1
|
Warren S. Molecular Pathology. J Transl Med 2024; 22:91. [PMID: 38254132 PMCID: PMC10804512 DOI: 10.1186/s12967-024-04868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
|
2
|
Areblom M, Kjellström S, Andréasson S, Öhberg A, Gränse L, Kjellström U. A Description of the Yield of Genetic Reinvestigation in Patients with Inherited Retinal Dystrophies and Previous Inconclusive Genetic Testing. Genes (Basel) 2023; 14:1413. [PMID: 37510321 PMCID: PMC10379620 DOI: 10.3390/genes14071413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In the present era of evolving gene-based therapies for inherited retinal dystrophies (IRDs), it has become increasingly important to verify the genotype in every case, to identify all subjects eligible for treatment. Moreover, combined insight concerning phenotypes and genotypes is crucial for improved understanding of thevisual impairment, prognosis, and inheritance. The objective of this study was to investigate to what extent renewed comprehensive genetic testing of patients diagnosed with IRD but with previously inconclusive DNA test results can verify the genotype, if confirmation of the genotype has an impact on the understanding of the clinical picture, and, to describe the genetic spectrum encountered in a Swedish IRD cohort. The study included 279 patients from the retinitis pigmentosa research registry (comprising diagnosis within the whole IRD spectrum), hosted at the Department of Ophthalmology, Skåne University hospital, Sweden. The phenotypes had already been evaluated with electrophysiology and other clinical tests, e.g., visual acuity, Goldmann perimetry, and fundus imaging at the first visit, sometime between 1988-2015 and the previous-in many cases, multiple-genetic testing, performed between 1995 and 2020 had been inconclusive. All patients were aged 0-25 years at the time of their first visit. Renewed genetic testing was performed using a next generation sequencing (NGS) IRD panel including 322 genes (Blueprint Genetics). Class 5 and 4 variants, according to ACMG guidelines, were considered pathogenic. Of the 279 samples tested, a confirmed genotype was determined in 182 (65%). The cohort was genetically heterogenous, including 65 different genes. The most prevailing were ABCA4 (16.5%), RPGR (6%), CEP290 (6%), and RS1 (5.5%). Other prevalent genes were CACNA1F (3%), PROM1 (3%), CHM (3%), and NYX (3%). In 7% of the patients there was a discrepancy between the diagnosis made based on phenotypical or genotypical findings alone. To conclude, repeated DNA-analysis was beneficial also in previously tested patients and improved our ability to verify the genotype-phenotype association increasing the understanding of how visual impairment manifests, prognosis, and the inheritance pattern. Moreover, repeated testing using a widely available method could identify additional patients eligible for future gene-based therapies.
Collapse
Affiliation(s)
- Maria Areblom
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | | | - Sten Andréasson
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | | | - Lotta Gränse
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| | - Ulrika Kjellström
- Ophthalmology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
3
|
Kamien B, Heath-Jeffery R, Chen F. Health economic aspects of inherited retinal diseases: looking for cost-effective treatments. Med J Aust 2023. [PMID: 37321599 DOI: 10.5694/mja2.52012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Benjamin Kamien
- Genetic Services of Western Australia, Perth, WA
- The University of Western Australia, Perth, WA
| | - Rachael Heath-Jeffery
- Lions Eye Institute, University of Western Australia Centre for Ophthalmology and Visual Science, Perth, WA
| | - Fred Chen
- Lions Eye Institute, University of Western Australia Centre for Ophthalmology and Visual Science, Perth, WA
- Royal Perth Hospital, Perth, WA
| |
Collapse
|
4
|
Preclinical Models of Retinitis Pigmentosa. Methods Mol Biol 2022; 2560:181-215. [PMID: 36481897 DOI: 10.1007/978-1-0716-2651-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is the name for a group of phenotypically-related heritable retinal degenerative disorders. Many genes have been implicated as causing variants of RP, and while the clinical phenotypes are remarkably similar, they may differ in age of onset, progression, and severity. Common inheritance patterns for specific genes connected with the development of the disorder include autosomal dominant, autosomal recessive, and X-linked. Modeling the disease in animals and other preclinical systems offers a cost-conscious, ethical, and time-efficient method for studying the disease subtypes. The history of RP models is briefly examined, and both naturally occurring and transgenic preclinical models of RP in many different organisms are discussed. Syndromic forms of RP and models thereof are reviewed as well.
Collapse
|
5
|
A Missense Variant in the Bardet-Biedl Syndrome 2 Gene ( BBS2) Leads to a Novel Syndromic Retinal Degeneration in the Shetland Sheepdog. Genes (Basel) 2021; 12:genes12111771. [PMID: 34828377 PMCID: PMC8624581 DOI: 10.3390/genes12111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Canine progressive retinal atrophy (PRA) describes a group of hereditary diseases characterized by photoreceptor cell death in the retina, leading to visual impairment. Despite the identification of multiple PRA-causing variants, extensive heterogeneity of PRA is observed across and within dog breeds, with many still genetically unsolved. This study sought to elucidate the causal variant for a distinct form of PRA in the Shetland sheepdog, using a whole-genome sequencing approach. Filtering variants from a single PRA-affected Shetland sheepdog genome compared to 176 genomes of other breeds identified a single nucleotide variant in exon 11 of the Bardet-Biedl syndrome-2 gene (BBS2) (c.1222G>C; p.Ala408Pro). Genotyping 1386 canids of 155 dog breeds, 15 cross breeds and 8 wolves indicated the c.1222G>C variant was only segregated within Shetland sheepdogs. Out of 505 Shetland sheepdogs, seven were homozygous for the variant. Clinical history and photographs for three homozygotes indicated the presence of a novel phenotype. In addition to PRA, additional clinical features in homozygous dogs support the discovery of a novel syndromic PRA in the breed. The development and utilization of a diagnostic DNA test aim to prevent the mutation from becoming more prevalent in the breed.
