1
|
Zhang J, Miki Y, Iwabuchi E, Xu J, Kanai A, Sagara Y, Ohi Y, Rai Y, Yamaguchi R, Tanaka M, Ishida T, Suzuki T, Sasano H. Induction of SGK1 via glucocorticoid-influenced clinical outcome of triple-negative breast cancer patients. Breast Cancer Res Treat 2023:10.1007/s10549-023-06990-4. [PMID: 37286891 DOI: 10.1007/s10549-023-06990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive breast malignancy. Glucocorticoid (GC)-glucocorticoid receptor (GR) pathway plays a pivotal role in the cellular responses to various stresses including chemotherapy. Serum- and glucocorticoid-induced kinase-1 (SGK1) is known as an important downstream effector molecule in the GR signaling pathway, we attempted to explore its clinicopathological and functional significance in TNBC in which GR is expressed. METHODS We first immunolocalized GR and SGK1 and correlated the results with clinicopathological variables and clinical outcome in 131 TNBC patients. We also evaluated the effects of SGK1 on the cell proliferation and migration in TNBC cell lines with administration of dexamethasone (DEX) to further clarify the significance of SGK1. RESULTS The status of SGK1 in carcinoma cells was significantly associated with adverse clinical outcome in TNBC patients examined and was significantly associated with lymph node metastasis, pathological stage, and lymphatic invasion of the patients. In particular, SGK1 immunoreactivity was significantly associated with an increased risk of recurrence in GR-positive TNBC patients. Subsequent in vitro studies also demonstrated that DEX promoted TNBC cell migration and the silencing of gene expression did inhibit the cell proliferation and migration of TNBC cells under DEX treatment. CONCLUSIONS To the best of our knowledge, this is the first study to explore an association between SGK1 and clinicopathological variables and clinical outcome of TNBC patients. SGK1 status was significantly positively correlated with adverse clinical outcome of TNBC patients and promoted carcinoma cell proliferation and migration of carcinoma cells.
Collapse
Affiliation(s)
- Junjia Zhang
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Japan.
| | - Erina Iwabuchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junyao Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Ayako Kanai
- Department of Breast Surgery, Hachinohe City Hospital, Aomori, Japan
| | - Yasuaki Sagara
- Department of Breast and Thyroid Surgical Oncology, Sagara Hospital, Kagoshima, Japan
| | - Yasuyo Ohi
- Department of Pathology, Sagara Hospital, Kagoshima, Japan
| | - Yoshiaki Rai
- Department of Breast and Thyroid Surgical Oncology, Sagara Hospital, Kagoshima, Japan
| | - Rin Yamaguchi
- Department of Pathology, Nagasaki University Hospital, Nagasaki, Japan
| | - Maki Tanaka
- JCHO Kurume General Hospital, Fukuoka, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of glucocorticoid receptor function-a model system for genome regulation and physiology. FEBS J 2021; 289:5718-5743. [PMID: 34213830 DOI: 10.1111/febs.16100] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor (GR) is a bona fide ligand-regulated transcription factor. Cloned in the 80s, the GR has become one of the best-studied and clinically most relevant members of the nuclear receptor superfamily. Cooperative activity of GR with other transcription factors and a plethora of coregulators contribute to the tissue- and context-specific response toward the endogenous and pharmacological glucocorticoids (GCs). Furthermore, nontranscriptional activities in the cytoplasm are emerging as an additional function of GR. Over the past 40 years, the concepts of GR mechanisms of action had been constantly changing. Different methodologies in the pregenomic and genomic era of molecular biological research and recent cutting-edge technology in single-cell and single-molecule analysis are steadily evolving the views, how the GR in particular and transcriptional regulation in general act in physiological and pathological processes. In addition to the development of technologies for GR analysis, the use of model organisms provides insights how the GR in vivo executes GC action in tissue homeostasis, inflammation, and energy metabolism. The model organisms, namely the mouse, but also rats, zebrafish, and recently fruit flies carrying mutations of the GR became a major driving force to analyze the molecular function of GR in disease models. This guide provides an overview of the exciting research and paradigm shifts in the GR field from past to present with a focus on GR transcription factor networks, GR DNA-binding and single-cell analysis, and model systems.
Collapse
Affiliation(s)
- Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - Denis Nalbantoglu
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | | | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| |
Collapse
|
3
|
Harada K, Matsuoka H, Toyohira Y, Yanagawa Y, Inoue M. Mechanisms for establishment of GABA signaling in adrenal medullary chromaffin cells. J Neurochem 2021; 158:153-168. [PMID: 33704788 DOI: 10.1111/jnc.15345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/26/2022]
Abstract
γ-Aminobutyric acid (GABA) is thought to play a paracrine role in adrenal medullary chromaffin (AMC) cells. Comparative physiological and immunocytochemical approaches were used to address the issue of how the paracrine function of GABA in AMC cells is established. GABAA receptor Cl- channel activities in AMC cells of rats and mice, where corticosterone is the major glucocorticoid, were much smaller than those in AMC cells of guinea-pigs and cattle, where cortisol is the major. The extent of enhancement of GABAA receptor α3 subunit expression in rat pheochromocytoma (PC12) cells by cortisol was larger than that by corticosterone in parallel with their glucocorticoid activities. Thus, the species difference in GABAA receptor expression may be ascribed to a difference in glucocorticoid activity between corticosterone and cortisol. GABAA receptor Cl- channel activity in mouse AMC cells was enhanced by allopregnanolone, as noted with that in guinea-pig AMC cells, and the enzymes involved in allopregnanolone production were immunohistochemically detected in the zona fasciculata in both mice and guinea pigs. The expression of glutamic acid decarboxylase 67 (GAD67), one of the GABA synthesizing enzymes, increased after birth, whereas GABAA receptors already developed at birth. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, but not nicotinic or muscarinic receptors, in PC12 cells, resulted in an increase in GAD67 expression in a protein-kinase A-dependent manner. The results indicate that glucocorticoid and PACAP are mainly responsible for the expressions of GABAA receptors and GAD67 involved in GABA signaling in AMC cells, respectively.
Collapse
Affiliation(s)
- Keita Harada
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Yumiko Toyohira
- Department of Pharmacology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| |
Collapse
|
4
|
Revisiting the Stress Concept: Implications for Affective Disorders. J Neurosci 2020; 40:12-21. [PMID: 31896560 DOI: 10.1523/jneurosci.0733-19.2019] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Over the last 50 years, the concept of stress has evolved significantly, and our understanding of the underlying neurobiology has expanded dramatically. Rather than consider stress biology to be relevant only under unusual and threatening conditions, we conceive of it as an ongoing, adaptive process of assessing the environment, coping with it, and enabling the individual to anticipate and deal with future challenges. Though much remains to be discovered, the fundamental neurocircuitry that underlies these processes has been broadly delineated, key molecular players have been identified, and the impact of this system on neuroplasticity has been well established. More recently, we have come to appreciate the critical interaction between the brain and the rest of the body as it pertains to stress responsiveness. Importantly, this system can become overloaded due to ongoing environmental demands on the individual, be they physical, physiological, or psychosocial. The impact of this overload is deleterious to brain health, and it results in vulnerability to a range of brain disorders, including major depression and cognitive deficits. Thus, stress biology is one of the best understood systems in affective neuroscience and is an ideal target for addressing the pathophysiology of many brain-related diseases. The story we present began with the discovery of glucocorticoid receptors in hippocampus and has extended to other brain regions in both animal models and the human brain with the further discovery of structural and functional adaptive plasticity in response to stressful and other experiences.
