. A procedure based on analysis of random field images provided comparable results to classic neurite tracing methods.
Collapse
Affiliation(s)
- Ashoka C Bandla
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Aditya S Sheth
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Sara M Zarate
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Suraj Uskamalla
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Elizabeth C Hager
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| | - Victor A Villarreal
- Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | | | - Rafael P Ballestero
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA.
| |
Collapse
|
15
|
Hejrati N, Wong R, Khazaei M, Fehlings MG. How can clinical safety and efficacy concerns in stem cell therapy for spinal cord injury be overcome? Expert Opin Biol Ther 2023; 23:883-899. [PMID: 37545020 DOI: 10.1080/14712598.2023.2245321] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Spinal cord injury (SCI) can lead to severe neurological dysfunction. Despite scientific and medical advances, clinically effective regenerative therapies including stem cells are lacking for SCI. AREAS COVERED This paper discusses translational challenges related to the safe, effective use of stem cells for SCI, with a focus on mesenchymal stem cells (MSCs), neural stem cells (NSCs), Schwann cells (SCs), olfactory ensheathing cells (OECs), oligodendrocyte precursor cells (OPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). We discuss approaches to enhance the efficacy of cell-based strategies by i) addressing patient heterogeneity and enhancing patient selection; ii) selecting cell type, cell source, cell developmental stage, and delivery technique; iii) enhancing graft integration and mitigating immune-mediated graft rejection; and iv) ensuring availability of cells. Additionally, we review strategies to optimize outcomes including combinatorial use of rehabilitation and discuss ways to mitigate potential risks of tumor formation associated with stem cell-based strategies. EXPERT OPINION Basic science research will drive translational advances to develop stem cell-based therapies for SCI. Genetic, serological, and imaging biomarkers may enable individualization of cell-based treatments. Moreover, combinatorial strategies will be required to enhance graft survival, migration and functional integration, to enable precision-based intervention.
Collapse
Affiliation(s)
- Nader Hejrati
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery & Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Raymond Wong
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mohamad Khazaei
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Cheung G, Lin YC, Papadopoulos V. Translocator protein in the rise and fall of central nervous system neurons. Front Cell Neurosci 2023; 17:1210205. [PMID: 37416505 PMCID: PMC10322222 DOI: 10.3389/fncel.2023.1210205] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Translocator protein (TSPO), a 18 kDa protein found in the outer mitochondrial membrane, has historically been associated with the transport of cholesterol in highly steroidogenic tissues though it is found in all cells throughout the mammalian body. TSPO has also been associated with molecular transport, oxidative stress, apoptosis, and energy metabolism. TSPO levels are typically low in the central nervous system (CNS), but a significant upregulation is observed in activated microglia during neuroinflammation. However, there are also a few specific regions that have been reported to have higher TSPO levels than the rest of the brain under normal conditions. These include the dentate gyrus of the hippocampus, the olfactory bulb, the subventricular zone, the choroid plexus, and the cerebellum. These areas are also all associated with adult neurogenesis, yet there is no explanation of TSPO's function in these cells. Current studies have investigated the role of TSPO in microglia during neuron degeneration, but TSPO's role in the rest of the neuron lifecycle remains to be elucidated. This review aims to discuss the known functions of TSPO and its potential role in the lifecycle of neurons within the CNS.
Collapse
|
17
|
Huang H, Ramon-Cueto A, El Masri W, Moviglia GA, Saberi H, Sharma HS, Otom A, Chen L, Siniscalco D, Sarnowska A. Advances in Neurorestoratology-Current status and future developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:207-239. [PMID: 37783556 DOI: 10.1016/bs.irn.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurorestoratology constitutes a novel discipline aimed at the restoration of damaged neural structures and impaired neurological functions. This area of knowledge integrates and compiles all concepts and strategies dealing with the neurorestoration. Although currently, this discipline has already been well recognized by physicians and scientists throughout the world, this article aimed at broadening its knowledge to the academic circle and the public society. Here we shortly introduced why and how Neurorestoratology was born since the fact that the central nervous system (CNS) can be repaired and the subsequent scientific evidence of the neurorestorative mechanisms behind, such as neurostimulation or neuromodulation, neuroprotection, neuroplasticity, neurogenesis, neuroregeneration or axonal regeneration or sprouting, neuroreplacement, loop reconstruction, remyelination, immunoregulation, angiogenesis or revascularization, and others. The scope of this discipline is the improvement of therapeutic approaches for neurological diseases and the development of neurorestorative strategies through the comprehensive efforts of experts in the different areas and all articulated by the associations of Neurorestoratology and its journals. Strikingly, this article additionally explores the "state of art" of the Neurorestoratology field. This includes the development process of the discipline, the achievements and advances of novel neurorestorative treatments, the most efficient procedures exploring and evaluating outcome after the application of pioneer therapies, all the joining of a multidisciplinary expert associations and the specialized journals being more and more impact. We believe that in a near future, this discipline will evolve fast, leading to a general application of cell-based comprehensive neurorestorative treatments to fulfill functional recovery demands for patients with neurological deficits or dysfunctions.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| | - Almudena Ramon-Cueto
- Health Center Colmenar Norte, Plaza de Los Ríos 1, Colmenar Viejo, Madrid, Spain
| | - Wagih El Masri
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Spinal Injuries Keele University, Oswestry, United Kingdom
| | - Gustavo A Moviglia
- Wake Forest Institute for Regenerative Medicine. Winston Salem, NC, United States
| | - Hooshang Saberi
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Ali Otom
- Royal Specialty Center for Spine & M-Skeletal Disorders, Amman, Jordan
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Sarnowska
- Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Michel-Flutot P, Lane MA, Lepore AC, Vinit S. Therapeutic Strategies Targeting Respiratory Recovery after Spinal Cord Injury: From Preclinical Development to Clinical Translation. Cells 2023; 12:1519. [PMID: 37296640 PMCID: PMC10252981 DOI: 10.3390/cells12111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
High spinal cord injuries (SCIs) lead to permanent functional deficits, including respiratory dysfunction. Patients living with such conditions often rely on ventilatory assistance to survive, and even those that can be weaned continue to suffer life-threatening impairments. There is currently no treatment for SCI that is capable of providing complete recovery of diaphragm activity and respiratory function. The diaphragm is the main inspiratory muscle, and its activity is controlled by phrenic motoneurons (phMNs) located in the cervical (C3-C5) spinal cord. Preserving and/or restoring phMN activity following a high SCI is essential for achieving voluntary control of breathing. In this review, we will highlight (1) the current knowledge of inflammatory and spontaneous pro-regenerative processes occurring after SCI, (2) key therapeutics developed to date, and (3) how these can be harnessed to drive respiratory recovery following SCIs. These therapeutic approaches are typically first developed and tested in relevant preclinical models, with some of them having been translated into clinical studies. A better understanding of inflammatory and pro-regenerative processes, as well as how they can be therapeutically manipulated, will be the key to achieving optimal functional recovery following SCIs.