Collapse
|
6
|
Dowd-Schoeman TJ, Rosenbloom J, Ameri H. Patterns of Autofluorescence in Common Genotypes of Retinitis Pigmentosa. Ophthalmic Surg Lasers Imaging Retina 2021; 52:426-431. [PMID: 34410191 DOI: 10.3928/23258160-20210727-03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To investigate whether different forms of retinitis pigmentosa (RP) could be distinguished from one another using fundus autofluorescence (FAF) imaging. PATIENTS AND METHODS The National Institutes of Health EyeGene database was used to gather FAF images from 31 patients with RP, which were separated into 11 groups based on the RP-associated gene that was mutated. Investigators reviewed the images for patterns of autofluorescence (AF) and recorded qualitative observations. RESULTS Four patterns of AF were noted within the macula, including central foveal hyper AF, a perifoveal hyper AF ring, a macular hyper AF ring, and a bull's-eye pattern of AF. Four patterns of AF were noted outside of the macula, including a mid-peripheral hyper AF ring, extramacular spots of hyper AF, patches of hypo AF, and diffuse hypo AF in the periphery. Double hyper AF rings were present in RHO, RPGR, USH2A, and NR2E3-linked RP. CONCLUSIONS Similar patterns of AF were seen in different forms of RP, and AF failed to distinguish different genotypes. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:426-431.].
Collapse
|
7
|
Tuohy GP, Megaw R. A Systematic Review and Meta-Analyses of Interventional Clinical Trial Studies for Gene Therapies for the Inherited Retinal Degenerations (IRDs). Biomolecules 2021; 11:760. [PMID: 34069580 PMCID: PMC8160708 DOI: 10.3390/biom11050760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
IRDs are one of the leading causes of visual loss in children and young adults. Mutations in over 271 genes lead to retinal dysfunction, degeneration and sight loss. Though no cure exists, gene augmentation therapy has brought hope to the field. This systematic review sought to assess the efficacy of available gene therapy treatments for IRDs. Databases and public resources were searched for randomised controlled trials (RCTs) and non-randomised studies of interventions (NRSIs). Standard methodological procedures were used, including a risk-of-bias assessment. One RCT and five NRSIs were assessed, all for adeno-associated virus two (AAV2)-mediated treatment of RPE-specific 65 kDa (RPE65)-associated LCA (Leber congenital amaurosis). Five outcomes were reported for meta-analyses. Modest improvements in visual acuity, ambulatory navigation/mobility testing or central retinal thickness was observed. There was significant improvement in red and blue light full-field stimulus testing (FST) (red light risk ratio of 1.89, treated v control, p = 0.04; and blue light risk ratio of 2.01, treated v control, p = 0.001). Study design assessment using a ROBIN-I tool (Cochrane Library) showed risk-of-bias judgement to be "low/moderate", whilst there were "some concerns" for the RCT using a RoB-2 tool (Cochrane Library). Although comparison by meta-analysis is compromised by, amongst other issues, a variable amount of vector delivered in each trial, FST improvements demonstrate a proof-of-principle for treating IRDs with gene therapy.
Collapse
Affiliation(s)
- Gearóid P. Tuohy
- MRC Human Genetics Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK;
| | - Roly Megaw
- MRC Human Genetics Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK;
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh EH3 9HA, UK
| |
Collapse
|
8
|
|
9
|
Parmeggiani F. X-Chromosome Insight for Targeting Gene Therapy. Ophthalmol Retina 2020; 4:521-522. [PMID: 32381254 DOI: 10.1016/j.oret.2020.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Francesco Parmeggiani
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara & Ferrara University Hospital, Ferrara, Italy.
| |
Collapse
|
10
|
Whelan L, Dockery A, Wynne N, Zhu J, Stephenson K, Silvestri G, Turner J, O’Byrne JJ, Carrigan M, Humphries P, Keegan D, Kenna PF, Farrar GJ. Findings from a Genotyping Study of Over 1000 People with Inherited Retinal Disorders in Ireland. Genes (Basel) 2020; 11:E105. [PMID: 31963381 PMCID: PMC7016747 DOI: 10.3390/genes11010105] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
The Irish national registry for inherited retinal degenerations (Target 5000) is a clinical and scientific program to identify individuals in Ireland with inherited retinal disorders and to attempt to ascertain the genetic cause underlying the disease pathology. Potential participants first undergo a clinical assessment, which includes clinical history and analysis with multimodal retinal imaging, electrophysiology, and visual field testing. If suitable for recruitment, a sample is taken and used for genetic analysis. Genetic analysis is conducted by use of a retinal gene panel target capture sequencing approach. With over 1000 participants from 710 pedigrees now screened, there is a positive candidate variant detection rate of approximately 70% (495/710). Where an autosomal recessive inheritance pattern is observed, an additional 9% (64/710) of probands have tested positive for a single candidate variant. Many novel variants have also been detected as part of this endeavor. The target capture approach is an economic and effective means of screening patients with inherited retinal disorders. Despite the advances in sequencing technology and the ever-decreasing associated processing costs, target capture remains an attractive option as the data produced is easily processed, analyzed, and stored compared to more comprehensive methods. However, with decreasing costs of whole genome and whole exome sequencing, the focus will likely move towards these methods for more comprehensive data generation.
