1
|
Keen AC, Pedersen MH, Lemel L, Scott DJ, Canals M, Littler DR, Beddoe T, Ono Y, Shi L, Inoue A, Javitch JA, Lane JR. OZITX, a pertussis toxin-like protein for occluding inhibitory G protein signalling including Gα z. Commun Biol 2022; 5:256. [PMID: 35322196 PMCID: PMC8943041 DOI: 10.1038/s42003-022-03191-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins are the main signalling effectors for G protein-coupled receptors. Understanding the distinct functions of different G proteins is key to understanding how their signalling modulates physiological responses. Pertussis toxin, a bacterial AB5 toxin, inhibits Gαi/o G proteins and has proven useful for interrogating inhibitory G protein signalling. Pertussis toxin, however, does not inhibit one member of the inhibitory G protein family, Gαz. The role of Gαz signalling has been neglected largely due to a lack of inhibitors. Recently, the identification of another Pertussis-like AB5 toxin was described. Here we show that this toxin, that we call OZITX, specifically inhibits Gαi/o and Gαz G proteins and that expression of the catalytic S1 subunit is sufficient for this inhibition. We identify mutations that render Gα subunits insensitive to the toxin that, in combination with the toxin, can be used to interrogate the signalling of each inhibitory Gα G protein.
Collapse
Affiliation(s)
- Alastair C Keen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Maria Hauge Pedersen
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Lemel
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Daniel J Scott
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, VIC, 3052, Australia
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3052, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Yuki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK.
| |
Collapse
|
2
|
Bazmi M, Escobar AL. Autonomic Regulation of the Goldfish Intact Heart. Front Physiol 2022; 13:793305. [PMID: 35222073 PMCID: PMC8864152 DOI: 10.3389/fphys.2022.793305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Autonomic regulation plays a central role in cardiac contractility and excitability in numerous vertebrate species. However, the role of autonomic regulation is less understood in fish physiology. Here, we used Goldfish as a model to explore the role of autonomic regulation. A transmural electrocardiogram recording showed perfusion of the Goldfish heart with isoproterenol increased the spontaneous heart rate, while perfusion with carbamylcholine decreased the spontaneous heart rate. Cardiac action potentials obtained via sharp microelectrodes exhibited the same modifications of the spontaneous heart rate in response to isoproterenol and carbamylcholine. Interestingly, the duration of the cardiac action potentials lengthened in the presence of both isoproterenol and carbamylcholine. To evaluate cardiac contractility, the Goldfish heart was perfused with the Ca2+ indicator Rhod-2 and ventricular epicardial Ca2+ transients were measured using Pulsed Local Field Fluorescence Microscopy. Following isoproterenol perfusion, the amplitude of the Ca2+ transient significantly increased, the half duration of the Ca2+ transient shortened, and there was an observable increase in the velocity of the rise time and fall time of the Ca2+ transient, all of which are compatible with the shortening of the action potential induced by isoproterenol perfusion. On the other hand, carbamylcholine perfusion significantly reduced the amplitude of the Ca2+ transient and increased the half duration of the Ca2+ transient. These results are interesting because the effect of carbamylcholine is opposite to what happens in classically used models, such as mouse hearts, and the autonomic regulation of the Goldfish heart is strikingly similar to what has been observed in larger mammalian models resembling humans.
Collapse
Affiliation(s)
- Maedeh Bazmi
- Quantitative Systems Biology Program, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| |
Collapse
|
3
|
Miranda C, Begum M, Vergari E, Briant LJB. Gap junction coupling and islet delta-cell function in health and disease. Peptides 2022; 147:170704. [PMID: 34826505 DOI: 10.1016/j.peptides.2021.170704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
The pancreatic islets contain beta-cells and alpha-cells, which are responsible for secreting two principal gluco-regulatory hormones; insulin and glucagon, respectively. However, they also contain delta-cells, a relatively sparse cell type that secretes somatostatin (SST). These cells have a complex morphology allowing them to establish an extensive communication network throughout the islet, despite their scarcity. Delta-cells are electrically excitable cells, and SST secretion is released in a glucose- and KATP-dependent manner. SST hyperpolarises the alpha-cell membrane and suppresses exocytosis. In this way, islet SST potently inhibits glucagon release. Recent studies investigating the activity of delta-cells have revealed they are electrically coupled to beta-cells via gap junctions, suggesting the delta-cell is more than just a paracrine inhibitor. In this Review, we summarize delta-cell morphology, function, and the role of SST signalling for regulating islet hormonal output. A distinguishing feature of this Review is that we attempt to use the discovery of this gap junction pathway, together with what is already known about delta-cells, to reframe the role of these cells in both health and disease. In particular, we argue that the discovery of gap junction communication between delta-cells and beta-cells provides new insights into the contribution of delta-cells to the islet hormonal defects observed in both type 1 and type 2 diabetes. This reappraisal of the delta-cell is important as it may offer novel insights into how the physiology of this cell can be utilised to restore islet function in diabetes.
Collapse
Affiliation(s)
- Caroline Miranda
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden
| | - Manisha Begum
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden; University of Skӧvde, Department of Infection Biology, Högskolevägen 1, 541 28, Skövde, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK; Department of Computer Science, University of Oxford, OX1 3QD, Oxford, UK.
| |
Collapse
|
4
|
Mechanisms underlying pathological Ca 2+ handling in diseases of the heart. Pflugers Arch 2021; 473:331-347. [PMID: 33399957 PMCID: PMC10070045 DOI: 10.1007/s00424-020-02504-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Cardiomyocyte contraction relies on precisely regulated intracellular Ca2+ signaling through various Ca2+ channels and transporters. In this article, we will review the physiological regulation of Ca2+ handling and its role in maintaining normal cardiac rhythm and contractility. We discuss how inherited variants or acquired defects in Ca2+ channel subunits contribute to the development or progression of diseases of the heart. Moreover, we highlight recent insights into the role of protein phosphatase subunits and striated muscle preferentially expressed protein kinase (SPEG) in atrial fibrillation, heart failure, and cardiomyopathies. Finally, this review summarizes current drug therapies and new advances in genome editing as therapeutic strategies for the cardiac diseases caused by aberrant intracellular Ca2+ signaling.
Collapse
|
5
|
Aguilar-Sanchez Y, Rodriguez de Yurre A, Argenziano M, Escobar AL, Ramos-Franco J. Transmural Autonomic Regulation of Cardiac Contractility at the Intact Heart Level. Front Physiol 2019; 10:773. [PMID: 31333477 PMCID: PMC6616252 DOI: 10.3389/fphys.2019.00773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/03/2019] [Indexed: 01/14/2023] Open
Abstract
The relationship between cardiac excitability and contractility depends on when Ca2+ influx occurs during the ventricular action potential (AP). In mammals, it is accepted that Ca2+ influx through the L-type Ca2+ channels occurs during AP phase 2. However, in murine models, experimental evidence shows Ca2+ influx takes place during phase 1. Interestingly, Ca2+ influx that activates contraction is highly regulated by the autonomic nervous system. Indeed, autonomic regulation exerts multiple effects on Ca2+ handling and cardiac electrophysiology. In this paper, we explore autonomic regulation in endocardial and epicardial layers of intact beating mice hearts to evaluate their role on cardiac excitability and contractility. We hypothesize that in mouse cardiac ventricles the influx of Ca2+ that triggers excitation–contraction coupling (ECC) does not occur during phase 2. Using pulsed local field fluorescence microscopy and loose patch photolysis, we show sympathetic stimulation by isoproterenol increased the amplitude of Ca2+ transients in both layers. This increase in contractility was driven by an increase in amplitude and duration of the L-type Ca2+ current during phase 1. Interestingly, the β-adrenergic increase of Ca2+ influx slowed the repolarization of phase 1, suggesting a competition between Ca2+ and K+ currents during this phase. In addition, cAMP activated L-type Ca2+ currents before SR Ca2+ release activated the Na+-Ca2+ exchanger currents, indicating Cav1.2 channels are the initial target of PKA phosphorylation. In contrast, parasympathetic stimulation by carbachol did not have a substantial effect on amplitude and kinetics of endocardial and epicardial Ca2+ transients. However, carbachol transiently decreased the duration of the AP late phase 2 repolarization. The carbachol-induced shortening of phase 2 did not have a considerable effect on ventricular pressure and systolic Ca2+ dynamics. Interestingly, blockade of muscarinic receptors by atropine prolonged the duration of phase 2 indicating that, in isolated hearts, there is an intrinsic release of acetylcholine. In addition, the acceleration of repolarization induced by carbachol was blocked by the acetylcholine-mediated K+ current inhibition. Our results reveal the transmural ramifications of autonomic regulation in intact mice hearts and support our hypothesis that Ca2+ influx that triggers ECC occurs in AP phase 1 and not in phase 2.
Collapse
Affiliation(s)
- Yuriana Aguilar-Sanchez
- Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ainhoa Rodriguez de Yurre
- Laboratorio de Cardio Inmunologia, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Mariana Argenziano
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| | - Josefina Ramos-Franco
- Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
6
|
Bazmi M, Escobar AL. How Ca 2+ influx is attenuated in the heart during a "fight or flight" response. J Gen Physiol 2019; 151:722-726. [PMID: 31004065 PMCID: PMC6572000 DOI: 10.1085/jgp.201912338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bazmi and Escobar highlight a recent investigation of the mechanisms that regulate Ca2+ influx during sympathetic stimulation.
