1
|
A Review of Neurotransmitters Sensing Methods for Neuro-Engineering Research. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214719] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotransmitters as electrochemical signaling molecules are essential for proper brain function and their dysfunction is involved in several mental disorders. Therefore, the accurate detection and monitoring of these substances are crucial in brain studies. Neurotransmitters are present in the nervous system at very low concentrations, and they mixed with many other biochemical molecules and minerals, thus making their selective detection and measurement difficult. Although numerous techniques to do so have been proposed in the literature, neurotransmitter monitoring in the brain is still a challenge and the subject of ongoing research. This article reviews the current advances and trends in neurotransmitters detection techniques, including in vivo sampling and imaging techniques, electrochemical and nano-object sensing techniques for in vitro and in vivo detection, as well as spectrometric, analytical and derivatization-based methods mainly used for in vitro research. The document analyzes the strengths and weaknesses of each method, with the aim to offer selection guidelines for neuro-engineering research.
Collapse
|
2
|
Design, synthesis and evaluation of 5-substituted 1-H-tetrazoles as potent anticonvulsant agents. Arch Pharm Res 2016; 40:435-443. [DOI: 10.1007/s12272-016-0881-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/21/2016] [Indexed: 11/26/2022]
|
3
|
Żakowski W. Neurochemistry of the Anterior Thalamic Nuclei. Mol Neurobiol 2016; 54:5248-5263. [DOI: 10.1007/s12035-016-0077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023]
|
4
|
Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem Int 2016; 98:29-45. [PMID: 27235987 DOI: 10.1016/j.neuint.2016.05.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022]
Abstract
Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox.
Collapse
Affiliation(s)
- N C Danbolt
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - D N Furness
- School of Life Sciences, Keele University, Keele, Staffs. ST5 5BG, UK
| | - Y Zhou
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Nugroho A, Lim SC, Choi J, Park HJ. Identification and quantification of the sedative and anticonvulsant flavone glycoside from Chrysanthemum boreale. Arch Pharm Res 2013; 36:51-60. [PMID: 23325489 DOI: 10.1007/s12272-013-0015-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The flowers or leaves of Chrysanthemum boreale (Compositae) have been traditionally used as herb tea to reduce anxiety, insomnia, and stress. Sedative and anticonvulsant activities were evaluated in mice using pentobarbital-induced sleeping assay and pentylenetetrazole (PTZ)-induced convulsion assay. The flower extract exhibited more potent activities than the extracts of the leaves and stems, and chromatographic isolation yielded the five compounds acacetin, linarin, acacetin 7-O-β-D-glucopyranosyl-(1 → 2)[α-L-rhamnopyranosyl-(1 → 6)]-β-D-glucopyranoside, chlorogenic acid, and 3,5-di-O-caffeoylquinic acid. These compounds were simultaneously analyzed by HPLC, and the method was validated. The contents of linarin, which were shown to be most abundant in C. boreale, were observed in the order of leaf (11.93 mg/g) > flower (8.50 mg/g) > stem (5.60 mg/g). Linarin and its aglycone, acacetin, exhibited sedative and anticonvulsant activities in the present in vivo assays. It can be considered that linarin is one of the active compounds effective against anxiety, insomnia, and stress, with acacetin as its active moiety.
Collapse
Affiliation(s)
- Agung Nugroho
- Department of Applied Plant Sciences, Graduate School, Sangji University, Wonju, Korea
| | | | | | | |
Collapse
|
6
|
Hanics J, Bálint E, Milanovich D, Zachar G, Adám A, Csillag A. Amygdalofugal axon terminals immunoreactive for L-aspartate or L-glutamate in the nucleus accumbens of rats and domestic chickens: a comparative electron microscopic immunocytochemical study combined with anterograde pathway tracing. Cell Tissue Res 2012; 350:409-23. [PMID: 23064903 DOI: 10.1007/s00441-012-1494-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/22/2012] [Indexed: 01/26/2023]
Abstract
Several studies have shown that L-aspartate (Asp) is present in synaptic vesicles and released exocytotically from presynaptic terminals, possibly by Ca(2+)-dependent corelease of Asp and L-glutamate (Glu). It has been demonstrated that both excitatory amino acids (EAAs) are released from the rat striatum as part of corticostriatal neurotransmission. The single or colocalized occurrence of Asp and Glu in specific synaptic boutons of the chicken medial striatum/nucl. accumbens has been demonstrated by our group using ultrastructural immunocytochemistry. However, evidence for the presence of EAAs in any specific striatal pathway was only circumstantial. Here, we report on the distribution of Asp and Glu in specific synaptic terminals of the amygdalostriatal pathway, both in rat and chicken brains, combining anterograde tracing with postembedding immunogold labeling of Asp or Glu. Immunoreactivity for Asp and Glu was observed in amygdalofugal terminals with asymmetrical synaptic junctions (morphologically representing excitatory synapses) in both species. The postsynaptic targets were either dendritic spines or small dendrites, whereas axosomatic or axo-axonic connections were not observed. Ultrastructurally, the synaptic terminals immunoreactive for Asp were indistinguishable from those immunoreactive for Glu. The findigs are consistent with an Asp-Glu corelease mechanism, with a distinct synaptic contingent, evolutionarily conserved in the amygdalostriatal pathway.
Collapse
Affiliation(s)
- János Hanics
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
7
|
Balázs D, Csillag A, Gerber G. l-aspartate effects on single neurons and interactions with glutamate in striatal slice preparation from chicken brain. Brain Res 2012; 1474:1-7. [DOI: 10.1016/j.brainres.2012.07.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/21/2012] [Accepted: 07/24/2012] [Indexed: 02/05/2023]
|
8
|
Zachar G, Wagner Z, Tábi T, Bálint E, Szökő É, Csillag A. Differential Changes of Extracellular Aspartate and Glutamate in the Striatum of Domestic Chicken Evoked by High Potassium or Distress: An In Vivo Microdialysis Study. Neurochem Res 2012; 37:1730-7. [DOI: 10.1007/s11064-012-0783-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/01/2012] [Accepted: 04/12/2012] [Indexed: 02/03/2023]
|
9
|
Nugroho A, Kim MH, Choi J, Choi JS, Jung WT, Lee KT, Park HJ. Phytochemical studies of the phenolic substances in Aster glehni extract and its sedative and anticonvulsant activity. Arch Pharm Res 2012; 35:423-30. [DOI: 10.1007/s12272-012-0304-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 07/07/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
|
10
|
Bókkon I, Till A, Grass F, Erdöfi Szabó A. Phantom pain reduction by low-frequency and low-intensity electromagnetic fields. Electromagn Biol Med 2012; 30:115-27. [PMID: 21861690 DOI: 10.3109/15368378.2011.596246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although various treatments have been presented for phantom pain, there is little proof supporting the benefits of pharmacological treatments, surgery or interventional techniques, electroconvulsive therapy, electrical nerve stimulation, far infrared ray therapy, psychological therapies, etc. Here, we report the preliminary results for phantom pain reduction by low-frequency and intensity electromagnetic fields under clinical circumstances. Our method is called as Electromagnetic-Own-Signal-Treatment (EMOST). Fifteen people with phantom limb pain participated. The patients were treated using a pre-programmed, six sessions. Pain intensity was quantified upon admission using a 0-10 verbal numerical rating scale. Most of the patients (n = 10) reported a marked reduction in the intensity of phantom limb pain. Several patients also reported about improvement in their sleep and mood quality, or a reduction in the frequency of phantom pain after the treatments. No improvements in the reduction of phantom limb pain or sleep and mood improvement were reported in the control group (n = 5). Our nonlinear electromagnetic EMOST method may be a possible therapeutic application in the reduction of phantom limb pain. Here, we also suggest that some of the possible effects of the EMOST may be achieved via the redox balance of the body and redox-related neural plasticity.
