1
|
Vir P, Gunasekera D, Dorjbal B, McDaniel D, Agrawal A, Merricks EP, Ragni MV, Leissinger CA, Stering AI, Lieuw K, Nichols TC, Pratt KP. Lack of factor VIII detection in humans and dogs with an intron 22 inversion challenges hypothesis regarding inhibitor risk. J Thromb Haemost 2024; 22:3415-3430. [PMID: 39233012 DOI: 10.1016/j.jtha.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Almost half of severe hemophilia A (HA) cases are caused by an intron 22 inversion (Int22Inv) mutation, which truncates the 26-exon F8 messenger RNA (mRNA) after exon 22. Another F8 transcript, F8B, is initiated from within F8-intron-22. F8B mRNA consists of a short exon spliced to exons 23 to 26 and is expressed in multiple human cell types. It has been hypothesized that Int22Inv patients have self-tolerance to partial factor (F)VIII proteins expressed from these 2 transcripts. FVIII is expressed in endothelial cells, primarily in the liver and lungs. Several studies have reported FVIII expression in other cell types, although this has been controversial. OBJECTIVES To determine if partial FVIII proteins are expressed from intron 22-inverted and/or F8B mRNA and if FVIII is expressed in nonendothelial cells. METHODS A panel of FVIII-specific antibodies was validated and employed to label FVIII in cells and tissues and for immunoprecipitation followed by western blots and mass spectrometry proteomics analysis. RESULTS Immunofluorescent staining localized FVIII to endothelial cells in liver sections from non-HA but not HA-Int22Inv dogs. Neither FVIII nor FVIIIB was detected in human peripheral blood mononuclear cells, B cell or T cell lines, or cell lines expanded from peripheral blood mononuclear cells, whereas FVIII antigen and activity were readily detected in primary nonhemophilic liver sinusoidal endothelial cells. CONCLUSION If FVIII is expressed in nonendothelial cells or if partial FVIII proteins are expressed in HA-Int22Inv, the concentrations are below the detection limits of these sensitive assays. Our results argue against promotion of immune tolerance through expression of partial FVIII proteins in Int-22Inv patients.
Collapse
Affiliation(s)
- Pooja Vir
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Devi Gunasekera
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Batsukh Dorjbal
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Dennis McDaniel
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; Biological Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Atul Agrawal
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Cindy A Leissinger
- Department of Medicine, Louisiana Center for Bleeding and Clotting Disorders, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Allen I Stering
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Kenneth Lieuw
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA; Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Hopp MT, Ugurlar D, Pezeshkpoor B, Biswas A, Ramoji A, Neugebauer U, Oldenburg J, Imhof D. In-depth structure-function profiling of the complex formation between clotting factor VIII and heme. Thromb Res 2024; 237:184-195. [PMID: 38631156 DOI: 10.1016/j.thromres.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND AIMS Blood disorders, such as sickle cell disease, and other clinical conditions are often accompanied by intravascular hemolytic events along with the development of severe coagulopathies. Hemolysis, in turn, leads to the accumulation of Fe(II/III)-protoporphyrin IX (heme) in the intravascular compartment, which can trigger a variety of proinflammatory and prothrombotic reactions. As such, heme binding to the blood coagulation proteins factor VIII (FVIII), fibrinogen, and activated protein C with functional consequences has been demonstrated earlier. METHODS We herein present an in-depth characterization of the FVIII-heme interaction at the molecular level and its (patho-)physiological relevance through the application of biochemical, biophysical, structural biology, bioinformatic, and diagnostic tools. RESULTS FVIII has a great heme-binding capacity with seven heme molecules associating with the protein. The respective binding sites were identified by investigating heme binding to FVIII-derived peptides in combination with molecular docking and dynamic simulation studies of the complex as well as cryo-electron microscopy, revealing three high-affinity and four moderate heme-binding motifs (HBMs). Furthermore, the relevance of the FVIII-heme complex formation was characterized in physiologically relevant assay systems, revealing a ~ 50 % inhibition of the FVIII cofactor activity even in the protein-rich environment of blood plasma. CONCLUSION Our study provides not only novel molecular insights into the FVIII-heme interaction and its physiological relevance, but also strongly suggests the reduction of the intrinsic pathway and the accentuation of the final clotting step (by, for example, fibrinogen crosslinking) in hemolytic conditions as well as a future perspective in the context of FVIII substitution therapy of hemorrhagic events in hemophilia A patients.
