1
|
Morrow JS, Rimm DL, Kennedy SP, Cianci CD, Sinard JH, Weed SA. Of Membrane Stability and Mosaics: The Spectrin Cytoskeleton. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
2
|
Mattagajasingh SN, Huang SC, Benz EJ. Inhibition of protein 4.1 R and NuMA interaction by mutagenization of their binding-sites abrogates nuclear localization of 4.1 R. Clin Transl Sci 2010; 2:102-11. [PMID: 20443879 DOI: 10.1111/j.1752-8062.2008.00087.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein 4.1R(4.1R) is a multifunctional structural protein recently implicated in nuclear assembly and cell division. We earlier demonstrated that 4.1R forms a multiprotein complex with mitotic spindle and spindle pole organizing proteins, such as NuMA, dynein, and dynactin, by binding to residues 1788-1810 of NuMA through amino acids encoded by exons 20 and 21 in 24 kD domain. Employing random-and site-directed mutagenesis combined with glycine- and alanine-scanning, we have identified amino acids of 4.1 R and NuMA that sustain their interaction, and have analyzed the effect of mutating the binding sites on their intracellular colocalization. We found that V762, V765, and V767 of 4.1 R, and 11800, 11801,11803, Tl 804, and M1805 of NuMA are necessary for their interaction. GST-fusion peptides of the 4.1R24 kD domain bound to residues 1785-2115 of NuMA in in vitro binding assays, but the binding was inhibited by alanine substitutions of V762, V765, and V767 of 4.1 R, or residues 1800-1805 of NuMA. Additionally, expression of variants of 4.1 R or NuMA that inhibit their in vitro binding also abrogated nuclear localization of 4.1 Rand colocalization with NuMA. Our findings suggest a crucial role of 4.1 R/NuMA interaction in localization and function of 4.1 R in the nucleus.
Collapse
|
3
|
Mattagajasingh SN, Huang SC, Benz EJ. Inhibition of Protein 4.1 R and NuMA Interaction by Mutagenization of Their Binding-Sites Abrogates Nuclear Localization of 4.1 R. Clin Transl Sci 2009. [DOI: 10.1111/j.1752-8062.2009.00087.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
4
|
Pérez-Ferreiro CM, Lospitao E, Correas I. Protein 4.1R self-association: identification of the binding domain. Biochem J 2006; 400:457-65. [PMID: 16881872 PMCID: PMC1698608 DOI: 10.1042/bj20060644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Erythroid protein 4.1 (4.1R) stabilizes the spectrin-actin network and anchors it to the plasma membrane. To contribute to the characterization of non-erythroid protein 4.1R, we used sedimentation, pull-down and co-immunoprecipitation assays to investigate the ability of protein 4.1R to establish inter-/intra-molecular associations. We demonstrated that the small 4.1R isoforms of 60 kDa (4.1R60), but not the larger isoforms of 80 and 135 kDa (4.1R80 and 4.1R135), were self-associated, and that a domain contained in all 4.1R isoforms, the core region, was responsible for 4.1R self-association. Results from denaturing-renaturing experiments, in which an initially non-self-associated 4.1R80 isoform became self-associated, suggested that an initially hidden core region was subsequently exposed. This hypothesis was supported by results from pull-down assays, which showed that the core region interacted with the N-terminal end of the FERM (4.1, ezrin, radixin, moesin) domain that is present in 4.1R80 and 4.1R135 isoforms but absent from 4.1R60 isoforms. Consistently, 4.1R80 isoforms bound neither to each other nor to 4.1R60 isoforms. We propose that 4.1R60 isoforms are constitutively self-associated, whereas 4.1R80 and 4.1R135 self-association is prevented by intramolecular interactions.
Collapse
Affiliation(s)
- Carmen M Pérez-Ferreiro
- Departamento de Biología Molecular, CBMSO (Centro de Biología Molecular Severo Ochoa), UAM/CSIC, Cantoblanco, E-28049 Madrid, Spain.
| | | | | |
Collapse
|
5
|
Huang SC, Liu ES, Chan SH, Munagala ID, Cho HT, Jagadeeswaran R, Benz EJ. Mitotic regulation of protein 4.1R involves phosphorylation by cdc2 kinase. Mol Biol Cell 2004; 16:117-27. [PMID: 15525677 PMCID: PMC539157 DOI: 10.1091/mbc.e04-05-0426] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The nonerythrocyte isoform of the cytoskeletal protein 4.1R (4.1R) is associated with morphologically dynamic structures during cell division and has been implicated in mitotic spindle function. In this study, we define important 4.1R isoforms expressed in interphase and mitotic cells by RT-PCR and mini-cDNA library construction. Moreover, we show that 4.1R is phosphorylated by p34cdc2 kinase on residues Thr60 and Ser679 in a mitosis-specific manner. Phosphorylated 4.1R135 isoform(s) associate with tubulin and Nuclear Mitotic Apparatus protein (NuMA) in intact HeLa cells in vivo as well as with the microtubule-associated proteins in mitotic asters assembled in vitro. Recombinant 4.1R135 is readily phosphorylated in mitotic extracts and reconstitutes mitotic aster assemblies in 4.1R-immunodepleted extracts in vitro. Furthermore, phosphorylation of these residues appears to be essential for the targeting of 4.1R to the spindle poles and for mitotic microtubule aster assembly in vitro. Phosphorylation of 4.1R also enhances its association with NuMA and tubulin. Finally, we used siRNA inhibition to deplete 4.1R from HeLa cells and provide the first direct genetic evidence that 4.1R is required to efficiently focus mitotic spindle poles. Thus, we suggest that 4.1R is a member of the suite of direct cdc2 substrates that are required for the establishment of a bipolar spindle.
Collapse
Affiliation(s)
- Shu-Ching Huang
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Birkenmeier CS, Barker JE. Hereditary haemolytic anaemias: unexpected sequelae of mutations in the genes for erythroid membrane skeletal proteins. J Pathol 2004; 204:450-9. [PMID: 15495268 DOI: 10.1002/path.1636] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the haemolytic anaemia may be the primary concern for hereditary spherocytosis and elliptocytosis patients, it is clear that their situation can be compromised by primary and secondary defects in erythroid and non-erythroid systems of the body. All seven of the red cell membrane skeletal proteins discussed in this review are also expressed in non-erythroid tissues, and mutations in their genes have the potential to cause non-erythroid defects. In some instances, such as the protein 4.1R and ANK1 neurological deficits, the diagnosis is clear. In other instances, because of the complex expression patterns involved, the non-erythroid effects may be difficult to assess. An example is the large multidomain, multifunctional band 3 protein. In this case, the location of the mutation can cause defects in one functional domain or isoform and not the other. In other cases, such as the beta-adducin null mutation, other isoforms may partially compensate for the primary deficiency. In such cases, it may be that the effects of the deficit are subtle but could increase under stress or with age. To be completely successful, treatment strategies must address both primary and secondary effects of the anaemia. If gene replacement therapy is to be used, the more that is known about the underlying genetic mechanisms producing the multiple isoforms the better we will be able to design the best replacement gene. The various animal models that are now available should be invaluable in this regard. They continue to contribute to our understanding of both the primary and the secondary effects and their treatment.