Collapse
|
5
|
Rilett KC, Luo OD, McVey-Neufeld KA, MacKenzie RN, Foster JA. Loss of T cells influences sex differences in stress-related gene expression. J Neuroimmunol 2020; 343:577213. [PMID: 32278229 DOI: 10.1016/j.jneuroim.2020.577213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Deficiencies in the adaptive immune system have been linked to anxiety-like behaviours and stress reactivity. Mice lacking T lymphocytes through knockout of the T cell receptor (TCR) β and δ chains were compared to wild type C57Bl/6 mice. Central stress circuitry gene expression was assessed following repeated restraint stress. TCRβ-/-δ-/- mice showed an increased baseline plasma corticosterone and exaggerated changes in stress-related gene expression after repeated restraint stress. Sexual dimorphic stress responses were observed in wild-type C57Bl/6 mice but not in TCRβ-/-δ-/- mice. These data suggest that T cell-brain interactions influence sex-differences in CNS stress circuitry and stress reactivity.
Collapse
Affiliation(s)
- Kelly C Rilett
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Owen D Luo
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| | - Karen-Anne McVey-Neufeld
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| | - Robyn N MacKenzie
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
6
|
Patterson AD, Gonzalez FJ, Perdew GH, Peters JM. Molecular Regulation of Carcinogenesis: Friend and Foe. Toxicol Sci 2019; 165:277-283. [PMID: 30053205 DOI: 10.1093/toxsci/kfy185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
An explosion of knowledge on the molecular and cellular mechanisms that mediate carcinogenesis has occurred in recent years. Although cancer has existed for over a million years in the human species, effective cures for most cancers that target molecular and cellular pathways have not been achieved. Multiple cellular targets have been examined for preventing or treating cancers including, but not limited to, transcription factors, kinase-mediated cell signaling pathways, and more recently epigenetic targeting of oncogenes and tumor suppressors, and immunomodulation such as chimeric antigen receptor-T cells. Even as the state of knowledge of cancer mechanisms increases, there is considerable room for improvement in preventing and treating cancers. Understanding how a normal cell is transformed into a cancer cell is known but there is considerable tissue and cell type specificity. This has given rise to the field of precision medicine as applied to cancer therapy. Thus, while the development of preventive and treatment regimens has increased, there are certain obstacles that need to be overcome in order to decrease cancer incidence and increase survival of cancer patients. The purpose of this review is to summarize the advances made in cancer biology and how these advances have been used to develop, and hinder, preventive, and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland 20892
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
7
|
O'Malley BW. Origins of the Field of Molecular Endocrinology: A Personal Perspective. Mol Endocrinol 2018; 30:1015-1018. [PMID: 27690769 DOI: 10.1210/me.2016-1132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
8
|
Gustafsson JA. Historical overview of nuclear receptors. J Steroid Biochem Mol Biol 2016; 157:3-6. [PMID: 25797032 DOI: 10.1016/j.jsbmb.2015.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 11/26/2022]
Abstract
This review summarizes the birth of the field of nuclear receptors, from Jensen's discovery of estrogen receptor alpha, Gustafsson's discovery of the three-domain structure of the glucocorticoid receptor, the discovery of the glucocorticoid response element and the first partial cloning of the glucocorticoid receptor. Furthermore the discovery of the novel receptors called orphan receptors is described.
Collapse
Affiliation(s)
- Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Helzer KT, Hooper C, Miyamoto S, Alarid ET. Ubiquitylation of nuclear receptors: new linkages and therapeutic implications. J Mol Endocrinol 2015; 54:R151-67. [PMID: 25943391 PMCID: PMC4457637 DOI: 10.1530/jme-14-0308] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
The nuclear receptor (NR) superfamily is a group of transcriptional regulators that control multiple aspects of both physiology and pathology and are broadly recognized as viable therapeutic targets. While receptor-modulating drugs have been successful in many cases, the discovery of new drug targets is still an active area of research, because resistance to NR-targeting therapies remains a significant clinical challenge. Many successful targeted therapies have harnessed the control of receptor activity by targeting events within the NR signaling pathway. In this review, we explore the role of NR ubiquitylation and discuss how the expanding roles of ubiquitin could be leveraged to identify additional entry points to control receptor function for future therapeutic development.
Collapse
Affiliation(s)
- Kyle T Helzer
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Christopher Hooper
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Elaine T Alarid
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
10
|
Stanišić V, Lonard DM, O'Malley BW. Estrogen receptor-α: molecular mechanisms and interactions with the ubiquitin proteasome system. Horm Mol Biol Clin Investig 2015; 1:1-9. [PMID: 25961966 DOI: 10.1515/hmbci.2010.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/25/2009] [Indexed: 12/25/2022]
Abstract
Estrogen receptor-α (ERα) is a protein with a long history of study that precedes the advent of modern molecular biology. Over the course of 50 years, ERα has been increasingly recognized as a prominent model for the study of the mechanism of gene transcription in vertebrates. It also serves as a regulatory molecule for numerous physiological and disease states. Several fundamental insights have been made using ERα as a model protein, from the discovery that endocrine hormones elicit gene transcription to our understanding of the relationship between ERα-mediated transcription and transcription factor degradation by the ubiquitin proteasome system (UPS). Understanding of receptor protein degradation developed alongside other aspects of its molecular biology, from early observations in the 1960s that ERα is degraded on hormone treatment to the current understanding of ERα transcriptional regulation by the UPS. Here, we present the concept of ERα turnover from the perspective of the historical development of this notion and highlight some of the latest discoveries regarding this process. We discuss the logic and significance of ERα degradation pathways in the context of cell and whole-organism homeostasis.
Collapse
|
11
|
Meijsing SH. Mechanisms of Glucocorticoid-Regulated Gene Transcription. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215990 DOI: 10.1007/978-1-4939-2895-8_3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One fascinating aspect of glucocorticoid signaling is their broad range of physiological and pharmacological effects. These effects are at least in part a consequence of transcriptional regulation by the glucocorticoid receptor (GR). Activation of GR by glucocorticoids results in tissue-specific changes in gene expression levels with some genes being activated whereas others are repressed. This raises two questions: First, how does GR regulate different subsets of target genes in different tissues? And second, how can GR both activate and repress the expression of genes?To answer these questions, this chapter will describe the function of the various "components" and how they cooperate to mediate the transcriptional responses to glucocorticoids. The first "component" is GR itself. The second "component" is the chromatin and its role in specifying where in the genome GR binds. Binding to the genome however is just the first step in regulating the expression of genes and transcriptional regulation by GR depends on the recruitment of coregulator proteins that either directly or indirectly influence the recruitment and or activity of RNA polymerase II. Ultimately, the integration of inputs including GR isoform, DNA sequence, chromatin and cooperation with coregulators determines which genes are regulated and the direction of their regulation.