Collapse
Affiliation(s)
- István Bókkon
- Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University , Budapest , Hungary.
| | | | | | | |
Collapse
|
11
|
Chow AM, Zhou IY, Fan SJ, Chan KW, Chan KC, Wu EX. Metabolic changes in visual cortex of neonatal monocular enucleated rat: a proton magnetic resonance spectroscopy study. Int J Dev Neurosci 2010; 29:25-30. [DOI: 10.1016/j.ijdevneu.2010.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/30/2010] [Accepted: 10/01/2010] [Indexed: 01/14/2023] Open
Affiliation(s)
- April M. Chow
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
| | - Iris Y. Zhou
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
| | - Shu Juan Fan
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
| | - Kannie W.Y. Chan
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
| | - Kevin C. Chan
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal ProcessingThe University of Hong KongPokfulamHong Kong SARChina
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SARChina
- Department of AnatomyThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
12
|
Chan KC, So KF, Wu EX. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma. Exp Eye Res 2008; 88:65-70. [PMID: 18992243 DOI: 10.1016/j.exer.2008.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/28/2008] [Accepted: 10/02/2008] [Indexed: 11/20/2022]
Abstract
Glaucoma is a neurodegenerative disease of the visual system. While elevated intraocular pressure is considered to be a major risk factor, the primary cause and pathogenesis of this disease are still unclear. This study aims to employ in vivo proton magnetic resonance spectroscopy ((1)H MRS) to evaluate the metabolic changes in the visual cortex in a rat model of chronic glaucoma. Five Sprague-Dawley female rats were prepared to induce ocular hypertension unilaterally in the right eye by photocoagulating the episcleral and limbal veins using an argon laser. Single voxel (1)H MRS was performed on each side of the visual cortex 6 weeks after laser treatment. Relative to the creatine level, the choline level was found to be significantly lower in the left glaucomatous visual cortex than the right control visual cortex in all animals. In addition, a marginally significant increase in glutamate level was observed in the glaucomatous visual cortex. No apparent difference was observed between contralateral sides of the visual cortex in T1-weighted or T2-weighted imaging. The results of this study showed that glaucoma is accompanied with alterations in the metabolism of choline-containing compounds in the visual cortex contralateral to the glaucomatous rat eye. These potentially associated the pathophysiological mechanisms of glaucoma with the dysfunction of the cholinergic system in the visual pathway. (1)H MRS is a potential tool for studying the metabolic changes in glaucoma in vivo in normally appearing brain structures, and may possess direct clinical applications for humans. Measurement of the Cho:Cr reduction in the visual cortex may be a noninvasive biomarker for this disease.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
13
|
Visual-procedural memory consolidation during sleep blocked by glutamatergic receptor antagonists. J Neurosci 2008; 28:5513-8. [PMID: 18495885 DOI: 10.1523/jneurosci.5374-07.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Visual cortex plasticity is enhanced by sleep. It is hypothesized that a reactivation of glutamatergic synapses is essential for this form of plasticity to occur after learning. To test this hypothesis, human subjects practiced a visual texture discrimination skill known to require post-training sleep for improvements to occur. During sleep, glutamatergic transmission was inhibited by administration of the two glutamate antagonists, caroverine and ketamine, targeting the ionotropic NMDA and AMPA receptors. Both substances given during consolidation sleep in a placebo controlled crossover design were able to prevent improvement of the skill measured the next morning. An off-line activation of glutamatergic synapses therefore seems to play a critical part in the consolidation of plastic changes in the visual cortex.
Collapse
|
14
|
Adám AS, Csillag A. Differential distribution of L-aspartate- and L-glutamate-immunoreactive structures in the arcopallium and medial striatum of the domestic chick (Gallus domesticus). J Comp Neurol 2006; 498:266-76. [PMID: 16856140 DOI: 10.1002/cne.21056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of amino acid neurotransmitters in learning and memory is well established. We investigated the putative role of L-aspartate as a neurotransmitter in the arcopallial-medial striatal pathway, which is known to be involved in passive avoidance learning in domestic chicks. Double immunocytochemistry against L-aspartate and L-glutamate was performed at both light and electron microscopic levels. L-aspartate- and L-glutamate-immunoreactive neurons in the arcopallium and posterior amygdaloid pallium were identified and counted by using fluorescence microscopy and confocal laser scanning microscopy. Most labeled neurons of arcopallium were enriched in glutamate as well as aspartate. However, the arcopallium and posterior amygdaloid pallium differed from a neighboring telencephalic region (nidopallium; formerly neostriatum) by containing a substantial proportion of cells singly labeled for L-aspartate (15%, vs. 5.3% in the nidopallium). Aspartate-labeled neurons constitute approximately 20%, 25%, 42%, and 28% of total in the posterior amygdaloid pallium and the medial, dorsal, and anterior arcopallia, respectively. Immunoelectron microscopy showed that L-aspartate was enriched in terminals of the medial striatum. The labeled terminals had clear and round vesicles and asymmetric junctions; similar to those immunoreactive to L-glutamate. Axon terminals singly labeled for L-aspartate made up 17% of the total. In addition, 7% of neuronal perikarya and 26% of all dendritic profiles appeared to be labeled specifically with L-aspartate but not L-glutamate. The results indicate that L-aspartate may play a specific role (as distinct from that of L-glutamate) in the intrinsic and extrinsic circuits instrumental in avian learning and memory.
Collapse
Affiliation(s)
- Agota S Adám
- Department of Anatomy, Semmelweis University, H-1450 Budapest, Hungary
| | | |
Collapse
|
15
|
Persson S, Boulland JL, Aspling M, Larsson M, Fremeau RT, Edwards RH, Storm-Mathisen J, Chaudhry FA, Broman J. Distribution of vesicular glutamate transporters 1 and 2 in the rat spinal cord, with a note on the spinocervical tract. J Comp Neurol 2006; 497:683-701. [PMID: 16786558 DOI: 10.1002/cne.20987] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To evaluate whether the organization of glutamatergic fibers systems in the lumbar cord is also evident at other spinal levels, we examined the immunocytochemical distribution of vesicle glutamate transporters 1 and 2 (VGLUT1, VGLUT2) at several different levels of the rat spinal cord. We also examined the expression of VGLUTs in an ascending sensory pathway, the spinocervical tract, and colocalization of VGLUT1 and VGLUT2. Mainly small VGLUT2-immunoreactive varicosities occurred at relatively high densities in most areas, with the highest density in laminae I-II. VGLUT1 immunolabeling, including small and medium-sized to large varicosities, was more differentiated, with the highest density in the deep dorsal horn and in certain nuclei such as the internal basilar nucleus, the central cervical nucleus, and the column of Clarke. Lamina I and IIo displayed a moderate density of small VGLUT1 varicosities at all spinal levels, although in the spinal enlargements a uniform density of such varicosities was evident throughout laminae I-II in the medial half of the dorsal horn. Corticospinal tract axons displayed VGLUT1, indicating that the corticospinal tract is an important source of small VGLUT1 varicosities. VGLUT1 and VGLUT2 were cocontained in small numbers of varicosities in laminae III-IV and IX. Anterogradely labeled spinocervical tract terminals in the lateral cervical nucleus were VGLUT2 immunoreactive. In conclusion, the principal distribution patterns of VGLUT1 and VGLUT2 are essentially similar throughout the rostrocaudal extension of the spinal cord. The mediolateral differences in VGLUT1 distribution in laminae I-II suggest dual origins of VGLUT1-immunoreactive varicosities in this region.
Collapse
Affiliation(s)
- Stefan Persson
- Department of Experimental Medical Science, Division for Neuroscience, and Lund University Pain Research Center, Lund University, S-221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nagahama M, Ma N, Semba R. L-aspartate-immunoreactive neurons in the rat enteric nervous system. Cell Tissue Res 2004; 318:483-92. [PMID: 15578269 DOI: 10.1007/s00441-004-0961-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
L-aspartate (L-Asp) is an excitatory neurotransmitter in the central nervous system. In the present study, we demonstrate, for the first time, the presence of L-Asp in a particular neuronal cell class in the enteric nervous system (ENS). Scattered L-Asp-immunoreactive neuronal cell bodies and nerve fibers were found extensively in both the myenteric and submucosal plexus throughout the small and large intestines. Many L-Asp-immunoreactive nerve fibers, which originated from intrinsic nerve cell bodies, were found in the ganglia and interconnecting nerve bundles. Electron microscopy revealed that L-Asp-immunoreactive terminals frequently formed synaptic contacts with intrinsic nerve cells, suggesting that some L-Asp-immunoreactive neurons might function as interneurons. These results suggest that L-Asp-immunoreactive neurons play a significant role within the ENS to control intestinal functions. The presence of enteric L-Asp-immunoreactive neurons provides strong support for the proposal that L-Asp is a neuromodulator in the rat ENS.
Collapse
Affiliation(s)
- Masato Nagahama
- Department of Anatomy II, Mie University School of Medicine, 2-174 Edobashi, 514-0001, Tsu, Mie, Japan.
| | | | | |
Collapse
|
17
|
Antonini A, Shatz CJ. Relation Between Putative Transmitter Phenotypes and Connectivity of Subplate Neurons During Cerebral Cortical Development. Eur J Neurosci 2002; 2:744-761. [PMID: 12106275 DOI: 10.1111/j.1460-9568.1990.tb00465.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During development, the earliest generated neurons of the mammalian telencephalon reside in a region of the white matter, the subplate, just beneath the cortical plate. Neurons in the subplate are only transiently present in the telencephalon: shortly after birth in the cat the majority have disappeared. During their brief life, however, subplate neurons mature; they extend long-distance and local projections, and express immunoreactivity for GABA and several neuropeptides. In the present study we examined the relation between possible transmitter phenotypes of subplate neurons and their connectivity. To do so, we used a double-label technique in which immunohistochemistry for neuropeptide Y (NPY), somatostatin (SRIF) or calbindin (CaBP) was combined with retrograde tracing. Experiments were performed in neonatal cats and in ferret kits at equivalent postconceptional ages, times when subplate neurons are numerous. Subplate neurons immunoreactive for neuropeptides and CaBP could be double-labelled by an injection of retrograde tracer either into the cortical plate or the white matter, indicating that this particular subset of subplate neurons can make local circuit projections. In contrast, peptide or CaBP immunoreactive subplate neurons could never be retrogradely labelled from a tracer injection into the thalamus. Taken together, these observations indicate that subplate neurons immunoreactive for NPY, SRIF and CaBP are likely to be interneurons exclusively. On the other hand, subplate neurons with long-distance projections to the thalamus or the contralateral hemisphere could be labelled by the retrograde transport of d-[3H]aspartate, suggesting that at least some projection subplate neurons might use an excitatory amino acid as a neurotransmitter. These results indicate that there is a defined relationship between the putative transmitter phenotypes of subplate neurons and their patterns of projection. Interneurons of the subplate express peptidergic properties while projection neurons to the thalamus may use an excitatory amino acid. Thus, these basic organizational features of the transient subplate are reminiscent of those found in the adult cortical layers.