Collapse
Affiliation(s)
- Pauline Michel-Flutot
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Michael A. Lane
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
| | - Angelo C. Lepore
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
19
|
Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023; 17:1180825. [PMID: 37293626 PMCID: PMC10244598 DOI: 10.3389/fncel.2023.1180825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Axonal regeneration and functional recovery are poor after spinal cord injury (SCI), typified by the formation of an injury scar. While this scar was traditionally believed to be primarily responsible for axonal regeneration failure, current knowledge takes a more holistic approach that considers the intrinsic growth capacity of axons. Targeting the SCI scar has also not reproducibly yielded nearly the same efficacy in animal models compared to these neuron-directed approaches. These results suggest that the major reason behind central nervous system (CNS) regeneration failure is not the injury scar but a failure to stimulate axon growth adequately. These findings raise questions about whether targeting neuroinflammation and glial scarring still constitute viable translational avenues. We provide a comprehensive review of the dual role of neuroinflammation and scarring after SCI and how future research can produce therapeutic strategies targeting the hurdles to axonal regeneration posed by these processes without compromising neuroprotection.
Collapse
|
20
|
Rizk E, Madrid A, Koueik J, Sun D, Stewart K, Chen D, Luo S, Hong F, Papale LA, Hariharan N, Alisch RS, Iskandar BJ. Purified regenerating retinal neurons reveal regulatory role of DNA methylation-mediated Na+/K+-ATPase in murine axon regeneration. Commun Biol 2023; 6:120. [PMID: 36717618 PMCID: PMC9886953 DOI: 10.1038/s42003-023-04463-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
While embryonic mammalian central nervous system (CNS) axons readily grow and differentiate, only a minority of fully differentiated mature CNS neurons are able to regenerate injured axons, leading to stunted functional recovery after injury and disease. To delineate DNA methylation changes specifically associated with axon regeneration, we used a Fluorescent-Activated Cell Sorting (FACS)-based methodology in a rat optic nerve transection model to segregate the injured retinal ganglion cells (RGCs) into regenerating and non-regenerating cell populations. Whole-genome DNA methylation profiling of these purified neurons revealed genes and pathways linked to mammalian RGC regeneration. Moreover, whole-methylome sequencing of purified uninjured adult and embryonic RGCs identified embryonic molecular profiles reactivated after injury in mature neurons, and others that correlate specifically with embryonic or adult axon growth, but not both. The results highlight the contribution to both embryonic growth and adult axon regeneration of subunits encoding the Na+/K+-ATPase. In turn, both biochemical and genetic inhibition of the Na+/K+-ATPase pump significantly reduced RGC axon regeneration. These data provide critical molecular insights into mammalian CNS axon regeneration, pinpoint the Na+/K+-ATPase as a key regulator of regeneration of injured mature CNS axons, and suggest that successful regeneration requires, in part, reactivation of embryonic signals.
Collapse
Affiliation(s)
- Elias Rizk
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA ,grid.240473.60000 0004 0543 9901Department of Neurological Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033 USA
| | - Andy Madrid
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Joyce Koueik
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Dandan Sun
- grid.21925.3d0000 0004 1936 9000Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Krista Stewart
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - David Chen
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Susan Luo
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Felissa Hong
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Ligia A. Papale
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Nithya Hariharan
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Reid S. Alisch
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Bermans J. Iskandar
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| |
Collapse
|
21
|
Zheng B, Tuszynski MH. Regulation of axonal regeneration after mammalian spinal cord injury. Nat Rev Mol Cell Biol 2023; 24:396-413. [PMID: 36604586 DOI: 10.1038/s41580-022-00562-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 01/06/2023]
Abstract
One hundred years ago, Ramón y Cajal, considered by many as the founder of modern neuroscience, stated that neurons of the adult central nervous system (CNS) are incapable of regenerating. Yet, recent years have seen a tremendous expansion of knowledge in the molecular control of axon regeneration after CNS injury. We now understand that regeneration in the adult CNS is limited by (1) a failure to form cellular or molecular substrates for axon attachment and elongation through the lesion site; (2) environmental factors, including inhibitors of axon growth associated with myelin and the extracellular matrix; (3) astrocyte responses, which can both limit and support axon growth; and (4) intraneuronal mechanisms controlling the establishment of an active cellular growth programme. We discuss these topics together with newly emerging hypotheses, including the surprising finding from transcriptomic analyses of the corticospinal system in mice that neurons revert to an embryonic state after spinal cord injury, which can be sustained to promote regeneration with neural stem cell transplantation. These gains in knowledge are steadily advancing efforts to develop effective treatment strategies for spinal cord injury in humans.