Collapse
Affiliation(s)
- Sebastiaan H Meijsing
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Biology, Ihnestrasse 63-73, Berlin, 14195, Germany,
| |
Collapse
|
12
|
Animal Models of Altered Glucocorticoid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [DOI: 10.1007/978-1-4939-2895-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Regulatory Actions of Glucocorticoid Hormones: From Organisms to Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [DOI: 10.1007/978-1-4939-2895-8_1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Atlas E, Pope L, Wade MG, Kawata A, Boudreau A, Boucher JG. Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter. Adipocyte 2014; 3:170-9. [PMID: 25068083 PMCID: PMC4110093 DOI: 10.4161/adip.28436] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/22/2023] Open
Abstract
Environmental pollutants, such as bisphenol A (BPA), have the potential to affect the differentiation processes and the biology of the adipose tissue. The 3T3-L1 model is one of the murine cell models used extensively for the investigation of the molecular events that govern the differentiation of adipocytes from a committed preadipocyte to a mature, lipid laden adipocyte. Most of the studies investigating the effects of BPA on preadipocyte differentiation have investigated the effects of this chemical in the presence of an optimal differentiation cocktail containing high concentrations of the synthetic glucocorticoid dexamethasone, conditions that result in 90% to 100% of differentiated adipocytes. Our studies employed the 3T3-L1 cell model in the absence of exogenous glucocorticoids. We show that BPA is able to increase the differentiation of the 3T3-L1 cells under these conditions. Furthermore, the effect of BPA was observed in the absence of the synthetic glucocorticoid (dexamethasone), a hormone known to be required for the differentiation of the 3T3-L1 cells. In addition, BPA upregulated the mRNA expression and protein levels of the terminal marker of adipogenesis the fatty acid binding protein (aP2) in these cells. Interestingly, the known modulators of adipogenesis such as the peroxisome proliferator-activated receptor (PPAR) γ or CCAAT enhancer binding protein (C/EBP) α were not elevated at the mRNA or protein level in response to BPA. Furthermore, BPA upregulated the expression levels of the marker of adipogenesis aP2, through an effect on the transcriptional activity of C/EBPδ and the glucocorticoid receptor (GR) at its promoter.
Collapse
|
15
|
Tavares-Sanchez OL, Rodriguez C, Gortares-Moroyoqui P, Estrada MI. Hepatocyte nuclear factor-4α, a multifunctional nuclear receptor associated with cardiovascular disease and cholesterol catabolism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:126-139. [PMID: 24848804 DOI: 10.1080/09603123.2014.915015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, are associated with high plasma cholesterol levels. The conversion of cholesterol to bile acids (BAs) accounts for about 50% of total cholesterol elimination from the body. This phenomenon occurs in the liver and is regulated by nuclear receptors such as hepatocyte nuclear factor-4α (HNF-4α). Therefore, special emphasis is given to HNF-4α properties and its multifunctional role, particularly in the conversion of cholesterol to BAs. HNF-4α is a highly conserved transcription factor that has the potential capacity to transactivate a vast number of genes, including CYP7 which codes for cholesterol 7α-hydroxylase (CYP7A1; EC 1.14.13.17), the rate-limiting enzyme of BA biosynthesis. The fact that HNF-4α transactivation potential can be modulated via phosporylation is of particular interest. Additional findings on structural and functional characteristics of HNF-4α may eventually present alternatives to control the levels of cholesterol in the body and consequently reduce the risk of CVDs.
Collapse
Affiliation(s)
- Olga Lidia Tavares-Sanchez
- a Departamento de Biotecnología y Ciencias Alimentarias , Instituto Tecnológico de Sonora , Ciudad Obregón , Mexico
| | | | | | | |
Collapse
|
16
|
Abstract
Retinoid X Receptors (RXR) were initially identified as nuclear receptors binding with stereo-selectivity the vitamin A derivative 9-cis retinoic acid, although the relevance of this molecule as endogenous activator of RXRs is still elusive. Importantly, within the nuclear receptor superfamily, RXRs occupy a peculiar place, as they are obligatory partners for a number of other nuclear receptors, thus integrating the corresponding signaling pathways. In this chapter, we describe the structural features allowing RXR to form homo- and heterodimers, and the functional consequences of this unique ability. Furthermore, we discuss the importance of studying RXR activity at a genome-wide level in order to comprehensively address the biological implications of their action that is fundamental to understand to what extent RXRs could be exploited as new therapeutic targets.
Collapse
Affiliation(s)
- Federica Gilardi
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland,
| | | |
Collapse
|
17
|
Rousseau GG. Fifty years ago: the quest for steroid hormone receptors. Mol Cell Endocrinol 2013; 375:10-3. [PMID: 23684885 DOI: 10.1016/j.mce.2013.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 01/18/2023]
Abstract
In 1963 Peter Karlson put forward the revolutionary "hormone-gene" hypothesis, which would change drastically the way in which steroid hormones were thought to act at the time. From a historical perspective, this review relates the acceptance of this initially controversial idea, the discovery of the steroid receptors and the key experiments that have led to the current understanding of the mechanism of steroid hormone action. It shows how, over 50years, the field has widened beyond all expectation and has contributed to major advances not only in endocrinology, but also in molecular biology, pharmacology and therapeutics.
Collapse
Affiliation(s)
- Guy G Rousseau
- de Duve Institute and Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
18
|
Vilasco M, Communal L, Mourra N, Courtin A, Forgez P, Gompel A. Glucocorticoid receptor and breast cancer. Breast Cancer Res Treat 2011; 130:1-10. [PMID: 21818591 DOI: 10.1007/s10549-011-1689-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/18/2011] [Indexed: 12/25/2022]
Abstract
Stress enhances glucocorticoid (GC) synthesis, which alters inflammation and immune responses, as well as cellular proliferation and apoptosis in a number of tissues. Increasingly, stress has been associated with cancer progression, and in particular in breast cancer. Consequently, an operational glucocorticoid receptor system in breast tissue influences breast cancer development. In this review, we summarize the data on the GC/GR system in normal and tumoral breast tissue. We also review the molecular mechanisms by which GCs control apoptosis and proliferation in breast cancer models and how GCs alter the chemotherapy of breast cancer treatment when used in combination. Finally, we discuss the participation of GR in breast tumorigenesis under hormone replacement therapy.