Collapse
Affiliation(s)
- A. Antonini
- Department of Neurobiology, Stanford University Medical School, Stanford, CA 94305, USA
| | | |
Collapse
|
18
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
19
|
Broman J, Hassel B, Rinvik E, Ottersen O. Chapter 1 Biochemistry and anatomy of transmitter glutamate. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
20
|
Danbolt NC, Chaudhry FA, Dehnes Y, Lehre KP, Levy LM, Ullensvang K, Storm-Mathisen J. Properties and localization of glutamate transporters. PROGRESS IN BRAIN RESEARCH 1999; 116:23-43. [PMID: 9932368 DOI: 10.1016/s0079-6123(08)60428-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- N C Danbolt
- Department of Anatomy, University of Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wörgötter F, Nelle E, Li B, Funke K. The influence of corticofugal feedback on the temporal structure of visual responses of cat thalamic relay cells. J Physiol 1998; 509 ( Pt 3):797-815. [PMID: 9596801 PMCID: PMC2231002 DOI: 10.1111/j.1469-7793.1998.797bm.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Visually driven single-unit activity was recorded in the dorsal lateral geniculate nucleus (dLGN) of the anaesthetized cat while inactivating or stimulating the corticofugal feedback from area 17/18 by means of cortical cooling or application of GABA (inactivation), or application of glutamate or quisqualate (Glu, Quis; stimulation) to layer VI. 2. Manipulations of the corticofugal feedback primarily affected the multimodal interspike interval pattern previously reported to be present in the tonic component of visual responses elicited by spot-like stimuli. 3. Sixty-three per cent of all neurons could be influenced, and temporally localized interspike interval distributions were measured which commonly consisted of one fundamental interval peak (leftmost peak) and integer multiples thereof (higher order peaks). During blockade of the corticofugal feedback, interspike intervals were redistributed into the higher order peaks in about 70 % of the cases, accompanied by a reduced mean firing rate. During stimulation the reverse effect occurred in 69 % of cases. 4. Increased synchronization of the EEG (increased power in the delta-wave range, 1-4 Hz) had an effect similar to cortex inactivation. The specificity of corticofugal effects was verified by consideration of these EEG effects and by dLGN double recordings with one dLGN cell topographically matched with the cortical inactivation/activation site and the second cell outside this area. Clear effects due to manipulation of the corticofugal feedback were found only for the matched dLGN site. 5. In addition we observed that the peaks of the interval distributions were narrower during active corticofugal feedback, such that the temporal dispersion of the signal transmission to the cortex was reduced. 6. The mechanisms underlying this effect were further analysed in a biophysically realistic model demonstrating that the timing of the spikes in the dLGN is improved as soon as the cortical feedback is active. The high degree of convergence/divergence between neurons along the closed feedback loop thereby leads to a temporal averaging effect which reduces the interval dispersion and also introduces synchronization between dLGN cells. 7. Such a mechanism may thus counteract the deterioration of spike timing accuracy which would otherwise occur as a consequence of synaptic noise and other uncorrelated sources of activity at a given neuron.
Collapse
Affiliation(s)
- F Wörgötter
- Institut fur Physiologie, Ruhr-Universitat Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
22
|
Abstract
It has long been assumed that L-forms of amino acids exclusively constitute free amino acid pools in mammals. However, a variety of studies in the last decade has demonstrated that free D-aspartate and D-serine occur in mammals and may have important physiological function in mammals. Free D-serine is confined predominantly to the forebrain structure, and the distribution and development of D-serine correspond well with those of the N-methyl-D-aspartate (NMDA)-type excitatory amino acid receptor. As D-serine acts as a potent and selective agonist for the strychnine-insensitive glycine site of the NMDA receptor, it is proposed that D-serine is a potential candidate for an NMDA receptor-related glycine site agonist in mammalian brain. In contrast, widespread and transient emergence of a high concentration of free D-aspartate is observed in the brain and periphery. Since the periods of maximal emergence of D-aspartate in the brain and periphery occur during critical periods of morphological and functional maturation of the organs, D-aspartate could participate in the regulation of these regulation of these developmental processes of the organs. This review deals with the recent advances in the studies of presence of free D-aspartate and D-serine and their metabolic systems in mammals. Since D-aspartate and D-serine have been shown to potentiate NMDA receptor-mediated transmission through the glutamate binding site and the strychnine-insensitive glycine binding site, respectively, and have been utilized extensively as potent and selective tools to study the excitatory amino acid system in the brain, we shall discuss also the NMDA receptor and uptake system of D-amino acids.
Collapse
Affiliation(s)
- A Hashimoto
- Department of Pharmacology, Takai University School of Medicine, Kanagawa, Japan.
| | | |
Collapse
|
23
|
Kao CQ, Coulter DA. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro. J Neurophysiol 1997; 77:2661-76. [PMID: 9163382 DOI: 10.1152/jn.1997.77.5.2661] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Whole cell current- and voltage-clamp recording techniques were employed in a rat thalamocortical slice preparation to characterize corticothalamic stimulation-evoked responses in thalamic neurons. Three types of corticothalamic stimulation-evoked responses were observed in thalamic neurons. Of thalamic neurons, 57% responded to corticothalamic stimulation with purely excitatory synaptic responses, whereas 27% had inhibitory synaptic responses and 16% had mixed excitatory/inhibitory responses. This suggested corticothalamic activation of multiple distinct synaptic circuits, presumably involving both nucleus reticularis thalami (NRT) and thalamus, because the rat ventrobasal complex is virtually devoid of GABAergic interneurons. Corticothalamic-stimulation-evoked excitatory postsynaptic currents (EPSCs) were predominantly slow rising currents that showed nonlinear voltage dependence, characteristics of an N-methyl-D-aspartate (NMDA)-receptor-mediated synaptic current. These slow rising EPSCs were blocked by the NMDA antagonist 2-amino-5-phosphonovaleric acid (APV). A minority of corticothalamic EPSCs had faster kinetics, and were blocked by 6-cyano-7 nitroquinoxaline-2,3-dione (CNQX). Corticothalamic stimulation of varying frequency optimally activated burst responses in thalamic neurons at low frequencies (3-6 Hz). The optimal 3- to 6-Hz response was reduced by ethosuximide, by APV, and by detaching the neocortex from the thalamocortical slice, suggesting that T current, NMDA receptors, and neocortical properties all contributed to generation of this 3- to 6-Hz frequency preference. In contrast to corticothalamic EPSCs, medial-thalamic-stimulation-evoked responses consisted of fast CNQX-sensitive EPSCs that were predominantly voltage insensitive, with no 3- to 6-Hz frequency preference. In thalamic neurons in which corticothalamic stimulation evoked predominantly inhibitory synaptic responses, this inhibitory postsynaptic potential (IPSP) had early and late phases, often followed by a rebound burst. The early IPSP reversed at -95 mV and was bicuculline sensitive, whereas the late IPSP reversed at -113 mV and was blocked by the gamma-aminobutyric acid-B (GABA(B)) antagonist 3-N[1-(S)-(3,4-dichlorophenyl)ethyl]amino-2-(S)-hydroxypropyl-P-benzy lphoshinic acid (CGP-55845A). In thalamic neurons in which corticothalamic stimulation evoked a mixed excitatory postsynaptic potential (EPSP)/IPSP response, repetitive corticothalamic stimulation rapidly reduced IPSPs and enhanced EPSPs at higher frequencies. This resulted in burst firing being triggered in these mixed response neurons at frequencies >6 Hz. Corticothalamic feedback onto thalamic relay neurons activated diverse responses due to differing relative activation of NRT and "feedforward" inhibitory responses. These multiple in vitro corticothalamic responses differ from responses encountered in other in vitro thalamic preparations lacking a synaptically connected neocortex, but are similar to results evident in thalamic neurons in response to cortical stimulation in vivo. In addition, the thalamocortical 3- to 6-Hz frequency preference was conserved, suggesting that many factors critical for this emergent property of the thalamocortical system are maintained in vitro.
Collapse
Affiliation(s)
- C Q Kao
- Department of Neurology, Medical College of Virginia, Richmond 23298-0599, USA
| | | |
Collapse
|
24
|
Abstract
Thalamocortical synapses inform the cerebral neocortex about the external and internal worlds. The thalamus produces myriad thalamocortical pathways that vary in morphological, physiological, pharmacological and functional properties. All these features are of great importance for understanding how information is acquired, integrated, processed, stored and retrieved by the thalamocortical system. This paper reviews the properties of the afferents from thalamus to cortex, and identifies some of the gaps in our knowledge of thalamocortical pathways.