Collapse
Affiliation(s)
- Marie-T Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany; Department of Chemistry, Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany.
| | - Deniz Ugurlar
- Center for Electron Microscopy, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Behnaz Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
De Wolf D, Singh K, Chuah MK, VandenDriessche T. Hemophilia Gene Therapy: The End of the Beginning? Hum Gene Ther 2023; 34:782-792. [PMID: 37672530 DOI: 10.1089/hum.2023.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Extensive preclinical research over the past 30 years has culminated in the recent regulatory approval of several gene therapy products for hemophilia. Based on the efficacy and safety data in a recently conducted phase III clinical trial, Roctavian® (valoctocogene roxaparvovec), an adeno-associated viral (AAV5) vector expressing a B domain deleted factor VIII (FVIII) complementary DNA, was approved by the European Commission and Food and Drug Administration (FDA) for the treatment of patients with severe hemophilia A. In addition, Hemgenix® (etranacogene dezaparvovec) was also recently approved by the European Medicines Agency and the FDA for the treatment of patients with severe hemophilia B. This product is based on an AAV5 vector expressing a hyper-active factor IX (FIX) transgene (FIX-Padua) transgene. All AAV-based phase III clinical trials to date show a significant increase in FVIII or FIX levels in the majority of treated patients, consistent with a substantial decrease in bleeding episodes and a concomitant reduction in factor usage obviating the need for factor prophylaxis in most patients. However, significant interpatient variability remains that is not fully understood. Moreover, most patients encountered short-term asymptomatic liver inflammation that was treated by immune suppression with corticosteroids or other immune suppressants. In all phase III trials to date, FIX expression has appeared relatively more stable than FVIII, though individual patients also had prolonged FVIII expression. Whether lifelong expression of clotting factors can be realized after gene therapy requires longer follow-up studies. Further preclinical development of next-generation gene editing technologies offers new prospects for the development of a sustained cure for hemophilia, not only in adults, but ultimately in children with hemophilia too.
Collapse
Affiliation(s)
- Dries De Wolf
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Hough C, Notley C, Mo A, Videl B, Lillicrap D. Heterogeneity and reciprocity of FVIII and VWF expression, and the response to shear stress in cultured human endothelial cells. J Thromb Haemost 2022; 20:2507-2518. [PMID: 35950488 PMCID: PMC9850489 DOI: 10.1111/jth.15841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Substantial phenotypic heterogeneity exists in endothelial cells and while much of this heterogeneity results from local microenvironments, epigenetic modifications also contribute. METHODS Cultured human umbilical vein endothelial cells, human pulmonary microvascular endothelial cells, human hepatic sinusoidal endothelial cells, human lymphatic endothelial cells (hLECs), and two different isolations of endothelial colony forming cells (ECFCs) were assessed for levels of factor VIII (FVIII) and von Willebrand factor (VWF) RNA and protein. The intracellular location and co-localization of both proteins was evaluated with immunofluorescence microscopy and stimulated release toof FVIII and VWF from Weibel-Palade bodies (WPBs) was evaluated. Changes in expression of FVIII and VWF RNA after hLECs and ECFCs were exposed to 2 or 15 dynes/cm2 of laminar shear stress were also assessed. RESULTS We observed considerable heterogeneity in FVIII and VWF expression among the endothelial cells. With the exception of hLECs, FVIII RNA and protein were barely detectable in any of the endothelial cells and a reciprocal relationship between levels of FVIII and VWF appears to exist. When FVIII and VWF are co-expressed, they do not consistently co-localize in the cytoplasm. However, in hLECs where significantly higher levels of FVIII are expressed, FVIII and VWF co-localize in WPBs and are released together when stimulated. Expression of both FVIII and VWF is markedly reduced when hLECs are exposed to higher or lower levels of laminar shear stress, while in ECFCs there is a minimal response for both proteins. CONCLUSIONS Variable levels of FVIII and VWF RNA and protein exist in a subset of cultured human endothelial cells. Higher levels of FVIII present in hLECs co-localize with VWF and are released together when exposed to a secretagogue.