Collapse
Affiliation(s)
- Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| | - Mark H Tuszynski
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| |
Collapse
|
22
|
Abd Razak NH, Zainey AS, Idris J, Daud MF. The Fundamentals of Schwann Cell Biology. INDUSTRIAL REVOLUTION IN KNOWLEDGE MANAGEMENT AND TECHNOLOGY 2023:105-113. [DOI: 10.1007/978-3-031-29265-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
24
|
Mesquida-Veny F, Martínez-Torres S, Del Río JA, Hervera A. Genetic control of neuronal activity enhances axonal growth only on permissive substrates. Mol Med 2022; 28:97. [PMID: 35978278 PMCID: PMC9387030 DOI: 10.1186/s10020-022-00524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background Neural tissue has limited regenerative ability. To cope with that, in recent years a diverse set of novel tools has been used to tailor neurostimulation therapies and promote functional regeneration after axonal injuries. Method In this report, we explore cell-specific methods to modulate neuronal activity, including opto- and chemogenetics to assess the effect of specific neuronal stimulation in the promotion of axonal regeneration after injury. Results Opto- and chemogenetic stimulations of neuronal activity elicited increased in vitro neurite outgrowth in both sensory and cortical neurons, as well as in vivo regeneration in the sciatic nerve, but not after spinal cord injury. Mechanistically, inhibitory substrates such as chondroitin sulfate proteoglycans block the activity induced increase in axonal growth. Conclusions We found that genetic modulations of neuronal activity on both dorsal root ganglia and corticospinal motor neurons increase their axonal growth capacity but only on permissive environments. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00524-2.
Collapse
Affiliation(s)
- Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Sara Martínez-Torres
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain. .,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain. .,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
25
|
Ghosh S, Roy P, Lahiri D. Enhanced neurogenic differentiation on anisotropically conductive carbon nanotube reinforced polycaprolactone-collagen scaffold by applying direct coupling electrical stimulation. Int J Biol Macromol 2022; 218:269-284. [PMID: 35843399 DOI: 10.1016/j.ijbiomac.2022.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022]
Abstract
Electrical stimulation is conducive to neural regeneration. Different types of stimuli propagation patterns are required for regenerating cells in peripheral and central nervous systems. Modulation of the pattern of stimuli propagation cannot be achieved through external means. Reinforcing scaffolds, with suitably shaped conductive second phase materials, is a promising option in this regard. The present study has taken the effort of modulating the pattern (arrangement) of reinforced phase, namely multiwalled carbon nanotubes (MWCNT), in a biodegradable scaffold made of PCL-collagen mixture, by applying an external electric field during curing. Because of their extraordinary physical properties, MWCNTs have been selected as nano-reinforcement for this study. The nature of reinforcement affects the electrical conductivity of the scaffold and also determines the type of cell it can support for regeneration. Further, electrical stimulation, applied during incubation, was observed to have a positive influence on differentiating neural cells in vitro. However, the structure of the nano-reinforcement determined the differentiated morphology of the cells. Reinforced MWCNTs being tubes, imparted bipolarity to the cells. Therefore, these scaffolds, coupled with electrical stimulation possess significant potential to be used for directional regeneration of the nerves.
Collapse
Affiliation(s)
- Souvik Ghosh
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
26
|
Pottorf TS, Rotterman TM, McCallum WM, Haley-Johnson ZA, Alvarez FJ. The Role of Microglia in Neuroinflammation of the Spinal Cord after Peripheral Nerve Injury. Cells 2022; 11:cells11132083. [PMID: 35805167 PMCID: PMC9265514 DOI: 10.3390/cells11132083] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injuries induce a pronounced immune reaction within the spinal cord, largely governed by microglia activation in both the dorsal and ventral horns. The mechanisms of activation and response of microglia are diverse depending on the location within the spinal cord, type, severity, and proximity of injury, as well as the age and species of the organism. Thanks to recent advancements in neuro-immune research techniques, such as single-cell transcriptomics, novel genetic mouse models, and live imaging, a vast amount of literature has come to light regarding the mechanisms of microglial activation and alluding to the function of microgliosis around injured motoneurons and sensory afferents. Herein, we provide a comparative analysis of the dorsal and ventral horns in relation to mechanisms of microglia activation (CSF1, DAP12, CCR2, Fractalkine signaling, Toll-like receptors, and purinergic signaling), and functionality in neuroprotection, degeneration, regeneration, synaptic plasticity, and spinal circuit reorganization following peripheral nerve injury. This review aims to shed new light on unsettled controversies regarding the diversity of spinal microglial-neuronal interactions following injury.
Collapse
Affiliation(s)
- Tana S. Pottorf
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Travis M. Rotterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA;
| | - William M. McCallum
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Zoë A. Haley-Johnson
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Francisco J. Alvarez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
- Correspondence:
| |
Collapse
|
27
|
Cooke P, Janowitz H, Dougherty SE. Neuronal Redevelopment and the Regeneration of Neuromodulatory Axons in the Adult Mammalian Central Nervous System. Front Cell Neurosci 2022; 16:872501. [PMID: 35530177 PMCID: PMC9074815 DOI: 10.3389/fncel.2022.872501] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 01/09/2023] Open
Abstract
One reason that many central nervous system injuries, including those arising from traumatic brain injury, spinal cord injury, and stroke, have limited recovery of function is that neurons within the adult mammalian CNS lack the ability to regenerate their axons following trauma. This stands in contrast to neurons of the adult mammalian peripheral nervous system (PNS). New evidence, provided by single-cell expression profiling, suggests that, following injury, both mammalian central and peripheral neurons can revert to an embryonic-like growth state which is permissive for axon regeneration. This “redevelopment” strategy could both facilitate a damage response necessary to isolate and repair the acute damage from injury and provide the intracellular machinery necessary for axon regrowth. Interestingly, serotonin neurons of the rostral group of raphe nuclei, which project their axons into the forebrain, display a robust ability to regenerate their axons unaided, counter to the widely held view that CNS axons cannot regenerate without experimental intervention after injury. Furthermore, initial evidence suggests that norepinephrine neurons within the locus coeruleus possess similar regenerative abilities. Several morphological characteristics of serotonin axon regeneration in adult mammals, observable using longitudinal in vivo imaging, are distinct from the known characteristics of unaided peripheral nerve regeneration, or of the regeneration seen in the spinal cord and optic nerve that occurs with experimental intervention. These results suggest that there is an alternative CNS program for axon regeneration that likely differs from that displayed by the PNS.