Collapse
|
25
|
Jeon CJ, Hartman MK, Mize RR. Glutamate-like immunoreactivity in the cat superior colliculus and visual cortex: further evidence that glutamate is the neurotransmitter of the corticocollicular pathway. Vis Neurosci 1997; 14:27-37. [PMID: 9057266 DOI: 10.1017/s0952523800008737] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biochemical studies provide evidence that the pathway from visual cortex to the superior colliculus (SC) utilizes glutamate as a neurotransmitter. In the present study, we have used immunocytochemistry, visual cortex lesions, and retrograde tracing to show directly by anatomical methods that glutamate or a closely related analog is contained in corticocollicular neurons and terminals. A monoclonal antibody directed against gamma-L-glutamyl-L-glutamate (gamma glu glu) was used to localize glutamate-like immunoreactivity in both the superior colliculus (SC) and visual cortex (VC). Unilateral lesions of areas 17-18 were made in four cats to determine if gamma glu glu labeling was reduced in SC by this lesion. WGA-HRP was injected into the SC of 10 additional cats in order to determine if corticocollicular neurons were also labeled by the gamma glu glu antibody. A distinctive dense band of gamma glu glu immunoreactivity was found within the deep superficial gray and upper optic layers of SC where many corticotectal axons are known to terminate. Both fibers and cells were labeled within the band. Immunoreactivity was also found in cells and fibers throughout the deep layers of SC. Measures of total immunoreactivity (i.e. optical density) in the dense band were made in sections from the SC both ipsilateral to and contralateral to the lesions of areas 17-18. A consistent reduction in optical density was found in both the neuropil and in cells within the dense band of the SC ipsilateral to the lesion. A large percentage of all corticocollicular neurons that were retrogradely labeled by WGA-HRP also contained gamma glu glu. These results provide further evidence that the corticocollicular pathway in mammals is glutamatergic. The results also suggest that visual cortex ablation alters synthesis or storage of glutamate within postsynaptic SC neurons, presumably as a result of partial deafferentation.
Collapse
Affiliation(s)
- C J Jeon
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, USA
| | | | | |
Collapse
|
26
|
Rivadulla C, Rodriguez R, Martinez-Conde S, Acuña C, Cudeiro J. The influence of nitric oxide on perigeniculate GABAergic cell activity in the anaesthetized cat. Eur J Neurosci 1996; 8:2459-66. [PMID: 8996795 DOI: 10.1111/j.1460-9568.1996.tb01540.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have tested the effect of iontophoretic application of the nitric oxide synthase inhibitor L-nitroarginine on the activity of a population of 53 perigeniculate (PGN) cells, recorded extracellularly in the anaesthetized paralysed cat. In all cells tested with visual stimulation during L-nitroarginine application (n = 15), the visually elicited responses were markedly reduced, on average by 63 +/- 15%, and there was a reduction in spontaneous activity too. This effect was blocked by co-application of the substrate for nitric oxide synthase, L-arginine, but not by the inactive D-isoform, although application of L-arginine alone was without effect. Pressure application of the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) elevated both visual responses and spontaneous discharge, an effect also seen with a second nitric oxide donor, sodium nitroprusside (n = 12). The nitric oxide synthase inhibitor L-nitroarginine was applied to a sub-population of seven cells and it selectively decreased NMDA mediated excitation (reduction 80 +/- 14%) with little or no effect on the excitation mediated by alpha-amino-3-hydroxy-5-5-methyl-4-isoxazole-propionic acid (AMPA) or quisqualate (effects not statistically significant), and it had no effect (n = 7) on excitation mediated by the metabotropic agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD). Furthermore, application of SNAP also increased the magnitude of excitatory responses mediated by NMDA receptors. On a different population of seven cells, application of the new NO donor diethylamine-nitric oxide (DEA-NO) enhanced the actions of NMDA without an effect on responses to AMPA. These effects are qualitatively and quantitatively similar to those we have previously described for X and Y type cells in the dorsal lateral geniculate nucleus (dLGN), despite the known opposite effects of acetylcholine (ACh) application in the dLGN and PGN (ACh is co-localized with nitric oxide synthase at both sites). We propose that within the PGN nitric oxide acts to enhance transmission utilizing NMDA receptors selectively (thereby interacting with the globally inhibiting effect of ACh at this site) to enhance visual responses, reducing or removing the non-specific inhibitory drive from PGN to dLGN seen in the spindling activity of slow-wave sleep. These effects will act in concert with the facilitatory actions of both ACh and nitric oxide within the dLGN proper, and will thereby enhance the faithful transmission of visual information from retina to cortex.
Collapse
Affiliation(s)
- C Rivadulla
- Laboratorio de Neurociencia, (Unidad asociada al C.S.I.C., Instituto Cajal), Complejo Hospitalario Universitario, Universidad de Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
27
|
Abstract
D-[3H]aspartate was used to identify potential glutamatergic connections of the chinchilla inferior colliculus (IC). High-affinity uptake of D-[3H]aspartate is considered a selective marker for glutamatergic synapses, and neurons retrogradely labeled from such injections are believed to use glutamate, or a closely related compound, as a transmitter. Injections of D-[3H]aspartate suggest that glutamatergic endings in the IC arise primarily from intrinsic connections, the opposite IC, layer 5 of temporal cortex, nucleus sagulum, and lateral lemniscal nuclei. Neurons giving rise to the principal sensory (lemniscal) projections to the IC, i.e., those from the cochlear nuclei, superior olive, and the majority of projections from the lateral lemniscal nuclei, did not label in these experiments, indicating that their synapses do not recognize D-[3H]aspartate as a suitable substrate and may use inhibitory or other excitatory transmitters. After IC injections, fiber and diffuse labeling was found ipsilaterally in the medial geniculate body, superior colliculus, and dorsolateral pontine nuclei, contralaterally in the IC, and bilaterally in the superior olive and cochlear nuclei. Such labeling was attributed to anterograde transport of D-[3H]aspartate within the efferent collaterals of labeled IC neurons, suggesting that many of the IC's efferent projections may also be glutamatergic. This interpretation was confirmed in separate experiments in which D-[3H]aspartate, injected in the medial geniculate body, retrogradely labeled neurons in the IC as well as in layer 6 of temporal cortex. Finally, the mesencephalic trigeminal nucleus and tract labeled in some cases and may have local glutamatergic connections.
Collapse
Affiliation(s)
- R L Saint Marie
- Department of Neuroanatomy, House Ear Institute, Los Angeles, California 90057, USA
| |
Collapse
|
28
|
Nie F, Wong-Riley MT. Differential glutamatergic innervation in cytochrome oxidase-rich and -poor regions of the macaque striate cortex: quantitative EM analysis of neurons and neuropil. J Comp Neurol 1996; 369:571-90. [PMID: 8761929 DOI: 10.1002/(sici)1096-9861(19960610)369:4<571::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase (CO)-rich puffs and CO-poor interpuffs in its supragranular layers. However, the neurochemical basis for their differences in metabolic activity and physiological properties is not well understood. The goals of the present study were to determine whether CO levels in postsynaptic neuronal compartments were correlated with the proportion of excitatory glutamate-immunoreactive (Glu-IR) synapses they received and if Glu-IR terminals and synapses in puffs differed from those in interpuffs. By combining CO histochemistry and postembedding Glu immunocytochemistry on the same ultrathin sections, the simultaneous distribution of the two markers in individual neuronal profiles was quantitatively analyzed. As a comparison, adjacent sections were identically processed for the double labeling of CO and GABA, an inhibitory neurotransmitter. In both puffs and interpuffs, most axon terminals forming asymmetric synapses (84%)--but not symmetric ones, which were GABA-IR--were intensely immunoreactive for Glu. GABA-IR neurons received mainly Glu-IR synapses on their cell bodies, and they had three times as many mitochondria darkly reactive for CO than Glu-rich neurons, which received only GABA-IR axosomatic synapses. In puffs, GABA-IR neurons received a significantly higher ratio of Glu-IR to GABA-IR axosomatic synapses and contained about twice as many darkly CO-reactive mitochondria than those in interpuffs. There were significantly more Glu-IR synapses and a higher ratio of Glu- to GABA-IR synapses in the neuropil of puffs than of interpuffs. Moreover, Glu-IR axon terminals in puffs contained approximately three times more darkly CO-reactive mitochondria than those in interpuffs, suggesting that the former may be synaptically more active. Thus, the present results are consistent with our hypothesis that the levels of oxidative metabolism in postsynaptic neurons and neuropil are positively correlated with the proportion of excitatory synapses they receive. Our findings also suggest that excitatory synaptic activity may be more prominent in puffs than in interpuffs, and that the neurochemical and synaptic differences may constitute one of the bases for physiological and functional diversities between the two regions.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | |
Collapse
|
29
|
Vidnyanszky Z, Gorcs TJ, Negyessy L, Borostyankio Z, Knopfel T, Hamori J. Immunocytochemical visualization of the mGluR1a metabotropic glutamate receptor at synapses of corticothalamic terminals originating from area 17 of the rat. Eur J Neurosci 1996; 8:1061-71. [PMID: 8752575 DOI: 10.1111/j.1460-9568.1996.tb01273.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pre-embedding immunogold histochemistry was combined with Phaseolus vulgaris leucoagglutinin anterograde tract tracing in order to analyse the relationship between the subcellular localization of the GluR1a metabotropic glutamate receptors and the distribution of corticothalamic synapses in the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior nucleus (LP) of the rat. The injection of the tracer into area 17 labelled two types of corticothalamic terminals: (i) the small boutons constituting the majority of the labelled fibres which form asymmetrical synapses both in the dLGN and LP; and (ii) the giant terminals typically participating in glomerulus-like synaptic arrangements and found exclusively in the lateral posterior nucleus. The small corticothalamic terminals often established synapses with mGluR1a-immunopositive dendrites, with immunometal particles concentrated at the periphery of their postsynaptic membranes. In contrast, the synapses formed by giant boutons in the lateral posterior nucleus were always mGluR1a-immunonegative. We conclude that the corticothalamic fibres forming the small synaptic terminals are the most likely candidates for the postulated mGluR-mediated modulation of visual information flow by corticothalamic feedback mechanisms.