Collapse
Affiliation(s)
- Maedeh Bazmi
- Quantitative Systems Biology Program, School of Natural Sciences, University of California, Merced, Merced, CA
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA
| |
Collapse
|
7
|
A Single Residue Mutation in the Gα q Subunit of the G Protein Complex Causes Blindness in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:363-371. [PMID: 29158337 PMCID: PMC5765363 DOI: 10.1534/g3.117.300340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heterotrimeric G proteins play central roles in many signaling pathways, including the phototransduction cascade in animals. However, the degree of involvement of the G protein subunit Gαq is not clear since animals with previously reported strong loss-of-function mutations remain responsive to light stimuli. We recovered a new allele of Gαq in Drosophila that abolishes light response in a conventional electroretinogram assay, and reduces sensitivity in whole-cell recordings of dissociated cells by at least five orders of magnitude. In addition, mutant eyes demonstrate a rapid rate of degeneration in the presence of light. Our new allele is likely the strongest hypomorph described to date. Interestingly, the mutant protein is produced in the eyes but carries a single amino acid change of a conserved hydrophobic residue that has been assigned to the interface of interaction between Gαq and its downstream effector, PLC. Our study has thus uncovered possibly the first point mutation that specifically affects this interaction in vivo.
Collapse
|
8
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
9
|
From GTP and G proteins to TRPC channels: a personal account. J Mol Med (Berl) 2015; 93:941-53. [PMID: 26377676 DOI: 10.1007/s00109-015-1328-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
By serendipity and good fortune, as a postdoctoral fellow in 1967, I landed at the right place at the right time, as I was allowed to investigate the mechanism by which hormones activate the enzyme adenylyl cyclase (then adenyl cyclase) in Martin Rodbell's Laboratory at the NIH in Bethesda, Maryland. The work uncovered first, the existence of receptors separate from the enzyme and then, the existence of transduction mechanisms requiring guanosine-5'-triphosphate (GTP) and Mg(2+). With my laboratory colleagues first and postdoctoral fellows after leaving NIH, I participated in the development of the field "signal transduction by G proteins," uncovered by molecular cloning several G-protein-coupled receptors (GPCRs) and became interested in both the molecular makeup of voltage-gated Ca channels and Ca2+ homeostasis downstream of activation of phospholipase C (PLC) by the Gq/11 signaling pathway. We were able to confirm the hypothesis that there would be mammalian homologues of the Drosophila "transient receptor potential" channel and discovered the existence of six of the seven mammalian genes, now called transient receptor potential canonical (TRPC) channels. In the present article, I summarize from a bird's eye view of what I feel were key findings along this path, not only from my laboratory but also from many others, that allowed for the present knowledge of cell signaling involving G proteins to evolve. Towards the end, I summarize roles of TRPC channels in health and disease.
Collapse
|
10
|
Sim YB, Park SH, Kim SS, Lim SM, Jung JS, Lee JK, Suh HW. Pertussis toxin administered spinally induces a hypoglycemic effect on normal and diabetic mice. Pharmacology 2014; 94:29-40. [PMID: 25171426 DOI: 10.1159/000363578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/13/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS To show whether intrathecal (i.t.) treatment with pertussis toxin (PTX) produces a hypoglycemic effect in ICR, db/db and streptozotocin-treated mice. METHODS The blood glucose level (BGL) was measured after i.t. treatment with PTX, AB5 toxins and PTX subunits. Insulin or leptin levels were measured after PTX injection. The effect of PTX on the BGL was examined in adrenalectomized (ADX) mice. Glucose transporter (GLUT) levels were determined by Western blotting. RESULTS PTX attenuated the elevated BGL in the D-glucose-fed model in a long-term manner. Heat-labile toxin (HLT), HLT subunit B or Shiga toxin, which belong to the AB5 toxins, administered i.t. did not affect the BGL. PTX A protomer (PTX-A) or PTX B oligomers (PTX-B) injected i.t. did not have an effect on the BGL as well. However, combined treatment with PTX-A and PTX-B subunits caused a hypoglycemic effect. The leptin level was gradually reduced by PTX for up to 6 days, without affecting the insulin level. PTX administered i.t. significantly decreased the BGL further in ADX mice. Moreover, GLUT-2 (hypothalamus and pituitary gland), GLUT-4 (muscle) and GLUT-3 (adrenal gland) expression levels were increased, whereas GLUT-1 (brain cortex, liver, muscle and spinal cord), GLUT-2 (liver) and GLUT-3 (brain cortex and pituitary gland) expression levels were decreased. DISCUSSION Our data suggest that PTX administered spinally produces a hypoglycemic effect in a long-term manner, and PTX-induced hypoglycemia appears to be mediated by the reduction in activity of the glucocorticoid system. Furthermore, PTX may modulate the insulin level during hypoglycemia. Among GLUTs, GLUT-4 in muscle, GLUT-2 in the liver, hypothalamus and pituitary gland as well as GLUT-1 in the adrenal gland may be responsible for PTX-induced hypoglycemia.
Collapse
Affiliation(s)
- Yun-Beom Sim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Sukkurwala AQ, Martins I, Wang Y, Schlemmer F, Ruckenstuhl C, Durchschlag M, Michaud M, Senovilla L, Sistigu A, Ma Y, Vacchelli E, Sulpice E, Gidrol X, Zitvogel L, Madeo F, Galluzzi L, Kepp O, Kroemer G. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ 2014; 21:59-68. [PMID: 23787997 PMCID: PMC3857625 DOI: 10.1038/cdd.2013.73] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022] Open
Abstract
The exposure of calreticulin (CRT) on the surface of stressed and dying cancer cells facilitates their uptake by dendritic cells and the subsequent presentation of tumor-associated antigens to T lymphocytes, hence stimulating an anticancer immune response. The chemotherapeutic agent mitoxantrone (MTX) can stimulate the peripheral relocation of CRT in both human and yeast cells, suggesting that the CRT exposure pathway is phylogenetically conserved. Here, we show that pheromones can act as physiological inducers of CRT exposure in yeast cells, thereby facilitating the formation of mating conjugates, and that a large-spectrum inhibitor of G protein-coupled receptors (which resemble the yeast pheromone receptor) prevents CRT exposure in human cancer cells exposed to MTX. An RNA interference screen as well as transcriptome analyses revealed that chemokines, in particular human CXCL8 (best known as interleukin-8) and its mouse ortholog Cxcl2, are involved in the immunogenic translocation of CRT to the outer leaflet of the plasma membrane. MTX stimulated the production of CXCL8 by human cancer cells in vitro and that of Cxcl2 by murine tumors in vivo. The knockdown of CXCL8/Cxcl2 receptors (CXCR1/Cxcr1 and Cxcr2) reduced MTX-induced CRT exposure in both human and murine cancer cells, as well as the capacity of the latter-on exposure to MTX-to elicit an anticancer immune response in vivo. Conversely, the addition of exogenous Cxcl2 increased the immunogenicity of dying cells in a CRT-dependent manner. Altogether, these results identify autocrine and paracrine chemokine signaling circuitries that modulate CRT exposure and the immunogenicity of cell death.
Collapse
Affiliation(s)
- A Q Sukkurwala
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - I Martins
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - Y Wang
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - F Schlemmer
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - C Ruckenstuhl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - M Durchschlag
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - M Michaud
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - L Senovilla
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
- INSERM, U1015 Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | - A Sistigu
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
- INSERM, U1015 Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | - Y Ma
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - E Vacchelli
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - E Sulpice
- Laboratoire Biologie à Grande Echelle, CEA, Grenoble, France
- INSERM, U1038, Université Joseph Fourier, Grenoble, France
| | - X Gidrol
- Laboratoire Biologie à Grande Echelle, CEA, Grenoble, France
- INSERM, U1038, Université Joseph Fourier, Grenoble, France
| | - L Zitvogel
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
- INSERM, U1015 Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
- Centre d'Investigation Clinique Biothérapie CICBT507, Institut Gustave Roussy, Villejuif, France
| | - F Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - L Galluzzi
- INSERM, U848, Villejuif, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - O Kepp
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - G Kroemer
- INSERM, U848, Villejuif, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
12
|
Theodoropoulou M, Stalla GK. Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol 2013; 34:228-52. [PMID: 23872332 DOI: 10.1016/j.yfrne.2013.07.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/13/2013] [Accepted: 07/12/2013] [Indexed: 02/08/2023]
Abstract
Somatostatin is a peptide with a potent and broad antisecretory action, which makes it an invaluable drug target for the pharmacological management of pituitary adenomas and neuroendocrine tumors. Somatostatin receptors (SSTR1, 2A and B, 3, 4 and 5) belong to the G protein coupled receptor family and have a wide expression pattern in both normal tissues and solid tumors. Investigating the function of each SSTR in several tumor types has provided a wealth of information about the common but also distinct signaling cascades that suppress tumor cell proliferation, survival and angiogenesis. This provided the rationale for developing multireceptor-targeted somatostatin analogs and combination therapies with signaling-targeted agents such as inhibitors of the mammalian (or mechanistic) target of rapamycin (mTOR). The ability of SSTR to internalize and the development of rabiolabeled somatostatin analogs have improved the diagnosis and treatment of neuroendocrine tumors.