Collapse
Affiliation(s)
- Laura Whelan
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
| | - Adrian Dockery
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
| | - Niamh Wynne
- The Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland;
| | - Julia Zhu
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (J.Z.); (K.S.); (J.T.); (J.J.O.); (D.K.)
| | - Kirk Stephenson
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (J.Z.); (K.S.); (J.T.); (J.J.O.); (D.K.)
| | - Giuliana Silvestri
- Department of Ophthalmology, The Royal Victoria Hospital, Belfast BT12 6BA, Northern Ireland, UK;
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK
| | - Jacqueline Turner
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (J.Z.); (K.S.); (J.T.); (J.J.O.); (D.K.)
| | - James J. O’Byrne
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (J.Z.); (K.S.); (J.T.); (J.J.O.); (D.K.)
| | - Matthew Carrigan
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
| | - Peter Humphries
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
| | - David Keegan
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (J.Z.); (K.S.); (J.T.); (J.J.O.); (D.K.)
| | - Paul F. Kenna
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
- The Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland;
| | - G. Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, D02 VF25 Dublin, Ireland; (A.D.); (M.C.); (P.H.); (P.F.K.); (G.J.F.)
| |
Collapse
|
11
|
Ludwig PE, Freeman SC, Janot AC. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa. Int J Retina Vitreous 2019; 5:7. [PMID: 30805203 PMCID: PMC6373096 DOI: 10.1186/s40942-019-0158-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Degenerative retinal disease leads to significant visual morbidity worldwide. Diabetic retinopathy and macular degeneration are leading causes of blindness in the developed world. While current therapies for these diseases slow disease progression, stem cell and gene therapy may also reverse the effects of these, and other, degenerative retinal conditions. Novel therapies being investigated include the use of various types of stem cells in the regeneration of atrophic or damaged retinal tissue, the prolonged administration of neurotrophic factors and/or drug delivery, immunomodulation, as well as the replacement of mutant genes, and immunomodulation through viral vector delivery. This review will update the reader on aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa and other less common inherited retinal dystrophies. These therapies include the use of adeno-associated viral vector-based therapies for treatment of various types of retinitis pigmentosa and dry age-related macular degeneration. Other potential therapies reviewed include the use of mesenchymal stem cells in local immunomodulation, and the use of stem cells in generating structures like three-dimensional retinal sheets for transplantation into degenerative retinas. Finally, aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and other less common inherited retinal dystrophies will be reviewed.
Collapse
Affiliation(s)
- Parker E Ludwig
- 1Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - S Caleb Freeman
- 1Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - Adam C Janot
- Vitreoretinal Institute, 7698 Goodwood Blvd, Baton Rouge, LA 70806 USA.,3Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
12
|
Affiliation(s)
- H G Wood-Gush
- Department of Pharmacology, United Medical School, St Thomas's Hospital, London
| |
Collapse
|
13
|
Farrar GJ, Carrigan M, Dockery A, Millington-Ward S, Palfi A, Chadderton N, Humphries M, Kiang AS, Kenna PF, Humphries P. Toward an elucidation of the molecular genetics of inherited retinal degenerations. Hum Mol Genet 2017; 26:R2-R11. [PMID: 28510639 PMCID: PMC5886474 DOI: 10.1093/hmg/ddx185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
While individually classed as rare diseases, hereditary retinal degenerations (IRDs) are the major cause of registered visual handicap in the developed world. Given their hereditary nature, some degree of intergenic heterogeneity was expected, with genes segregating in autosomal dominant, recessive, X-linked recessive, and more rarely in digenic or mitochondrial modes. Today, it is recognized that IRDs, as a group, represent one of the most genetically diverse of hereditary conditions - at least 260 genes having been implicated, with 70 genes identified in the most common IRD, retinitis pigmentosa (RP). However, targeted sequencing studies of exons from known IRD genes have resulted in the identification of candidate mutations in only approximately 60% of IRD cases. Given recent advances in the development of gene-based medicines, characterization of IRD patient cohorts for known IRD genes and elucidation of the molecular pathologies of disease in those remaining unresolved cases has become an endeavor of the highest priority. Here, we provide an outline of progress in this area.
Collapse
Affiliation(s)
- G Jane Farrar
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Matthew Carrigan
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Adrian Dockery
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Sophia Millington-Ward
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Arpad Palfi
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Naomi Chadderton
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Marian Humphries
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Anna Sophia Kiang
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Paul F Kenna
- Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Pete Humphries
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
14
|
Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech 2017; 7:251. [PMID: 28721681 DOI: 10.1007/s13205-017-0878-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.
Collapse
|
15
|
Fischer MD, McClements ME, Martinez-Fernandez de la Camara C, Bellingrath JS, Dauletbekov D, Ramsden SC, Hickey DG, Barnard AR, MacLaren RE. Codon-Optimized RPGR Improves Stability and Efficacy of AAV8 Gene Therapy in Two Mouse Models of X-Linked Retinitis Pigmentosa. Mol Ther 2017; 25:1854-1865. [PMID: 28549772 PMCID: PMC5542800 DOI: 10.1016/j.ymthe.2017.05.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/04/2022] Open
Abstract
X-linked retinitis pigmentosa (XLRP) is generally a severe form of retinitis pigmentosa, a neurodegenerative, blinding disorder of the retina. 70% of XLRP cases are due to mutations in the retina-specific isoform of the gene encoding retinitis pigmentosa GTPase regulator (RPGRORF15). Despite successful RPGRORF15 gene replacement with adeno-associated viral (AAV) vectors being established in a number of animal models of XLRP, progression to human trials has not yet been possible. The inherent sequence instability in the purine-rich region of RPGRORF15 (which contains highly repetitive nucleotide sequences) leads to unpredictable recombination errors during viral vector cloning. While deleted RPGR may show some efficacy in animal models, which have milder disease, the therapeutic effect of a mutated RPGR variant in patients with XLRP cannot be predicted. Here, we describe an optimized gene replacement therapy for human XLRP disease using an AAV8 vector that reliably and consistently produces the full-length correct RPGR protein. The glutamylation pattern in the RPGR protein derived from the codon-optimized sequence is indistinguishable from the wild-type variant, implying that codon optimization does not significantly alter post-translational modification. The codon-optimized sequence has superior stability and expression levels in vitro. Significantly, when delivered by AAV8 vector and driven by the rhodopsin kinase promoter, the codon-optimized RPGR rescues the disease phenotype in two relevant animal models (Rpgr−/y and C57BL/6JRd9/Boc) and shows good safety in C57BL6/J wild-type mice. This work provides the basis for clinical trial development to treat patients with XLRP caused by RPGR mutations.