Collapse
Affiliation(s)
- Z Vidnyanszky
- Laboratory of Neurobiology, 1st Department of Anatomy, Smmelweis University Medical School, Tuzolto u. 58, 1094 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
30
|
Pape HC, McCormick DA. Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. Neuroscience 1995; 68:1105-25. [PMID: 8544986 DOI: 10.1016/0306-4522(95)00205-w] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the electrophysiological and pharmacological properties of morphologically identified and putative interneurons within laminae A and A1 of the cat dorsal lateral geniculate nucleus maintained in vitro. These intralaminar interneurons possess unique electrophysiological characteristics, including (1) action potentials of a short duration (average width at half amplitude of 0.34 ms). (2) the ability to generate high-frequency trains of action potentials exceeding 500 Hz, without strong spike frequency adaptation, and (3) a low-threshold regenerative response with variable magnitude of expression, ranging from a subthreshold depolarization towards the generation of one to several action potentials in different cells. The low-threshold regenerative depolarization following a hyperpolarizing current pulse was increased in size by application of 4-aminopyridine, was reduced by nickel, and was not influenced by extracellular cesium. These findings indicate that this event is mediated by an underlying Ca(2+)-dependent mechanism, such as a low-threshold Ca(2+) current, that is regulated by the activation of opposing transient K+ currents. Every interneuron tested responded to glutamate, kainate, quisqualate, or N-methyl-D-aspartate with depolarization and action potential discharge. In contrast, we did not observe a postsynaptic response to activation of the metabotropic receptors with 1S,3R-(+/-)-1-amino-cyclopentane-1,3-dicarboxylate. Application of gamma-amino-butyric acid (GABA) strongly inhibited spike firing through a biphasic hyperpolarization and increase in membrane conductance, a response that reversed close to the presumed chloride equilibrium potential and was imitated by the GABAA receptor agonist muscimol. The GABAB receptor agonist baclofen evoked only a weak membrane hyperpolarization from rest and suppression of spontaneous spike activity. Application of acetylcholine, or the muscarinic agonist acetyl-beta-methylcholine, inhibited spontaneous action potential activity through hyperpolarization of the membrane potential, presumably resulting from an increase in membrane potassium conductance. In contrast, application of serotonin only slightly facilitated tonic activity in a subpopulation of interneurons, histamine induced a small slow depolarization apparently through activation of presynaptic excitatory pathways, and noradrenaline and adenosine had no detectable effect on the spontaneous firing or resting potential of interneurons. We suggest that intralaminar interneurons may function in a relatively linear manner to transform retinal and cortical inputs into a local field of inhibition in the dorsal lateral geniculate and that the excitability of these neurons is largely controlled by retinal, cortical, GABAergic, and cholinergic (brainstem) afferents.
Collapse
Affiliation(s)
- H C Pape
- Institut für Physiologie, Otto-von-Guericke-Universitaet, Magdeburg, Germany
| | | |
Collapse
|
31
|
Nie F, Wong-Riley MT. Double labeling of GABA and cytochrome oxidase in the macaque visual cortex: quantitative EM analysis. J Comp Neurol 1995; 356:115-31. [PMID: 7629306 DOI: 10.1002/cne.903560108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the primate striate cortex, cytochrome oxidase (CO)-rich puffs differ from CO-poor interpuffs in their metabolic levels and physiological properties. The neurochemical basis for their metabolic and physiological differences is not well understood. The goal of the present study was to examine the relationship between the distribution of gamma aminobutyric acid (GABA)/non-GABA synapses and CO levels in postsynaptic neuronal profiles and to determine whether or not a difference existed between puffs and interpuffs. By combining CO histochemistry and postembedding GABA immunocytochemistry on the same ultrathin sections, the simultaneous distribution of the two markers in individual neuronal profiles was quantitatively analyzed. In both puffs and interpuffs, GABA-immunoreactive (GABA-IR) neurons were the only cell type that received both non-GABA-IR (presumed excitatory) and GABA-IR (presumed inhibitory) axosomatic synapses, and they had three times as many mitochondria darkly reactive for CO than non-GABA-IR neurons, which received only GABA-IR axosomatic synapses. GABA-IR neurons and terminals in puffs had a larger mean size, about twice as many darkly reactive mitochondria, and a higher ratio of non-GABA-IR to GABA-IR axosomatic synapses than those in interpuffs (2.3:1 vs. 1.6:1; P < 0.01). There were significantly more synapses of both non-GABA-IR and GABA-IR types in the neuropil of puffs than of interpuffs; however, the ratio of non-GABA-IR to GABA-IR synapses was significantly higher in puffs (2.86:1) than in interpuffs (2.08:1; P < 0.01). Our results are consistent with the hypothesis that the level of oxidative metabolism in postsynaptic neurons and neuronal processes is tightly governed by the strength and proportion of excitatory over inhibitory synapses. Thus, the present results suggest that (1) GABA-IR neurons in the macaque striate cortex have a higher level of oxidative metabolism than non-GABA ones because their somata receive direct excitatory synapses and their terminals are more tonically active; (2) the higher proportion of presumed excitatory synapses in puffs imposes a greater energy demand there than in interpuffs; and (3) excitatory synaptic activity may be more prominent in puffs than in interpuffs because puffs receive a greater proportion of excitatory synapses from multiple sources including the lateral geniculate nucleus, which is not known to project to the interpuffs.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
32
|
Vidnyánszky Z, Hámori J. Quantitative electron microscopic analysis of synaptic input from cortical areas 17 and 18 to the dorsal lateral geniculate nucleus in cats. J Comp Neurol 1994; 349:259-68. [PMID: 7860782 DOI: 10.1002/cne.903490208] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cortical feedback is the largest extraretinal projection to the lateral geniculate nucleus. This input is thought to modulate the transfer of visual information in a state-dependent manner. The quantitative distribution and synaptology of axon terminals arising from different cortical areas is still an unsolved question. To address this problem, the synaptic termination pattern of corticogeniculate axons from cortical areas 17 and 18 entering the lateral geniculate nucleus of the cat was examined. The Phaseolus vulgaris leucoagglutinin anterograde tract tracing method was used for the labeling of corticogeniculate terminals. Postsynaptic targets were characterized by postembedding gamma-aminobutyric acid (GABA) immunocytochemistry. In both laminae A and A1, labeled corticogeniculate axons from area 17 established synaptic contacts with GABA-immunopositive, interneuronal dendritic profiles more frequently (17.5% of all axons) than did labeled axon terminals from area 18 (7% of axons). Conversely, 76% of labeled corticogeniculate axons from area 17, as opposed to 87% of labeled axons from area 18, terminated on GABA-immunonegative relay cell dendrites. Furthermore, the mean diameter of GABA-negative relay cell dendrites postsynaptic to labeled axons from area 17 was significantly smaller than the diameter of relay cell dendrites synapsing with labeled terminals from area 18. These results indicate that the corticogeniculate axons from cortical areas 17 and 18 exhibit different synaptic termination patterns in the dorsal lateral geniculate nucleus of the cat, suggesting that these two projections may subserve different functions in visual information processing.
Collapse
Affiliation(s)
- Z Vidnyánszky
- First Department of Anatomy, Semmelweis University Medical School, Budapest, Hungary
| | | |
Collapse
|
33
|
Affiliation(s)
- N C Danbolt
- Anatomical Institute, University of Oslo, Norway
| |
Collapse
|
34
|
Paré D, Smith Y. The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience 1993; 57:1077-90. [PMID: 8309544 DOI: 10.1016/0306-4522(93)90050-p] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to study the efferent projections of the intercalated cell masses within the amygdaloid complex, iontophoretic injections of cholera toxin B subunit were performed in several amygdaloid nuclei of the centromedial and basolateral groups in cats. Analysis of the ensuing retrograde labeling revealed that the main intra-amygdaloid targets of the intercalated cell masses are the central and medial nuclei. Most intercalated neurons projecting to the medial nucleus were found in the larger, rostrally located intercalated cell masses. In contrast, the majority of intercalated cells projecting to the central medial and central lateral nuclei were found in the smaller, caudally located intercalated cell masses. In addition, evidence for weaker projections to the basolateral nucleus and other intercalated cell masses was obtained. In light of previous immunohistochemical results showing that GABAergic cells represent the main cell type in the intercalated cell masses, these results imply that the intercalated cell masses constitute an important source of GABAergic input to the centromedial complex. The significance of this finding lies in the fact that the intercalated cell masses are located at the interface between the basolateral nuclear group and the centromedial complex, the main route through which the amygdaloid complex can directly influence hypothalamic and brainstem centers involved in the elaboration of autonomic responses and species-specific emotional behaviors.