Collapse
|
7
|
Luque CM, Pérez-Ferreiro CM, Pérez-Gonzalez A, Englmeier L, Koffa MD, Correas I. An alternative domain containing a leucine-rich sequence regulates nuclear cytoplasmic localization of protein 4.1R. J Biol Chem 2003; 278:2686-91. [PMID: 12427749 DOI: 10.1074/jbc.m201521200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In red blood cells, protein 4.1 (4.1R) is an 80-kDa protein that stabilizes the spectrin-actin network and anchors it to the plasma membrane. The picture is more complex in nucleated cells, in which many 4.1R isoforms, varying in size and intracellular location, have been identified. To contribute to the characterization of signals involved in differential intracellular localization of 4.1R, we have analyzed the role the exon 5-encoded sequence plays in 4.1R distribution. We show that exon 5 encodes a leucine-rich sequence that shares key features with nuclear export signals (NESs). This sequence adopts the topology employed for NESs of other proteins and conserves two hydrophobic residues that are shown to be critical for NES function. A 4.1R isoform expressing the leucine-rich sequence binds to the export receptor CRM1 in a RanGTP-dependent fashion, whereas this does not occur in a mutant whose two conserved hydrophobic residues are substituted. These two residues are also essential for 4.1R intracellular distribution, because the 4.1R protein containing the leucine-rich sequence localizes in the cytoplasm, whereas the mutant protein predominantly accumulates in the nucleus. We hypothesize that the leucine-rich sequence in 4.1R controls distribution and concomitantly function of a specific set of 4.1R isoforms.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- COS Cells
- Cell Nucleus/metabolism
- Cloning, Molecular
- Cytoplasm/metabolism
- Cytoskeletal Proteins
- DNA, Complementary/metabolism
- Exons
- Green Fluorescent Proteins
- Humans
- Karyopherins/metabolism
- Leucine/chemistry
- Leucine/metabolism
- Luminescent Proteins/metabolism
- Membrane Proteins
- Microscopy, Fluorescence
- Models, Biological
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Neuropeptides
- Protein Biosynthesis
- Protein Conformation
- Protein Isoforms
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear
- Transfection
- ran GTP-Binding Protein/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Carlos M Luque
- Departamento de Biologia Molecular, Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas/Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Pérez-Ferreiro CM, Luque CM, Correas I. 4.1R proteins associate with interphase microtubules in human T cells: a 4.1R constitutive region is involved in tubulin binding. J Biol Chem 2001; 276:44785-91. [PMID: 11579097 DOI: 10.1074/jbc.m107369200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Red blood cell protein 4.1 (4.1R) is an 80-kDa protein that stabilizes the spectrin-actin network and anchors it to the plasma membrane. To contribute to the characterization of functional roles and partners of specific nonerythroid 4.1R isoforms, we analyzed 4.1R in human T cells and found that endogenous 4.1R was distributed to the microtubule network. Transfection experiments of T cell 4.1R cDNAs in conjunction with confocal microscopy analysis revealed the colocalization of exogenous 4.1R isoforms with the tubulin skeleton. Biochemical analyses using Taxol (paclitaxel)-polymerized microtubules from stably transfected T cells confirmed the association of the exogenous 4.1R proteins with microtubules. Consistent with this, endogenous 4.1R immunoreactive proteins were also detected in the microtubule-containing fraction. In vitro binding assays using glutathione S-transferase-4.1R fusion proteins showed that a constitutive domain of the 4.1R molecule, one that is therefore present in all 4.1R isoforms, is responsible for the association with tubulin. A 22-amino acid sequence comprised in this domain and containing heptad repeats of leucine residues was essential for tubulin binding. Furthermore, ectopic expression of 4.1R in COS-7 cells provoked microtubule disorganization. Our results suggest an involvement of 4.1R in interphase microtubule architecture and support the hypothesis that some 4.1R functional activities are cell type-regulated.
Collapse
Affiliation(s)
- C M Pérez-Ferreiro
- Centro de Biologia Molecular "Severo Ochoa," Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | |
Collapse
|
9
|
Kwon S, Song WK, Park CS, Ahnn J. Characterization of a novel gene expressed in neuromuscular tissues and centrosomes in Caenorhabditis elegans. Cell Biochem Funct 2001; 19:79-88. [PMID: 11335932 DOI: 10.1002/cbf.880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nematode Caenorhabditis elegans has many advantages for studying gene function at the organism level. In particular, completion of the genome sequencing has made it feasible to study gene structure and function of both known and novel proteins. As a result of a database search for muscle-specific genes, a gene F43D9.1 was found which showed muscle-specific expression as revealed by the in situ hybridization pattern from the Expressed Sequence Tag (EST) database. A homology search of F43D9.1 protein sequences showed no significant homology with other known proteins, except that it showed very weak sequence similarity with the band 4.1 protein superfamily. Northern blot analysis reveals a single transcript 3.7 kb in size which is consistent with the predicted gene structure. The expression pattern of F43D9.1 was investigated using the gfp reporter gene, and it has shown to be expressed in neuronal cells including sensory neurons and interneurons in the head region. To further characterize F43D9.1, whole-mount immunostaining was performed with anti-F43D9.1 antibody, which showed specific signals in head neurons, body-wall muscle cells, some other unidentified neuronal cells, and centrosomes of the dividing cells during embryogenesis. Taken together with its predicted membrane topology, we speculate that the F43D9.1 gene, which encodes a novel transmembrane protein and contains a band 4.1-like domain, may function in neuromuscular cells, and may play an important role during cell division in C. elegans.
Collapse
Affiliation(s)
- S Kwon
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, 500-712, Korea
| | | | | | | |
Collapse
|
10
|
Kontrogianni-Konstantopoulos A, Huang SC, Benz EJ. A nonerythroid isoform of protein 4.1R interacts with components of the contractile apparatus in skeletal myofibers. Mol Biol Cell 2000; 11:3805-17. [PMID: 11071908 PMCID: PMC15038 DOI: 10.1091/mbc.11.11.3805] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The approximately 80-kDa erythroid 4.1R protein is a major component of the erythrocyte cytoskeleton, where it links transmembrane proteins to the underlying spectrin/actin complexes. A diverse collection of 4.1R isoforms has been described in nonerythroid cells, ranging from approximately 30 to approximately 210 kDa. In the current study, we identified the number and primary structure of 4.1R isoforms expressed in adult skeletal muscle and characterized the localization patterns of 4.1R message and protein. Skeletal muscle 4.1R appears to originate solely from the upstream translation initiation codon (AUG-1) residing in exon 2'. Combinations of alternatively spliced downstream exons generate an array of distinct 4.1R spliceoforms. Two major isoform classes of approximately 105/110 and approximately 135 kDa are present in muscle homogenates. 4.1R transcripts are distributed in highly ordered signal stripes, whereas 4.1R protein(s) decorate the sarcoplasm in transverse striations that are in register with A-bands. An approximately 105/110-kDa 4.1R isoform appears to occur in vivo in a supramolecular complex with major sarcomeric proteins, including myosin, alpha-actin, and alpha-tropomyosin. In vitro binding assays showed that 4.1R may interact directly with the aforementioned contractile proteins through its 10-kDa domain. All of these observations suggest a topological model whereby 4.1R may play a scaffolding role by anchoring the actomyosin myofilaments and possibly modulating their displacements during contraction/relaxation.
Collapse
|
11
|
Hung LY, Tang CJ, Tang TK. Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex. Mol Cell Biol 2000; 20:7813-25. [PMID: 11003675 PMCID: PMC86375 DOI: 10.1128/mcb.20.20.7813-7825.2000] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a yeast two-hybrid system, we isolated a novel human centrosomal protein, CPAP (centrosomal P4.1-associated protein), which specifically interacts with the head domain of the 135-kDa protein 4.1R isoform (4.1R-135). Sequence analysis revealed that the carboxyl terminus of CPAP has 31.3% amino acid identity with human Tcp-10 (a t-complex responder gene product). Interestingly, most of the sequence identity is restricted to two conserved regions. One carries a leucine zipper, which may form a series of heptad repeats involved in coiled-coil formation; the other contains unusual glycine repeats with unknown function. Immunofluorescence analysis revealed that CPAP and gamma-tubulin are localized within the centrosome throughout the cell cycle. CPAP cosediments with gamma-tubulin in sucrose gradients and coimmunoprecipitates with gamma-tubulin, indicating that CPAP is a part of the gamma-tubulin complex. Furthermore, functional analysis revealed that CPAP is localized within the center of microtubule asters and may participate in microtubule nucleation. The formation of microtubule asters was significantly inhibited by anti-CPAP antibody. Together, these observations indicate that CPAP may play an important role in cell division and centrosome function.
Collapse
Affiliation(s)
- L Y Hung
- Institute of Life Science, National Defense Medical College, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | | | | |
Collapse
|
12
|
Mattagajasingh SN, Huang SC, Hartenstein JS, Benz EJ. Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton. J Biol Chem 2000; 275:30573-85. [PMID: 10874042 DOI: 10.1074/jbc.m004578200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Multiple isoforms of the red cell protein 4.1R are expressed in nonerythroid cells, including novel 135-kDa isoforms. Using a yeast two-hybrid system, immunocolocalization, immunoprecipitation, and in vitro binding studies, we found that two 4.1R isoforms of 135 and 150 kDa specifically interact with the protein ZO-2 (zonula occludens-2). 4.1R is colocalized with ZO-2 and occludin at Madin-Darby canine kidney (MDCK) cell tight junctions. Both isoforms of 4.1R coprecipitated with proteins that organize tight junctions such as ZO-2, ZO-1, and occludin. Western blot analysis also revealed the presence of actin and alpha-spectrin in these immunoprecipitates. Association of 4.1R isoforms with these tight junction and cytoskeletal proteins was found to be specific for the tight junction and was not seen in nonconfluent MDCK cells. The amino acid residues that sustain the interaction between 4.1R and ZO-2 reside within the amino acids encoded by exons 19-21 of 4.1R and residues 1054-1118 of ZO-2. Exogenously expressed 4.1R containing the spectrin/actin- and ZO-2-binding domains was recruited to tight junctions in confluent MDCK cells. Taken together, our results suggest that 4.1R might play an important role in organization and function of the tight junction by establishing a link between the tight junction and the actin cytoskeleton.