Collapse
Affiliation(s)
- M Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The John Radcliffe Hospital, Levels 5 & 6, West Wing, Headley Way, OX3 9DU Oxford, UK; University Eye Hospital, Center for Opthalmology, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The John Radcliffe Hospital, Levels 5 & 6, West Wing, Headley Way, OX3 9DU Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The John Radcliffe Hospital, Levels 5 & 6, West Wing, Headley Way, OX3 9DU Oxford, UK
| | - Julia-Sophia Bellingrath
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The John Radcliffe Hospital, Levels 5 & 6, West Wing, Headley Way, OX3 9DU Oxford, UK; University Eye Hospital, Center for Opthalmology, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| | - Daniyar Dauletbekov
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The John Radcliffe Hospital, Levels 5 & 6, West Wing, Headley Way, OX3 9DU Oxford, UK; University Eye Hospital, Center for Opthalmology, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| | - Simon C Ramsden
- Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, M13 9WL Manchester, UK
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The John Radcliffe Hospital, Levels 5 & 6, West Wing, Headley Way, OX3 9DU Oxford, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The John Radcliffe Hospital, Levels 5 & 6, West Wing, Headley Way, OX3 9DU Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The John Radcliffe Hospital, Levels 5 & 6, West Wing, Headley Way, OX3 9DU Oxford, UK; Oxford Eye Hospital, Oxford University Hospitals NHS Trust, The John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU Oxford, UK.
| |
Collapse
|
16
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
18
|
Srilekha S, Rao B, Rao DM, Sudha D, Chandrasekar SP, Pandian AJ, Soumittra N, Sripriya S. Strategies for Gene Mapping in Inherited Ophthalmic Diseases. Asia Pac J Ophthalmol (Phila) 2016; 5:282-92. [PMID: 27488070 DOI: 10.1097/apo.0000000000000228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Gene mapping of inherited ophthalmic diseases such as congenital cataracts, retinal degeneration, glaucoma, age-related macular degeneration, myopia, optic atrophy, and eye malformations has shed more light on the disease pathology, identified targets for research on therapeutics, earlier detection, and treatment options for disease management and patient care. This article details the different approaches to gene identification for both Mendelian and complex eye disorders.
Collapse
Affiliation(s)
- Sundar Srilekha
- From the SNONGC Department of Genetics and Molecular Biology, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology (KNBIRVO), Chennai, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chaitankar V, Karakülah G, Ratnapriya R, Giuste FO, Brooks MJ, Swaroop A. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research. Prog Retin Eye Res 2016; 55:1-31. [PMID: 27297499 DOI: 10.1016/j.preteyeres.2016.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/08/2023]
Abstract
The advent of high throughput next generation sequencing (NGS) has accelerated the pace of discovery of disease-associated genetic variants and genomewide profiling of expressed sequences and epigenetic marks, thereby permitting systems-based analyses of ocular development and disease. Rapid evolution of NGS and associated methodologies presents significant challenges in acquisition, management, and analysis of large data sets and for extracting biologically or clinically relevant information. Here we illustrate the basic design of commonly used NGS-based methods, specifically whole exome sequencing, transcriptome, and epigenome profiling, and provide recommendations for data analyses. We briefly discuss systems biology approaches for integrating multiple data sets to elucidate gene regulatory or disease networks. While we provide examples from the retina, the NGS guidelines reviewed here are applicable to other tissues/cell types as well.
Collapse
Affiliation(s)
- Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Gökhan Karakülah
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Felipe O Giuste
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA.
| |
Collapse
|
20
|
Dinet V, Ciccotosto GD, Delaunay K, Borras C, Ranchon-Cole I, Kostic C, Savoldelli M, El Sanharawi M, Jonet L, Pirou C, An N, Abitbol M, Arsenijevic Y, Behar-Cohen F, Cappai R, Mascarelli F. Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. Mol Brain 2016; 9:64. [PMID: 27267879 PMCID: PMC4897877 DOI: 10.1186/s13041-016-0245-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/30/2016] [Indexed: 12/03/2022] Open
Abstract
Background Amyloid precursor protein knockout mice (APP-KO) have impaired differentiation of amacrine and horizontal cells. APP is part of a gene family and its paralogue amyloid precursor-like protein 2 (APLP2) has both shared as well as distinct expression patterns to APP, including in the retina. Given the impact of APP in the retina we investigated how APLP2 expression affected the retina using APLP2 knockout mice (APLP2-KO). Results Using histology, morphometric analysis with noninvasive imaging technique and electron microscopy, we showed that APLP2-KO retina displayed abnormal formation of the outer synaptic layer, accompanied with greatly impaired photoreceptor ribbon synapses in adults. Moreover, APLP2-KO displayed a significant decease in ON-bipolar, rod bipolar and type 2 OFF-cone bipolar cells (36, 21 and 63 %, respectively). Reduction of the number of bipolar cells was accompanied with disrupted dendrites, reduced expression of metabotropic glutamate receptor 6 at the dendritic tips and alteration of axon terminals in the OFF laminae of the inner plexiform layer. In contrast, the APP-KO photoreceptor ribbon synapses and bipolar cells were intact. The APLP2-KO retina displayed numerous phenotypic similarities with the congenital stationary night blindness, a non-progressive retinal degeneration disease characterized by the loss of night vision. The pathological phenotypes in the APLP2-KO mouse correlated to altered transcription of genes involved in pre- and postsynatic structure/function, including CACNA1F, GRM6, TRMP1 and Gα0, and a normal scotopic a-wave electroretinogram amplitude, markedly reduced scotopic electroretinogram b-wave and modestly reduced photopic cone response. This confirmed the impaired function of the photoreceptor ribbon synapses and retinal bipolar cells, as is also observed in congenital stationary night blindness. Since congenital stationary night blindness present at birth, we extended our analysis to retinal differentiation and showed impaired differentiation of different bipolar cell subtypes and an altered temporal sequence of development from OFF to ON laminae in the inner plexiform layer. This was associated with the altered expression patterns of bipolar cell generation and differentiation factors, including MATH3, CHX10, VSX1 and OTX2. Conclusions These findings demonstrate that APLP2 couples retina development and synaptic genes and present the first evidence that APLP2 expression may be linked to synaptic disease. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0245-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginie Dinet