Collapse
Affiliation(s)
- D Paré
- Département de Physiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | |
Collapse
|
35
|
Gundersen V, Danbolt NC, Ottersen OP, Storm-Mathisen J. Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognizing exogenous D-aspartate. Neuroscience 1993; 57:97-111. [PMID: 7904057 DOI: 10.1016/0306-4522(93)90114-u] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nerve terminals as well as glial cells are thought to possess high-affinity Na(+)-dependent transport sites for excitatory amino acids. However, recent immunocytochemical results with antibodies against such a transporter isolated from rat brain showed a selective labelling of glial cells [Danbolt et al. (1992) Neuroscience 51, 295-310]. Critical evaluation of the literature indicates that previous evidence for nerve terminal uptake of acidic amino acids might possibly be attributed to glia. To find out whether there is indeed a glutamate transporter in nerve endings, we incubated hippocampal slices with D-aspartate (10 and 50 microM), a metabolically inert substrate for the high-affinity glutamate transport system. After fixation by glutaraldehyde/formaldehyde the slices were processed immunocytochemically with specific polyclonal antibodies raised against D-aspartate coupled to albumin by glutaraldehyde/formaldehyde. The electron-microscopic postembedding immunogold technique demonstrated a large accumulation of gold particles in nerve terminals making asymmetrical synapses, compared to their postsynaptic dendritic spines, as well as in glial cell processes. The labelled terminals include those of the glutamatergic Schaffer collaterals. Axosomatic boutons appeared unlabelled. Comparison with a test conjugate with known concentration of fixed D-aspartate (94 mM) suggests that the concentration attained in the terminals after incubation with 50 microM D-aspartate was in the lower millimolar range. The uptake was totally dependent on Na+, blocked by L-threo-3-hydroxyaspartate, and had a high affinity for D-aspartate (apparent Km about 20 microM). There was no labelling in slices incubated without D-aspartate. Compared to glia, the nerve terminals had a higher D-aspartate density and accounted for a much higher proportion of the total tissue uptake, but this relationship may be different in vivo. At the light-microscopic level the D-aspartate-like immunoreactivity showed a distinct laminar distribution, identical to that shown autoradiographically for D-[3H]aspartate and L-[3H]glutamate uptake sites [Taxt and Storm-Mathisen (1984) Neuroscience 11, 79-100], and corresponding to the terminal fields of the major excitatory fibre systems in the hippocampal formation. The novel approach described here establishes that glutamatergic nerve terminals as well as glia do sustain sodium-dependent high-affinity transport of excitatory amino acids, implying that more than one glutamate transporter must be present in the brain. Immunogold detection of D-aspartate gives a much higher anatomical resolution than electron microscopic autoradiography of D-[3H]aspartate or L-[3H]glutamate uptake, the only method that has been available previously for ultrastructural demonstration of uptake activity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V Gundersen
- Anatomical Institute, University of Oslo, Norway
| | | | | | | |
Collapse
|
36
|
Contreras D, Curró Dossi R, Steriade M. Electrophysiological properties of cat reticular thalamic neurones in vivo. J Physiol 1993; 470:273-94. [PMID: 8308730 PMCID: PMC1143917 DOI: 10.1113/jphysiol.1993.sp019858] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The electrophysiological properties of neurones of the reticular thalamic (RE) nucleus were studied in acutely prepared cats under urethane anaesthesia. 2. Two main types of neuronal firing were recorded. At the resting membrane potential (-60 to -65 mV) tonic repetitive firing was elicited when the cell was activated synaptically or by current injection. From membrane potentials more negative than -75 mV, synaptic or direct stimulation generated a burst of action potentials. 3. The burst of RE cells consisted of a discharge of four to eight spikes riding on a slowly growing and decaying depolarization. The discharge rate during the burst showed a characteristic increase, followed by a decrease in frequency. 4. The burst response behaved as a graded phenomenon, as its magnitude was modulated by changing the intensity of the synaptic volley or the intensity of the injected current. 5. Spike-like small potentials presumably of dendritic origin occurred spontaneously and were triggered by synaptic or direct stimulation. They were all-or-none, voltage-dependent events. We postulate that these spikes originate in several hot spots in the dendritic arbor, with no reciprocal refractoriness and may generate multi-component depolarizations at the somatic level. 6. Excitatory postsynaptic potentials (EPSPs) evoked by internal capsule stimulation consisted of two components, the late one being blocked by hyperpolarization. Such compound EPSPs were followed by a period of decreased excitability during which a second response was diminished in amplitude. 7. A series of depolarizing waves at the frequency range of spindle oscillations was triggered by internal capsule stimulation. The individual depolarizing waves constituting the spindle oscillation gradually decreased in amplitude when decreasing the intensity of the stimulation. 8. These results, showing that RE cells are endowed with an excitable dendritic tree and a graded bursting behaviour, support the proposed role of RE nucleus as the generator and synchronizer of spindle rhythmicity.
Collapse
Affiliation(s)
- D Contreras
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | |
Collapse
|
37
|
McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 1992; 39:337-88. [PMID: 1354387 DOI: 10.1016/0301-0082(92)90012-4] [Citation(s) in RCA: 743] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- D A McCormick
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
38
|
McCormick DA, von Krosigk M. Corticothalamic activation modulates thalamic firing through glutamate "metabotropic" receptors. Proc Natl Acad Sci U S A 1992; 89:2774-8. [PMID: 1313567 PMCID: PMC48745 DOI: 10.1073/pnas.89.7.2774] [Citation(s) in RCA: 327] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mammalian thalamus forms an obligatory relay for nearly all sensory information that reaches the cerebral cortex. The transmission of sensory information by the thalamus varies in a state-dependent manner, such that during slow wave sleep or drowsiness thalamic responsiveness is markedly reduced, whereas during the waking, attentive state transmission is enhanced. Although activation of brainstem inputs to thalamic neurons has long been assumed to underlie this gating of sensory transfer through the thalamus, numerically the largest input to thalamic relay neurons derives from layer VI cells of the cerebral cortex. Here we report that activation of corticothalamic fibers causes a prolonged excitatory postsynaptic potential in guinea pig dorsal lateral geniculate relay neurons resulting from the reduction of a potassium conductance, consistent with the activation of glutamatergic "metabotropic" receptors. This slow depolarization can switch firing of thalamic neurons from the burst firing mode, which is prevalent during slow wave sleep, to the single spike mode, which is prevalent during waking, thereby facilitating transmission of sensory information through the thalamus. This prolonged enhancement of thalamic transfer may allow the cerebral cortex to gate or control selective fields of sensory inputs in a manner that facilitates arousal, attention, and cognition.
Collapse
Affiliation(s)
- D A McCormick
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
39
|
Funke K, Eysel UT. EEG-dependent modulation of response dynamics of cat dLGN relay cells and the contribution of corticogeniculate feedback. Brain Res 1992; 573:217-27. [PMID: 1504762 DOI: 10.1016/0006-8993(92)90766-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single unit recordings were made extracellularly from the dorsal lateral geniculate nucleus (dLGN) in the anaesthetized and paralysed cat. The impulse rates of phasic (peak) and tonic components of visual responses to stimulation of the receptive field center by a flashing spot were determined during different states of the EEG, during local cortical cooling and during micro-iontophoretic application of the excitatory amino acid receptor agonists, quisqualate (QUIS) and N-methyl-D-aspartate (NMDA). Typically, visual responses were phasic during low frequency/high amplitude EEG patterns, resembling slow wave sleep (SWS). During high frequency EEG patterns (non-SWS) visual responses of X- and Y-cells exhibited a prominent tonic response component. This tonic component could be clearly reduced during ipsilateral cortical cooling in the non-SWS state. QUIS or NMDA, applied in order to mimic corticofugal activity, augmented the tonic response component, most efficiently during SWS EEG. The effects did not differ significantly for X- and Y-cells. During non-SWS EEG Y-cells exhibited a tonic response component similar to X-cells, but because of their higher peak rates the responses of Y-cells were on average more phasic than those of X-cells. Our results indicate that state-dependent changes in CNS activity modulate dL'GN responsiveness in part via the corticogeniculate feedback, and that predominantly the tonic response component is modulated.