Collapse
Affiliation(s)
- Myriam Vilasco
- INSERM-UPMC, UMRS 938, Hôpital Saint-Antoine, 184 rue du Faubourg Saint Antoine, 75012, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Glucocorticoids (GCs) are useful drugs for the treatment of various diseases, but their use for prolonged periods can cause severe side effects such as osteoporosis. GCs have a direct effect on bone cells, where they can arrest bone formation, in part through the inhibition of osteoblast. On the other hand, GCs potently suppress osteoclast resorptive activity by disrupting its cytoskeleton based on the inhibition of RhoA, Rac and Vav3 in response to macrophage colony-stimulating factor. GCs also interfere with microtubule distribution and stability, which are critical for cytoskeletal organization in osteoclasts. Thus, GCs inhibit microtubule-dependent cytoskeletal organization in osteoclasts, which, in the context of bone remodeling, further dampens bone formation.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Skeletal Diseases Genome Research Center, Department of Medicine, Kyungpook National University School of Medicine, Daegu 700-422, Korea.
| |
Collapse
|
20
|
Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 2010; 62:1238-49. [PMID: 20727377 DOI: 10.1016/j.addr.2010.08.006] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/24/2022]
Abstract
Drug-metabolizing enzymes (DMEs) and transporters play pivotal roles in the disposition and detoxification of numerous foreign and endogenous chemicals. To accommodate chemical challenges, the expression of many DMEs and transporters is up-regulated by a group of ligand-activated transcription factors namely nuclear receptors (NRs). The importance of NRs in xenobiotic metabolism and clearance is best exemplified by the most promiscuous xenobiotic receptors: pregnane X receptor (PXR, NR1I2) and constitutive androstane/activated receptor (CAR, NR1I3). Together, these two receptors govern the inductive expression of a largely overlapping array of target genes encoding phase I and II DMEs, and drug transporters. Moreover, PXR and CAR also represent two distinctive mechanisms of NR activation, whereby CAR demonstrates both constitutive and ligand-independent activation. In this review, recent advances in our understanding of PXR and CAR as xenosensors are discussed with emphasis placed on the differences rather than similarities of these two xenobiotic receptors in ligand recognition and target gene regulation.
Collapse
|
21
|
Abstract
Variations in phenotype reflect the influence of environmental conditions during development on cellular functions, including that of the genome. The recent integration of epigenetics into developmental psychobiology illustrates the processes by which environmental conditions in early life structurally alter DNA, providing a physical basis for the influence of the perinatal environmental signals on phenotype over the life of the individual. This review focuses on the enduring effects of naturally occurring variations in maternal care on gene expression and phenotype to provide an example of environmentally driven plasticity at the level of the DNA, revealing the interdependence of gene and environmental in the regulation of phenotype.
Collapse
|
22
|
Gomez M, Raju SV, Viswanathan A, Painter RG, Bonvillain R, Byrne P, Nguyen DH, Bagby GJ, Kolls JK, Nelson S, Wang G. Ethanol upregulates glucocorticoid-induced leucine zipper expression and modulates cellular inflammatory responses in lung epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5715-22. [PMID: 20382889 PMCID: PMC2901557 DOI: 10.4049/jimmunol.0903521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alcohol abuse is associated with immunosuppressive and infectious sequelae. Particularly, alcoholics are more susceptible to pulmonary infections. In this report, gene transcriptional profiles of primary human airway epithelial cells exposed to varying doses of alcohol (0, 50, and 100 mM) were obtained. Comparison of gene transcription levels in 0 mM alcohol treatments with those in 50 mM alcohol treatments resulted in 2 genes being upregulated and 16 genes downregulated by at least 2-fold. Moreover, 0 mM and 100 mM alcohol exposure led to the upregulation of 14 genes and downregulation of 157 genes. Among the upregulated genes, glucocorticoid-induced leucine zipper (GILZ) responded to alcohol in a dose-dependent manner. Moreover, GILZ protein levels also correlated with this transcriptional pattern. Lentiviral expression of GILZ small interfering RNA in human airway epithelial cells diminished the alcohol-induced upregulation, confirming that GILZ is indeed an alcohol-responsive gene. Gene silencing of GILZ in A549 cells resulted in secretion of significantly higher amounts of inflammatory cytokines in response to IL-1beta stimulation. The GILZ-silenced cells were more resistant to alcohol-mediated suppression of cytokine secretion. Further data demonstrated that the glucocorticoid receptor is involved in the regulation of GILZ by alcohol. Because GILZ is a key glucocorticoid-responsive factor mediating the anti-inflammatory and immunosuppressive actions of steroids, we propose that similar signaling pathways may play a role in the anti-inflammatory and immunosuppressive effects of alcohol.
Collapse
Affiliation(s)
- Marla Gomez
- Alcohol Research Center and Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sammeta V. Raju
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anand Viswanathan
- Alcohol Research Center and Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Richard G. Painter
- Alcohol Research Center and Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ryan Bonvillain
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick Byrne
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Doan H. Nguyen
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Gregory J. Bagby
- Alcohol Research Center and Gene Therapy Program, Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jay K. Kolls
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Steve Nelson
- Alcohol Research Center and Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Guoshun Wang
- Alcohol Research Center and Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
23
|
Veleiro A, Alvarez L, Eduardo S, Burton G. Structure of the Glucocorticoid Receptor, a Flexible Protein That Can Adapt to Different Ligands. ChemMedChem 2010; 5:649-59. [DOI: 10.1002/cmdc.201000014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Selective Glucocorticoid Receptor modulators. J Steroid Biochem Mol Biol 2010; 120:96-104. [PMID: 20206690 DOI: 10.1016/j.jsbmb.2010.02.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/04/2010] [Accepted: 02/13/2010] [Indexed: 01/31/2023]
Abstract
The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review.
Collapse
|
25
|
Stanisić V, Lonard DM, O'Malley BW. Modulation of steroid hormone receptor activity. PROGRESS IN BRAIN RESEARCH 2010; 181:153-76. [PMID: 20478437 DOI: 10.1016/s0079-6123(08)81009-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Classical steroid hormones (SHs) - estrogens, androgens, progestins, glucocorticoids and mineralocorticoids - play critical roles in the regulation of reproduction, metabolism and cancer. SHs act via their cognate steroid hormone receptors (SHRs) in multiple target tissues throughout the body, exerting their physiological effects through nuclear receptor (NR)-mediated gene transcription. Since SHRs are the mediators of steroid hormone signalling in cells, regulation of their expression and function is critical for appropriate physiological responses to SHs. Cells regulate SHRs by determining the cellular concentration of SHR proteins in the cell and by tightly regulating their activity through post-translational modifications and interactions with coactivator protein complexes. In this chapter we will examine each of these regulatory mechanisms and assess their functional impact on the activity of SHRs.