Collapse
Affiliation(s)
- S N Mattagajasingh
- Department of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
13
|
Protein 4.1R binding to eIF3-p44 suggests an interaction between the cytoskeletal network and the translation apparatus. Blood 2000. [DOI: 10.1182/blood.v96.2.747] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractErythroid protein 4.1 (4.1R) is an 80-kd cytoskeletal protein that stabilizes the membrane-skeletal network structure underlying the lipid bilayer. Using the carboxyl terminal domain (22/24 kd) of 4.1R as bait in a yeast 2-hybrid screen, we isolated cDNA clones encoding a polypeptide of eIF3-p44, which represents a subunit of a eukaryotic translation initiation factor 3 (eIF3) complex. The eIF3 complex consists of at least 10 subunits that play an essential role in the pathway of protein translation initiation. Northern blot analysis revealed that eIF3-p44 (approximately 1.35 kb) is constitutively expressed in many tissues. The essential sequence for this interaction was mapped to the carboxyl-terminus of 4.1R (residues 525-622) and a region (residues 54-321) of eIF3-p44. The direct association between 4.1R and eIF3-p44 was further confirmed by in vitro binding assays and coimmunoprecipitation studies. To characterize the functions of eIF3-p44, we depleted eIF3-p44 from rabbit reticulocyte lysates either by anti-eIF3-p44 antibody or by GST/4.1R-80 fusion protein. Our results show that the eIF3-p44 depleted cell-free translation system was unable to synthesize proteins efficiently. The direct association between 4.1R and elF3-p44 suggests that 4.1R may act as an anchor protein that links the cytoskeleton network to the translation apparatus.
Collapse
|
14
|
Protein 4.1R binding to eIF3-p44 suggests an interaction between the cytoskeletal network and the translation apparatus. Blood 2000. [DOI: 10.1182/blood.v96.2.747.014k19_747_753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythroid protein 4.1 (4.1R) is an 80-kd cytoskeletal protein that stabilizes the membrane-skeletal network structure underlying the lipid bilayer. Using the carboxyl terminal domain (22/24 kd) of 4.1R as bait in a yeast 2-hybrid screen, we isolated cDNA clones encoding a polypeptide of eIF3-p44, which represents a subunit of a eukaryotic translation initiation factor 3 (eIF3) complex. The eIF3 complex consists of at least 10 subunits that play an essential role in the pathway of protein translation initiation. Northern blot analysis revealed that eIF3-p44 (approximately 1.35 kb) is constitutively expressed in many tissues. The essential sequence for this interaction was mapped to the carboxyl-terminus of 4.1R (residues 525-622) and a region (residues 54-321) of eIF3-p44. The direct association between 4.1R and eIF3-p44 was further confirmed by in vitro binding assays and coimmunoprecipitation studies. To characterize the functions of eIF3-p44, we depleted eIF3-p44 from rabbit reticulocyte lysates either by anti-eIF3-p44 antibody or by GST/4.1R-80 fusion protein. Our results show that the eIF3-p44 depleted cell-free translation system was unable to synthesize proteins efficiently. The direct association between 4.1R and elF3-p44 suggests that 4.1R may act as an anchor protein that links the cytoskeleton network to the translation apparatus.
Collapse
|
15
|
Luque CM, Correas I. A constitutive region is responsible for nuclear targeting of 4.1R: modulation by alternative sequences results in differential intracellular localization. J Cell Sci 2000; 113 ( Pt 13):2485-95. [PMID: 10852827 DOI: 10.1242/jcs.113.13.2485] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Red blood cell protein 4.1, 4.1R, is an extreme variation on the theme of isoform multiplicity. The diverse 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, are localized at different intracellular sites, including the nucleus. To characterize nonerythroid 4.1 proteins lacking the most upstream translation initiation site, analyze their intracellular localization and define specific domains involved in differential intracellular targeting of 4.1R, we cloned 4.1 cDNAs lacking that translation initiation site. Seven different 4.1R cDNAs were isolated. Four of these encoded 4.1R proteins localized predominantly to the nucleus and the other three localized to the cytoplasm. Three of the nuclear 4.1R isoforms did not contain the nuclear localization signal previously identified in the alternative exon 16. A comparative analysis of the exon composition of the naturally occurring 4.1R cDNAs cloned and of appropriate composite cDNA constructs, with the subcellular distribution of their respective products, demonstrated that a region encoded by constitutive exons, which is therefore common to all 4.1R isoforms and has been termed ‘core region’, had the capacity of localizing to the nucleus. This region was able to confer nuclear targeting to a cytosolic reporter. In protein 4.1R isoforms, the nuclear targeting of the core region is modulated by the expression of alternative exons. Thus, exon 5-encoded sequences eclipsed nuclear entry of the core region, resulting in 4.1R isoforms that predominantly distributed to the cytoplasm. Exon 5 was also able to confer cytoplasmic localization to a nuclear reporter. In protein 4.1R isoforms, when exons 5 and 16 were both expressed the nuclear targeting effect of exon 16 was dominant to the inhibitory effect observed by the expression of exon 5, yielding proteins that predominantly localized to the nucleus. Taken together, these results indicate that all 4.1R molecules contain a conserved region that is sufficient to target the protein to the nucleus, but that specific exon-encoded sequences modulate this capacity by acting in a hierarchical order.
Collapse
Affiliation(s)
- C M Luque
- Centro de Biología Molecular 'Severo Ochoa' (CSIC/UAM), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | | |
Collapse
|
16
|
Luque CM, Lallena MJ, Pérez-Ferreiro CM, de Isidro Y, De Cárcer G, Alonso MA, Correas I. The N-terminal 209-aa domain of high molecular-weight 4.1R isoforms abrogates 4.1R targeting to the nucleus. Proc Natl Acad Sci U S A 1999; 96:14925-30. [PMID: 10611314 PMCID: PMC24749 DOI: 10.1073/pnas.96.26.14925] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extensive repertoire of protein 4.1R isoforms is predominantly generated by alternative pre-mRNA splicing and differential usage of two translation initiation sites. The usage of the most upstream ATG (ATG-1) generates isoforms containing N-terminal extensions of up to 209 aa compared with those translated from the downstream ATG (ATG-2). To characterize nonerythroid 4.1R proteins translated from ATG-1 and analyze their intracellular localization, we cloned 4.1R cDNAs containing this translation initiation site. Six different clones were isolated from the nucleated human MOLT-4 T-cell line by reverse transcriptase-PCR techniques. Transient expression of the six ATG-1-translated 4.1R isoforms tagged with a c-Myc epitope revealed that all of them predominantly distributed to the plasma membrane and the endoplasmic reticulum. Staining of MOLT-4 cell plasma membranes but not nuclei was also observed by immunofluorescence microscopy by using an antibody specific to the N-terminal extension. Consistent with this, the antibody reacted with a major endogenous protein of approximately 145 kDa present in nonnuclear but absent from nuclear fractions prepared from MOLT-4 cells. Because these data suggested that ATG-1-translated 4.1R isoforms were predominantly excluded from the nucleus, we fused the 209-aa domain to nuclear 4.1R isoforms encoded from ATG-2 and observed that this domain inhibited their nuclear targeting. All these results indicate that the N-terminal domain of ATG-1-translated 4.1R isoforms plays a pivotal role in differential targeting of proteins 4.1R.
Collapse
Affiliation(s)
- C M Luque
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas/UAM), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Ohara R, Yamakawa H, Nakayama M, Yuasa S, Ohara O. Cellular and subcellular localization of a newly identified member of the protein 4.1 family, brain 4.1, in the cerebellum of adult and postnatally developing rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 117:127-38. [PMID: 10567730 DOI: 10.1016/s0165-3806(99)00110-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For obtaining a deeper insight into the properties of a newly characterized member of the protein 4.1 family, brain 4.1, the cellular and subcellular localization was investigated in the cerebellar cortex of adult and postnatally developing rats. Fluorescent immunohistochemical observations showed that brain 4.1 localized predominantly to glomeruli in the granular layer and throughout the molecular layer in adult rat cerebellar cortex. Analysis of subcellular localization of brain 4.1 by immuno-electron microscopy further demonstrated that presynaptic terminals of mossy fibers and parallel fibers, cytoplasm of granule cells and cytoplasm and/or processes of glial cells contained brain 4.1 while postsynaptic regions of the dendrites of granule cells and Purkinje cells, axons and myelin sheaths did not. Thus, one of the major subcellular destination of brain 4.1 was presynaptic terminal in the cerebellum. This was further supported by the fact that the immunostaining pattern of brain 4.1 in the cerebellum changed in a similar way to that of a synaptic terminal marker, synaptophysin during the postnatal development. Immunoblot analysis also demonstrated that contents of brain 4.1 isoforms varied in parallel with the changes of the immunostaining pattern. Biochemical analysis confirmed the presence of brain 4.1 at synaptic terminals, but there was no obvious correlation between each isoform and its subcellular localization. These results suggested that brain 4.1 is involved in the formation and maintenance of synapse as a membrane skeletal component at presynaptic terminals in the cerebellum.