Collapse
Affiliation(s)
- Christine Hough
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, Ontario, Canada
| | - Colleen Notley
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, Ontario, Canada
| | - Aomei Mo
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, Ontario, Canada
| | - Barbara Videl
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, Ontario, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Xu X, Feng Y, Jia Y, Zhang X, Li L, Bai X, Jiao L. Prognostic value of von Willebrand factor and ADAMTS13 in patients with COVID-19: A systematic review and meta-analysis. Thromb Res 2022; 218:83-98. [PMID: 36027630 PMCID: PMC9385270 DOI: 10.1016/j.thromres.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Endotheliopathy and coagulopathy appear to be the main causes for critical illness and death in patients with coronavirus disease 2019 (COVID-19). The adhesive ligand von Willebrand factor (VWF) has been involved in immunothrombosis responding to endothelial injury. Here, we reviewed the current literature and performed meta-analyses on the relationship between both VWF and its cleaving protease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13) with the prognosis of COVID-19. METHODS We searched MEDLINE, Cochrane Library, Web of Science, and EMBASE databases from inception to 4 March 2022 for studies analyzing the relationship between VWF-related variables and composite clinical outcomes of patients with COVID-19. The VWF-related variables analyzed included VWF antigen (VWF:Ag), VWF ristocetin cofactor (VWF:Rco), ADAMTS13 activity (ADAMTS13:Ac), the ratio of VWF:Ag to ADAMTS13:Ac, and coagulation factor VIII (FVIII). The unfavorable outcomes were defined as mortality, intensive care unit (ICU) admission, and severe disease course. We used random or fixed effects models to create summary estimates of risk. Risk of bias was assessed based on the principle of the Newcastle-Ottawa Scale. RESULTS A total of 3764 patients from 40 studies were included. The estimated pooled means indicated increased plasma levels of VWF:Ag, VWF:Rco, and VWF:Ag/ADAMTS13:Ac ratio, and decreased plasma levels of ADAMTS13:Ac in COVID-19 patients with unfavorable outcomes when compared to those with favorable outcomes (composite outcomes or subgroup analyses of non-survivor versus survivor, ICU versus non-ICU, and severe versus non-severe). In addition, FVIII were higher in COVID-19 patients with unfavorable outcomes. Subgroup analyses indicated that FVIII was higher in patients admitting to ICU, while there was no significant difference between non-survivors and survivors. CONCLUSIONS The imbalance of the VWF-ADAMTS13 axis (massive quantitative and qualitative increases of VWF with relative deficiency of ADAMTS13) is associated with poor prognosis of patients with COVID-19.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China.
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Yitong Jia
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China; Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China..
| |
Collapse
|
6
|
Abstract
INTRODUCTION Hemophilia A (HA) or B (HB) is an X-linked recessive disorder caused by a defect in the factor VIII (FVIII) or factor IX (FIX) gene which leads to the dysfunction of blood coagulation. Protein replacement therapy (PRT) uses recombinant proteins and plasma-derived products, which incurs high cost and inconvenience requiring routine intravenous infusions and life-time treatment. Understanding of detailed molecular mechanisms on FVIII gene function could provide innovative solutions to amend this disorder. In recent decades, gene therapeutics have advanced rapidly and a one-time cure solution has been proposed. AREAS COVERED This review summarizes current understanding of molecular pathways involved in blood coagulation, with emphasis on FVIII's functional role. The existing knowledge and challenges on FVIII gene expression, from transcription, translation, post-translational modification including glycosylation to protein processing and secretion, and co-factor interactions are deciphered and potential molecular interventions discussed. EXPERT OPINION This article reviews the potential treatment targets for HA and HB, including antibodies, small molecules and gene therapeutics, based on molecular mechanisms of FVIII biosynthesis, and further, assessing the pros and cons of these various treatment strategies. Understanding detailed FVIII protein synthesis and secretory pathways could provide exciting opportunities in identifying novel therapeutics to ameliorate hemophilia state.