Collapse
Affiliation(s)
- Marily Theodoropoulou
- Department of Endocrinology, Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany.
| | | |
Collapse
|
13
|
Stefan E, Malleshaiah MK, Breton B, Ear PH, Bachmann V, Beyermann M, Bouvier M, Michnick SW. PKA regulatory subunits mediate synergy among conserved G-protein-coupled receptor cascades. Nat Commun 2011; 2:598. [PMID: 22186894 PMCID: PMC3247815 DOI: 10.1038/ncomms1605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/18/2011] [Indexed: 11/09/2022] Open
Abstract
G-protein-coupled receptors sense extracellular chemical or physical stimuli and transmit these signals to distinct trimeric G-proteins. Activated Gα-proteins route signals to interconnected effector cascades, thus regulating thresholds, amplitudes and durations of signalling. Gαs- or Gαi-coupled receptor cascades are mechanistically conserved and mediate many sensory processes, including synaptic transmission, cell proliferation and chemotaxis. Here we show that a central, conserved component of Gαs-coupled receptor cascades, the regulatory subunit type-II (RII) of protein kinase A undergoes adenosine 3′-5′-cyclic monophosphate (cAMP)-dependent binding to Gαi. Stimulation of a mammalian Gαi-coupled receptor and concomitant cAMP-RII binding to Gαi, augments the sensitivity, amplitude and duration of Gαi:βγ activity and downstream mitogen-activated protein kinase signalling, independent of protein kinase A kinase activity. The mechanism is conserved in budding yeast, causing nutrient-dependent modulation of a pheromone response. These findings suggest a direct mechanism by which coincident activation of Gαs-coupled receptors controls the precision of adaptive responses of activated Gαi-coupled receptor cascades. G-protein-coupled receptors sense extracellular cues and transmit the signal to distinct trimeric G-proteins. Stefan et al. show that in response to cAMP, a central and conserved component of the Gαs-coupled receptor cascade, the RII subunit of PKA, specifically binds to and participates in Gαi signaling.
Collapse
Affiliation(s)
- Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 2011; 302:C327-59. [PMID: 21900692 DOI: 10.1152/ajpcell.00168.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.
Collapse
Affiliation(s)
- Max Lafontan
- Institut National de la Santé et de la Recherche Médicale, UMR, Hôpital Rangueil, Toulouse, France.
| |
Collapse
|
15
|
Yang CH, Rumpf S, Xiang Y, Gordon MD, Song W, Jan LY, Jan YN. Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 2009; 61:519-26. [PMID: 19249273 DOI: 10.1016/j.neuron.2008.12.021] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 11/25/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
Mating induces changes in the receptivity and egg-laying behavior in Drosophila females, primarily due to a peptide pheromone called sex peptide which is transferred with the sperm into the female reproductive tract during copulation. Whereas sex peptide is generally believed to modulate fruitless-GAL4-expressing neurons in the central nervous system to produce behavioral changes, we found that six to eight sensory neurons on the reproductive tract labeled by both ppk-GAL4 and fruitless-GAL4 can sense sex peptide to control the induction of postmating behaviors. In these sensory neurons, sex peptide appears to act through Pertussis toxin-sensitive G proteins and suppression of protein kinase A activity to reduce synaptic output. Our results uncover a neuronal mechanism by which sex peptide exerts its control over reproductive behaviors in Drosophila females.
Collapse
Affiliation(s)
- Chung-Hui Yang
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
The same mutation in Gsalpha and transducin alpha reveals behavioral differences between these highly homologous G protein alpha-subunits. Proc Natl Acad Sci U S A 2008; 105:2363-8. [PMID: 18258741 DOI: 10.1073/pnas.0712261105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutating Arg-238 to Glu (R238E) in the switch 3 region of a transducin alpha (*Talpha) in which 27 aa of the GTPase domain have been replaced with those of the alpha-subunit of the inhibitory G protein 1 (Gi1alpha), was reported to create an alpha-subunit that is resistant to activation by GTPgammaS, is devoid of resident nucleotide, and has dominant negative (DN) properties. In an attempt to create a DN stimultory G protein alpha (Gsalpha) with a single mutation we created Gsalpha-R265E, equivalent to *Talpha-R238E. Gsalpha-R265E has facilitated activation by GTPgammaS, a slightly facilitated activation by GTP but much reduced receptor plus GTP stimulated activation, and an apparently unaltered ability to interact with receptor as seen in ligand binding studies. Further, the activity profile of Gsalpha-R265E is that of an alpha-subunit with unaltered or increased GTPase activity. The only change in Gsalpha that is similar to that in *Talpha is that the apparent affinity for guanine nucleotides is decreased in both proteins. The molecular basis of the changed properties are discussed based on the known crystal structure of Gsalpha and the changes introduced by the same mutation in a *Talpha (Gtalpha*) with only 23 aa from Gi1alpha. Gtalpha*-R238E, with four fewer mutations in switch 3, was reported to show no evidence of DN properties, is activated by GTPgammaS, and has reduced GTPase activity. The data highlight a critical role for the switch 3 region in setting overall properties of signal-transducing GTPases.
Collapse
|
17
|
Moss J, Vaughan M. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 61:303-79. [PMID: 3128060 DOI: 10.1002/9780470123072.ch6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J Moss
- Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
18
|
Seo YJ, Kwon MS, Shim EJ, Lee JY, Suh HW. The effects of phorbol 12-myristate 13-acetate, cholera toxin, prostaglandin E2 and norepinephrine on inducible nitric oxide synthase activation induced by lipopolysaccharide in C6 cells. Pharmacology 2006; 78:178-84. [PMID: 17047412 DOI: 10.1159/000096349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 08/28/2006] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) plays a significant role in the pathophysiology of the central nervous system including inflammatory, ischemic and traumatic injuries. We demonstrated the possible involvement of protein kinase C (PKC) as well as protein kinase A (PKA) in the regulation of NO synthesis induced by lipopolysaccharide (LPS) treatment. In this study, the role of phorbol 12-myristate 13-acetate (PMA), cholera toxin (CTX), pertussis toxin (PTX), prostaglandin E(2) (PGE(2)) and norepinephrine (NE) in the regulation of NO synthesis was examined in C6 glioma cells. Stimulation with LPS (1 microg/ml) evoked increases in NO production in C6 glioma cells. LPS-induced NO production was enhanced by pretreatment with PMA, CTX and PGE(2). PTX pretreatment had no effect on NO production induced by LPS. In addition, NE inhibited NO production elicited by LPS treatment. These results suggest that NO production induced by LPS in C6 glioma cells is regulated by several kinds of pathways in which CTX-specific G protein, PKC, prostanoid EP(4) receptor and adrenergic receptor may play important roles.
Collapse
Affiliation(s)
- Young-Jun Seo
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, South Korea
| | | | | | | | | |
Collapse
|
19
|
Birnbaumer L. The discovery of signal transduction by G proteins: a personal account and an overview of the initial findings and contributions that led to our present understanding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:756-71. [PMID: 17141178 PMCID: PMC1894990 DOI: 10.1016/j.bbamem.2006.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 11/28/2022]
Abstract
The realization that there existed a G-protein coupled signal transduction mechanism developed gradually and was initially the result of an ill fated quest for uncovering the mechanism of action of insulin, followed by a refocused research in many laboratories, including mine, on how GTP acted to increase hormonal stimulation of adenylyl cyclase. Independent research into how light-activated rhodopsin triggers a response in photoreceptor cells of the retina and the attendant biochemical studies joined midway and, without the left hand knowing well what the right hand was doing, preceded classical G protein research in identifying the molecular players responsible for signal transduction by G proteins.
Collapse
Affiliation(s)
- Lutz Birnbaumer
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
20
|
Prada C, Udin SB, Wiechmann AF, Zhdanova IV. Stimulation of Melatonin Receptors Decreases Calcium Levels in Xenopus Tectal Cells by Activating GABAC Receptors. J Neurophysiol 2005; 94:968-78. [PMID: 15817645 DOI: 10.1152/jn.01286.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the physiological effects of melatonin receptors in the Xenopus tectum, we have used the fluorescent indicator Fluo-4 AM to monitor calcium dynamics of cells in tectal slices. Bath application of KCl elicited fluorescence increases that were reduced by melatonin. This effect was stronger at the end of the light period than at the end of the dark period. Melatonin increased γ-aminobutyric acid-C (GABAC)–receptor activity, as demonstrated by the ability of the GABAC-receptor antagonists, picrotoxin and TPMPA, to abolish the effects of melatonin. In contrast, neither the GABAA-receptor antagonist bicuculline nor the GABAB-receptor antagonist CGP 35348 diminished the effects of melatonin. RT-PCR analyses revealed expression of the 3 known melatonin receptors, MT1 (Mel1a), MT2 (Mel1b), and Mel1c. Because the effect of melatonin on tectal calcium increases was antagonized by an MT2-selective antagonist, 4-P-PDOT, we performed Western blot analyses with an antibody to the MT2 receptor; the data indicate that the MT2 receptor is expressed primarily as a dimeric complex and is glycosylated. The receptor is present in higher amounts at the end of the light period than at the end of the dark period, in a pattern complementary to the changes in melatonin levels, which are higher during the night than during the day. These results imply that melatonin, acting by MT2 receptors, modulates GABAC receptor activity in the optic tectum and that this effect is influenced by the light–dark cycle.