Collapse
Affiliation(s)
- R Ohara
- Laboratory of DNA Technology, Kazusa DNA Research Institute, 1532-3 Yana, Kisarazu, Japan.
| | | | | | | | | |
Collapse
|
18
|
Gascard P, Nunomura W, Lee G, Walensky LD, Krauss SW, Takakuwa Y, Chasis JA, Mohandas N, Conboy JG. Deciphering the nuclear import pathway for the cytoskeletal red cell protein 4.1R. Mol Biol Cell 1999; 10:1783-98. [PMID: 10359596 PMCID: PMC25371 DOI: 10.1091/mbc.10.6.1783] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The erythroid membrane cytoskeletal protein 4.1 is the prototypical member of a genetically and topologically complex family that is generated by combinatorial alternative splicing pathways and is localized at diverse intracellular sites including the nucleus. To explore the molecular determinants for nuclear localization, we transfected COS-7 cells with epitope-tagged versions of natural red cell protein 4.1 (4.1R) isoforms as well as mutagenized and truncated derivatives. Two distant topological sorting signals were required for efficient nuclear import of the 4.1R80 isoform: a basic peptide, KKKRER, encoded by alternative exon 16 and acting as a weak core nuclear localization signal (4.1R NLS), and an acidic peptide, EED, encoded by alternative exon 5. 4.1R80 isoforms lacking either of these two exons showed decreased nuclear import. Fusion of various 4.1R80 constructs to the cytoplasmic reporter protein pyruvate kinase confirmed a requirement for both motifs for full NLS function. 4.1R80 was efficiently imported in the nuclei of digitonin-permeabilized COS-7 cells in the presence of recombinant Rch1 (human importin alpha2), importin beta, and GTPase Ran. Quantitative analysis of protein-protein interactions using a resonant mirror detection technique showed that 4.1R80 bound to Rch1 in vitro with high affinity (KD = 30 nM). The affinity decreased at least 7- and 20-fold, respectively, if the EED motif in exon 5 or if 4.1R NLS in exon 16 was lacking or mutated, confirming that both motifs were required for efficient importin-mediated nuclear import of 4.1R80.
Collapse
Affiliation(s)
- P Gascard
- Life Sciences Division, Department of Subcellular Structure, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mattagajasingh SN, Huang SC, Hartenstein JS, Snyder M, Marchesi VT, Benz EJ. A nonerythroid isoform of protein 4.1R interacts with the nuclear mitotic apparatus (NuMA) protein. J Biophys Biochem Cytol 1999; 145:29-43. [PMID: 10189366 PMCID: PMC2148212 DOI: 10.1083/jcb.145.1.29] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Red blood cell protein 4.1 (4.1R) is an 80- kD erythrocyte phosphoprotein that stabilizes the spectrin/actin cytoskeleton. In nonerythroid cells, multiple 4.1R isoforms arise from a single gene by alternative splicing and predominantly code for a 135-kD isoform. This isoform contains a 209 amino acid extension at its NH2 terminus (head piece; HP). Immunoreactive epitopes specific for HP have been detected within the cell nucleus, nuclear matrix, centrosomes, and parts of the mitotic apparatus in dividing cells. Using a yeast two-hybrid system, in vitro binding assays, coimmunolocalization, and coimmunoprecipitation studies, we show that a 135-kD 4.1R isoform specifically interacts with the nuclear mitotic apparatus (NuMA) protein. NuMA and 4.1R partially colocalize in the interphase nucleus of MDCK cells and redistribute to the spindle poles early in mitosis. Protein 4.1R associates with NuMA in the interphase nucleus and forms a complex with spindle pole organizing proteins, NuMA, dynein, and dynactin during cell division. Overexpression of a 135-kD isoform of 4.1R alters the normal distribution of NuMA in the interphase nucleus. The minimal sequence sufficient for this interaction has been mapped to the amino acids encoded by exons 20 and 21 of 4.1R and residues 1788-1810 of NuMA. Our results not only suggest that 4.1R could, possibly, play an important role in organizing the nuclear architecture, mitotic spindle, and spindle poles, but also could define a novel role for its 22-24-kD domain.
Collapse
Affiliation(s)
- S N Mattagajasingh
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
20
|
Shi ZT, Afzal V, Coller B, Patel D, Chasis JA, Parra M, Lee G, Paszty C, Stevens M, Walensky L, Peters LL, Mohandas N, Rubin E, Conboy JG. Protein 4.1R-deficient mice are viable but have erythroid membrane skeleton abnormalities. J Clin Invest 1999; 103:331-40. [PMID: 9927493 PMCID: PMC407893 DOI: 10.1172/jci3858] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A diverse family of protein 4.1R isoforms is encoded by a complex gene on human chromosome 1. Although the prototypical 80-kDa 4.1R in mature erythrocytes is a key component of the erythroid membrane skeleton that regulates erythrocyte morphology and mechanical stability, little is known about 4.1R function in nucleated cells. Using gene knockout technology, we have generated mice with complete deficiency of all 4.1R protein isoforms. These 4.1R-null mice were viable, with moderate hemolytic anemia but no gross abnormalities. Erythrocytes from these mice exhibited abnormal morphology, lowered membrane stability, and reduced expression of other skeletal proteins including spectrin and ankyrin, suggesting that loss of 4. 1R compromises membrane skeleton assembly in erythroid progenitors. Platelet morphology and function were essentially normal, indicating that 4.1R deficiency may have less impact on other hematopoietic lineages. Nonerythroid 4.1R expression patterns, viewed using histochemical staining for lacZ reporter activity incorporated into the targeted gene, revealed focal expression in specific neurons in the brain and in select cells of other major organs, challenging the view that 4.1R expression is widespread among nonerythroid cells. The 4.1R knockout mice represent a valuable animal model for exploring 4.1R function in nonerythroid cells and for determining pathophysiological sequelae to 4.1R deficiency.
Collapse
Affiliation(s)
- Z T Shi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The 30-kD Domain of Protein 4.1 Mediates Its Binding to the Carboxyl Terminus of pICln, a Protein Involved in Cellular Volume Regulation. Blood 1998. [DOI: 10.1182/blood.v92.4.1442.416k14_1442_1447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythrocyte protein 4.1 (P4.1) is an 80-kD cytoskeletal protein that is important for the maintenance of the structural integrity and flexibility of the red blood cell membrane. Limited chymotryptic digestion of erythroid P4.1 yields 4 structural domains corresponding to the 30-, 16-, 10-, and 22/24-kD domains. Using a yeast two-hybrid system, we isolated cDNA clones encoding pICln that specifically interacts with the 30-kD domain of P4.1. In this report, we show that the carboxyl-terminus (amino acid residues 103-237) of pICln binds to the 30-kD domain of P4.1 in a yeast two-hybrid system. The direct association between the 30-kD domain of P4.1 and pICln was further confirmed by the following findings: (1) the S35-methione–labeled pICln specifically bound to both GST/P4.1-80 (80 kD) and GST/P4.1-30 (30 kD) fusion proteins, but not to the proteins that lack the 30-kD domain; (2) coimmunoprecipitation analysis of the cell extracts from transfected SiHa cells showed that pICln and P4.1 associate in transfected cells. It was reported that pICln can form a complex with actin and may play a role involved in cellular volume regulation. The direct association between P4.1 and pICln suggests that pICln may link P4.1-bound cytoskeletal elements to an unidentified volume-sensitive chloride channel.© 1998 by The American Society of Hematology.
Collapse
|
22
|
The 30-kD Domain of Protein 4.1 Mediates Its Binding to the Carboxyl Terminus of pICln, a Protein Involved in Cellular Volume Regulation. Blood 1998. [DOI: 10.1182/blood.v92.4.1442] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractErythrocyte protein 4.1 (P4.1) is an 80-kD cytoskeletal protein that is important for the maintenance of the structural integrity and flexibility of the red blood cell membrane. Limited chymotryptic digestion of erythroid P4.1 yields 4 structural domains corresponding to the 30-, 16-, 10-, and 22/24-kD domains. Using a yeast two-hybrid system, we isolated cDNA clones encoding pICln that specifically interacts with the 30-kD domain of P4.1. In this report, we show that the carboxyl-terminus (amino acid residues 103-237) of pICln binds to the 30-kD domain of P4.1 in a yeast two-hybrid system. The direct association between the 30-kD domain of P4.1 and pICln was further confirmed by the following findings: (1) the S35-methione–labeled pICln specifically bound to both GST/P4.1-80 (80 kD) and GST/P4.1-30 (30 kD) fusion proteins, but not to the proteins that lack the 30-kD domain; (2) coimmunoprecipitation analysis of the cell extracts from transfected SiHa cells showed that pICln and P4.1 associate in transfected cells. It was reported that pICln can form a complex with actin and may play a role involved in cellular volume regulation. The direct association between P4.1 and pICln suggests that pICln may link P4.1-bound cytoskeletal elements to an unidentified volume-sensitive chloride channel.© 1998 by The American Society of Hematology.