Collapse
Affiliation(s)
- Patrick Cooke
- Linden Lab, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Haley Janowitz
- Linden Lab, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E Dougherty
- Linden Lab, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
28
|
Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol 2022; 21:659-670. [DOI: 10.1016/s1474-4422(21)00464-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
|
29
|
Xu S, Wu Q, Zhang W, Liu T, Zhang Y, Zhang W, Zhang Y, Chen X. Riluzole Promotes Neurite Growth in Rats after Spinal Cord Injury through the GSK-3β/CRMP-2 Pathway. Biol Pharm Bull 2022; 45:569-575. [DOI: 10.1248/bpb.b21-00693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Songjie Xu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University
| | - Qichao Wu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University
| | - Wenkai Zhang
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University
| | - Tao Liu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University
| | - Yanjun Zhang
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University
| | - Wenxiu Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University
| | - Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University
| | - Xueming Chen
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University
| |
Collapse
|
30
|
Slater PG, Domínguez-Romero ME, Villarreal M, Eisner V, Larraín J. Mitochondrial function in spinal cord injury and regeneration. Cell Mol Life Sci 2022; 79:239. [PMID: 35416520 PMCID: PMC11072423 DOI: 10.1007/s00018-022-04261-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Many people around the world suffer from some form of paralysis caused by spinal cord injury (SCI), which has an impact on quality and life expectancy. The spinal cord is part of the central nervous system (CNS), which in mammals is unable to regenerate, and to date, there is a lack of full functional recovery therapies for SCI. These injuries start with a rapid and mechanical insult, followed by a secondary phase leading progressively to greater damage. This secondary phase can be potentially modifiable through targeted therapies. The growing literature, derived from mammalian and regenerative model studies, supports a leading role for mitochondria in every cellular response after SCI: mitochondrial dysfunction is the common event of different triggers leading to cell death, cellular metabolism regulates the immune response, mitochondrial number and localization correlate with axon regenerative capacity, while mitochondrial abundance and substrate utilization regulate neural stem progenitor cells self-renewal and differentiation. Herein, we present a comprehensive review of the cellular responses during the secondary phase of SCI, the mitochondrial contribution to each of them, as well as evidence of mitochondrial involvement in spinal cord regeneration, suggesting that a more in-depth study of mitochondrial function and regulation is needed to identify potential targets for SCI therapeutic intervention.
Collapse
Affiliation(s)
- Paula G Slater
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.
| | - Miguel E Domínguez-Romero
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Maximiliano Villarreal
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Verónica Eisner
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| |
Collapse
|
31
|
Fu H, Hu D, Chen J, Wang Q, Zhang Y, Qi C, Yu T. Repair of the Injured Spinal Cord by Schwann Cell Transplantation. Front Neurosci 2022; 16:800513. [PMID: 35250447 PMCID: PMC8891437 DOI: 10.3389/fnins.2022.800513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/27/2022] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) can result in sensorimotor impairments or disability. Studies of the cellular response to SCI have increased our understanding of nerve regenerative failure following spinal cord trauma. Biological, engineering and rehabilitation strategies for repairing the injured spinal cord have shown impressive results in SCI models of both rodents and non-human primates. Cell transplantation, in particular, is becoming a highly promising approach due to the cells’ capacity to provide multiple benefits at the molecular, cellular, and circuit levels. While various cell types have been investigated, we focus on the use of Schwann cells (SCs) to promote SCI repair in this review. Transplantation of SCs promotes functional recovery in animal models and is safe for use in humans with subacute SCI. The rationales for the therapeutic use of SCs for SCI include enhancement of axon regeneration, remyelination of newborn or sparing axons, regulation of the inflammatory response, and maintenance of the survival of damaged tissue. However, little is known about the molecular mechanisms by which transplanted SCs exert a reparative effect on SCI. Moreover, SC-based therapeutic strategies face considerable challenges in preclinical studies. These issues must be clarified to make SC transplantation a feasible clinical option. In this review, we summarize the recent advances in SC transplantation for SCI, and highlight proposed mechanisms and challenges of SC-mediated therapy. The sparse information available on SC clinical application in patients with SCI is also discussed.
Collapse
Affiliation(s)
- Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Die Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Jinli Chen
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qizun Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Key Laboratory of Biomechanics of Hebei Province, Department of Trauma Emergency Center, The Third Hospital of Hebei Medical University, Orthopaedics Research Institution of Hebei Province, Shijiazhuang, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Chao Qi,
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Tengbo Yu,
| |
Collapse
|
32
|
Aldskogius H, Kozlova EN. Dorsal Root Injury-A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury. Cells 2021; 10:2185. [PMID: 34571835 PMCID: PMC8470715 DOI: 10.3390/cells10092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response closely resembling the one seen after direct spinal cord injury. In this review, we provide examples of previous research on dorsal root injury models and how these models can help future exploration of mechanisms and potential therapies for spinal cord injury repair.
Collapse
Affiliation(s)
- Håkan Aldskogius
- Laboratory of Regenertive Neurobiology, Biomedical Center, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden;
| | | |
Collapse
|
33
|
Slater PG, Palacios M, Larraín J. Xenopus, a Model to Study Wound Healing and Regeneration: Experimental Approaches. Cold Spring Harb Protoc 2021; 2021:pdb.top100966. [PMID: 33782095 DOI: 10.1101/pdb.top100966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Xenopus has been widely used as a model organism to study wound healing and regeneration. During early development and at tadpole stages, Xenopus is a quick healer and is able to regenerate multiple complex organs-abilities that decrease with the progression of metamorphosis. This unique capacity leads us to question which mechanisms allow and direct regeneration at stages before the beginning of metamorphosis and which ones are responsible for the loss of regenerative capacities during later stages. Xenopus is an ideal model to study regeneration and has contributed to the understanding of morphological, cellular, and molecular mechanisms involved in these processes. Nevertheless, there is still much to learn. Here we provide an overview on using Xenopus as a model organism to study regeneration and introduce protocols that can be used for studying wound healing and regeneration at multiple levels, thus enhancing our understanding of these phenomena.