Collapse
Affiliation(s)
- K Funke
- Abteilung für Neurophysiologie, Ruhr-Universität Bochum, F.R.G
| | | |
Collapse
|
40
|
Morphological differentiation of distinct neuronal classes in embryonic turtle cerebral cortex. J Comp Neurol 1991. [DOI: 10.1002/cne.903100405] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Xuereb JH, Candy JM, Perry EK, Perry RH, Marshall E, Bonham JR. Distribution of neurofibrillary tangle formation and [3H]-D-aspartate receptor binding in the thalamus in the normal elderly brain, in Alzheimer's disease and in Parkinson's disease. Neuropathol Appl Neurobiol 1990; 16:477-88. [PMID: 1965733 DOI: 10.1111/j.1365-2990.1990.tb01287.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The overactivity of glutamatergic neurons may underlie some neurodegenerative disorders, including Alzheimer's disease (AD). We explored the relationship between glutamatergic transmission and neurofibrillary tangle formation by measuring [3H]-D-aspartate binding activity and the proportion of neurons containing tangles within individual thalamic nuclei in five AD cases. Five elderly normal and five Parkinson's disease (PD) cases were used as controls. A highly significant correlation between [3H]-D-aspartate binding and tangle counts in Alzheimer's disease suggests that those thalamic nuclei which normally receive a relatively dense glutamatergic afferent input are predisposed to tangle formation. There were no significant differences in individual thalamic nuclear [3H]-D-aspartate binding between controls and the AD and PD groups.
Collapse
Affiliation(s)
- J H Xuereb
- Department of Morbid Anatomy and Histopathology, Addenbrooke's Hospital, Cambridge
| | | | | | | | | | | |
Collapse
|
42
|
Cucchiaro JB, Uhlrich DJ. Phaseolus vulgaris leucoagglutinin (PHA-L): a neuroanatomical tracer for electron microscopic analysis of synaptic circuitry in the cat's dorsal lateral geniculate nucleus. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1990; 15:352-68. [PMID: 2391562 DOI: 10.1002/jemt.1060150405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phaseolus vulgaris leucoagglutinin (PHA-L) is a plant lectin that is anterogradely transported by neurons in the central nervous system. PHA-L is selectively taken up by cells at iontophoretic injection sites and, when immunohistochemically demonstrated, labels individual neurons completely, including their dendrites, axons, and terminal boutons. PHA-L is generally not taken up by fibers passing through the injection site and, because it produces a Golgi-like staining of even very fine axons over long distances, it is sometimes possible to light microscopically reconstruct individual neurons and their entire axon terminal arbors. When prepared for electron microscopy, the PHA-L-labeled terminals are densely and completely stained, allowing their synaptic relationships to be defined. These properties make PHA-L advantageous for studying the patterns of projection and the modes of termination of select groups of neurons in their target nuclei. We used PHA-L to study the extraretinal innervation of the cat's dorsal lateral geniculate nucleus, a thalamic visual center. Although much is known about the retinal contribution to geniculate synaptic circuitry, relatively little is known about other sources of innervation, even though these provide the majority of synaptic terminals in the nucleus (Guillery: Z. Zellforsch., 96:1-38, 39-48, 1969; Wilson et al.: Proc. R. Soc. Lond. [Biol.], 221:441-436, 1984). We used both light and electron microscopy to describe synaptic circuitry from three extraretinal sources of projections to the lateral geniculate nucleus: the visual cortex, the perigeniculate nucleus, and the parabrachial region of the brainstem. Cortical terminals labeled with PHA-L were small and formed asymmetrical synaptic contacts onto small-caliber dendrites of geniculate neurons. Perigeniculate terminals formed symmetrical synaptic contacts primarily onto small-caliber dendrites, but some synapses were also formed onto the proximal, retinorecipient portions of geniculate dendrites. Parabrachial terminals synaptically contacted the retinorecipient portions of dendritic appendages and shafts, small-caliber dendrites, and the specialized dendritic (F2) terminals of geniculate interneurons. The symmetry of the parabrachial synaptic contacts was variable and was related to the postsynaptic target. Contacts onto dendritic appendages were asymmetrical while those onto dendritic shafts and F2 terminals were symmetrical. Our data suggest that in unlabeled material these brainstem terminals would be difficult to distinguish from cortical or perigeniculate profiles. The positioning of the parabrachial input onto the retinorecipient portions of geniculate dendrites indicates that this projection is well situated to control primary retinal transmission through the nucleus, while the location of most cortical and perigeniculate innervations implicates them in secondary feedback interactions or other aspects of geniculate function.
Collapse
Affiliation(s)
- J B Cucchiaro
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794
| | | |
Collapse
|
43
|
Quantitative immunogold analysis reveals high glutamate levels in synaptic terminals of retino-geniculate, cortico-geniculate, and geniculo-cortical axons in the cat. Vis Neurosci 1990; 4:437-43. [PMID: 1980205 DOI: 10.1017/s0952523800005198] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A postembedding immunogold procedure was used to estimate quantitatively, at the electron-microscopical level, the intensity of glutamate (GLU) immunoreactivity in different identifiable profiles of the lateral geniculate nucleus (LGN) and perigeniculate nucleus (PGN) of the cat. Synaptic terminals of retinal and cortical origins in the LGN, and of axon collaterals of geniculo-cortical relay cells in the PGN, were identified by previously determined ultrastructural features. Processes of interneurons or relay cells were identified by being immunoreactive or non-immunoreactive, respectively, in serial thin section reacted with a GABA antibody. The results showed that synaptic terminals of geniculo-cortical relay cells in the PGN have significantly higher levels of GLU immunoreactivity than their parent somata or dendrites in the LGN; this suggests transmitter storage of this amino acid in these terminals. By contrast, synaptic terminals of interneurons did not show enrichment of GLU relative to their parent somata. This argues against the possibility that the relative enrichment of GLU in relay cells terminals is due to factors other than presynaptic storage. In addition, axon collateral terminals of relay cells in the pGN, as well as retinal and cortical terminals in the LGN, showed significantly higher GLU immunoreactivity than GABAergic terminals. These immunocytochemical results suggest that GLU is a neurotransmitter in the retino-geniculate, cortico-geniculate, and geniculo-cortical pathways in the cat.
Collapse
|
44
|
Carboni AA, Lavelle WG, Barnes CL, Cipolloni PB. Neurons of the lateral entorhinal cortex of the rhesus monkey: a Golgi, histochemical, and immunocytochemical characterization. J Comp Neurol 1990; 291:583-608. [PMID: 1691746 DOI: 10.1002/cne.902910407] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study identifies the neuronal types of the rhesus monkey lateral entorhinal cortex (LEC) and discusses the importance of these data in the context of the connectional patterns of the LEC and the possible role of these cells in neurodegenerative diseases. These neuronal types were characterized with the aid of Golgi impregnation techniques. These characterizations were based upon their spine densities, dendritic arrays, and, where possible, axonal arborizations. The cells could be segregated into only spinous and sparsely spinous types. The most numerous spinous types were pyramidal neurons. Other spinous types included multipolar, vertical bipolar and bitufted, and vertical tripolar neurons. The sparsely spinous neuronal types consisted of multipolar, horizontal bipolar and bitufted, and neurogliaform cells. These cells were further classified with the aid of histochemical stains and immunocytochemical markers. Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry stained multipolar, bipolar, and bitufted neurons. Stain for cytochrome oxidase (CO) was found in pyramidal and nonpyramidal cell types. Immunocytochemical techniques revealed several nonpyramidal neurons that contain somatostatin (Som) or substance P (SP). This study complements previous analyses of the neuronal components described in the LEC and adds further information about the distribution of selected neurochemicals within this cortex.
Collapse
Affiliation(s)
- A A Carboni
- Department of Surgery, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
45
|
Ruijter JM, Baker RE. The effects of potassium-induced depolarization, glutamate receptor antagonists and N-methyl-D-aspartate on neuronal survival in cultured neocortex explants. Int J Dev Neurosci 1990; 8:361-70. [PMID: 2174633 DOI: 10.1016/0736-5748(90)90069-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The effects of elevating the potassium concentration of the growth medium of neocortical explants was studied. Under control conditions, 10 mM potassium resulted in ca 20% decrease in the number of surviving neurons. The same potassium concentration, however, was clearly neurotrophic in tetrodotoxin-grown cultures: tetrodotoxin-induced neuronal death was significantly reduced. Both effects could be mimicked by the addition of 10 microM N-methyl-D-aspartate (NMDA); lower concentrations were without effect; higher concentrations were neurotoxic under both control and tetrodotoxin conditions. The neurotoxic, as well as the neurotrophic effects of 10 mM potassium appear to be mediated through depolarization-induced glutamate release since they could be influenced by the application of glutamate receptor antagonists. The addition of the NMDA receptor antagonist D-2-amino-7-phosphonoheptanoate (APH) blocked the trophic effect of 10 mM potassium in tetrodotoxin-grown cultures, resulting in low survival. On the other hand, the addition of the non-NMDA antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) resulted in neuronal survival similar to control cultures, indicating that it blocked the toxic effects of glutamate, leaving the trophic effects on the NMDA receptor untouched. Under control (non-TTX) conditions, neither DNQX nor APH showed significant effects on 10 mM potassium-induced cell death, indicating that stimulation of the non-NMDA, as well as the NMDA receptors is neurotoxic. This differential effect of NMDA receptor stimulation on neuronal survival is discussed with respect to the maturational and/or functional state of the neurons in the culture.