Collapse
Affiliation(s)
- Vladimir Stanisić
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Texas, United States of America
| | | | | |
Collapse
|
26
|
Ottow E, Weinmann H. Nuclear Receptors as Drug Targets: A Historical Perspective of Modern Drug Discovery. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9783527623297.ch1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Chaudhuri G. Nuclear receptors and female reproduction: a tale of 3 scientists, Jensen, Gustafsson, and O'Malley. Reprod Sci 2008; 15:110-20. [PMID: 18276948 DOI: 10.1177/1933719108314516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Work on the estrogen receptor and glucocorticoid receptor laid the foundation for the discovery of a family of receptors known as the nuclear receptors. Discovery of these receptors has expanded our understanding of many hormonal and nonhormonal substances, which act through the nuclear receptors. These receptors are actually ligand-binding intracellular transcription factors, which induce nuclear expression of specific mRNAs, leading to synthesis of specific proteins with biological activity. This review for the benefit of gynecologists and reproductive physiologists focuses on the work of 3 scientists who were pioneers in the work on the estrogen, glucocorticoid, and progesterone receptors, which has had a major impact on our understanding of reproductive physiology and on the field of nuclear receptors.
Collapse
Affiliation(s)
- Gautam Chaudhuri
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Kleiman A, Tuckermann JP. Glucocorticoid receptor action in beneficial and side effects of steroid therapy: lessons from conditional knockout mice. Mol Cell Endocrinol 2007; 275:98-108. [PMID: 17587493 DOI: 10.1016/j.mce.2007.05.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 05/12/2007] [Accepted: 05/12/2007] [Indexed: 01/19/2023]
Abstract
Glucocorticoids (GCs) are potent immune suppressive drugs with unfortunately severe side effects. Different molecular modes of actions of the GC receptor (GR) have been identified. Transcriptional transactivation by binding of a dimerized GR protein complex to the promoter of GC regulated genes or interference with activity of pro-inflammatory transcription factors by GR monomers are considered as the two major mechanisms. It has been hypothesized that selective GR agonists (SEGRAs) addressing dimer-independent function would reveal potent steroid therapeutic activity with reduced side effects. Recent studies of a mouse knock-in strain with a dimerization-deficient GR demonstrate that some inflammatory processes can be suppressed by GCs, while others cannot. Also side effects of GCs occur in these mice. Thus, depending on the process that is treated, SEGRA could be therapeutically more or less effective and not all side effects of steroid therapy may be reduced.
Collapse
Affiliation(s)
- Anna Kleiman
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Group of Tissue specific Hormone Action, Beutenberg Str. 11, D-07745 Jena, Germany
| | | |
Collapse
|
29
|
Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med 2006; 27:299-402. [PMID: 16914190 DOI: 10.1016/j.mam.2006.07.001] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
17Beta-estradiol (E2) controls many aspects of human physiology, including development, reproduction and homeostasis, through regulation of the transcriptional activity of its cognate receptors (ERs). The crystal structures of ERs with agonists and antagonists and the use of transgenic animals have revealed much about how hormone binding influences ER conformation(s) and how this conformation(s), in turn, influences the interaction of ERs with co-activators or co-repressors and hence determines ER binding to DNA and cellular outcomes. This information has helped to shed light on the connection between E2 and the development or progression of numerous diseases. Current therapeutic strategy in the treatment of E2-related pathologies relies on the modulation of ER trancriptional activity by anti-estrogens; however, data accumulated during the last five years reveal that ER activities are not only restricted to the nucleus. ERs are very mobile proteins continuously shuttling between protein targets located within various cellular compartments (e.g., membrane, nucleus). This allows E2 to generate different and synergic signal transduction pathways (i.e., non-genomic and genomic) which provide plasticity for cell response to E2. Understanding the structural basis and the molecular mechanisms by which ER transduce E2 signals in target cells will allow to create new pharmacologic therapies aimed at the treatment of a variety of human diseases affecting the cardiovascular system, the reproductive system, the skeletal system, the nervous system, the mammary gland, and many others.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | |
Collapse
|
30
|
Canlon B, Meltser I, Johansson P, Tahera Y. Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma. Hear Res 2006; 226:61-9. [PMID: 16843624 DOI: 10.1016/j.heares.2006.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/18/2006] [Accepted: 05/26/2006] [Indexed: 02/07/2023]
Abstract
Glucocorticoids are widely used to treat different hearing disorders yet the exact mechanisms of glucocorticoid action on the inner ear are not known. The inner ear of both humans and experimental animals demonstrate an abundance of glucocorticoid receptors (GRs) in both neuronal and non-neuronal tissues. In this review, we discuss how activation of the hypothalamic-pituitary-adrenal axis can directly modulate hearing sensitivity. Recent findings indicate that several factors define the responsiveness of the peripheral auditory system to glucocorticoids including the concentration of agonist, availability of the GR, and the activation of GR and NF-kappaB. These findings will further our understanding of individual glucocorticoid responsiveness to steroid treatment, and will help improve the development of pharmaceuticals to selectively target GR in the inner ear for individuals with increased sensitivity to acoustic trauma.
Collapse
Affiliation(s)
- Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Von Eulers Vag 8, Stockholm 171 77, Sweden.
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- John T Moore
- Department of High Throughput Biology, , GlaxoSmithKline Discovery Research, Five Moore Drive, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
32
|
Martinez ED, Pattabiraman N, Danielsen M. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination. Exp Cell Res 2005; 308:320-33. [PMID: 15936754 DOI: 10.1016/j.yexcr.2005.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/15/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites/genetics
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- COS Cells
- Chlorocebus aethiops
- Glucocorticoids/metabolism
- Ligands
- Mineralocorticoids/metabolism
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Tertiary/genetics
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/chemistry
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Recombinant Fusion Proteins/genetics
- Signal Transduction/physiology
- Steroids/metabolism
- Transcriptional Activation/physiology
Collapse
Affiliation(s)
- Elisabeth D Martinez
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | |
Collapse
|
33
|
Szanto A, Narkar V, Shen Q, Uray IP, Davies PJA, Nagy L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ 2005; 11 Suppl 2:S126-43. [PMID: 15608692 DOI: 10.1038/sj.cdd.4401533] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Retinoid X receptor (RXR) belongs to a family of ligand-activated transcription factors that regulate many aspects of metazoan life. A class of nuclear receptors requires RXR as heterodimerization partner for their function. This places RXR in the crossroad of multiple distinct biological pathways. This and the fact that the debate on the endogenous ligand requirement for RXR is not yet settled make RXR still an enigmatic transcription factor. Here, we review some of the biology of RXR. We place RXR into the evolution of nuclear receptors, review structural details and ligands of the receptor. Then processes regulated by RXR are discussed focusing on the developmental roles deduced from studies on knockout animals and metabolic roles in diseases such as diabetes and atherosclerosis deduced from pharmacological studies. Finally, aspects of RXR's involvement in myeloid differentiation and apoptosis are summarized along with issues on RXR's suitability as a therapeutic target.