Collapse
Affiliation(s)
- Paula G Slater
- Center for Aging and Regeneration, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago de Chile, Chile 7820436
| | - Miriam Palacios
- Center for Aging and Regeneration, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago de Chile, Chile 7820436
| | - Juan Larraín
- Center for Aging and Regeneration, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago de Chile, Chile 7820436
| |
Collapse
|
34
|
Abstract
BACKGROUND Restoration of vision in patients blinded by advanced optic neuropathies requires technologies that can either 1) salvage damaged and prevent further degeneration of retinal ganglion cells (RGCs), or 2) replace lost RGCs. EVIDENCE ACQUISITION Review of scientific literature. RESULTS In this article, we discuss the different barriers to cell-replacement based strategies for optic nerve regeneration and provide an update regarding what progress that has been made to overcome them. We also provide an update on current stem cell-based therapies for optic nerve regeneration. CONCLUSIONS As neuro-regenerative and cell-transplantation based strategies for optic nerve regeneration continue to be refined, researchers and clinicians will need to work together to determine who will be a good candidate for such therapies.
Collapse
|
35
|
Monje PV, Deng L, Xu XM. Human Schwann Cell Transplantation for Spinal Cord Injury: Prospects and Challenges in Translational Medicine. Front Cell Neurosci 2021; 15:690894. [PMID: 34220455 PMCID: PMC8249939 DOI: 10.3389/fncel.2021.690894] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023] Open
Abstract
The benefits of transplanting cultured Schwann cells (SCs) for the treatment of spinal cord injury (SCI) have been systematically investigated in experimental animals since the early 1990s. Importantly, human SC (hSC) transplantation for SCI has advanced to clinical testing and safety has been established via clinical trials conducted in the USA and abroad. However, multiple barriers must be overcome to enable accessible and effective treatments for SCI patients. This review presents available information on hSC transplantation for SCI with the intention to uncover gaps in our knowledge and discuss areas for future development. To this end, we introduce the historical progression of the work that supports existing and prospective clinical initiatives and explain the reasons for the choice of hSCs while also addressing their limitations as cell therapy products. A search of the relevant literature revealed that rat SCs have served as a preclinical model of reference since the onset of investigations, and that hSC transplants are relatively understudied, possibly due to the sophisticated resources and expertise needed for the traditional processing of hSC cultures from human nerves. In turn, we reason that additional experimentation and a reexamination of the available data are needed to understand the therapeutic value of hSC transplants taking into consideration that the manufacturing of the hSCs themselves may require further development for extended uses in basic research and clinical settings.
Collapse
Affiliation(s)
- Paula V. Monje
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
36
|
Liang JJ, Liu YF, Ng TK, Xu CY, Zhang M, Pang CP, Cen LP. Peritoneal macrophages attenuate retinal ganglion cell survival and neurite outgrowth. Neural Regen Res 2021; 16:1121-1126. [PMID: 33269759 PMCID: PMC8224139 DOI: 10.4103/1673-5374.300462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/19/2020] [Accepted: 06/10/2020] [Indexed: 02/05/2023] Open
Abstract
Inflammation is a critical pathophysiological process that modulates neuronal survival in the central nervous system after disease or injury. However, the effects and mechanisms of macrophage activation on neuronal survival remain unclear. In the present study, we co-cultured adult Fischer rat retinas with primary peritoneal macrophages or zymosan-treated peritoneal macrophages for 7 days. Immunofluorescence analysis revealed that peritoneal macrophages reduced retinal ganglion cell survival and neurite outgrowth in the retinal explant compared with the control group. The addition of zymosan to peritoneal macrophages attenuated the survival and neurite outgrowth of retinal ganglion cells. Conditioned media from peritoneal macrophages also reduced retinal ganglion cell survival and neurite outgrowth. This result suggests that secretions from peritoneal macrophages mediate the inhibitory effects of these macrophages. In addition, increased inflammation- and oxidation-related gene expression may be related to the enhanced retinal ganglion cell degeneration caused by zymosan activation. In summary, this study revealed that primary rat peritoneal macrophages attenuated retinal ganglion cell survival and neurite outgrowth, and that macrophage activation further aggravated retinal ganglion cell degeneration. This study was approved by the Animal Ethics Committee of the Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong Province, China, on March 11, 2014 (approval no. EC20140311(2)-P01).
Collapse
Affiliation(s)
- Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Yu-Fen Liu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ci-Yan Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Correspondence to: Ling-Ping Cen,
| |
Collapse
|
37
|
Knocking Out Non-muscle Myosin II in Retinal Ganglion Cells Promotes Long-Distance Optic Nerve Regeneration. Cell Rep 2021; 31:107537. [PMID: 32320663 PMCID: PMC7219759 DOI: 10.1016/j.celrep.2020.107537] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/03/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to altered gene expression, pathological cytoskeletal dynamics in the axon are another key intrinsic barrier for axon regeneration in the central nervous system (CNS). Here, we show that knocking out myosin IIA and IIB (myosin IIA/B) in retinal ganglion cells alone, either before or after optic nerve crush, induces significant optic nerve regeneration. Combined Lin28a overexpression and myosin IIA/B knockout lead to an additive promoting effect and long-distance axon regeneration. Immunostaining, RNA sequencing, and western blot analyses reveal that myosin II deletion does not affect known axon regeneration signaling pathways or the expression of regeneration-associated genes. Instead, it abolishes the retraction bulb formation and significantly enhances the axon extension efficiency. The study provides clear evidence that directly targeting neuronal cytoskeleton is sufficient to induce significant CNS axon regeneration and that combining altered gene expression in the soma and modified cytoskeletal dynamics in the axon is a promising approach for long-distance CNS axon regeneration.