Collapse
|
23
|
Lallena MJ, Martínez C, Valcárcel J, Correas I. Functional association of nuclear protein 4.1 with pre-mRNA splicing factors. J Cell Sci 1998; 111 ( Pt 14):1963-71. [PMID: 9645944 DOI: 10.1242/jcs.111.14.1963] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein 4.1 is a multifunctional polypeptide that links transmembrane proteins with the underlying spectrin/actin cytoskeleton. Recent studies have shown that protein 4.1 is also present in the nucleus, localized in domains enriched in splicing factors. Here we further analyze the relationship between protein 4. 1 and components of the splicing machinery. Using HeLa nuclear extracts capable of supporting the splicing of pre-mRNAs in vitro, we show that anti-4.1 antibodies specifically immunoprecipitate pre-mRNA and splicing intermediates. Immunodepletion of protein 4.1 from HeLa nuclear extracts results in inhibition of their splicing activity, as assayed with two different pre-mRNA substrates. Coprecipitation of protein 4.1 from HeLa nuclear extracts with proteins involved in the processing of pre-mRNA further suggests an association between nuclear protein 4.1 and components of the splicing apparatus. The molecular cloning of a 4.1 cDNA encoding the isoform designated 4.1E has allowed us to show that this protein is targeted to the nucleus, that it associates with the splicing factor U2AF35, and that its overexpression induces the redistribution of the splicing factor SC35. Based on our combined biochemical and localization results, we propose that 4.1 proteins are part of nuclear structures to which splicing factors functionally associate, most likely for storage purposes.
Collapse
Affiliation(s)
- M J Lallena
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Luque CM, Lallena MJ, Alonso MA, Correas I. An alternative domain determines nuclear localization in multifunctional protein 4.1. J Biol Chem 1998; 273:11643-9. [PMID: 9565584 DOI: 10.1074/jbc.273.19.11643] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple protein 4.1 isoforms are originated by alternative pre-mRNA splicing, differential use of two translation initiation sites, and posttranslational modifications. The complexity of alternative splicing events suffered by the 4.1 pre-mRNA makes necessary the direct cloning of 4.1 full-coding cDNA sequences to ensure that the encoded 4.1 proteins are naturally occurring isoforms. We have approached this point by reverse transcription-polymerase chain reaction techniques using RNA from the nucleated human Molt-4 T-cell line as a starting template. Molecular cloning of 4.1 cDNAs using the second translation initiation codon has allowed us to identify two 4.1 isoforms, designated 4.1H and 4.1I, which are differentially targeted to the nucleus (4.1H) and the cytoplasm (4.1I). These two isoforms differ only in the inclusion (4.1H) or exclusion (4.1I) of 21 amino acids encoded by exon 16. A cluster of basic amino acids, KKKR, generated by joining of the sequences encoded by the constitutive exon 13 and the alternative exon 16, is necessary for the nuclear targeting of 4.1H, as demonstrated by site-directed mutagenesis analysis. Immunofluorescence microscopy and biochemical studies indicate that 4.1H belongs to the group of nuclear 4.1 proteins that are distributed diffusely throughout the nucleoplasm and that are extractable in 0.5% Triton X-100. This is the first demonstration of differential nuclear targeting by the presence of an alternative domain, among naturally occurring protein 4.1 isoforms.
Collapse
Affiliation(s)
- C M Luque
- Centro de Biología Molecular "Severo Ochoa," Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Parra M, Gascard P, Walensky LD, Snyder SH, Mohandas N, Conboy JG. Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family. Genomics 1998; 49:298-306. [PMID: 9598318 DOI: 10.1006/geno.1998.5265] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prototypical erythrocyte membrane skeletal protein 4.1 (HGMW-approved symbol EPB41), here designated 4.1R, is encoded by a large, complexly spliced gene located on human chromosome 1p32-p33. In this paper we report evidence for a second 4.1 gene, 4.1G (HGMW-approved symbol EPB41L2), which maps to human chromosome 6q23 and is widely expressed among human tissues. The complete nucleotide sequence of 4.1G cDNA predicts a 113-kDa protein that exhibits three regions of high homology to 4.1R, including the membrane binding domain, the spectrinactin binding domain, and the C-terminal domain. Interspersed among the shared domains are unique sequences that may define functional differences between 4.1R and 4.1G. Specific isoforms of 4.1R and 4.1G exhibit differential subcellular localizations. These results expand the 4.1 gene superfamily and demonstrate that the diverse cellular complement of 4.1 isoforms results from both alternative splicing and expression of distinct genes.
Collapse
Affiliation(s)
- M Parra
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
26
|
Krauss SW, Chasis JA, Rogers C, Mohandas N, Krockmalnic G, Penman S. Structural protein 4.1 is located in mammalian centrosomes. Proc Natl Acad Sci U S A 1997; 94:7297-302. [PMID: 9207085 PMCID: PMC23815 DOI: 10.1073/pnas.94.14.7297] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/1997] [Indexed: 02/04/2023] Open
Abstract
Structural protein 4.1 was first characterized as an important 80-kDa protein in the mature red cell membrane skeleton. It is now known to be a member of a family of protein isoforms detected at diverse intracellular sites in many nucleated mammalian cells. We recently reported that protein 4.1 isoforms are present at interphase in nuclear matrix and are rearranged during the cell cycle. Here we report that protein 4.1 epitopes are present in centrosomes of human and murine cells and are detected by using affinity-purified antibodies specific for 80-kDa red cell 4.1 and for 4.1 peptides. Immunofluorescence, by both conventional and confocal microscopy, showed that protein 4.1 epitopes localized in the pericentriolar region. Protein 4.1 epitopes remained in centrosomes after extraction of cells with detergent, salt, and DNase. Higher resolution electron microscopy of detergent-extracted cell whole mounts showed centrosomal protein 4.1 epitopes distributed along centriolar cylinders and on pericentriolar fibers, at least some of which constitute the filamentous network surrounding each centriole. Double-label electron microscopy showed that protein 4.1 epitopes were predominately localized in regions also occupied by epitopes for centrosome-specific autoimmune serum 5051 but were not found on microtubules. Our results suggest that protein 4.1 is an integral component of centrosome structure, in which it may play an important role in centrosome function during cell division and organization of cellular architecture.
Collapse
Affiliation(s)
- S W Krauss
- Department of Biophysics and Biomolecular Structure, University of California, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Krauss SW, Larabell CA, Lockett S, Gascard P, Penman S, Mohandas N, Chasis JA. Structural protein 4.1 in the nucleus of human cells: dynamic rearrangements during cell division. J Cell Biol 1997; 137:275-89. [PMID: 9128242 PMCID: PMC2139783 DOI: 10.1083/jcb.137.2.275] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1996] [Revised: 01/20/1997] [Indexed: 02/04/2023] Open
Abstract
Structural protein 4.1, first identified as a crucial 80-kD protein in the mature red cell membrane skeleton, is now known to be a diverse family of protein isoforms generated by complex alternative mRNA splicing, variable usage of translation initiation sites, and posttranslational modification. Protein 4.1 epitopes are detected at multiple intracellular sites in nucleated mammalian cells. We report here investigations of protein 4.1 in the nucleus. Reconstructions of optical sections of human diploid fibroblast nuclei using antibodies specific for 80-kD red cell 4.1 and for 4.1 peptides showed 4.1 immunofluorescent signals were intranuclear and distributed throughout the volume of the nucleus. After sequential extractions of cells in situ, 4.1 epitopes were detected in nuclear matrix both by immunofluorescence light microscopy and resinless section immunoelectron microscopy. Western blot analysis of fibroblast nuclear matrix protein fractions, isolated under identical extraction conditions as those for microscopy, revealed several polypeptide bands reactive to multiple 4.1 antibodies against different domains. Epitope-tagged protein 4.1 was detected in fibroblast nuclei after transient transfections using a construct encoding red cell 80-kD 4.1 fused to an epitope tag. Endogenous protein 4.1 epitopes were detected throughout the cell cycle but underwent dynamic spatial rearrangements during cell division. Protein 4.1 was observed in nucleoplasm and centrosomes at interphase, in the mitotic spindle during mitosis, in perichromatin during telophase, as well as in the midbody during cytokinesis. These results suggest that multiple protein 4.1 isoforms may contribute significantly to nuclear architecture and ultimately to nuclear function.