Collapse
MESH Headings
- Aniline Compounds/metabolism
- Animals
- Bicuculline/pharmacology
- Blotting, Northern/methods
- Blotting, Western/methods
- Brain Chemistry/drug effects
- Calcium/metabolism
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Diagnostic Imaging/methods
- Dose-Response Relationship, Drug
- Drug Interactions
- GABA Agonists/pharmacology
- GABA Antagonists/pharmacology
- In Vitro Techniques
- Melatonin/metabolism
- Melatonin/pharmacology
- Models, Neurological
- Neurons/drug effects
- Neurons/metabolism
- Neurons/radiation effects
- Pertussis Toxin/pharmacology
- Potassium Chloride/pharmacology
- RNA, Messenger/biosynthesis
- Radioimmunoassay/methods
- Receptors, GABA-A/physiology
- Receptors, Melatonin/agonists
- Receptors, Melatonin/antagonists & inhibitors
- Receptors, Melatonin/genetics
- Receptors, Melatonin/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Tectum Mesencephali/cytology
- Tetrahydronaphthalenes/pharmacology
- Xanthenes/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- Claudia Prada
- Neuroscience Program, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
21
|
Kwon MS, Shim EJ, Seo YJ, Choi SS, Lee JY, Lee HK, Suh HW. Effect of Aspirin and Acetaminophen on Proinflammatory Cytokine-Induced Pain Behavior in Mice. Pharmacology 2005; 74:152-6. [PMID: 15775706 DOI: 10.1159/000084548] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 01/25/2005] [Indexed: 02/02/2023]
Abstract
Aspirin (ASA) is a widely used oral analgesic which acts as an inhibitor of cyclooxygenase. Acetaminophen (ACET) is also an effective analgesic and may selectively inhibit brain prostaglandin synthetase. Various proinflammatory cytokines injected into the central nervous system show pain behavior. In the present study, the effects of orally administered ASA and ACET on pain behaviors induced by various proinflammatory cytokines were examined. At a dose of 100 mg/kg, ASA or ACET did not affect the pain behavior induced by TNF-alpha (100 pg), IL-1beta (100 pg) or IFN-gamma (100 pg) administered intrathecally. However, at doses of 200 and 300 mg/kg, ASA or ACET significantly and dose-dependently attenuated pain behavior induced by TNF-alpha, IL-1beta or IFN-gamma administered intrathecally. Our results suggest that orally administered ASA and ACET produce antinociception by inhibiting the nociceptive action of TNF-alpha, IL-1beta or IFN-gamma administered intrathecally.
Collapse
Affiliation(s)
- Min-Soo Kwon
- Department of Pharmacology, Institute of Natural Medicine College of Medicine, Hallym University, Chunchon, Kangwondo, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Kwon MS, Shim EJ, Seo YJ, Choi SS, Lee JY, Lee HK, Suh HW. Differential Modulatory Effects of Cholera Toxin and Pertussis Toxin on Pain Behavior Induced by TNF-a, lnterleukin-1β and Interferon- Injected Intrathecally. Arch Pharm Res 2005; 28:582-6. [PMID: 15974446 DOI: 10.1007/bf02977762] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study was designed to characterize the possible roles of spinally located cholera toxin (CTX)- and pertussis toxin (PTX)-sensitive G-proteins in pro-inflammatory cytokine induced pain behaviors. Intrathecal injection of tumor necrosis factor-alpha (TNF-alpha; 100 pg), interleukin-1beta (IL-1beta; 100 pg) and interferon-gamma (INF-gamma; 100 pg) showed pain behavior. Intrathecal pretreatment with CTX (0.05, 0.1 and 0.5 mg) attenuated pain behavior induced by TNF-alpha and INF-gamma administered intrathecally. But intrathecal pretreatment with CTX (0.05, 0.1 and 0.5 microg) did not attenuate pain behavior induced by IL-1beta. On the other hand, intrathecal pretreatment with PTX further increased the pain behavior induced by TNF-alpha and IL-1beta administered intrathecally, especially at the dose of 0.5 microg. But intrathecal pretreatment with PTX did not affect pain behavior induced by INF-gamma. Our results suggest that, at the spinal cord level, CTX- and PTX-sensitive G-proteins appear to play important roles in modulating pain behavior induced by pro-inflammatory cytokines administered spinally. Furthermore, TNF-alpha, IL-1beta and INF-gamma administered spinally appear to produce pain behavior by different mechanisms.
Collapse
Affiliation(s)
- Min-Soo Kwon
- Department of Pharmacology, College of Medicine, and Institute of Natural Medicine, Hallym University, Gangwon-Do 200-702, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Galpha.GDP/Gbetagamma heterotrimers to promote GDP release and GTP binding, resulting in liberation of Galpha from Gbetagamma. Galpha.GTP and Gbetagamma target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Galpha and heterotrimer reformation - a cycle accelerated by 'regulators of G-protein signaling' (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) beta is activated by Galpha(q) and Gbetagamma, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Galpha nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.
Collapse
Affiliation(s)
- C R McCudden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.
| | | | | | | | | |
Collapse
|
24
|
Kopp UC, Cicha MZ. Impaired substance P release from renal sensory nerves in SHR involves a pertussis toxin-sensitive mechanism. Am J Physiol Regul Integr Comp Physiol 2004; 286:R326-33. [PMID: 14578115 DOI: 10.1152/ajpregu.00493.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stretching the renal pelvic wall activates renal mechanosensory nerves by a PGE2-mediated release of substance P via activation of the cAMP-PKA pathway. Renal pelvic ANG II modulates the responsiveness of renal sensory nerves by suppressing the PGE2-mediated activation of adenylyl cyclase via a pertussis toxin (PTX)-sensitive mechanism. In SHR, activation of renal mechanosensory nerves is impaired. This is due to suppressed release of substance P in response to increased pelvic pressure. The present study was performed to investigate whether the PGE2-mediated release of substance P was suppressed in SHR vs. WKY and, if so, whether the impaired PGE2-mediated release of substance P was due to ANG II activating a PTX-sensitive mechanism. In an isolated renal pelvic wall preparation, PGE2, 0.14 μM, increased substance P release from 9 ± 3 to 22 ± 3 pg/min ( P < 0.01) in Wistar-Kyoto rats (WKY), but had no effect in spontaneously hypertensive rats (SHR). A tenfold higher concentration of PGE2, 1.4 μM, was required to increase substance P release in SHR, from 7 ± 1 to 22 ± 3 pg/min ( P < 0.01). In SHR, treating renal pelvises with losartan enhanced the release of substance P produced by subthreshold concentration of PGE2, 0.3 μM, from 16 ± 2 to 26 ± 3 pg/min ( P < 0.01). Likewise, treating renal pelvises with PTX enhanced the PGE2-mediated release of substance P from 10 ± 1 to 33 ± 3 pg/min ( P < 0.01) in SHR. In WKY, neither losartan nor PTX had an effect on the release of substance P produced by subthreshold concentrations of PGE2, 0.03 μM. In conclusion, the impaired responsiveness of renal sensory nerves in SHR involves endogenous ANG II suppressing the PGE2-mediated release of substance P via a PTX-sensitive mechanism.
Collapse
Affiliation(s)
- Ulla C Kopp
- Dept. of Internal Medicine, VA Medical Center, Bldg. 3, Rm 226, Highway 6W, Iowa City, IA 52246, USA.
| | | |
Collapse
|
25
|
Kopp UC, Cicha MZ, Smith LA. Angiotensin blocks substance P release from renal sensory nerves by inhibiting PGE2-mediated activation of cAMP. Am J Physiol Renal Physiol 2003; 285:F472-83. [PMID: 12746258 DOI: 10.1152/ajprenal.00399.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of renal sensory nerves involves PGE2-mediated release of substance P (SP) via activation of the cAMP-PKA pathway. The PGE2-mediated SP release is suppressed by a low- and enhanced by a high-sodium (Na+) diet, suggesting an inhibitory effect of ANG. We now examined whether ANG II is present in the pelvic wall and inhibits PGE2-mediated SP release by blocking PGE2-mediated increases in cAMP. ANG II levels in renal pelvic tissue were 710 +/- 95 and 260 +/- 30 fmol/g tissue in rats fed a low- and high-Na+ diet, respectively. In a renal pelvic preparation from high-Na+-diet rats, 0.14 microM PGE2 produced an increase in SP release from 7 +/- 1 to 19 +/- 3 pg/min that was blocked by 15 nM ANG II. Treating pelvises with pertussis toxin (PTX) abolished the effects of ANG II. In pelvises from low-Na+ rats, neither basal nor bradykinin-mediated SP release was altered by PGE2. However, the bradykinin-mediated release of SP was enhanced by the permeable cAMP analog CPT-cAMP, from 4 +/- 1 to 11 +/- 2 pg/min, a response similar to that in normal-Na+-diet rats. In vivo, renal pelvic administration of PGE2 enhanced the afferent renal nerve activity (ARNA) response to bradykinin in normal- but not in low-Na+ diet rats. CPT-cAMP produced similar enhancement of the ARNA responses to bradykinin in normal- and low-Na+-diet rats, 1,670 +/- 490 and 1,760 +/- 400%.s (area under the curve of ARNA vs. time). Similarly, the ARNA responses to increases in renal pelvic pressure were similarly enhanced by CPT-cAMP in normal- and low-Na+-diet rats. In conclusion, renal pelvic ANG II modulates the responsiveness of renal sensory nerves by suppressing PGE2-mediated activation of adenylyl cyclase via a PTX-sensitive mechanism.