Collapse
|
38
|
Anderson MA. Targeting Central Nervous System Regeneration with Cell Type Specificity. Neurosurg Clin N Am 2021; 32:397-405. [PMID: 34053727 DOI: 10.1016/j.nec.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There have been tremendous advances in identifying cellular and molecular mechanisms constraining axon growth and strategies have been developed to overcome regenerative failure. However, reproducible and meaningful functional recovery remains elusive. An emerging reason is that neurons possess subtype-specific activation requirements. Much of this evidence comes from studying retinal ganglion cells following optic nerve injury. This review summarizes key neuropathologic events following spinal cord injury, and draws on findings from the optic nerve to suggest how a similar framework may be used to dissect and manipulate the heterogeneous and subtype-specific responses of neurons useful to target for spinal cord injury.
Collapse
Affiliation(s)
- Mark A Anderson
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland; Neural Repair Unit, NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
39
|
Doblado LR, Martínez-Ramos C, Pradas MM. Biomaterials for Neural Tissue Engineering. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.643507] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The therapy of neural nerve injuries that involve the disruption of axonal pathways or axonal tracts has taken a new dimension with the development of tissue engineering techniques. When peripheral nerve injury (PNI), spinal cord injury (SCI), traumatic brain injury (TBI), or neurodegenerative disease occur, the intricate architecture undergoes alterations leading to growth inhibition and loss of guidance through large distance. To improve the limitations of purely cell-based therapies, the neural tissue engineering philosophy has emerged. Efforts are being made to produce an ideal scaffold based on synthetic and natural polymers that match the exact biological and mechanical properties of the tissue. Furthermore, through combining several components (biomaterials, cells, molecules), axonal regrowth is facilitated to obtain a functional recovery of the neural nerve diseases. The main objective of this review is to investigate the recent approaches and applications of neural tissue engineering approaches.
Collapse
|
40
|
Marshall KL, Farah MH. Axonal regeneration and sprouting as a potential therapeutic target for nervous system disorders. Neural Regen Res 2021; 16:1901-1910. [PMID: 33642358 PMCID: PMC8343323 DOI: 10.4103/1673-5374.308077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nervous system disorders are prevalent health issues that will only continue to increase in frequency as the population ages. Dying-back axonopathy is a hallmark of many neurologic diseases and leads to axonal disconnection from their targets, which in turn leads to functional impairment. During the course of many of neurologic diseases, axons can regenerate or sprout in an attempt to reconnect with the target and restore synapse function. In amyotrophic lateral sclerosis (ALS), distal motor axons retract from neuromuscular junctions early in the disease-course before significant motor neuron death. There is evidence of compensatory motor axon sprouting and reinnervation of neuromuscular junctions in ALS that is usually quickly overtaken by the disease course. Potential drugs that enhance compensatory sprouting and encourage reinnervation may slow symptom progression and retain muscle function for a longer period of time in ALS and in other diseases that exhibit dying-back axonopathy. There remain many outstanding questions as to the impact of distinct disease-causing mutations on axonal outgrowth and regeneration, especially in regards to motor neurons derived from patient induced pluripotent stem cells. Compartmentalized microfluidic chambers are powerful tools for studying the distal axons of human induced pluripotent stem cells-derived motor neurons, and have recently been used to demonstrate striking regeneration defects in human motor neurons harboring ALS disease-causing mutations. Modeling the human neuromuscular circuit with human induced pluripotent stem cells-derived motor neurons will be critical for developing drugs that enhance axonal regeneration, sprouting, and reinnervation of neuromuscular junctions. In this review we will discuss compensatory axonal sprouting as a potential therapeutic target for ALS, and the use of compartmentalized microfluidic devices to find drugs that enhance regeneration and axonal sprouting of motor axons.
Collapse
Affiliation(s)
| | - Mohamed H Farah
- Department of Neurology at Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Chen CZ, Neumann B, Förster S, Franklin RJM. Schwann cell remyelination of the central nervous system: why does it happen and what are the benefits? Open Biol 2021; 11:200352. [PMID: 33497588 PMCID: PMC7881176 DOI: 10.1098/rsob.200352] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Myelin sheaths, by supporting axonal integrity and allowing rapid saltatory impulse conduction, are of fundamental importance for neuronal function. In response to demyelinating injuries in the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) migrate to the lesion area, proliferate and differentiate into new oligodendrocytes that make new myelin sheaths. This process is termed remyelination. Under specific conditions, demyelinated axons in the CNS can also be remyelinated by Schwann cells (SCs), the myelinating cell of the peripheral nervous system. OPCs can be a major source of these CNS-resident SCs-a surprising finding given the distinct embryonic origins, and physiological compartmentalization of the peripheral and central nervous system. Although the mechanisms and cues governing OPC-to-SC differentiation remain largely undiscovered, it might nevertheless be an attractive target for promoting endogenous remyelination. This article will (i) review current knowledge on the origins of SCs in the CNS, with a particular focus on OPC to SC differentiation, (ii) discuss the necessary criteria for SC myelination in the CNS and (iii) highlight the potential of using SCs for myelin regeneration in the CNS.