Collapse
Affiliation(s)
- A Szanto
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4012, Hungary
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
AbstractOur interest in nuclear receptors (NRs) originated from early studies on hepatic steroid metabolism. We discovered a new hypothalamo-pituitary-liver axis, imprinted neonatally by androgens and operating through sexually differentiated GH secretory patterns. Male and female patterns have opposite effects on sexually differentiated hepatic genes, explaining sexually dimorphic liver patterns. To further understand steroid action, we purified the glucocorticoid receptor (GR) leading to our discovery of the NR three-domain structure, with separable DNA binding domain and ligand binding domains and a third domain now known to have transcriptional regulatory properties. Knowledge of this domain structure has been immensely important for deciphering NR actions. Using this first purified NR, we collaborated with Keith Yamamoto and first demonstrated specific NR binding to DNA. This also was the first demonstration of a mammalian transcription factor, a breakthrough that led to discovery of NR response elements. In further collaboration with Yamamoto, we cloned the first NR cDNA sequences, leading to cloning of the superfamily of NR genes. With Yamamoto and Kaptein, we determined the first three-dimensional NR structure, that of DNA binding domain. Later work on orphan receptors resulted in the first discovery of: 1) endogenous ligands for an orphan receptor (fatty acids as activators of peroxisomal proliferator-activated receptor α); 2) liver X receptor β (OR-1) and its role in central nervous system cholesterol homeostasis; and 3) estrogen receptor β, leading to a paradigm shift in understanding of estrogen signaling, of importance in endocrinology, immunology, and oncology and to development of estrogen receptor β agonists for treatment of autoimmune diseases, prostate disease, depression, and ovulatory dysfunction.
Collapse
Affiliation(s)
- Jan-Ake Gustafsson
- Department of Medical Nutrition, Karolinska Institutet, Novum, SE-141 86 Huddinge, Sweden
| |
Collapse
|
35
|
Tuckermann JP, Kleiman A, McPherson KG, Reichardt HM. Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit Rev Clin Lab Sci 2005; 42:71-104. [PMID: 15697171 DOI: 10.1080/10408360590888983] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system must be tightly controlled not only to guarantee efficient protection from invading pathogens and oncogenic cells but also to avoid exaggerated immune responses and autoimmunity. This is achieved through interactions amongst leukocytes themselves, by signals from stromal cells and also by various hormones, including glucocorticoids. The glucocorticoids are a class of steroid hormones that exert a wide range of anti-inflammatory and immunosuppressive activities after binding to the glucocorticoid receptor. The power of these hormones was acknowledged many decades ago, and today synthetic derivatives are widely used in the treatment of inflammatory disorders, autoimmunity and cancer. In this review, we summarize our present knowledge of the molecular mechanisms of glucocorticoid action, their influence on specific leukocytes and the induction of thymocyte apoptosis, with an emphasis on how molecular genetics has contributed to our growing, although still incomplete, understanding of these processes.
Collapse
|
36
|
Ismaili N, Garabedian MJ. Modulation of glucocorticoid receptor function via phosphorylation. Ann N Y Acad Sci 2004; 1024:86-101. [PMID: 15265775 DOI: 10.1196/annals.1321.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The glucocorticoid receptor (GR) is phosphorylated at multiple serine residues in a hormone-dependent manner. It has been suggested that GR phosphorylation affects turnover, subcellular trafficking, or the transcriptional regulatory functions of the receptor, yet the contribution of individual GR phosphorylation sites to the modulation of GR activity remains enigmatic. This review critically evaluates the literature on GR phosphorylation and presents more recent work on the mechanism of GR phosphorylation from studies using antibodies that recognize GR only when it is phosphorylated. In addition, we present support for the notion that GR phosphorylation modifies protein-protein interactions, which can stabilize the hypophosphorylated form of the receptor in the absence of ligand, as well as facilitate transcriptional activation by the hyperphosphorylation of GR via cofactor recruitment upon ligand binding. Finally, we propose that GR phosphorylation also participates in the nongenomic activation of cytoplasmic signaling pathways evoked by GR. Thus, GR phosphorylation is a versatile mechanism for modulating and integrating multiple receptor functions.
Collapse
Affiliation(s)
- Naima Ismaili
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
37
|
Baxter JD, Funder JW, Apriletti JW, Webb P. Towards selectively modulating mineralocorticoid receptor function: lessons from other systems. Mol Cell Endocrinol 2004; 217:151-65. [PMID: 15134814 DOI: 10.1016/j.mce.2003.10.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although there is clinical utility in blocking mineralocorticoid receptor (MR) action, the usefulness of available MR antagonists is limited because of cross-reactivity with the androgen and progesterone receptors (spironolactone) or possibly by low affinity for MR (eplerenone). MR binds aldosterone and physiologic glucocorticoids, such as cortisol, which both can act as MR agonists in epithelial tissues. However, in preliminary studies aldosterone and cortisol appear to induce different conformations in non-epithelial tissues; in the cardiomyocyte, cortisol usually acts as an MR antagonist, whereas in vascular smooth muscle cortisol mimics aldosterone actions if it can access MR, just as it does in the kidney. Thus, there are needs for improved MR antagonists with higher selectivity and potency and, if possible, for compounds that lock MR into specific desirable conformations. Efforts are underway to modulate selectively the action of many nuclear receptors, and insights from one nuclear receptor may be applicable to others given the similarities in structure and function. We have used traditional approaches aided by X-ray crystallography to obtain several classes of selective ligands that modulate thyroid receptor (TR) action. We describe the properties of these selective TR modulators here, and discuss the possibility that similar approaches to ligand design may yield MR interacting compounds with improved specificity and, possibly, tissue specificity.
Collapse
MESH Headings
- Aldosterone/metabolism
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/metabolism
- Crystallography, X-Ray
- Epithelium/physiology
- Eplerenone
- Hydrocortisone/administration & dosage
- Hydrocortisone/metabolism
- Mineralocorticoid Receptor Antagonists/chemistry
- Myocytes, Cardiac/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/analysis
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/agonists
- Receptors, Mineralocorticoid/chemistry
- Receptors, Mineralocorticoid/metabolism
- Receptors, Thyroid Hormone/antagonists & inhibitors
- Receptors, Thyroid Hormone/chemistry
- Receptors, Thyroid Hormone/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Spironolactone/administration & dosage
- Spironolactone/analogs & derivatives
- Spironolactone/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- John D Baxter
- Diabetes Center and Metabolic Research Unit, University of California-San Francisco, San Francisco, CA 94143-0540, USA.
| | | | | | | |
Collapse
|
38
|
Brownlee C. Biography of Jan-Åke Gustafsson. Proc Natl Acad Sci U S A 2004; 101:3737-8. [PMID: 15010539 PMCID: PMC374313 DOI: 10.1073/pnas.0401117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Abstract
In eukaryotes, transcription of the diverse array of tens of thousands of protein-coding genes is carried out by RNA polymerase II. The control of this process is predominantly mediated by a network of thousands of sequence-specific DNA binding transcription factors that interpret the genetic regulatory information, such as in transcriptional enhancers and promoters, and transmit the appropriate response to the RNA polymerase II transcriptional machinery. This review will describe some early advances in the discovery and characterization of the sequence-specific DNA binding transcription factors as well as some of the properties of these regulatory proteins.