Collapse
Affiliation(s)
- Jie Gong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Hao-Lin Wang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China.,Geno-Immune Medical Institute, Shenzhen, China
| |
Collapse
|
7
|
Ultrasound-mediated gene delivery of factor VIII plasmids for hemophilia A gene therapy in mice. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:916-926. [PMID: 35141050 PMCID: PMC8803955 DOI: 10.1016/j.omtn.2022.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023]
Abstract
Gene therapy offers great promises for a cure of hemophilia A resulting from factor VIII (FVIII) gene deficiency. We have developed and optimized a non-viral ultrasound-mediated gene delivery (UMGD) strategy. UMGD of reporter plasmids targeting mice livers achieved high levels of transgene expression predominantly in hepatocytes. Following UMGD of a plasmid encoding human FVIII driven by a hepatocyte-specific promoter/enhancer (pHP-hF8/N6) into the livers of hemophilia A mice, a partial phenotypic correction was achieved in treated mice. In order to achieve persistent and therapeutic FVIII gene expression, we adopted a plasmid (pHP-hF8-X10) encoding an FVIII variant with significantly increased FVIII secretion. By employing an optimized pulse-train ultrasound condition and immunomodulation, the treated hemophilia A mice achieved 25%–150% of FVIII gene expression on days 1–7 with very mild transient liver damage, as indicated by a small increase of transaminase levels that returned to normal within 3 days. Therapeutic levels of FVIII can be maintained persistently without the generation of inhibitors in mice. These results indicate that UMGD can significantly enhance the efficiency of plasmid DNA transfer into the liver. They also demonstrate the potential of this novel technology to safely and effectively treat hemophilia A.
Collapse
|
8
|
Letelier A, Ljung R, Olsson A, Andersson NG. Silent variant in F8:c.222G>T (p.Thr74Thr) causes a partial exon skipping in a patient with mild hemophilia A. Mol Genet Genomic Med 2021; 10:e1856. [PMID: 34962362 PMCID: PMC8801133 DOI: 10.1002/mgg3.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
One of the challenges of genetic testing in patients with hemophilia A is the interpretation of sequence variants. Here we report a silent variant found in exon 2 in the F8 gene in a 47‐year‐old patient with a previous von Willebrand disease (VWD) type 1 diagnosis. Clinically he had mild bleeding symptoms restricted to prolonged bleeding from minor wounds. Sanger sequencing of F8 gene using genomic DNA showed a hemizygous silent variant in exon 2: c.222G>T, p.Thr74Thr. When applying ACMG criteria, the variant was predicted to be “likely benign” in the analyzing software or VUS after curating. Sanger sequencing of the patient's cDNA after nested polymerase chain reaction showed that the patient had both a normal transcript containing exons 1–4 and a defect transcript lacking exon 2. These findings explain the patient's low FVIII:C level and led to the diagnosis of mild hemophilia A instead of VWD type 1. This case illustrates that mRNA work‐up may be needed to clarify a patient's phenotype–genotype.