Collapse
Affiliation(s)
| | | | | | - Robin J. M. Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| |
Collapse
|
42
|
Tsujioka H, Yamashita T. Neural circuit repair after central nervous system injury. Int Immunol 2020; 33:301-309. [PMID: 33270108 DOI: 10.1093/intimm/dxaa077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Central nervous system injury often causes lifelong impairment of neural function, because the regenerative ability of axons is limited, making a sharp contrast to the successful regeneration that is seen in the peripheral nervous system. Nevertheless, partial functional recovery is observed, because axonal branches of damaged or undamaged neurons sprout and form novel relaying circuits. Using a lot of animal models such as the spinal cord injury model or the optic nerve injury model, previous studies have identified many factors that promote or inhibit axonal regeneration or sprouting. Molecules in the myelin such as myelin-associated glycoprotein, Nogo-A or oligodendrocyte-myelin glycoprotein, or molecules found in the glial scar such as chondroitin sulfate proteoglycans, activate Ras homolog A (RhoA) signaling, which leads to the collapse of the growth cone and inhibit axonal regeneration. By contrast, axonal regeneration programs can be activated by many molecules such as regeneration-associated transcription factors, cyclic AMP, neurotrophic factors, growth factors, mechanistic target of rapamycin or immune-related molecules. Axonal sprouting and axonal regeneration largely share these mechanisms. For functional recovery, appropriate pruning or suppressing of aberrant sprouting are also important. In contrast to adults, neonates show much higher sprouting ability. Specific cell types, various mouse strains and different species show higher regenerative ability. Studies focusing on these models also identified a lot of molecules that affect the regenerative ability. A deeper understanding of the mechanisms of neural circuit repair will lead to the development of better therapeutic approaches for central nervous system injury.
Collapse
Affiliation(s)
- Hiroshi Tsujioka
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Bioscience, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Jisuikang Promotes the Repair of Spinal Cord Injury in Rats by Regulating NgR/RhoA/ROCK Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9542359. [PMID: 33354226 PMCID: PMC7735860 DOI: 10.1155/2020/9542359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/14/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
Jisuikang (JSK) is an herbal formula composed of many kinds of traditional Chinese medicine, which has been proved to be effective in promoting the rehabilitation of patients with spinal cord injury (SCI) after more than ten years of clinical application. However, the mechanisms of JSK promoting nerve regeneration are yet to be clarified. The aim of this study was to investigate the effects of JSK protecting neurons, specifically the regulation of NgR/RhoA/ROCK signal pathway. The motor function of rats was evaluated by the BBB score and inclined plate test, Golgi staining and transmission electron microscope were used to observe the microstructure of nerve tissue, and fluorescence double-labeling method was used to detect neuronal apoptosis. In this study, we found that JSK could improve the motor function of rats with SCI, protect the microstructure (mitochondria, endoplasmic reticulum, and dendritic spine) of neurons, and reduce the apoptosis rate of neurons in rats with SCI. In addition, JSK could inhibit the expression of Nogo receptor (NgR) in neurons and the NgR/RhoA/ROCK signal pathway in rats with SCI. These results indicated JSK could improve the motor function of rats with SCI by inhibiting the NgR/RhoA/ROCK signal pathway, which suggests the potential applicability of JSK as a nerve regeneration agent.
Collapse
|
44
|
Abbas WA, Ibrahim ME, El-Naggar M, Abass WA, Abdullah IH, Awad BI, Allam NK. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective. ACS Biomater Sci Eng 2020; 6:6490-6509. [PMID: 33320628 DOI: 10.1021/acsbiomaterials.0c01074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a devastating health condition that may lead to permanent disabilities and death. Understanding the pathophysiological perspectives of traumatic SCI is essential to define mechanisms that can help in designing recovery strategies. Since central nervous system tissues are notorious for their deficient ability to heal, efforts have been made to identify solutions to aid in restoration of the spinal cord tissues and thus its function. The two main approaches proposed to address this issue are neuroprotection and neuro-regeneration. Neuroprotection involves administering drugs to restore the injured microenvironment to normal after SCI. As for the neuro-regeneration approach, it focuses on axonal sprouting for functional recovery of the injured neural tissues and damaged axons. Despite the progress made in the field, neural regeneration treatment after SCI is still unsatisfactory owing to the disorganized way of axonal growth and extension. Nanomedicine and tissue engineering are considered promising therapeutic approaches that enhance axonal growth and directionality through implanting or injecting of the biomaterial scaffolds. One of these recent approaches is nanofibrous scaffolds that are used to provide physical support to maintain directional axonal growth in the lesion site. Furthermore, these preferable tissue-engineered substrates can afford axonal regeneration by mimicking the extracellular matrix of the neural tissues in terms of biological, chemical, and architectural characteristics. In this review, we discuss the regenerative approach using nanofibrous scaffolds with a focus on their fabrication methods and their properties that define their functionality performed to heal the neural tissue efficiently.
Collapse
Affiliation(s)
- Walaa A Abbas
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Maha E Ibrahim
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manar El-Naggar
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Wessam A Abass
- Center of Sustainable Development, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ibrahim H Abdullah
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Basem I Awad
- Mansoura Experimental Research Center (MERC), Department of Neurological Surgery, School of Medicine, Mansoura University, Mansoura, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
45
|
Tsata V, Beis D. In Full Force. Mechanotransduction and Morphogenesis during Homeostasis and Tissue Regeneration. J Cardiovasc Dev Dis 2020; 7:jcdd7040040. [PMID: 33019569 PMCID: PMC7711708 DOI: 10.3390/jcdd7040040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
The interactions of form and function have been the focus of numerous studies in the context of development and more recently regeneration. Our understanding on how cells, tissues and organs sense and interpret external cues, such as mechanical forces, is becoming deeper as novel techniques in imaging are applied and the relevant signaling pathways emerge. These cellular responses can be found from bacteria to all multicellular organisms such as plants and animals. In this review, we focus on hemodynamic flow and endothelial shear stress during cardiovascular development and regeneration, where the interactions of morphogenesis and proper function are more prominent. In addition, we address the recent literature on the role of extracellular matrix and fibrotic response during tissue repair and regeneration. Finally, we refer to examples where the integration of multi-disciplinary approaches to understand the biomechanics of cellular responses could be utilized in novel medical applications.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Correspondence: (V.T.); (D.B.); Tel.: +3021-0659-7439 (V.T. & D.B.)
| | - Dimitris Beis
- Correspondence: (V.T.); (D.B.); Tel.: +3021-0659-7439 (V.T. & D.B.)