Collapse
Affiliation(s)
- James T Kadonaga
- Section of Molecular Biology, 0347, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
40
|
Mantsch JR, Yuferov V, Mathieu-Kia AM, Ho A, Kreek MJ. Neuroendocrine alterations in a high-dose, extended-access rat self-administration model of escalating cocaine use. Psychoneuroendocrinology 2003; 28:836-62. [PMID: 12892653 DOI: 10.1016/s0306-4530(02)00088-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One approach for studying cocaine addiction has been to permit escalating patterns of self-administration (SA) by rats by prolonging daily drug availability. Rats provided long access (LgA) to high cocaine doses, but not rats provided shorter cocaine access (ShA), progressively escalate their cocaine intake and display characteristics of human addiction. The purpose of the present study was to investigate the effects of 14 days of ShA or LgA, high-dose cocaine SA on plasma corticosterone (CORT), prolactin (PRL), and related mRNAs. Acutely, cocaine SA increased plasma CORT and reduced plasma PRL levels. SA training produced circadian increases in CORT that appeared to occur in anticipation of cocaine availability. With repeated LgA, high-dose SA, the daily CORT area under the curve (AUC) progressively decreased, apparently due to tolerance to cocaine's effects on CORT and a reduction in basal CORT levels. In contrast, the daily CORT AUC in ShA rats increased across testing despite constant rates of SA. When measured 12 days after SA testing, pro-opioimelanocortin and glucocorticoid receptor mRNA levels in the anterior pituitary were lower in LgA rats than in ShA rats. The effects of SA on PRL remained constant across SA testing in LgA rats, but increased in duration in ShA rats. Anterior pituitary dopamine D2 receptor mRNA levels were lower in LgA rats than in ShA rats. These findings indicate that the transition to escalating patterns of SA may be associated with altered levels of hormones and gene expression within neuroendocrine systems. Such changes may underlie the onset of human addictive disease.
Collapse
Affiliation(s)
- J R Mantsch
- Laboratory of the Biology of Addictive Diseases, Box 171, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6339, USA.
| | | | | | | | | |
Collapse
|
41
|
Kauppi B, Jakob C, Färnegårdh M, Yang J, Ahola H, Alarcon M, Calles K, Engström O, Harlan J, Muchmore S, Ramqvist AK, Thorell S, Ohman L, Greer J, Gustafsson JA, Carlstedt-Duke J, Carlquist M. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J Biol Chem 2003; 278:22748-54. [PMID: 12686538 DOI: 10.1074/jbc.m212711200] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we describe the three-dimensional crystal structures of human glucocorticoid receptor ligand-binding domain (GR-LBD) in complex with the antagonist RU-486 at 2.3 A resolution and with the agonist dexamethasone ligand together with a coactivator peptide at 2.8 A. The RU-486 structure was solved in several different crystal forms, two with helix 12 intact (GR1 and GR3) and one with a protease-digested C terminus (GR2). In GR1, part of helix 12 is in a position that covers the co-activator pocket, whereas in the GR3, domain swapping is seen between the crystallographically identical subunits in the GR dimer. An arm consisting of the end of helix 11 and beyond stretches out from one molecule, and helix 12 binds to the other LBD, partly blocking the coactivator pocket of that molecule. This type of GR-LBD dimer has not been described before but might be an artifact from crystallization. Furthermore, the subunits of the GR3 dimers are covalently connected via a disulfide bond between the Cys-736 residues in the two molecules. All three RU-486 GR-LBD structures show that GR has a very flexible region between the end of helix 11 and the end of helix 12.
Collapse
Affiliation(s)
- Björn Kauppi
- Structure Biology, Karo Bio AB, Novum, SE-141 57 Huddinge, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Verrijdt G, Schauwaers K, Haelens A, Rombauts W, Claessens F. Functional interplay between two response elements with distinct binding characteristics dictates androgen specificity of the mouse sex-limited protein enhancer. J Biol Chem 2002; 277:35191-201. [PMID: 12107189 DOI: 10.1074/jbc.m205928200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many of the aspects involved in steroid-specific transcriptional regulation are still unsolved to date. We describe here the detailed characterization of the mouse sex-limited protein enhancer as a paradigm for androgen-specific control of gene expression. By deletion analysis, we delineate the minimal enhancer region displaying androgen sensitivity and specificity. We also show that each of the three hormone response elements (HRE), which constitute this minimal enhancer region, is essential but not sufficient for its functionality. When investigated as isolated elements, HRE1 is inactive and HRE3 is a potent androgen response element as well as GRE. Only the non-canonical HRE2 (5-TGGTCAgccAGTTCT-3') is capable of conferring an androgen-specific transcriptional response to a heterologous promoter. This finding is correlated with the fact that HRE2 is recognized in binding assays in vitro by the DNA-binding domain (DBD) of the androgen but not the glucocorticoid receptor, while HRE3 is recognized by both DBDs. Differential binding of the androgen receptor to HRE2 in the context of the enhancer was analyzed in more detail in footprinting assays in vitro. In transient transfection experiments using chimeric receptors, the inability of the glucocorticoid receptor to transactivate via the slp-ARU as well as the isolated slp-HRE2 was rescued by the replacement of its DNA-binding domain with that of the androgen receptor. Our data suggest that the functional interplay between the weak, but highly androgen-specific HRE2 and the adjacent strong, but non-selective HRE3 is the major determinant in the generation of androgen specificity of transcriptional response via the sex-limited protein enhancer.
Collapse
Affiliation(s)
- Guy Verrijdt
- Division of Biochemistry, Faculty of Medicine, Campus Gasthuisberg, University of Leuven, Leuven B-3000, Belgium
| | | | | | | | | |
Collapse
|
43
|
Abstract
Following the successful cloning of the orphan nuclear receptors during the 1990s we entered the 21st century with knowledge of the full complement of human nuclear receptors. Many of these proteins are ligand-activated transcription factors that act as the cognate receptors for steroid, retinoid, and thyroid hormones. In addition to these well characterized endocrine hormone receptors, there are a large number of orphan receptors of which less is known about the nature and function of their ligands. The task of deciphering the physiological function of these orphan receptors has been aided by a new generation of genomic technologies. Through application of chemical, structural, and functional genomics, several orphan nuclear receptors have emerged as pharmaceutical drug targets for the treatment of important human diseases. The significant progress that has been made in the functional analysis of more than half of the nuclear receptor gene family provides an opportunity to review the impact of genomics in this endeavor.