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Giuseppe D Ciccotosto
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Kimberley Delaunay
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Céline Borras
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Isabelle Ranchon-Cole
- Laboratoire de Biophysique Sensorielle, Université Clermont 1, Clermont-Ferrand, France
| | - Corinne Kostic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Michèle Savoldelli
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Mohamed El Sanharawi
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Caroline Pirou
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Na An
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Marc Abitbol
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Yvan Arsenijevic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Roberto Cappai
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Frédéric Mascarelli
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
21
|
Yang HJ, Ratnapriya R, Cogliati T, Kim JW, Swaroop A. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease. Prog Retin Eye Res 2015; 46:1-30. [PMID: 25668385 PMCID: PMC4402139 DOI: 10.1016/j.preteyeres.2015.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 01/10/2023]
Abstract
Genomics and genetics have invaded all aspects of biology and medicine, opening uncharted territory for scientific exploration. The definition of "gene" itself has become ambiguous, and the central dogma is continuously being revised and expanded. Computational biology and computational medicine are no longer intellectual domains of the chosen few. Next generation sequencing (NGS) technology, together with novel methods of pattern recognition and network analyses, has revolutionized the way we think about fundamental biological mechanisms and cellular pathways. In this review, we discuss NGS-based genome-wide approaches that can provide deeper insights into retinal development, aging and disease pathogenesis. We first focus on gene regulatory networks (GRNs) that govern the differentiation of retinal photoreceptors and modulate adaptive response during aging. Then, we discuss NGS technology in the context of retinal disease and develop a vision for therapies based on network biology. We should emphasize that basic strategies for network construction and analyses can be transported to any tissue or cell type. We believe that specific and uniform guidelines are required for generation of genome, transcriptome and epigenome data to facilitate comparative analysis and integration of multi-dimensional data sets, and for constructing networks underlying complex biological processes. As cellular homeostasis and organismal survival are dependent on gene-gene and gene-environment interactions, we believe that network-based biology will provide the foundation for deciphering disease mechanisms and discovering novel drug targets for retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Tiziana Cogliati
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA.
| |
Collapse
|
22
|
Abstract
Significant advances have been made over the last decade or two in the elucidation of the molecular pathogenesis of inherited ocular disorders. In particular, remarkable successes have been achieved in exploration of gene-based medicines for these conditions, both in preclinical and in clinical studies. Progress in the development of gene therapies targeted toward correcting the primary genetic defect or focused on modulating secondary effects associated with retinal pathologies are discussed in the review. Likewise, the recent utilization of genes encoding light-sensing molecules to provide new functions to residual retinal cells in the degenerating retina is discussed. While a great deal has been learned over the last two decades, the next decade should result in an increasing number of preclinical studies progressing to human clinical trial, an exciting prospect for patients, those active in research and development and bystanders alike.
Collapse
|
23
|
Swaroop A, Sieving PA. The golden era of ocular disease gene discovery: race to the finish. Clin Genet 2014; 84:99-101. [PMID: 23713688 DOI: 10.1111/cge.12204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 02/01/2023]
Abstract
Within the last decade, technological advances have led to amazing genetic insights into Mendelian and multifactorial ocular diseases. We provide a perspective of the progress in gene discovery and discuss the implications. We believe that the time has come to redefine the goals and begin utilizing the genetic knowledge for clinical management and treatment design. The unbelievable opportunities now exist for those nimble enough to seize them.
Collapse
Affiliation(s)
- A Swaroop
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To describe the entity of Lyonization in ocular eye diseases, along with its clinical and counseling implications. RECENT FINDINGS Several X-linked ocular diseases such as choroideremia, X-linked retinitis pigmentosa, and X-linked ocular albinism may have signs of Lyonization on ocular examination and diagnostic testing. These findings may aid in the proper diagnosis of ocular disease in both female carriers and their affected male relatives. SUMMARY Manifestations of Lyonization in the eye may help in the diagnosis of X-linked ocular diseases which may lead to accurate diagnosis, appropriate molecular genetic testing and genetic counseling.
Collapse
|
25
|
Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 2012; 12:238-49. [PMID: 22131869 PMCID: PMC3131731 DOI: 10.2174/138920211795860107] [Citation(s) in RCA: 410] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/28/2011] [Accepted: 04/11/2011] [Indexed: 12/27/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina which lead to progressive visual loss. RP can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. While usually limited to the eye, RP may also occur as part of a syndrome as in the Usher syndrome and Bardet-Biedl syndrome. Over 40 genes have been associated with RP so far, with the majority of them expressed in either the photoreceptors or the retinal pigment epithelium. The tremendous heterogeneity of the disease makes the genetics of RP complicated, thus rendering genotype-phenotype correlations not fully applicable yet. In addition to the multiplicity of mutations, in fact, different mutations in the same gene may cause different diseases. We will here review which genes are involved in the genesis of RP and how mutations can lead to retinal degeneration. In the future, a more thorough analysis of genetic and clinical data together with a better understanding of the genotype-phenotype correlation might allow to reveal important information with respect to the likelihood of disease development and choices of therapy.