| |
Collapse
|
46
|
Skeletal Stem Cell-Schwann Cell Circuitry in Mandibular Repair. Cell Rep 2020; 28:2757-2766.e5. [PMID: 31509739 DOI: 10.1016/j.celrep.2019.08.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/08/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022] Open
Abstract
Regenerative paradigms exhibit nerve dependency, including regeneration of the mouse digit tip and salamander limb. Denervation impairs regeneration and produces morphological aberrancy in these contexts, but the direct effect of innervation on the stem and progenitor cells enacting these processes is unknown. We devised a model to examine nerve dependency of the mouse skeletal stem cell (mSSC), the progenitor responsible for skeletal development and repair. We show that after inferior alveolar denervation, mandibular bone repair is compromised because of functional defects in mSSCs. We present mSSC reliance on paracrine factors secreted by Schwann cells as the underlying mechanism, with partial rescue of the denervated phenotype by Schwann cell transplantation and by Schwann-derived growth factors. This work sheds light on the nerve dependency of mSSCs and has implications for clinical treatment of mandibular defects.
Collapse
|
47
|
Hopf A, Schaefer DJ, Kalbermatten DF, Guzman R, Madduri S. Schwann Cell-Like Cells: Origin and Usability for Repair and Regeneration of the Peripheral and Central Nervous System. Cells 2020; 9:E1990. [PMID: 32872454 PMCID: PMC7565191 DOI: 10.3390/cells9091990] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Functional recovery after neurotmesis, a complete transection of the nerve fiber, is often poor and requires a surgical procedure. Especially for longer gaps (>3 mm), end-to-end suturing of the proximal to the distal part is not possible, thus requiring nerve graft implantation. Artificial nerve grafts, i.e., hollow fibers, hydrogels, chitosan, collagen conduits, and decellularized scaffolds hold promise provided that these structures are populated with Schwann cells (SC) that are widely accepted to promote peripheral and spinal cord regeneration. However, these cells must be collected from the healthy peripheral nerves, resulting in significant time delay for treatment and undesired morbidities for the donors. Therefore, there is a clear need to explore the viable source of cells with a regenerative potential similar to SC. For this, we analyzed the literature for the generation of Schwann cell-like cells (SCLC) from stem cells of different origins (i.e., mesenchymal stem cells, pluripotent stem cells, and genetically programmed somatic cells) and compared their biological performance to promote axonal regeneration. Thus, the present review accounts for current developments in the field of SCLC differentiation, their applications in peripheral and central nervous system injury, and provides insights for future strategies.
Collapse
Affiliation(s)
- Alois Hopf
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
| | - Dirk J. Schaefer
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Daniel F. Kalbermatten
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Neurosurgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Srinivas Madduri
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| |
Collapse
|
48
|
Mohan SP, Ramalingam M. Dental Pulp Stem Cells in Neuroregeneration. J Pharm Bioallied Sci 2020; 12:S60-S66. [PMID: 33149432 PMCID: PMC7595495 DOI: 10.4103/jpbs.jpbs_229_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 01/08/2023] Open
Abstract
Neurological diseases and injuries affect the routine life of patients. Current medical and surgical treatment has not improved the quality of life to desired limits. Neural regeneration through stem cells may be ideal choice in current scenario. Dental pulp stem cells (DPSCs), which are isolated from dental pulp, have shown excellent neuroregenerative properties in various animal studies. This review outlines the clinical perspective of DPSCs in neuroregeneration.
Collapse
Affiliation(s)
- Sunil Paramel Mohan
- Department of Oral and Maxillofacial Pathology, Sree Anjaneya Institute of Dental Sciences, Calicut, Kerala, India.,Department of Stems Cells and Regenerative Medicine, Malabar Medical College Hospital and Research Center, Calicut, Kerala, India
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for BioMaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| |
Collapse
|
49
|
Hosseinzadeh S, Lindsay SL, Gallagher AG, Wellings DA, Riehle MO, Riddell JS, Barnett SC. A novel poly-ε-lysine based implant, Proliferate®, for promotion of CNS repair following spinal cord injury. Biomater Sci 2020; 8:3611-3627. [PMID: 32515439 DOI: 10.1039/d0bm00097c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The limited regenerative capacity of the CNS poses formidable challenges to the repair of spinal cord injury (SCI). Two key barriers to repair are (i) the physical gap left by the injury, and (ii) the inhibitory milieu surrounding the injury, the glial scar. Biomaterial implantation into the injury site can fill the cavity, provide a substrate for cell migration, and potentially attenuate the glial scar. We investigated the biological viability of a biocompatible and biodegradable poly-ε-lysine based biomaterial, Proliferate®, in low and high cross-linked forms and when coated with IKVAV peptide, for SCI implantation. We demonstrate altered astrocyte morphology and nestin expression on Proliferate® compared to conventional glass cell coverslips suggesting a less reactive phenotype. Moreover Proliferate® supported myelination in vitro, with myelination observed sooner on IKVAV-coated constructs compared with uncoated Proliferate®, and delayed overall compared with maintenance on glass coverslips. For in vivo implantation, parallel-aligned channels were fabricated into Proliferate® to provide cell guidance cues. Extensive vascularisation and cellular infiltration were observed in constructs implanted in vivo, along with an astrocyte border and microglial response. Axonal ingrowth was observed at the construct border and inside implants in intact channels. We conclude that Proliferate® is a promising biomaterial for implantation following SCI.
Collapse
Affiliation(s)
- Sara Hosseinzadeh
- Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Keller N, Mendoza-Ferreira N, Maroofian R, Chelban V, Khalil Y, Mills PB, Boostani R, Torbati PN, Karimiani EG, Thiele H, Houlden H, Wirth B, Karakaya M. Hereditary polyneuropathy with optic atrophy due to PDXK variant leading to impaired Vitamin B6 metabolism. Neuromuscul Disord 2020; 30:583-589. [DOI: 10.1016/j.nmd.2020.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 01/13/2023]
|