Collapse
Affiliation(s)
- S W Krauss
- Life Sciences Division, University of California, Lawrence Berkeley National Laboratory, 94720, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Lallena MJ, Correas I. Transcription-dependent redistribution of nuclear protein 4.1 to SC35-enriched nuclear domains. J Cell Sci 1997; 110 ( Pt 2):239-47. [PMID: 9044054 DOI: 10.1242/jcs.110.2.239] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein 4.1, originally identified as a component of the membrane-skeleton of the red blood cell, has also been localized in the nucleus of mammalian cells. To learn more about nuclear 4.1 protein, we have analyzed the nature of its association with the nuclear structure in comparison with SC35 and snRNP antigens, splicing proteins of the nuclear speckle domains. When MDCK or HeLa cells were digested with DNase I and washed in the presence of high salt (2 M NaCl), snRNP antigens were extracted whereas protein 4.1 and SC35 remained colocalizing in nuclear speckles. In cells treated with RNase A or heat shocked, nuclear 4.1 distribution also resembled that of SC35. Experiments carried out in transcriptionally active nuclei showed that protein 4.1 distributed in irregularly shaped speckles which appeared to be interconnected. During transcriptional inhibition, protein 4.1 accumulated in rounded speckles lacking interconnections. When cells were released from transcriptional inhibition, protein 4.1 redistributed back to the interconnected speckle pattern of transcriptionally active cells, as it was also observed for SC35. Finally, coprecipitation of 4.1 and SC35 proteins from RNase A digested HeLa nuclei further indicates that these two proteins are associated, forming part of the nuclear speckle domains to which they attach more tightly than snRNP antigens.
Collapse
Affiliation(s)
- M J Lallena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
29
|
Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell Membranes. CURRENT TOPICS IN MEMBRANES 1996. [DOI: 10.1016/s0070-2161(08)60386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
30
|
Lombardo CR, Low PS. Calmodulin modulates protein 4.1 binding to human erythrocyte membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1196:139-44. [PMID: 7841177 DOI: 10.1016/0005-2736(94)00233-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Calmodulin, an abundant protein in the red cell cytosol, exerts its effects on erythrocyte membrane properties via interactions with numerous proteins. To evaluate whether calmodulin might regulate association of protein 4.1 with one of its integral membrane protein anchors, protein 4.1 binding to inside-out erythrocyte membrane vesicles (IOVs) in the presence and absence of calmodulin and Ca2+ was examined. Ca2+ plus calmodulin was found to competitively inhibit protein 4.1 association with IOVs with a Ki of 1.4 microM and a maximal inhibition of 83%. In the absence of Ca2+, calmodulin still reduce protein 4.1 binding by 43%, consistent with the known Ca2+ independent association of calmodulin with protein 4.1. Ca2+ alone had no effect on protein 4.1-membrane interactions. Digestion studies revealed that both band 3 and glycophorin sites were similarly affected by calmodulin competition, suggesting all major protein 4.1 anchors are potentially regulated. In light of other data showing regulation of the same interactions by phosphoinositides, protein kinases, and the concentration of free cytosolic 2,3-diphosphoglycerate, it can be argued that association of protein 4.1 with integral protein anchors constitutes one of the more sensitively regulated interactions of the membrane.
Collapse
Affiliation(s)
- C R Lombardo
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
31
|
Sihag RK, Wang LW, Cataldo AM, Hamlin M, Cohen CM, Nixon RA. Evidence for the association of protein 4.1 immunoreactive forms with neurofibrillary tangles in Alzheimer's disease brains. Brain Res 1994; 656:14-26. [PMID: 7804827 DOI: 10.1016/0006-8993(94)91361-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The formation of neurofibrillary tangles (NFTs) and paired-helical filaments (PHFs) in Alzheimer's disease (AD) reflects a major disorganization of the cytoskeleton. The role of the neuronal membrane skeleton in the development of these abnormalities has not previously been investigated. In this study, we used 9 antibodies raised against the erythrocyte membrane skeleton protein 4.1 (P4.1) for immunocytochemical and immunoblot analyses to investigate whether or not the brain homologues of this protein were constituents of NFTs or PHFs. Our results show that 7 of the 9 monospecific antibodies against the human and pig erythrocyte P4.1 stained NFTs in the prefrontal cortex and hippocampus of AD brains. The P4.1 antibodies used here did not cross-react with tau protein isolated from AD brain, and preabsorption of these antibodies with tau protein did not cause loss of NFT staining. In age-matched control brains, these P4.1 antibodies stained neuronal cell bodies or nuclei. Six of the antibodies also stained isolated NFTs but the SDS-insoluble NFTs were immunostained only by two of the P4.1 antibodies. By using inositol hexaphosphate affinity chromatography and immunoblot analysis, we identified a 68-kDa protein as the most likely brain analogue of P4.1. When SDS-extracted proteins from the isolated NFTs were immunoblotted, a 50-kDa band was immunostained. The 68-kDa and 50-kDa proteins were not stained by tau protein and neurofilament subunit NF-H antibodies, that strongly stained NFTs. We conclude that brain protein 4.1 isoform(s) are constituents of NFTs in AD.
Collapse
Affiliation(s)
- R K Sihag
- Laboratories for Molecular Neuroscience, McLean Hospital, Belmont, MA 02178
| | | | | | | | | | | |
Collapse
|
32
|
Huang J, Tang C, Kou G, Marchesi V, Benz E, Tang T. Genomic structure of the locus encoding protein 4.1. Structural basis for complex combinational patterns of tissue-specific alternative RNA splicing. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53759-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
el Ouggouti S, Bournier O, Boivin P, Bertrand O, Dhermy D. Purification of erythrocyte protein 4.1 by selective interaction with inositol hexaphosphate. Protein Expr Purif 1992; 3:488-96. [PMID: 1486276 DOI: 10.1016/1046-5928(92)90066-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein 4.1 is a multifunctional structural protein occupying a strategic position in the erythrocyte membrane. It is present in the erythrocyte membrane skeleton and in many nonerythroid cells. This report describes a novel method for purifying this protein based on its selective interaction with inositol hexaphosphate dimagnesium tetrapotassium salt. This interaction was discovered in the course of chromatography of high-salt extract of inside-out membrane vesicles on Procion orange MX-2R-Sepharose. The new procedure is simple and selective and produces protein 4.1 with better yield than that obtained with a previously published procedure. The purified protein 4.1 has the same immunoreactivity and the same alpha-chymotryptic digest profile as protein 4.1 purified by published methods and is fully functional in enhancing the interaction between F-actin and spectrin dimers.
Collapse
|
34
|
Abstract
Although protein 4.1 was originally identified as an element of the erythrocyte membrane skeleton, its presence in most mammalian cell types is now well described. Antibodies raised against erythrocyte protein 4.1 or synthetic peptides corresponding to the spectrin-actin-binding domain of protein 4.1 react with plasma membranes and, unexpectedly, nuclei of different cell types. Nuclear staining was further confirmed in isolated nuclei prepared from rat liver and human leukaemic cell lines. Immunoblot analysis of subcellular fractions derived from these cells revealed three prominent proteins, of 80, 135 and 145 kDa. The structural relationship of the high-molecular-mass proteins with erythrocyte protein 4.1 was demonstrated by peptide mapping. These results indicate that mammalian nucleated cells contain several isoforms of erythrocyte protein 4.1 and that some high-molecular-mass forms may primarily reside in the nucleus.
Collapse
Affiliation(s)
- I Correas
- Centro de Biología Molecular (C.S.I.C.-U.A.M.), Facultad de Ciencias, Universidad Autonóma de Madrid, Cantoblanco, Spain
| |
Collapse
|
35
|
Mutha S, Langston A, Bonifas JM, Epstein EH. Biochemical identification of alpha-fodrin and protein 4.1 in human keratinocytes. J Invest Dermatol 1991; 97:383-8. [PMID: 1875039 DOI: 10.1111/1523-1747.ep12480948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mature erythrocyte has a cytoskeleton of less complexity than that of nucleated cells and has been elucidated in greater detail. Two of its major components are the heterodimeric protein spectrin and protein 4.1. We report here our isolation from human keratinocytes of immunoreactive forms of both protein 4.1 and of alpha-fodrin, the extra-erythrocytic form of alpha-spectrin. These keratinocyte proteins are approximately 125 kD and 240 kD in size, respectively. We also have isolated clones containing alpha-fodrin and protein 4.1 sequences from a human keratinocyte cDNA library. These sequences confirm the active transcription in keratinocytes of the alpha-fodrin and protein 4.1 genes. Both alpha-fodrin and protein 4.1 mRNA are detectable by Northern blot analysis in human keratinocytes, where their abundance appears not to be regulated by calcium concentration in the medium.