Collapse
Affiliation(s)
- Timothy M Willson
- GlaxoSmithKline, Discovery Research, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
44
|
Jones G, Wozniak M, Chu Y, Dhar S, Jones D. Juvenile hormone III-dependent conformational changes of the nuclear receptor ultraspiracle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 32:33-49. [PMID: 11719067 DOI: 10.1016/s0965-1748(01)00077-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The identification of potential endogenous or synthetic ligands for orphan receptors in the steroid receptor superfamily is important both for discerning endogenous regulatory pathways and for designing receptor inhibitors. The insect nuclear receptor Ultraspiracle (USP), an ortholog of vertebrate RXR, has long been treated as an orphan receptor. We have tested here the fit of terpenoid ligands to the JH III-binding site of monomeric and homo-oligomeric USP from Drosophila melanogaster (dUSP). dUSP specifically bound juvenile hormone III (JH III), but not control farnesol or JH III acid, and also specifically changed in conformation upon binding of JH III in a fluorescence binding assay. Juvenile hormone III binding caused intramolecular changes in receptor conformation, and stabilized the receptor's dimeric/oligomeric quaternary structure. In both a radiometric competition assay and the fluorescence binding assay the synthetic JH III agonist methoprene specifically competed with JH III for binding to dUSP, the first demonstration of specific binding of a biologically active JH III analog to an insect nuclear receptor. The recombinant dUSP bound with specificity to a DR12 hormone response element in a gel shift assay. The same DR12 element conferred enhanced transcriptional responsiveness of a transfected juvenile hormone esterase core promoter to treatment of transfected cells with JH III, but not to treatment with retinoic acid or T3. The activity of JH III or JH III-like structures, but not structures without JH III biological activity, to bind specifically to dUSP and activate its conformational change, provide evidence of a terpenoid endogenous ligand for Ultraspiracle, and offer the prospect that synthetic, terpenoid structures may be discovered that can agonize or antagonize USP function in vivo.
Collapse
Affiliation(s)
- G Jones
- School of Biological Sciences, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | |
Collapse
|
45
|
Spencer RL, Kalman BA, Cotter CS, Deak T. Discrimination between changes in glucocorticoid receptor expression and activation in rat brain using western blot analysis. Brain Res 2000; 868:275-86. [PMID: 10854580 DOI: 10.1016/s0006-8993(00)02341-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
These studies investigated autoregulation of glucocorticoid receptor (GR) protein expression and activation in rat brain using western blot methodology. By comparing GR immunoblot reactivity present in various tissue subcellular preparations we were able to discriminate between corticosterone-induced changes in GR activation or GR protein expression. Our cytosolic tissue preparation yielded a similar pattern of treatment effects on relative GR as measured by receptor binding assay or western blot. In both cases, short-term adrenalectomy (18 h) produced no change in cytosolic GR. On the other hand, long-term adrenalectomy (3-14 days) resulted in a large increase in cytosolic GR, whereas acute (1-2 h) treatment with high dose corticosterone produced a large decrease in cytosolic GR. Western blot measurement of GR levels in a nuclear extract or whole-cell extract from the same brains indicated that acute corticosterone treatment produced a large increase in nuclear GR and no change in whole-cell GR. Thus, all of the decrease in cytosolic GR observed after acute corticosterone treatment could be accounted for by receptor redistribution to the nuclear tissue fraction as opposed to rapid receptor protein downregulation. Long-term treatment of rats with adrenalectomy or high dose corticosterone produced a large increase and decrease, respectively, in whole-cell GR, indicating genuine changes in receptor protein expression. These studies indicate that in vivo regulation of GR protein expression in the rat brain can be studied using western blot analysis of a whole-cell tissue preparation. This procedure has an important advantage over receptor binding studies in that GR protein expression can be measured in adrenal-intact rats. These studies also support the validity of using cytosolic receptor binding assays to estimate relative changes in GR occupation/activation when appropriate comparison groups are included.
Collapse
Affiliation(s)
- R L Spencer
- Department of Psychology, Campus Box 345, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
There is a clear role for mechanisms that modulate glucocorticoid receptor (GR) function. The non-steroid-binding GRbeta isoform has been proposed to play a role in this modulation but the published data are contradictory. The relative levels of this isoform appear to be low. Alternative mechanisms for the modulation of glucocorticoid action are described and contrasted with the proposed role for GRbeta.
Collapse
|
47
|
Chen F, Watson CS, Gametchu B. Association of the glucocorticoid receptor alternatively-spliced transcript 1A with the presence of the high molecular weight membrane glucocorticoid receptor in mouse lymphoma cells. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990901)74:3<430::aid-jcb11>3.0.co;2-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Chen F, Watson CS, Gametchu B. Multiple glucocorticoid receptor transcripts in membrane glucocorticoid receptor-enriched S-49 mouse lymphoma cells. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990901)74:3<418::aid-jcb10>3.0.co;2-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Roeder RG. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:201-18. [PMID: 10384284 DOI: 10.1101/sqb.1998.63.201] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R G Roeder
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
50
|
LeVan TD, Babin EA, Yamamura HI, Bloom JW. Pharmacological characterization of glucocorticoid receptors in primary human bronchial epithelial cells. Biochem Pharmacol 1999; 57:1003-9. [PMID: 10796070 DOI: 10.1016/s0006-2952(99)00008-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bronchial epithelial cells play an important role in amplifying and perpetuating airway inflammation and may be a target for inhaled steroids. We have characterized glucocorticoid receptors in primary human bronchial epithelial cells. Northern and western blot analyses demonstrated the expression of glucocorticoid receptor mRNA and protein, respectively, in primary bronchial epithelial cells. The activity of these receptors was shown using a radioligand binding assay. High-affinity binding with pharmacological specificity was demonstrated for [3H]dexamethasone. The equilibrium dissociation constant (Kd) and density of binding sites (Bmax) for [3H]dexamethasone determined from saturation isotherms were 4.4 nM x/divided by 0.95 (SEM) and 30.1 fmol/mg protein +/-6.4 (SEM). Glucocorticoid receptors were activated by dexamethasone as assessed using a glucocorticoid-responsive reporter plasmid, pTAT3-CAT. Transfection of primary human bronchial epithelial cells with this reporter plasmid resulted in 35-fold activation of transcription following dexamethasone stimulation (10(-6) M). The glucocorticoid receptor antagonist RU-486 (mifepristone) significantly counteracted the effect of dexamethasone on glucocorticoid receptor activation, indicating that the dexamethasone effect is specific and is mediated through the glucocorticoid receptor. In summary, our study demonstrated that primary cultures of human bronchial epithelial cells possess glucocorticoid receptors that function as a ligand-activated transcriptional regulator. The presence of glucocorticoid receptors confers their responsiveness to glucocorticoids and indicates that the airway epithelium may be a target for the anti-inflammatory effects of inhaled steroids.
Collapse
Affiliation(s)
- T D LeVan
- Respiratory Sciences Center, College of Medicine, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|