Collapse
Affiliation(s)
- Ulla C Kopp
- Dept. of Internal Medicine, Medical Center, University of Iowa Roy J. and Lucille Carver College of Medicine, Iowa City 52242, USA.
| | | | | |
Collapse
|
26
|
Chung KM, Suh HW. Pretreatment with cholera or pertussis toxin differentially modulates morphine- and beta-endorphin-induced antinociception in the mouse formalin test. Neuropeptides 2001; 35:197-203. [PMID: 12030802 DOI: 10.1054/npep.2001.0862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study was designed to examine the possible involvement of supraspinal CTX- and PTX-sensitive G-proteins in an opioid-induced antinociception in the formalin test. Morphine (1 microg) and beta-endorphin (1 microg) given i.c.v. displayed near-maximal inhibitory effects against the formalin response in the first (0-5 min) and the second (20-40 min) phases. CTX (0.1-0.5 microg) pretreated i.c.v. produced antinociceptive effects in both phases of the formalin responses. Its effect was more pronounced in the first phase. However, PTX (0.05-0.5 microg) injected i.c.v produced the antinociceptive effect only in the first, but not the second, phase. Both CTX (0.5 microg) and PTX (0.5 microg), at the dose which had no intrinsic effect, significantly reversed the beta-endorphin-induced antinociceptive effect observed during the second, but not the first, phase. However, the antinociceptive effect by morphine failed to be affected by the same dose of treatment with CTX or PTX. Our results indicate that, at the supraspinal level, CTX- and PTX-sensitive G-proteins appear to be involved in the modulation of antinociception induced by supraspinally administered beta-endorphin, but not morphine, in the formalin pain model.
Collapse
Affiliation(s)
- K M Chung
- Department of Pharmacology, Institute of Natural Medicine, Hallym University, Kangwon-do, South Korea
| | | |
Collapse
|
27
|
Chen F, Spicher K, Jiang M, Birnbaumer L, Wetzel GT. Lack of muscarinic regulation of Ca(2+) channels in G(i2)alpha gene knockout mouse hearts. Am J Physiol Heart Circ Physiol 2001; 280:H1989-95. [PMID: 11299198 DOI: 10.1152/ajpheart.2001.280.5.h1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to examine the role of G(i2)alpha in Ca(2+) channel regulation using G(i2)alpha gene knockout mouse ventricular myocytes. The whole cell voltage-clamp technique was used to study the effects of the muscarinic agonist carbachol (CCh) and the beta-adrenergic agonist isoproterenol (Iso) on cardiac L-type Ca(2+) currents in both 129Sv wild-type (WT) and G(i2)alpha gene knockout (G(i2)alpha-/-) mice. Perfusion with CCh significantly inhibited the Ca(2+) current in WT cells, and this effect was reversed by adding atropine to the CCh-containing solution. In contrast, CCh did not affect Ca(2+) currents in G(i2)alpha-/- ventricular myocytes. Addition of CCh to Iso-containing solutions attenuated the Iso-stimulated Ca(2+) current in WT cardiomyocytes but not in G(i2)alpha-/- cells. These findings demonstrate that, whereas the Iso-G(s)alpha signal pathway is intact in G(i2)alpha gene knockout mouse hearts, these cells lack the inhibitory regulation of Ca(2+) channels by CCh. Therefore, G(i2)alpha is necessary for the muscarinic regulation of Ca(2+) channels in the mouse heart. Further studies are needed to delineate the possible interaction of G(i) and other cell signaling proteins and to clarify the level of interaction of G protein-coupled regulation of L-type Ca(2+) current in the heart.
Collapse
Affiliation(s)
- F Chen
- Department of Pediatrics, University of California School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
28
|
Chung KM, Lee KC, Choi SS, Suh HW. Differential roles of spinal cholera toxin- and pertussis toxin-sensitive G proteins in nociceptive responses caused by formalin, capsaicin, and substance P in mice. Brain Res Bull 2001; 54:537-42. [PMID: 11397545 DOI: 10.1016/s0361-9230(01)00441-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The aim of the present study is to characterize the roles of spinal cholera toxin (CTX)- and pertussis toxin (PTX)-sensitive G proteins in the regulation of various nociceptive responses. The effects of intrathecal (i.t.) pretreatments with CTX and PTX on the formalin (subcutaneous)-, capsaicin (i.t.)-, and substance P (SP; i.t.)-induced nociceptive behaviours were examined in mice. Pretreatment with CTX (i.t.; 24 h before) significantly and dose-dependently (0.05-0.5 microg) suppressed both the first and second phases of the formalin-induced nociceptive behaviour. On the other hand, pretreatment with PTX (i.t., 6 days before) at the same doses (0.05-N0.5 microg) did not affect the formalin-induced response. Capsaicin (i.t., 0.5 microg)- and SP (i.t., 0.7 microg)-induced nociceptive behaviours were attenuated by the pretreatment with CTX. In addition, SP-induced nociceptive response was also attenuated by the pretreatment with PTX. However, the capsaicin-induced nociceptive response was not influenced by PTX pretreatment. These findings suggest that, at the spinal cord level, CTX-sensitive G-proteins are involved in the formalin-, capsaicin-, and SP-induced nociceptive behavioural responses, whereas PTX-sensitive G proteins are involved in SP-induced nociceptive response.
Collapse
Affiliation(s)
- K M Chung
- Department of Pharmacology and Institute of Natural Medicine, Hallym University, Kangwondo, South Korea
| | | | | | | |
Collapse
|
29
|
Kim DH, Jung JS, Yan JJ, Suh HW, Son BK, Kim YH, Song DK. Increased plasma corticosterone, aggressiveness and brain monoamine changes induced by central injection of pertussis toxin. Eur J Pharmacol 2000; 409:67-72. [PMID: 11099701 DOI: 10.1016/s0014-2999(00)00831-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of intracerebroventricular (i.c.v.) injection of pertussis toxin, a specific inhibitor of G(i)/G(o) proteins, on plasma corticosterone levels, aggressiveness, and hypothalamic and hippocampal monoamines and their metabolites levels were examined in mice. Plasma corticosterone level was markedly increased at 3 h after pertussis toxin injection (0.03 and 0.2 microg/mouse), peaked at 6 h and was still increased for up to 6 days after injection. Mice injected with pertussis toxin (0.2 microg/mouse) did not show weight gain between day 0 and day 6 after injection. In addition, pertussis toxin (0.2 microg/mouse) induced a progressive increase in aggressiveness, i.e. a decrease in attack latency and an increase in number of attacks, on day 1 and 6 after injection. Brain monoamines and their metabolites levels were changed on day 1 and 6 after pertussis toxin injection (0.2 microg/mouse): in the hypothalamus, levels of dopamine and 3,4-dihydroxyphenylacetic acid were increased, norepinephrine level decreased, and 5-hydroxyindole acetic acid (5-HIAA) level was markedly increased, with no changes in 5-hydroxytryptamine (5-HT) level, whereas in the hippocampus, 5-HT level was significantly decreased, with no changes in 5-HIAA and catecholamines. These results suggest that signal transduction through G(i)/G(o) proteins in the brain is involved in the modulation of hypothalamo-pituitary-adrenal axis, aggressiveness, and monoamine levels in vivo.
Collapse
Affiliation(s)
- D H Kim
- Department of Psychiatry, College of Medicine, Institute of Natural Medicine, Hallym University, Kangwon, 200-702, Chunchon, South Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Silva RM, Rossi GC, Mathis JP, Standifer KM, Pasternak GW, Bodnar RJ. Morphine and morphine-6beta-glucuronide-induced feeding are differentially reduced by G-protein alpha-subunit antisense probes in rats. Brain Res 2000; 876:62-75. [PMID: 10973594 DOI: 10.1016/s0006-8993(00)02621-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although morphine and its active metabolite, morphine-6beta-glucuronide (M6G), each induce mu-opioid receptor-sensitive feeding, different antisense oligodeoxynucleotide (AS ODN) probes directed against the MOR-1 clone produce distinct effects. Thus, MOR-1 AS ODN probes directed against exons 1 or 4 reduce morphine-, but not M6G-induced feeding, whereas probes directed against exons 2 or 3 reduce M6G-, but not morphine-induced feeding. AS ODN probes directed against different G-protein alpha-subunits differentially reduced morphine (G(ialpha2)) and M6G (G(ialpha1))-induced analgesia. The present study evaluated the ability of AS ODN probes directed against G-protein alpha-subunits to reduce feeding induced by morphine and M6G in rats. The AS ODN probes (25 microg, i.c.v.) were administered once 24 h prior to morphine (5 microg, i.c.v.) or M6G (250 ng) and spontaneous free feeding was assessed 1, 2 and 4 h thereafter. In agreement with analgesic studies, morphine-induced feeding was significantly reduced by the G(ialpha2) AS ODN probe. Morphine-induced feeding was unaffected by AS ODN probes directed against either G(ialpha1), G(ialpha3), G(oalpha), G(x/zalpha), G(qalpha) or a nonsense control probe, and was significantly enhanced by pretreatment with the G(salpha) probe. In contrast, M6G-induced feeding was significantly reduced by AS ODN probes directed against either G(ialpha1), G(ialpha3) or G(x/zalpha), whereas AS ODN probes targeting G(ialpha2), G(oalpha), G(salpha), G(qalpha) or a nonsense control probe were ineffective. When M6G-induced feeding was assessed at a dose (500 ng) which was sensitive to MOR-1 AS ODN effects, none of the G-protein alpha-subunit AS ODN probes were effective. These data indicate that morphine and M6G-induced feeding are mediated through different G-protein alpha-subunits, and provide further evidence for separate and distinct molecular mechanisms mediating these functional responses through different opioid receptors. This strongly suggests that M6G may act through a novel opioid receptor displaying a distinct pharmacological mechanism.