Collapse
Affiliation(s)
- S Mutha
- Department of Dermatology, San Francisco General Hospital Medical Center, CA
| | | | | | | |
Collapse
|
36
|
Gu MX, York JD, Warshawsky I, Majerus PW. Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to cytoskeletal protein 4.1. Proc Natl Acad Sci U S A 1991; 88:5867-71. [PMID: 1648233 PMCID: PMC51979 DOI: 10.1073/pnas.88.13.5867] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have isolated a cDNA encoding a third type of protein-tyrosine-phosphatase. We screened human megakaryoblastic cell line (MEG-01) an umbilical vein endothelial cell cDNA libraries to obtain a 3.7-kilobase cDNA designated PTPase MEG. Northern blot analysis of MEG-01 RNA detected a 3.7-kilobase transcript, suggesting that a full-length cDNA has been identified. PTPase MEG cDNA contains an open reading frame of 926 amino acids. The cDNA has a G+C-rich 5' untranslated region of 771 nucleotides that has the potential to form stable stem-loop structures and has two upstream ATG codons. The predicted protein (Mr = 105,910) has no apparent membrane-spanning region and contains a single protein-tyrosine-phosphatase domain (amino acids 659-909) that is 35-40% identical to previously described tyrosine-phosphatase domains. The recombinant phosphatase domain possesses protein-tyrosine-phosphatase activity when expressed in Escherichia coli. The amino-terminal region (amino acids 31-367) is 45% identical to the amino terminus of human erythrocyte protein 4.1, a cytoskeletal protein. The identification of a protein-tyrosine-phosphatase that is related to cytoskeletal proteins implies that cell signaling activities reside not only in transmembrane receptors but in cytoskeletal elements as well.
Collapse
Affiliation(s)
- M X Gu
- Washington University School of Medicine, Division of Hematology-Oncology, St. Louis, MO 63110
| | | | | | | |
Collapse
|
37
|
Guay-Woodford LM, Platt O, Harris HW. Toad urinary bladder epithelial cells contain an analogue of cytoskeletal protein 4.1. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:C1308-14. [PMID: 1905484 DOI: 10.1152/ajpcell.1991.260.6.c1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epithelial cell polarity and vectorial transport require cytoskeletal proteins that maintain local cell membrane structure and mediate cytoplasmic vesicle movement. The cytoskeleton of leaky epithelia, such as the intestinal mucosa and renal proximal tubule cells, has been extensively studied. However, cytoskeletal studies in tight epithelia such as the mammalian collecting duct and toad urinary bladder generally have been confined to ultrastructural investigation. Recent research in nonepithelial cell types has identified an interesting family of cytoskeletal proteins. Present in multiple cell types, these protein 4.1 analogues share a number of similar functional characteristics, yet are structurally diverse. They are multiply phosphorylated by several different kinases, and phosphorylation regulates their associations with other cytoskeletal constituents, integral membrane components, and cytoplasmic vesicles. Using a combination of immunochemical and immunofluorescent techniques, we have demonstrated that toad bladder epithelial cells contain a 65-kDa analogue of human erythrocyte protein 4.1. Toad bladder epithelial cell protein 4.1 is structurally similar to its erythrocyte counterpart and is phosphorylated. This protein 4.1 species is present throughout the toad bladder granular cell cytoplasm, suggesting that it participates in multiple granular cell functions.
Collapse
|
38
|
Conboy J, Chan J, Chasis J, Kan Y, Mohandas N. Tissue- and development-specific alternative RNA splicing regulates expression of multiple isoforms of erythroid membrane protein 4.1. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92973-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Shimizu T, Takakuwa Y, Koizumi H, Ishibashi T, Ohkawara A. Presence and localization of proteins immunologically related to erythrocyte protein 4.1 in human skin. HISTOCHEMISTRY 1991; 95:549-54. [PMID: 1856108 DOI: 10.1007/bf00266740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Analogues of human erythrocyte protein 4.1 have been examined in the human skin by immunochemical techniques using anti-human erythrocyte protein 4.1 antibodies. Immunoblot analysis revealed that human epidermis contains 4.1-like proteins of 80 kDa and 78 kDa that cross react with anti-protein 4.1 antibodies. Analysis with immunofluorescence microscopy revealed that the plasma membrane of the human epidermal keratinocyte was stained intensively in the basal cells, whereas spinous cells were moderately stained. It is noted that eccrine sweat gland cells and ductal cells were also stained in the peripheral cytoplasma. Taken together, these results demonstrate that 4.1-like proteins are present in human epidermal keratinocytes, eccrine sweat gland cells and ductal cells. The present findings enable us to suggest that a membrane skeletal protein lattice might exist in these cells.
Collapse
Affiliation(s)
- T Shimizu
- Department of Dermatology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
40
|
Chapter 7 Dominant Mutations of Cytoskeletal Proteins in Xenopus Embryos. CURRENT TOPICS IN MEMBRANES 1991. [DOI: 10.1016/s0070-2161(08)60784-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Becker PS, Schwartz MA, Morrow JS, Lux SE. Radiolabel-transfer cross-linking demonstrates that protein 4.1 binds to the N-terminal region of beta spectrin and to actin in binary interactions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:827-36. [PMID: 2249696 DOI: 10.1111/j.1432-1033.1990.tb19406.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Erythrocyte protein 4.1 plays a major role in stabilizing the spectrin-actin junction of the erythrocyte membrane skeleton. The particular sites on spectrin responsible for the binding of actin and protein 4.1 have not been specifically defined, although the general region of the 'tail' end, opposite the self-association site, has been deduced by electron microscopy. Using a photoactivatable, radiolabel-transfer cross-linker, 1-[N-(2-hydroxy-5-azidobenzoyl)-2-aminoethyl]-4-(N-hydroxysuccinimidyl)- succinate, we have determined that the binding site for protein 4.1 on spectrin resides in the N-terminal region of beta spectrin within a sequence homologous to the actin-binding region of alpha actinin. Moreover, this technique provided clear evidence for a direct binding interaction between actin filaments and protein 4.1 that was confirmed by rapid-sedimentation assays. In summary, use of radiolabel-transfer cross-linking has enabled assignment of the protein-4.1-binding site on erythrocyte spectrin and has identified a previously ill-defined binary interaction between protein 4.1 and F-actin.
Collapse
Affiliation(s)
- P S Becker
- Department of Internal Medicine (Hematology Section), Yale University School of Medicine, New Haven, CT 06510
| | | | | | | |
Collapse
|
42
|
Prchal JT, Papayannopoulou T, Yoon SH. Patterns of spectrin transcripts in erythroid and non-erythroid cells. J Cell Physiol 1990; 144:287-94. [PMID: 1696273 DOI: 10.1002/jcp.1041440215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spectrin is the major protein of the membrane erythrocyte skeleton. More recently, homologous but non-identical spectrins (fodrins) were also found in various non-erythroid tissues. Spectrin mRNA in erythroid and various non-erythroid cells was examined by direct hybridization with human alpha-spectrin, beta-spectrin (erythroid spectrins), and alpha-fodrin (non-erythroid spectrin) cDNA probes. Northern blot analysis of poly (A)+ RNA revealed a distinct pattern of expression in erythroid vs. non-erythroid cells. Erythroid cells from early erythroblasts to reticulocyte stage expressed two mRNA species of beta-spectrin, whereas they expressed only a single species of alpha-spectrin, and no alpha-fodrin mRNA. In contrast, non-erythroid cells (platelets, myeloid cells, liver, muscle, heart, cerebellum, and eye lens) expressed either no alpha-spectrin mRNA or a different molecular weight transcript(s) of this gene, and a single species of alpha-fodrin mRNA. Additionally, they also expressed from none to multiple species of beta-spectrin, and these were of different molecular size(s) from that found in erythroid cells (with the exception of platelets). Transcripts of non-erythroid spectrin, alpha-fodrin, were found as a single copy only in non-erythroid tissues. Human and murine erythroleukemia cells expressed both erythroid spectrin transcripts in addition to alpha-fodrin and raise the possibility that erythroid progenitors may have the potential to express both erythroid and non-erythroid species. These data indicated that several mRNA species of beta-spectrin could be detected in both erythroid and some non-erythroid cells. Whether multiple spectrin peptides could also be found with functional heterogeneity is unclear. However, in each case, the pattern combination observed appeared to be tissue-specific.
Collapse
Affiliation(s)
- J T Prchal
- Division of Hematology, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
43
|
Marchesi SL, Conboy J, Agre P, Letsinger JT, Marchesi VT, Speicher DW, Mohandas N. Molecular analysis of insertion/deletion mutations in protein 4.1 in elliptocytosis. I. Biochemical identification of rearrangements in the spectrin/actin binding domain and functional characterizations. J Clin Invest 1990; 86:516-23. [PMID: 2384597 PMCID: PMC296754 DOI: 10.1172/jci114738] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein 4.1 (80 kD) interacts with spectrin and short actin filaments to form the erythrocyte membrane skeleton. Mutations of spectrin and protein 4.1 are associated with elliptocytosis or spherocytosis and anemia of varying severity. We analyzed two mutant protein 4.1 molecules associated with elliptocytosis: a high molecular weight 4.1 (95 kD) associated with mild elliptocytosis without anemia, and a low molecular weight 4.1 (two species at 68 and 65 kD) associated with moderate elliptocytosis and anemia. 4.1(95) was found to contain a approximately 15-kD insertion adjacent to the spectrin/actin binding domain comprised, at least in part, of repeated sequence. 4.1(68/65) was found to lack the entire spectrin-actin binding domain. The mechanical stability of erythrocyte membranes containing 4.1(95) was identical to that of normal membranes, consistent with the presence of an intact spectrin-actin binding domain in protein 4.1. In contrast, membranes containing 4.1(68/65) have markedly reduced mechanical stability as a result of deleting the spectrin-actin binding domain. The mechanical stability of these membranes was improved following reconstitution with normal 4.1. These studies have thus enabled us to establish the importance of the spectrin-actin binding domain in regulating the mechanical stability of the erythrocyte membrane.