Collapse
Affiliation(s)
- J M Ruijter
- Netherlands Institute for Brain Research, Amsterdam
| | | |
Collapse
|
46
|
Abstract
Traumatic or stroke-like injuries of the cerebral cortex result in the rapid retrograde degeneration of thalamic relay neurons that project to the damaged area. Although this phenomenon has been well documented, neither the basis for the relay neuron's extreme sensitivity to axotomy nor the mechanisms involved in the degenerative process have been clearly identified. Physiological and biochemical studies of the thalamic response to cortical ablation indicate that pathological overexcitation might contribute to the degenerative process. The responses of thalamic projection neurons, protoplasmic astrocytes, and inhibitory thalamic reticular neurons in adult mice were examined from one to 120 days following ablation of the somatosensory cortex as part of an investigation of the role of excitotoxicity in thalamic retrograde degeneration. The responses of thalamic neurons to cortical ablation were compared with those produced by intracortical injection of the convulsant excitotoxin kainic acid, since the degeneration of neurons in connected brain structures distant to the site of kainic acid injection is also thought to occur via an excitotoxic mechanism. Within two days after either type of cortical injury, protoplasmic astrocytes in affected regions of the thalamic ventrobasal complex and the medial division of the posterior thalamic nuclei became reactive and expressed increased levels of immunohistochemically detectable glial fibrillary acidic protein. Within the affected regions of the ventrobasal complex an increased intensity of puncta positive for glutamate decarboxylase immunoreactivity, presumably due to an increase in its content within the terminals of the reciprocally interconnected thalamic reticular neurons, was also evident. These immunohistochemically detectable alterations in the milieu of the damaged thalamic neurons preceded the disappearance of the affected relay neurons by at least two days following cortical ablation and by seven to 10 days following intracortical kainic acid injection. Regions of the thalamus containing reactive astrocytes corresponded very closely to the regions undergoing retrograde degeneration. Protoplasmic astrocytes in these areas remained intensely reactive up to 60 days after cortical injury. Levels of glutamate decarboxylase were only transiently elevated in the degenerating regions of the ventrobasal complex following cortical ablation and returned to normal by 14 days. Increased glutamate decarboxylase immunoreactivity was transiently seen through the entire ventrobasal complex following intracortical kainic acid injection but was markedly more intense in degenerating regions. These patterns of labeling did not return to normal until 50 days after intracortical kainic acid injection, well after the death of the relay neurons. Cortical ablation and intracortical kainic acid injection produce similar alterations in thalamic neuronal and glial populations.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D T Ross
- Division of Neurosurgery, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
47
|
Weber AJ, Kalil RE, Behan M. Synaptic connections between corticogeniculate axons and interneurons in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 1989; 289:156-64. [PMID: 2808759 DOI: 10.1002/cne.902890113] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Anatomical evidence is provided for direct synaptic connections by axons from visual cortex with interneurons in lamina A of the cat's dorsal lateral geniculate nucleus. Corticogeniculate axon terminals were labeled selectively with 3H-proline and identified by means of electron microscopic autoradiography. Interneurons in the lateral geniculate nucleus were stained with antibodies that had been raised against gamma aminobutyric acid (GABA). We found that corticogeniculate terminals synapsed with dendrites stained positively for GABA about three times as often as with unstained dendrites. Of the corticogeniculate terminals that contacted GABA-positive dendrites, 97% made synaptic connections with dendritic shafts. Only 3% synapsed with F profiles, the vesicle-filled dendritic appendages characteristic of lateral geniculate interneurons. These results suggest that the corticogeniculate pathway in the cat is directed primarily at interneurons and is organized synaptically to influence the integrated output of these cells, rather than the local interactions in which their dendritic specializations participate.
Collapse
Affiliation(s)
- A J Weber
- Department of Comparative Bioscience, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
48
|
Ross DT, Duhaime AC. Degeneration of neurons in the thalamic reticular nucleus following transient ischemia due to raised intracranial pressure: excitotoxic degeneration mediated via non-NMDA receptors? Brain Res 1989; 501:129-43. [PMID: 2553211 DOI: 10.1016/0006-8993(89)91034-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transient global ischemia was produced in rats by cisternal fluid infusion, producing a negative cerebral perfusion pressure by elevating the intracranial pressure (ICP) 25-50 mm Hg above mean arterial pressure (MAP). Animals were allowed to survive for 2-7 days following a transient ischemic episode of 5-30 min. The brains were examined for signs of ischemic degeneration in Nissl-stained sections and adjacent sections reacted with antisera against glial fibrillary acidic protein (GFAP) or aspartate aminotransferase (AAT). Neurons in the thalamic reticular nucleus (RT), a pure population of gamma-aminobutyric acid (GABA)ergic neurons which project their axons to thalamic relay nuclei, were found to have the lowest threshold for degeneration in this model, consistently undergoing degeneration under conditions which completely spared the hippocampal CA1 from degeneration. Whereas it took up to 30 min of complete ischemia to produce degeneration of CA1 neurons when ICP was raised using room temperature infusion fluids, 15 min of ischemia under these conditions was sufficient to produce extensive degeneration of neurons in the entire ventral 3/4 of the RT. Prolonged (greater than 25 min) episodes of partial ischemia (ICP less than or equal to MAP) were also sufficient to produce massive degeneration of RT neurons. The lesion in the RT was most clearly evident in sections reacted with antisera to GFAP, labeling intensely reactive protoplasmic astrocytes within the regions of the RT where neuronal degeneration had occurred. Neuronal loss and accompanying proliferation of microglial cells were evident in Nissl-stained sections but the extent of the neuronal loss was most clearly obvious in sections reacted with an antisera to AAT, an enzyme present in detectable quantities in GABAergic neurons. Pretreatment with the non-competitive NMDA antagonist MK-801 at doses sufficient to completely prevent massive degeneration of the hippocampal CA1 failed to prevent the degeneration of RT neurons, suggesting that if RT degeneration involves an excitotoxic process it acts through non-NMDA receptors.
Collapse
Affiliation(s)
- D T Ross
- Department of Clinical Neurosciences, Brown University, Providence, RI
| | | |
Collapse
|
49
|
Golden GT, Ferraro TN, Fariello RG, Hare TA. Amino acid profiles in Long-Evans rat superior colliculus, visual cortex, and inferior colliculus. Neurochem Res 1989; 14:465-72. [PMID: 2747837 DOI: 10.1007/bf00964862] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An ultrasensitive triple-column ion-exchange/fluorometric method was utilized to measure the levels of over 30 amino acids and related primary amino compounds in Long-Evans rat superior colliculus (SC), visual cortex (VC) and inferior colliculus (IC). Comparison of levels of amino compounds revealed distinctly different profiles for each region. Major constituents were the neurotransmitters and related compounds glutamate, glutamine, GABA, taurine, aspartate and glycine. Glutathione levels were also relatively high in all three regions. SC exhibited a significantly higher level of GABA and beta-alanine compared to both VC and IC. VC had significantly higher levels of glutamate and taurine. VC exhibited the lowest level of glycine and IC the highest. A time-course experiment using SC documented that levels of eleven of thirty-four compounds, including GABA, were subject to significant postmortem alteration in vitro. SC GABA stability experiments indicated that significant in vitro increases of free GABA levels between 1 and 4 min postmortem were associated with equimolar decreases of conjugated GABA levels.
Collapse
Affiliation(s)
- G T Golden
- Research and Neurology Veterans Administration, Coatesville, Pennsylvania 19320
| | | | | | | |
Collapse
|
50
|
Montero VM, Wenthold RJ. Quantitative immunogold analysis reveals high glutamate levels in retinal and cortical synaptic terminals in the lateral geniculate nucleus of the macaque. Neuroscience 1989; 31:639-47. [PMID: 2574426 DOI: 10.1016/0306-4522(89)90429-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An immunogold procedure has been used on ultrathin sections of the parvo- and magnocellular layers of the dorsal lateral geniculate of the rhesus monkey to estimate quantitatively at the electron microscopic level the intensity of immunoreactivity to an antibody against glutamate over profiles of retinal, cortical, GABAergic synaptic terminals and glial cells. GABAergic terminals were identified directly by immunogold reactivity to a GABA antibody or by ultrastructural features. The results showed that in both of the main subdivisions of the geniculate the densities of immunogold particles over cortical and retinal terminals were about two- to three-fold higher than those over GABAergic terminals or glial profiles. In addition, cortical and retinal terminals showed higher positive correlations of glutamate immunogold particle densities to synaptic vesicle densities than did GABAergic terminals. These differences suggest higher and lower concentrations of glutamate corresponding to transmitter and metabolic pools of this amino acid in axon terminals of retinal and cortical origins versus GABAergic terminals, respectively, in the dorsal lateral geniculate nucleus of the macaque.
Collapse
Affiliation(s)
- V M Montero
- Department of Neurophysiology, Waisman Center, University of Wisconsin, Madison 53705
| | | |
Collapse
|