Collapse
Affiliation(s)
- R M Silva
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| | | | | | | | | | | |
Collapse
|
31
|
Chung KM, Lee KC, Song DK, Huh SO, Choi MR, Kim YH, Suh HW. Differential modulatory roles of cholera toxin and pertussis toxin in the regulation of pain responses induced by excitatory amino acids administered intrathecally in mice. Brain Res 2000; 867:246-9. [PMID: 10837821 DOI: 10.1016/s0006-8993(00)02287-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The present study was designed to characterize the possible roles of spinally located cholera toxin (CTX)- and pertussis toxin (PTX)-sensitive G-proteins in excitatory amino acids induced pain response. Intrathecal (i.t.) injection of glutamate (20 microg), N-methyl-D-aspartic acid (NMDA; 60 ng), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA; 13 ng), and kainic acid (12 ng) showed pain response. Pretreatment with CTX (0.05 and 0.5 microg, i.t.) attenuated pain response induced by glutamate, NMDA, AMPA and kainic acid administered i.t. in a dose-dependent manner. On the other hand, i.t. pretreatment with PTX further increased the pain response induced by glutamate, NMDA, AMPA and kainic acid administered i.t., especially at the dose of 0.5 microg. Our results suggest that, at the spinal cord level, CTX- and PTX-sensitive G-proteins appear to play opposite roles in modulating the pain response induced by spinally administered. Furthermore, CTX- and PTX-sensitive G-proteins appear to modulate pain response induced by stimuli of both NMDA and non-NMDA glutamate receptors.
Collapse
Affiliation(s)
- K M Chung
- Department of Pharmacology, Institute of Natural Medicine, Hallym University, 1 Okchun-dong, Chun-chon, 200-702, Kangwon-do, South Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Jordan JD, Carey KD, Stork PJ, Iyengar R. Modulation of rap activity by direct interaction of Galpha(o) with Rap1 GTPase-activating protein. J Biol Chem 1999; 274:21507-10. [PMID: 10419452 DOI: 10.1074/jbc.274.31.21507] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used the yeast two-hybrid system to identify proteins that interact directly with Galpha(o). Mutant-activated Galpha(o) was used as the bait to screen a cDNA library from chick dorsal root ganglion neurons. We found that Galpha(o) interacted with several proteins including Gz-GTPase-activating protein (Gz-GAP), a new RGS protein (RGS-17), a novel protein of unknown function (IP6), and Rap1GAP. This study focuses on Rap1GAP, which selectively interacts with Galpha(o) and Galpha(i) but not with Galpha(s) or Galpha(q). Rap1GAP interacts more avidly with the unactivated Galpha(o) as compared with the mutant (Q205L)-activated Galpha(o). When expressed in HEK-293 cells, unactivated Galpha(o) co-immunoprecipitates with the Rap1GAP. Expression of chick Rap1GAP in PC-12 cells inhibited activation of Rap1 by forskolin. When unactivated Galpha(o) was expressed, the amount of activated Rap1 was greatly increased. This effect was not observed with the Q205L-Galpha(o). Expression of unactivated Galpha(o) stimulated MAP-kinase (MAPK1/2) activity in a Rap1GAP-dependent manner. These results identify a novel function of Galpha(o), which in its resting state can sequester Rap1GAP thereby regulating Rap1 activity and consequently gating signal flow from Rap1 to MAPK1/2. Thus, activation of G(o) could modulate the Rap1 effects on a variety of cellular functions.
Collapse
Affiliation(s)
- J D Jordan
- Department of Pharmacology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
33
|
Narita M, Tseng LF. Evidence for the existence of the beta-endorphin-sensitive "epsilon-opioid receptor" in the brain: the mechanisms of epsilon-mediated antinociception. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 76:233-53. [PMID: 9593217 DOI: 10.1254/jjp.76.233] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, mu-, delta- and kappa-opioid receptors have been cloned and relatively well-characterized. In addition to three major opioid receptor types, more extensive studies have suggested the possible existence of other opioid receptor types that can be classified as non-mu, non-delta and non-kappa. Based upon anatomical and binding studies in the brain, the sensitive site for an endogenous opioid peptide, beta-endorphin, has been postulated to account for the unique characteristics of the opioid receptor defined as a putative epsilon-opioid receptor. Many epsilon-opioid receptors are functionally coupled to G-proteins. The functional epsilon-opioid receptors in the brain are stimulated by bremazocine and etorphine as well as beta-endorphin, but not by selective mu-, delta- or kappa-opioid receptor agonists. Epsilon-opioid receptor agonists injected into the brain produce profound antinociception. The brain sites most sensitive to epsilon-agonist-induced antinociception are located in the caudal medial medulla such as the nucleus raphe obscures, nucleus raphe pallidus and the adjacent midline reticular formation. The stimulation of epsilon-opioid receptors in the brain facilitates the descending enkephalinergic pathway, which probably originates from the brainstem terminating at the spinal cord. The endogenous opioid Met-enkephalin, released in the spinal cord by activation of supraspinal epsilon-opioid receptors, stimulates spinal delta2-opioid receptors for the production of antinociception. It is noteworthy that the epsilon-opioid receptor-mediated pain control system is different from that of other opioid systems. Although there appears to be no epsilon-selective ligand currently available, these findings provide strong evidence for the existence of the putative epsilon-opioid receptor and its unique function in the brain.
Collapse
Affiliation(s)
- M Narita
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
34
|
Burke JR, Davern LB, Gregor KR, Todderud G, Alford JG, Tramposch KM. Phosphorylation and calcium influx are not sufficient for the activation of cytosolic phospholipase A2 in U937 cells: requirement for a Gi alpha-type G-protein. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1341:223-37. [PMID: 9357962 DOI: 10.1016/s0167-4838(97)00085-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Differentiation with dibutyryl cyclic AMP (dBcAMP) of the human, premonocytic U937 cell line toward a monocyte/granulocyte-like cell results in the cell acquiring an ability to release arachidonate upon stimulation. In contrast, the calcium ionophore ionomycin was able to stimulate phospholipase C, as measured by inositol 1,4,5-trisphosphate formation, to equal extents in both undifferentiated and dBcAMP-differentiated U937 cells. The role and regulation of cytosolic phospholipase A2 (cPLA2) in the production of arachidonate in these cells when either the chemotactic peptide fMLP or ionomycin are used as stimulus were investigated. The ionomycin- and fMLP-stimulated release of arachidonate were sensitive to the cPLA2 inhibitor arachidonyl trifluoromethylketone (IC50 values of 32 and 18 microM, respectively), but were not inhibited by E-6-(bromomethylene)-tetrahydro-3-(1-naphthalenyl)-2 H-pyran-2-one, a bromoenol lactone inhibitor of the calcium-independent phospholipase A2. These results, coupled with the inhibition of ionomycin-induced arachidonate production by electroporation of differentiated cells to introduce an anti-cPLA2, demonstrate that the cPLA2 is the enzyme responsible for arachidonate release in differentiated cells. SDS-PAGE and immunoblot analysis of differentiated cells showed the cells to contain both phosphorylated and unphosphorylated forms of cPLA2 (ratio of about 2: 3). Surprisingly, undifferentiated cells contain 30% more enzyme than differentiated cells and contain a higher percentage (approximately 75%) of the phosphorylated in the absence of stimulation. The inability of undifferentiated cells to produce arachidonate is not due to insufficient intracellular calcium concentrations since ionomycin induces large (820-940 nM) influxes of intracellular calcium in both differentiated and undifferentiated cells. This demonstrates that phosphorylation of cPLA2 andan influx of intracellular calcium are not sufficient to activate the enzyme to produce arachidonate. Instead, activation of a pertussis toxin-sensitive Gi alpha-type G-protein is required as evidenced by the production of arachidonate in undifferentiated cells stimulated with mastoparan, an activator of Gi alpha subunits, in combination with ionomycin. This activation of a Gi alpha-type G-protein is independent of modulations of adenylyl cyclase activity since cellular cAMP levels were not modulated upon treatment with mastoparan and ionomycin.
Collapse
Affiliation(s)
- J R Burke
- Dermatology Discovery Research, Bristol-Myers Squibb Pharmaceutical Research Institute, Buffalo, New York 14213, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The heterotrimeric G proteins are extensively involved in the regulation of cells by extracellular signals. The receptors that control them are often the targets of drugs. There are many isoforms of each of the three subunits that make up these proteins. Thus far, genes for at least sixteen alpha subunits, five beta subunits, and eleven gamma subunits have been identified. In addition, some of these proteins have splice variants or are differentially modified. Based upon what is already known, there are well over a thousand possible G protein heterotrimer combinations. The role of subunit diversity in heterotrimer formation and its effect on signaling by G proteins are still not well understood. However, many current lines of research are leading toward an understanding of these roles. The functional significance of subunit heterogeneity is related to the mechanisms used by G proteins to transmit and integrate the many signals coming into cells through this system. Described here are the basic mechanisms by which G proteins integrate cellular responses, the possible role of subunit heterogeneity in these mechanisms, and the evidence for and against their physiological significance. Recent studies suggest the likely possibility that subunit heterogeneity plays an important role in signaling by G proteins. This role has the potential to extend substantially the flexibility of G proteins in mediating cellular responses to extracellular signals. However, the details of this are yet to be worked out, and they are the subject of many different avenues of research.