Collapse
|
26
|
Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci U S A 2012; 109:2132-7. [PMID: 22308428 DOI: 10.1073/pnas.1118847109] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5-vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.
Collapse
|
27
|
|
28
|
Farrar GJ, Millington-Ward S, Chadderton N, Humphries P, Kenna PF. Gene-based therapies for dominantly inherited retinopathies. Gene Ther 2011; 19:137-44. [DOI: 10.1038/gt.2011.172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Jayasundera T, Branham KEH, Othman M, Rhoades WR, Karoukis AJ, Khanna H, Swaroop A, Heckenlively JR. RP2 phenotype and pathogenetic correlations in X-linked retinitis pigmentosa. ACTA ACUST UNITED AC 2010; 128:915-23. [PMID: 20625056 DOI: 10.1001/archophthalmol.2010.122] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To assess the phenotype of patients with X-linked retinitis pigmentosa (XLRP) with RP2 mutations and to correlate the findings with their genotype. METHODS Six hundred eleven patients with RP were screened for RP2 mutations. From this screen, 18 patients with RP2 mutations were evaluated clinically with standardized electroretinography, Goldmann visual fields, and ocular examinations. In addition, 7 well-documented cases from the literature were used to augment genotype-phenotype correlations. RESULTS Of 11 boys younger than 12 years, 10 (91%) had macular involvement and 9 (82%) had best-corrected visual acuity worse than 20/50. Two boys from different families (aged 8 and 12 years) displayed a choroideremia-like fundus, and 9 boys (82%) were myopic (mean error, -7.97 diopters [D]). Of 10 patients with electroretinography data, 9 demonstrated severe rod-cone dysfunction. All 3 female carriers had macular atrophy in 1 or both eyes and were myopic (mean, -6.23 D). All 9 nonsense and frameshift and 5 of 7 missense mutations (71%) resulted in severe clinical presentations. CONCLUSIONS Screening of the RP2 gene should be prioritized in patients younger than 16 years characterized by X-linked inheritance, decreased best-corrected visual acuity (eg, >20/40), high myopia, and early-onset macular atrophy. Patients exhibiting a choroideremia-like fundus without choroideremia gene mutations should also be screened for RP2 mutations. CLINICAL RELEVANCE An identifiable phenotype for RP2-XLRP aids in clinical diagnosis and targeted genetic screening.
Collapse
Affiliation(s)
- Thiran Jayasundera
- Department of Ophthalmologyand Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 2010; 29:335-75. [PMID: 20362068 DOI: 10.1016/j.preteyeres.2010.03.004] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last two to three decades, a large body of work has revealed the molecular basis of many human disorders, including retinal and vitreoretinal degenerations and dysfunctions. Although belonging to the group of orphan diseases, they affect probably more than two million people worldwide. Most excitingly, treatment of a particular form of congenital retinal degeneration is now possible. A major advantage for treatment is the unique structure and accessibility of the eye and its different components, including the vitreous and retina. Knowledge of the many different eye diseases affecting retinal structure and function (night and colour blindness, retinitis pigmentosa, cone and cone rod dystrophies, photoreceptor dysfunctions, as well as vitreoretinal traits) is critical for future therapeutic development. We have attempted to present a comprehensive picture of these disorders, including biological, clinical, genetic and molecular information. The structural organization of the review leads the reader through non-syndromic and syndromic forms of (i) rod dominated diseases, (ii) cone dominated diseases, (iii) generalized retinal degenerations and (iv) vitreoretinal disorders, caused by mutations in more than 165 genes. Clinical variability and genetic heterogeneity have an important impact on genetic testing and counselling of affected families. As phenotypes do not always correlate with the respective genotypes, it is of utmost importance that clinicians, geneticists, counsellors, diagnostic laboratories and basic researchers understand the relationships between phenotypic manifestations and specific genes, as well as mutations and pathophysiologic mechanisms. We discuss future perspectives.
Collapse
Affiliation(s)
- Wolfgang Berger
- Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland.
| | | | | |
Collapse
|
31
|
Is the lifetime of light-stimulated cGMP phosphodiesterase regulated by recoverin through its regulation of rhodopsin phosphorylation? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00039522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
|
33
|
|
34
|
|
35
|
|
36
|
|
37
|
|
38
|
Lambert SR. Degenerative Retinal Diseases in Childhood. Semin Ophthalmol 2009. [DOI: 10.3109/08820539109060202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Rando A, Masina P. Restriction site polymorphisms in the pig beta-globin gene cluster. ANIMAL BLOOD GROUPS AND BIOCHEMICAL GENETICS 2009; 16:35-40. [PMID: 2988373 DOI: 10.1111/j.1365-2052.1985.tb01449.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A restriction fragment length polymorphism was detected in pig DNA digested with Hind III restriction endonuclease and probed with rabbit beta 1-globin gene. Eight different phenotypes were observed and for six of them family data demonstrated that they are determined by three alleles. As this polymorphism is not found with four other restriction endonucleases (Bam HI, Eco RI, Kpn I, and Pst I), single point mutations are proposed to explain the observed differences.