Collapse
Affiliation(s)
- S L Marchesi
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | | | | | |
Collapse
|
44
|
Spencer M, Giebelhaus DH, Kelly GM, Bicknell J, Florio SK, Milam AH, Moon RT. Membrane skeleton protein 4.1 in developing Xenopus: expression in postmitotic cells of the retina. Dev Biol 1990; 139:279-91. [PMID: 2186944 DOI: 10.1016/0012-1606(90)90297-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane skeleton protein 4.1 plays a key role in modulating the interactions of spectrin, actin, and integral membrane proteins in erythroid and nonerythroid cells. We have investigated its structure and expression during embryonic development of Xenopus laevis. An analysis of the complete 2758-nucleotide sequence and predicted translation of 801 amino acids (85.5 kDa) of X. laevis oocyte protein 4.1 reveals that, within overlapping regions, oocyte protein 4.1 is 74% identical to a composite amino acid sequence of human erythroid and lymphoid protein 4.1 and has an identity similar to that of amino acid motifs variably expressed in either human erythroid or lymphoid protein 4.1 S1 nuclease protection analysis demonstrates the presence of a single species of protein 4.1 transcript in embryos. Antibodies produced against X. laevis protein 4.1 fusion protein recognize two bands of 180 and 115 kDa on Western blots of X. laevis embryos and retina and, using immunocytochemical techniques, label the developing retina most intensely. In vitro transcription of a cDNA construct fully encoding X. laevis protein 4.1 yields a synthetic mRNA which, when translated in vitro, produces a polypeptide that comigrates on SDS-polyacrylamide gels with the 115-kDa form of embryos and retina. Protein 4.1 is found exclusively in photoreceptors following the terminal mitosis of retinal neurons. When retinal synaptogenesis is complete, protein 4.1 is also expressed in the inner retina. In adult amphibian retinas, protein 4.1 is detected in photoreceptors, bipolar cells, and ganglion cell axons. As these cell types have previously been shown to express spectrin, actin, and ankyrin, it is likely that the membrane skeleton of erythrocytes and retinal cells share functional similarities.
Collapse
Affiliation(s)
- M Spencer
- Department of Ophthalmology, University of Washington School of Medicine, Seattle 98195
| | | | | | | | | | | | | |
Collapse
|
45
|
Tang TK, Qin Z, Leto T, Marchesi VT, Benz EJ. Heterogeneity of mRNA and protein products arising from the protein 4.1 gene in erythroid and nonerythroid tissues. J Cell Biol 1990; 110:617-24. [PMID: 2307701 PMCID: PMC2116033 DOI: 10.1083/jcb.110.3.617] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunologically cross-reactive isoforms of the cytoskeletal element protein 4.1 have been identified in many tissues in which they exhibit heterogeneity of molecular weight, abundance, and intracellular localization. To examine the basis for isoform production in erythroid and nonerythroid tissues, we have compared the structure and expression of cDNAs isolated from human erythroid and nonerythroid sources. We have encountered cDNAs representing many distinct mRNA sequences. These exhibit complete nucleotide sequence homology along most of their lengths. Differences were confined to five sequence blocks designated Motifs I-V, which were present or absent in each mRNA moiety. Motif I was expressed only in erythroid cells; it encodes 21 amino acids in a well-characterized spectrin/actin binding domain. Motif II, located near the COOH terminus of the 80-kD "erythroid" protein 4.1 molecule is present in the vast majority of transcripts from both erythroid and nonerythroid cells. Motifs IV and V alter the 5' untranslated region: simultaneous insertion of Motif IV and deletion of Motif V in the untranslated region inserts a new initiator methionine and establishes a contiguous open reading frame encoding a novel 135-kD protein 4.1 molecule. By immunochemical analysis we have identified the longer isoform in cells. Our results are most consistent with tissue-specific alternative mRNA splicing of transcripts of the protein 4.1 gene to yield numerous isoforms. These isoforms exhibit tissue specificity and alter strategic portions of the molecule. Moreover, we describe a novel high molecular weight form of protein 4.1 that arises by splicing events which allow translation at an upstream site.
Collapse
Affiliation(s)
- T K Tang
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut 06510
| | | | | | | | | |
Collapse
|
46
|
Danilov YN, Fennell R, Ling E, Cohen CM. Selective modulation of band 4.1 binding to erythrocyte membranes by protein kinase C. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39837-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
|
48
|
O-N-acetyl-D-glucosamine moiety on discrete peptide of multiple protein 4.1 isoforms regulated by alternative pathways. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84689-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
De Cesaris P, Filippini A, Stefanini M, Ziparo E. Spectrin, fodrin and protein 4.1-like proteins in differentiating rat germ cells. Differentiation 1989; 41:216-22. [PMID: 2612769 DOI: 10.1111/j.1432-0436.1989.tb00750.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The presence and the distribution of proteins of the membrane skeleton in differentiating germ cells of the rat has been investigated. Immunofluorescence and immunoblotting analysis, performed using monoclonal and polyclonal antibodies to human erythroid alpha-spectrin and protein 4.1 and to brain spectrin (fodrin), demonstrated the presence of analogues of spectrin and fodrin in spermatocytes and round spermatids and of protein 4.1-like molecules in spermatocytes, spermatids and spermatozoa. Spectrin and fodrin showed molecular weights comparable to those of their analogues in erythrocytes but a distinct intracellular distribution. Fodrin was localized along the plasma membrane while spectrin appeared associated with the regions of the Golgi apparatus and of the developing acrosome. Antibodies to protein 4.1 recognized molecules with a molecular weight not comparable with that in erythrocytes, and their presence in spermatozoa was confined to specific regions of the head and of the tail.
Collapse
Affiliation(s)
- P De Cesaris
- Istituto di Istologia ed Embriologia generale, Università degli Studi di Roma La Sapienza, Italy
| | | | | | | |
Collapse
|
50
|
Wagner AP. On the relationships between the rate of cytoskeletal stable assemblies turnover, stability of the differentiated state, development and aging. J Theor Biol 1989; 138:175-84. [PMID: 2607770 DOI: 10.1016/s0022-5193(89)80137-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is a general consensus that biological specificity is a structure-derived property. If a living system is going to maintain its structure and function then the newly synthesized molecules should replace the faulty ones at the correct time and in the correct places so that the previously established cellular topology will be preserved. In addition, pre-existing spatial determinants which will direct the asymmetrical assembly of the newly synthesized molecules should be available. Therefore, regulation of turnover of cellular architecture represents an essential feature of living systems. In considering the underlying causes of cellular senescence it seemed reasonable to focus on the relationship between development of a stable phenotype and the turnover of cellular and extracellular stable assemblies, currently thought to be involved in maintaining the stability of the differentiated state. In recent years evidence has accumulated suggesting a reciprocal relationship between cytoarchitecture turnover rate and achievement of a stable structure. The lack of a feedback control on the turnover of cellular stable assemblies and/or a low turnover rate of cytoarchitecture components would mean that they will be subjected to damaging processes such as oxidation, cross-linking, aminoacid racemization or non-enzymatic browning which are known to occur in other long-lived proteins. The consequence would be the generation, with advancing age, of faulty cellular structures which, in turn, would alter the deposition of newly synthesized molecules. This process may lead to a progressive breakdown in cellular and extracellular stable structures. The process of directed assembly seems to be general for biological systems displaying history-dependent development. We believe that it is this strategy which imposes severe limitations on presegregated spatial determinants turnover rates and, therefore plays a major role in initiating the aging process. We also suggest that species-specific life-span might be determined by the species-specific regulatory networks which governs the cell-specific cytoarchitecture damaging rate. Moreover, aging appears to be an intrinsic feature of biological systems displaying history-dependent development and should be absent in systems displaying history-independent life-cycles, such as bacteria, some species of protozoa, and certain transformed cell lines. An important feature of protein turnover is that this process requires metabolic energy. Therefore, we can expect that structure preservation strategy is a part of a more general energy-saving strategy, a view previously expressed by T.B.L. Kirkwood (Nature, Lond., 1977, 270, 301-304).
Collapse
Affiliation(s)
- A P Wagner
- Department of Biochemistry, University of Karlsruhe, West Germany
| |
Collapse
|