Collapse
Affiliation(s)
- J D Hildebrandt
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston 29425-2251, U.S.A.
| |
Collapse
|
36
|
Suh HW, Song DK, Kwon SH, Kim KW, Min BH, Kim YH. Effects of spinally and supraspinally injected 3-isobutyl-1-methylxanthine, cholera toxin, and pertussis toxin on cold water swimming stress-induced antinociception in the mouse. GENERAL PHARMACOLOGY 1997; 28:607-10. [PMID: 9147032 DOI: 10.1016/s0306-3623(96)00303-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. The cold (4 degrees C) water swimming stress (CWSS) for 3 min significantly increased the inhibition of the tail-flick response in ICR mice. 2. Pertussis toxin (PTX, 0.05-0.5 microgram) in mice pretreated intrathecally (IT) for 6 days attenuated the inhibition of the tail-flick response induced by CWSS. However, intracerebroventricular (ICV) pretreatment with PTX at the same doses did not affect CWSS-induced inhibition of the tail-flick inhibition. 3. 3-Isobutyl-1-methylxanthine (IBMX, 0.01-1 ng) in mice pretreated IT for 10 min dose-dependently attenuated the inhibition of the tail-flick response induced by CWSS. However, IBMX in mice ICV pretreated ICV at the same doses was not effective in attenuating the CWSS-induced inhibition of the tail-flick response. 4. Neither IT nor ICV pretreatment with cholera toxin (CTX, 0.05-0.5 microgram) for 24 hr affected the inhibition of the tail-flick response induced by CWSS. 5. The ICV or IT injection of PTX, CTX, or IBMX did not affect the basal tail-flick response latency. 6. It is concluded that spinal, but not supraspinal, PTX-sensitive G-proteins and cAMP phosphodiesterase may be involved in the antinociception produced by CWSS. However, neither spinal nor supraspinal CTX-sensitive G-proteins appear to be involved in mediating the antinociception induced by CWSS.
Collapse
Affiliation(s)
- H W Suh
- Department of Pharmacology, College of Medicine, Hallym University, Kangwon-Do, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Rebois RV, Warner DR, Basi NS. Does subunit dissociation necessarily accompany the activation of all heterotrimeric G proteins? Cell Signal 1997; 9:141-51. [PMID: 9113413 DOI: 10.1016/s0898-6568(96)00133-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heterotrimeric (alpha beta gamma) G proteins mediate a variety of signal transduction events in virtually every cell of every eukaryotic organism. The predominant hypothesis is that dissociation of the alpha-subunit from the G beta gamma-subunit complex necessarily accompanies the activation of these proteins, and that the alpha-subunit is primarily responsible for regulating the response of effector molecules. However, there is increasing evidence that both the alpha-subunit and the beta gamma-subunit complex function in regulating effector activity. Furthermore, data for some G proteins suggest that they function as activated heterotrimers rather than as dissociated subunits.
Collapse
Affiliation(s)
- R V Rebois
- Membrane Biochemistry Section, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
38
|
Suh HW, Sim YB, Choi YS, Song DK, Kim YH. Multiplicative interaction between intrathecally and intracerebroventricularly administered morphine for antinociception in the mouse: effects of spinally and supraspinally injected 3-isobutyl-1-methylxanthine, cholera toxin, and pertussis toxin. GENERAL PHARMACOLOGY 1995; 26:1597-602. [PMID: 8690252 DOI: 10.1016/0306-3623(95)00056-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Either intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration of morphine alone at the dose of 0.2 microgram slightly increased inhibition of the tail-flick response. However, combined i.t. and i.c.v. injections of morphine at the same dose increased the inhibition of the tail-flick response in a synergistic manner. 2. Cholera toxin (CTX, 0.05 to 0.5 microgram) pretreated i.t. or i.c.v. for 24 hr or pertussis toxin (PTX, 0.05 to 0.5 microgram) for 6 days dose-dependently attenuated inhibition of the tail-flick response induced by combined i.t. and i.c.v. injection of morphine. 3. 3-Isobutyl-1-methylxanthine (IBMX, 0.001 to 0.1 ng) pretreated i.t. for 10 min dose-dependently attenuated the inhibition of the tail-flick response induced by combined i.t. and i.c.v. injections of morphine. However, IBMX pretreated i.c.v. for 10 min was not effective in attenuating the inhibition of the tail-flick response induced by combined i.t. and i.c.v. injections of morphine. 4. It is concluded that both spinal and supraspinal CTX- and PTX-sensitive G-proteins are involved in the antinociception produced by morphine-induced multiplicative interaction between spinal and supraspinal sites. However, only spinal but not supraspinal cAMP phosphodiesterase is involved in mediating antinociception induced by morphine-induced multiplicative interaction.
Collapse
Affiliation(s)
- H W Suh
- Department of Pharmacology and Institute of Natural Medicine, Hallym University, Chunchon, Kangwon-Do, S. Korea
| | | | | | | | | |
Collapse
|
39
|
Sim LJ, Selley DE, Childers SR. In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5'-[gamma-[35S]thio]-triphosphate binding. Proc Natl Acad Sci U S A 1995; 92:7242-6. [PMID: 7638174 PMCID: PMC41315 DOI: 10.1073/pnas.92.16.7242] [Citation(s) in RCA: 360] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Agonists stimulate guanylyl 5'-[gamma-[35S]thio]-triphosphate (GTP[gamma-35S]) binding to receptor-coupled guanine nucleotide binding protein (G proteins) in cell membranes as revealed in the presence of excess GDP. We now report that this reaction can be used to neuroanatomically localize receptor-activated G proteins in brain sections by in vitro autoradiography of GTP[gamma-35S] binding. Using the mu opioid-selective peptide [D-Ala2,N-MePhe4,Gly5-ol]enkephalin (DAMGO) as an agonist in rat brain sections and isolated thalamic membranes, agonist stimulation of GTP[gamma-35S] binding required the presence of excess GDP (1-2 mM GDP in sections vs. 10-30 microM GDP in membranes) to decrease basal G-protein activity and reveal agonist-stimulated GTP[gamma-35S] binding. Similar concentrations of DAMGO were required to stimulate GTP[gamma-35S] binding in sections and membranes. To demonstrate the general applicability of the technique, agonist-stimulated GTP[gamma-35S] binding in tissue sections was assessed with agonists for the mu opioid (DAMGO), cannabinoid (WIN 55212-2), and gamma-aminobutyric acid type B (baclofen) receptors. For opioid and cannabinoid receptors, agonist stimulation of GTP[gamma-35S] binding was blocked by incubation with agonists in the presence of the appropriate antagonists (naloxone for mu opioid and SR-141716A for cannabinoid), thus demonstrating that the effect was specifically receptor mediated. The anatomical distribution of agonist-stimulated GTP[gamma-35S] binding qualitatively paralleled receptor distribution as determined by receptor binding autoradiography. However, quantitative differences suggest that variations in coupling efficiency may exist between different receptors in various brain regions. This technique provides a method of functional neuroanatomy that identifies changes in the activation of G proteins by specific receptors.
Collapse
Affiliation(s)
- L J Sim
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
40
|
Baldo A, Sniderman AD, St Luce S, Zhang XJ, Cianflone K. Signal transduction pathway of acylation stimulating protein: involvement of protein kinase C. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39728-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Chung KM, Song DK, Suh HW, Lee MH, Kim YH. Effects of intrathecal or intracerebroventricular pretreatment with pertussis toxin on antinociception induced by beta-endorphin or morphine administered intracerebroventricularly in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1994; 349:588-93. [PMID: 7969510 DOI: 10.1007/bf01258464] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously demonstrated that beta-endorphin and morphine, when administered supraspinally, produce antinociception by activating different descending pain inhibitory systems in both rats and mice. However, the signal transduction mechanisms involved in the descending pain-inhibitory systems that are activated by beta-endorphin and morphine administered intracerebroventricularly (i.c.v.) have not been characterized. Therefore, in the present study, the effects of intrathecal (i.t.) and i.c.v. pretreatments with pertussis toxin (PTX) on antinociception induced by beta-endorphin or by morphine administered i.c.v. were studied in ICR mice. Antinociception was assessed by the tail-flick assay and by the hot-plate assay. Intrathecal pretreatment with PTX (0.5 microgram) for 6 days effectively reduced the inhibition of the tail-flick response induced by beta-endorphin (1 microgram) or by morphine (1 microgram) administered i.c.v. However, i.t. pretreatment with PTX was not effective in reducing the inhibition of the hot-plate response induced by beta-endorphin or by morphine administered i.c.v. Intracerebroventricular pretreatment with PTX (0.5 microgram) for 6 days effectively reduced the inhibition of the tail-flick and hot-plate responses induced by morphine (1 microgram), but not that induced by beta-endorphin (1 microgram), administered i.c.v. Our results suggest that there are PTX-sensitive G proteins coupled to the spinal descending pain inhibitory systems that are activated by beta-endorphin and morphine administered i.c.v. At a supraspinal level, i.c.v. morphine- but not beta-endorphin-induced antinociception is mediated by PTX-sensitive G proteins.