Collapse
|
40
|
Abstract
Almost 150 years ago, Theodor Leber described a severe form of vision loss at or near birth which was later given his name. During the century that followed this description, ophthalmologists dedicated efforts to give an accurate definition of the disease but patients were neglected because of the inability of physicians to provide them with treatment. In the 90s, at the time of the Golden Age of Linkage, the first LCA locus was mapped to a human chromosome and shortly after identified as the gene for guanylate cyclase. This discovery was the spark that made the disease emerge from the shadows as illustrated by the flood of LCA genes identified in the following ten-year period. During the same time period, the clinical variability of the disease was rediscovered and an unexpected physiopathological heterogeneity demonstrated. In the beginning of the third millennium, LCA came out definitively from the tunnel to shine under the bright spotlights with the RPE65 gene therapy trial that succeeded to restore vision in a dog model and opened the door to gene therapy trials in humans.
Collapse
Affiliation(s)
- Josseline Kaplan
- Research Unit in Genetics and Epigenetics of Metabolic, Neuro-sensorial and Developmental Diseases, INSERM U781 & Paris Descartes University, Paris, France.
| |
Collapse
|
41
|
Prescott SM, Lalouel JM, Leppert M. From Linkage Maps to Quantitative Trait Loci: The History and Science of the Utah Genetic Reference Project. Annu Rev Genomics Hum Genet 2008; 9:347-58. [DOI: 10.1146/annurev.genom.9.081307.164441] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jean Marc Lalouel
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112;
| | - Mark Leppert
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112;
| |
Collapse
|
42
|
|
43
|
Pelletier V, Jambou M, Delphin N, Zinovieva E, Stum M, Gigarel N, Dollfus H, Hamel C, Toutain A, Dufier JL, Roche O, Munnich A, Bonnefont JP, Kaplan J, Rozet JM. Comprehensive survey of mutations in RP2 and RPGR in patients affected with distinct retinal dystrophies: genotype-phenotype correlations and impact on genetic counseling. Hum Mutat 2007; 28:81-91. [PMID: 16969763 DOI: 10.1002/humu.20417] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
X-linked forms of retinitis pigmentosa (RP) (XLRP) account for 10 to 20% of families with RP and are mainly accounted for by mutations in the RP2 or RP GTPase regulator (RPGR) genes. We report the screening of these genes in a cohort of 127 French family comprising: 1) 93 familial cases of RP suggesting X-linked inheritance, including 48 out of 93 families with expression in females but no male to male transmission; 2) seven male sibships of RP; 3) 25 sporadic male cases of RP; and 4) two cone dystrophies (COD). A total of 5 out of the 93 RP families excluded linkage to the RP2 and RP3 loci and were removed form the cohort. A total of 14 RP2 mutations, 12 of which are novel, were identified in 14 out of 88 familial cases of RP and 1 out of 25 sporadic male case (4%). In 13 out of 14 of the familial cases, no expression of the disease was noted in females, while in 1 out of 14 families one woman developed RP in the third decade. A total of 42 RPGR mutations, 26 of which were novel, were identified in 80 families, including: 69 out of 88 familial cases (78.4%); 2 out of 7 male sibship (28.6%); 8 out of 25 sporadic male cases (32.0%); and 1 out of 2 COD. No expression of the disease was noted in females in 41 out of 69 familial cases (59.4%), while at least one severely affected woman was recognized in 28 out of 69 families (40.6%). The frequency of RP2 and RPGR mutations in familial cases of RP suggestive of X-linked transmission are in accordance to that reported elsewhere (RP2: 15.9% vs. 6-20%; RPGR: 78.4% vs. 55-90%). Interestingly, about 30% of male sporadic cases and 30% of male sibships of RP carried RP2 or RPGR mutations, confirming the pertinence of the genetic screening of XLRP genes in male patients affected with RP commencing in the first decade and leading to profound visual impairment before the age of 30 years.
Collapse
Affiliation(s)
- Valérie Pelletier
- Unité de Recherches Génétique et Epigénétique des Maladies Métaboliques, Neurosensorielles et du Développement, Institut Nationale de la Santé et de la Recherche Médicale (INSERM) U781, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bustamante-Aragones A, Garcia-Hoyos M, Rodriguez DE Alba M, Gonzalez-Gonzalez C, Lorda-Sanchez I, Diego-Alvarez D, Trujillo-Tiebas MJ, Ayuso C, Ramos C. Detection of a Paternally Inherited Fetal Mutation in Maternal Plasma by the Use of Automated Sequencing. Ann N Y Acad Sci 2006; 1075:108-17. [PMID: 17108199 DOI: 10.1196/annals.1368.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The discovery of circulating fetal DNA in maternal blood has been an encouraging step forward in the prenatal diagnostic field. It has opened up the possibility of development of a noninvasive method for the genetic analysis of the fetus. Many techniques have been applied to the study of this fetal DNA, but automated sequencing has been seldom used. The intention of this study was to use the automated sequencing technique for the detection of a paternally inherited fetal mutation in maternal plasma. Maternal plasma samples from a pregnant woman, whose husband had a mutation (Q134X) in the RP2 gene, which is located in the X-chromosome, were collected at two different gestational ages (10th and 19th week of gestation) in order to determine whether the paternally inherited fetal mutation could be detected by automated sequencing. Restriction analysis was also performed to confirm the results. The fetal mutation was clearly detected in the maternal plasma by the use of automated sequencing. The automated sequencing enables the possibility of analyzing fetal sequences, at a nucleotide level, in order to detect mutations or polymorphisms which are distinguishable from maternal sequences.