Collapse
Affiliation(s)
- K M Chung
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Suwon, Kyungki-Do, Korea
| | | | | | | | | |
Collapse
|
42
|
Damaj MI, Welch SP, Martin BR. Nicotine-induced antinociception in mice: role of G-proteins and adenylate cyclase. Pharmacol Biochem Behav 1994; 48:37-42. [PMID: 8029303 DOI: 10.1016/0091-3057(94)90494-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of pertussis toxin, forskolin, and cAMP analogues on the antinociceptive action of nicotine were examined to investigate the possible involvement of adenylate cyclase and G-proteins in nicotine's antinociceptive effect. Intrathecal injection of pertussis toxin (0.25 and 0.50 micrograms) in mice inhibited nicotine-induced antinociception in the tail-flick test. The effect of the toxin was dose and time dependent. Forskolin, a potent adenylate cyclase activator, and 8-(-4-chlorophenylthio) adenosine-3':5' monophosphate, cyclic (8-CPT-cAMP), a cAMP analogue, inhibited the antinociceptive effects of nicotine in a dose-dependent manner. EGTA reversal of 8-CPT-cAMP's inhibitory effects suggests that calcium may to be involved. These data implicate the possible involvement of a G-protein and a second messenger system (activation of a cAMP-dependent protein kinase and increase in cyclic AMP levels) in nicotine-induced analgesia in mice.
Collapse
Affiliation(s)
- M I Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0613
| | | | | |
Collapse
|
43
|
Tobise K, Ishikawa Y, Holmer SR, Im MJ, Newell JB, Yoshie H, Fujita M, Susannie EE, Homcy CJ. Changes in type VI adenylyl cyclase isoform expression correlate with a decreased capacity for cAMP generation in the aging ventricle. Circ Res 1994; 74:596-603. [PMID: 8137496 DOI: 10.1161/01.res.74.4.596] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We investigated the developmental regulation of the beta-adrenergic receptor-Gs-adenylyl cyclase pathway in myocardial membranes from fetal, neonatal, adult, and mature adult rats by measuring the density of the beta-adrenergic receptor and the activities of the stimulatory guanine nucleotide-binding protein Gs and the adenylyl cyclase enzyme. Total beta-adrenergic receptor content (in femtomoles per milligram protein) was greatest in the fetal (124.4 +/- 20.5 fmol/mg) and neonatal (122.3 +/- 16.1 fmol/mg) stages and gradually decreased in the adult (90.9 +/- 8.0 fmol/mg) and mature adult (70.0 +/- 9.6 fmol/mg) stages. An equivalent pattern was seen for adenylyl cyclase activity: the basal activity of the effector enzyme or that measured in the presence of 0.1 mmol/L isoproterenol with 0.1 mmol/L Gpp(NH)p, 10 mmol/L NaF, or 0.05 mmol/L forskolin was greater in the fetus and the neonate than in the adult and the mature adult. These data suggested that decreased stimulation of the catalytic unit by Gs could be the underlying cause of diminished adenylyl cyclase activity with aging. However, quantification of Gs by reconstitution into S49 cyc- membranes (in picomoles cAMP per microgram for 10 minutes) demonstrated no significant decrease during development from fetus (1.55 +/- 0.1 pmol/microgram) to neonate (1.9 +/- 0.5 pmol/microgram) and subsequent aging to adult (2.6 +/- 0.2 pmol/micrograms) and mature adult (1.9 +/- 0.2 pmol/microgram). When Northern blot analysis was used to characterize the relative amounts of mRNA coding for Gs alpha, no significant differences were seen among the developmental stages studied.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Tobise
- Department of Medicine I, Asahikawa Medical College, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- R T Premont
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
45
|
Villone G, Veneziani BM, Picone R, De Amicis F, Perrotti N, Tramontano D. In the thyroid cells proliferation, differentiated and metabolic functions are under the control of different steps of the cyclic AMP cascade. Mol Cell Endocrinol 1993; 95:85-93. [PMID: 8243811 DOI: 10.1016/0303-7207(93)90032-f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the course of studies to elucidate the complex network of interactions controlling FRTL5 cell proliferation, thyroid stimulating hormone (TSH)-independent mutants (M cells), have been obtained from FRTL5 cells by chemical mutagenesis. In the present studies, the role of TSH on the proliferation and on differentiated and metabolic functions in these mutant cells have been investigated and compared to their response to insulin-like growth factor I (IGF-I). The addition of IGF-I to M cells leads to normal stimulation of DNA synthesis. However, inspite of the fact that mutant cells display normal TSH receptors, TSH is unable to stimulate the proliferation of the M cells. Nevertheless, TSH is able to increase intracellular levels of cAMP leading to regulation of TSH function in the M cells. On the other hand, TSH does not influence iodide transport and actin filaments depolimerization in these cells. However, aminoacid transport, stimulated in wild-type FRTL5 cells by both TSH and IGFs, is under the control of IGFs but not of TSH in the mutant cells. Neither TSH or IGF-I modified the expression of c-fos proto-oncogene in the M cells, probably because of high constitutive expression. These data suggest that a crucial signalling step(s) required for TSH induced mitogenesis is impaired in the M cells, and that this signalling step is not required for IGF-I induced mitogenesis.
Collapse
Affiliation(s)
- G Villone
- Dpt. di Medicina Sperimentale e Clinica, Università degli Studi di Reggio Calabria, Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Moser A, Klose C. Somatostatin modulation of adenosine receptor coupled G-protein subunits in the caudate nucleus of the rat. Neuropeptides 1993; 24:293-7. [PMID: 8100988 DOI: 10.1016/0143-4179(93)90018-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
5'-(N-ethylcarboxamido)-adenosine (NECA) and N-[(R)-(phenylisopropyl)]-adenosine (PIA) were incubated in an adenylate cyclase assay of a particulate fraction of caudate-putamen tissue of the rat in order to examine the effect of somatostatin on adenosine receptors coupled adenylate cyclase subunits in vitro. Somatostatin was able to inhibit the enhancement of cyclic AMP formation induced by NECA in the presence of the hydrolysable guanine nucleotide guanosine-triphosphate. The adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine as well as the somatostatin receptor antagonist cyclo (7-aminoheptanoyl-Phe-D-Trp-Lys-O-benzyl-Thr) did not influence somatostatin induced inhibition of NECA-activated adenylate cyclase. Somatostatin did not modulate the effect mediated by the A-1 adenosine receptor agonist PIA. Both pertussis toxin and cholera toxin activated striatal adenylate cyclase acting on the guanine nucleotide regulatory subunit of the enzyme. The stimulation induced by pertussis toxin was antagonized by somatostatin, while in presence of cholera toxin somatostatin enhanced cyclic AMP formation. These results suggest that somatostatin acts through a stimulatory as well as an inhibitory guanine nucleotide regulatory protein subtype to affect probably postsynaptic A-2 adenosine receptor coupled adenylate cyclase activity.
Collapse
Affiliation(s)
- A Moser
- Department of Neurology, Medical University of Lübeck, FRG
| | | |
Collapse
|
47
|
Walker J, Barrett J. Evidence for a G protein system in the tegumental brush border plasma membrane of Hymenolepis diminuta. Int J Parasitol 1993; 23:281-4. [PMID: 8496011 DOI: 10.1016/0020-7519(93)90151-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Guanine nucleotide-binding regulatory proteins (G proteins) mediate the transduction of signals from cell-surface receptors to intracellular effector enzymes. G protein alpha-subunits are routinely identified (and partially characterized) on the basis of their susceptibility to NAD(+)-dependent ADP-ribosylation NAD(+)-dependent ADP-ribosylation catalysed by cholera and/or pertussis toxins. Analysis of purified tegumental brush border plasma membrane from Hymenolepis diminuta by relevant methodologies has revealed the presence of a 42 kDa putative G protein alpha-subunit that is susceptible to ADP-ribosylation by both cholera and pertussis toxins. This polypeptide shows no definite resemblance to any of the four major mammalian G protein classes on the basis of M(r) and toxin-susceptibility. These results provide evidence for the existence of a tegumental G protein-linked signal transduction system in H. diminuta.
Collapse
Affiliation(s)
- J Walker
- Department of Biological Sciences, University College of Wales, Aberystwyth, Dyfed, U.K
| | | |
Collapse
|
48
|
Guillén A, Homburger V, Pérez-Baun JC, Haro A. Differential effects of fluoride and a non-hydrolysable GTP analogue on adenylate cyclase and G-proteins in Ceratitis capitata neural tissue. Cell Signal 1993; 5:81-8. [PMID: 8452756 DOI: 10.1016/0898-6568(93)90010-j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have examined the effects of fluoride on guanine nucleotide-binding regulatory proteins (G-proteins) in neural membranes from the dipterous Ceratitis capitata. Fluoride effects on the Gs-protein were monitored by determining adenylate cyclase activity and cholera toxin-catalysed ADP-ribosylation whereas those on the G(o)-protein were studied by measuring ADP-ribosylation with pertussis toxin. Data are discussed in relation to the effects of a non-hydrolysable GTP analogue. G-protein activation carried out by fluoride seems not to mimic, at least in insects, activation by non-hydrolysable GTP analogues, in opposition to that proposed for transducin, the G-protein of the mammalian visual system, and other G-proteins.
Collapse
Affiliation(s)
- A Guillén
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Schafer JA, Reeves WB, Andreoli TE. Mechanisms of Fluid Transport Across Renal Tubules. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
A truncated recombinant alpha subunit of Gi3 with a reduced affinity for beta gamma dimers and altered guanosine 5'-3-O-(thio)triphosphate binding. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35766-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|