Collapse
|
45
|
Melamud A, Shen GQ, Chung D, Xi Q, Simpson E, Li L, Peachey NS, Zegarra H, Hagstrom SA, Wang QK, Traboulsi EI. Mapping a new genetic locus for X linked retinitis pigmentosa to Xq28. J Med Genet 2006; 43:e27. [PMID: 16740911 PMCID: PMC2593026 DOI: 10.1136/jmg.2005.031518] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have defined a new genetic locus for an X linked form of retinitis pigmentosa (RP) on chromosome Xq28. We examined 15 members of a family in which RP appeared to be transmitted in an X linked manner. Ocular examinations were performed, and fundus photographs and electroretinograms were obtained for selected patients. Blood samples were obtained from all patients and an additional seven family members who were not given examinations. Visual acuity in four affected individuals ranged from 20/40 to 20/80+. Patients described the onset of night blindness and colour vision defects in the second decade of life, with the earliest at 13 years of age. Examined affected individuals had constricted visual fields and retinal findings compatible with RP. Based on full field electroretinography, cone function was more severely reduced than rod function. Female carriers had no ocular signs or symptoms and slightly reduced cone electroretinographic responses. Affected and non-affected family members were genotyped for 20 polymorphic markers on the X-chromosome spaced at 10 cM intervals. Genotyping data were analysed using GeneMapper software. Genotyping and linkage analyses identified significant linkage to markers DXS8061, DXS1073, and DXS1108 with two point LOD scores of 2.06, 2.17, and 2.20, respectively. Haplotype analysis revealed segregation of the disease phenotype with markers at Xq28.
Collapse
|
46
|
Weleber RG, Gregory-Evans K. Retinitis Pigmentosa and Allied Disorders. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
47
|
Dandekar SS, Ebenezer ND, Grayson C, Chapple JP, Egan CA, Holder GE, Jenkins SA, Fitzke FW, Cheetham ME, Webster AR, Hardcastle AJ. An atypical phenotype of macular and peripapillary retinal atrophy caused by a mutation in the RP2 gene. Br J Ophthalmol 2004; 88:528-32. [PMID: 15031171 PMCID: PMC1772091 DOI: 10.1136/bjo.2003.027979] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To determine the molecular basis and describe the phenotype of an atypical retinal dystrophy in a family presenting with bilateral, progressive central visual loss. METHODS Family members were examined. Investigations included Goldman perimetry, electrophysiology, and autofluorescence imaging. Candidate gene screening was performed using SSCP and sequence analysis. The proband's lymphoblastoid cells were examined for protein expression. RESULTS Fundal examination of the proband, his mother, and brother revealed peripapillary and macular atrophy. Autosomal dominant retinal dystrophy was suspected, but less severe disease in the mother led to screening for mutations in X linked genes. A 4 bp microdeletion in exon 3 of the RP2 gene, segregating with disease, was identified. No RP2 protein expression was detected. CONCLUSION The distinct phenotype in this family, caused by this frameshifting mutation in RP2, broadens the phenotypic spectrum of X linked retinitis pigmentosa. The absence of RP2 protein suggests that loss of protein function and not novel gain of function could account for the atypical phenotype. A definitive diagnosis of X linked retinitis pigmentosa permits appropriate genetic counselling with important implications for other family members. Clinicians should have a low threshold for screening RP2 in families with retinal dystrophy, including posterior retinal disease, not immediately suggestive of X linked inheritance.
Collapse
|
48
|
Abstract
Over the past decade, there has been an exponential increase in our knowledge of heritable eye conditions. Coincidentally, our ability to provide accurate genetic diagnoses has allowed appropriate counseling to patients and families. A summary of our current understanding of ocular genetics will prove useful to clinicians, researchers, and students as an introduction to the subject.
Collapse
Affiliation(s)
- Ian M MacDonald
- Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
49
|
Andréasson S, Breuer DK, Eksandh L, Ponjavic V, Frennesson C, Hiriyanna S, Filippova E, Yashar BM, Swaroop A. Clinical studies of X-linked retinitis pigmentosa in three Swedish families with newly identified mutations in the RP2 and RPGR-ORF15 genes. Ophthalmic Genet 2004; 24:215-23. [PMID: 14566651 DOI: 10.1076/opge.24.4.215.17228] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To describe new disease-causing RP2 and RPGR-ORF15 mutations and their corresponding clinical phenotypes in Swedish families with X-linked retinitis pigmentosa (XLRP) and to establish genotype-phenotype correlations by studying the clinical spectrum of disease in families with a known molecular defect. METHODS Seventeen unrelated families with RP and an apparent X-linked pattern of disease inheritance were identified from the Swedish RP registry and screened for mutations in the RP2 and RPGR (for the RP3 disease) genes. These families had been previously screened for the RPGR exons 1-19, and disease-causing mutations were identified in four of them. In the remaining 13 families, we sequenced the RP2 gene and the newly discovered RPGR-ORF exon. Detailed clinical evaluations were then obtained from individuals in the three families with identified mutations. RESULTS Mutations in RP2 and RPGR-ORF15 were identified in three of the 13 families. Clinical evaluations of affected males and carrier females demonstrated varying degrees of retinal dysfunction and visual handicap, with early onset and severe disease in the families with mutations in the ORF15 exon of the RPGR gene. CONCLUSIONS A total of seven mutations in the RP2 and RPGR genes have been discovered so far in Swedish XLRP families. All affected individuals express a severe form of retinal degeneration with visual handicap early in life, although the degree of retinal dysfunction varies both in hemizygous male patients and in heterozygous carrier females. Retinal disease phenotypes in patients with mutations in the RPGR-ORF15 were more severe than in patients with mutations in RP2 or other regions of the RPGR.
Collapse
Affiliation(s)
- Sten Andréasson
- Department of Ophthalmology, University Hospital of Lund, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Demidov VV. 65th birthday of Edwin M. Southern, molecular biology and biotechnology mastermind. Drug Discov Today 2003; 8:666-7. [PMID: 12927505 DOI: 10.1016/s1359-6446(03)02767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vadim V Demidov
- Center For Advanced Biotechnology, Boston University, 36 Cummington Street, Fl. 2nd, Boston, MA 02215, USA.
| |
Collapse
|