Collapse
Affiliation(s)
- Anna Letelier
- Department of Clinical Sciences Lund (IKVL)-Pediatrics, Lund University, Lund, Sweden.,Department for Molecular Diagnostics, Clinical Genetics Hemophilia Laboratory, Region Skåne, Skåne University Hospital, Lund, Sweden
| | - Rolf Ljung
- Department of Clinical Sciences Lund (IKVL)-Pediatrics, Lund University, Lund, Sweden
| | - Anna Olsson
- Department of Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nadine G Andersson
- Department of Clinical Sciences Lund (IKVL)-Pediatrics, Lund University, Lund, Sweden.,Department of Pediatric Hematology and Oncology, Region Skåne, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Olgasi C, Borsotti C, Merlin S, Bergmann T, Bittorf P, Adewoye AB, Wragg N, Patterson K, Calabria A, Benedicenti F, Cucci A, Borchiellini A, Pollio B, Montini E, Mazzuca DM, Zierau M, Stolzing A, Toleikis P, Braspenning J, Follenzi A. Efficient and safe correction of hemophilia A by lentiviral vector-transduced BOECs in an implantable device. Mol Ther Methods Clin Dev 2021; 23:551-566. [PMID: 34853801 PMCID: PMC8606349 DOI: 10.1016/j.omtm.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Hemophilia A (HA) is a rare bleeding disorder caused by deficiency/dysfunction of the FVIII protein. As current therapies based on frequent FVIII infusions are not a definitive cure, long-term expression of FVIII in endothelial cells through lentiviral vector (LV)-mediated gene transfer holds the promise of a one-time treatment. Thus, here we sought to determine whether LV-corrected blood outgrowth endothelial cells (BOECs) implanted through a prevascularized medical device (Cell Pouch) would rescue the bleeding phenotype of HA mice. To this end, BOECs from HA patients and healthy donors were isolated, expanded, and transduced with an LV carrying FVIII driven by an endothelial-specific promoter employing GMP-like procedures. FVIII-corrected HA BOECs were either directly transplanted into the peritoneal cavity or injected into a Cell Pouch implanted subcutaneously in NSG-HA mice. In both cases, FVIII secretion was sufficient to improve the mouse bleeding phenotype. Indeed, FVIII-corrected HA BOECs reached a relatively short-term clinically relevant engraftment being detected up to 16 weeks after transplantation, and their genomic integration profile did not show enrichment for oncogenes, confirming the process safety. Overall, this is the first preclinical study showing the safety and feasibility of transplantation of GMP-like produced LV-corrected BOECs within an implantable device for the long-term treatment of HA.
Collapse
Affiliation(s)
- Cristina Olgasi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Thorsten Bergmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Patrick Bittorf
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Adeolu Badi Adewoye
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Nicholas Wragg
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST47QB Stoke-on-Trent, UK
| | | | | | | | - Alessia Cucci
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandra Borchiellini
- Haematology Unit Regional Center for Hemorrhagic and Thrombotic Diseases, City of Health and Science University Hospital of Molinette, 10126 Turin, Italy
| | - Berardino Pollio
- Immune-Haematology and Transfusion Medicine, Regina Margherita Children Hospital, City of Health and Science University Hospital of Molinette, 10126 Turin, Italy
| | | | | | - Martin Zierau
- IMS Integrierte Management Systeme e. K., 64646 Heppenheim, Germany
| | - Alexandra Stolzing
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, LE113TU Loughborough, UK
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | | - Joris Braspenning
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
10
|
Serrano LJ, de la Torre P, Liras A, Flores AI. Cell therapy for factor V deficiency: An approach based on human decidua mesenchymal stem cells. Biomed Pharmacother 2021; 142:112059. [PMID: 34467894 DOI: 10.1016/j.biopha.2021.112059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Deficiency of factor V is a congenital autosomal recessive coagulopathy associated with mutations in the F5 gene that results in mild-to-severe bleeding episodes. Factor V is a component of the prothrombinase complex responsible for accelerating conversion of prothrombin to thrombin. At the present time there are no therapeutic factor V concentrates available. This study was designed to lay the preliminary foundations for future cell-based therapy for patients with severe factor V deficiency. The study showed that hepatospheres, which produce coagulation factors VIII, IX, and V, synthetize and store intracellular glycogen and express albumin levels up to 8 times higher than those of undifferentiated cells. Factor IX and factor V gene expression increased significantly in hepatospheres as compared to undifferentiated cells, whereas factor VIII gene expression remained constant. The factor V protein was detected in the hepatospheres´ secretome. Considering the enormous potential of mesenchymal stem cells as therapeutic agents, this study proposes a highly reproducible method to induce differentiation of mesenchymal stem cells from human placenta to factor V-producing hepatospheres. This strategy constitutes a preliminary step towards a curative treatment of factor V deficiency through advanced therapies such as cell therapy.
Collapse
Affiliation(s)
- Luis J Serrano
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain
| | - Paz de la Torre
- Regenerative Medicine Group, 12 de Octubre Hospital Research Institute, Madrid, Spain
| | - Antonio Liras
- Regenerative Medicine Group, 12 de Octubre Hospital Research Institute, Madrid, Spain; Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain.
| | - Ana I Flores
- Regenerative Medicine Group, 12 de Octubre Hospital Research Institute, Madrid, Spain.
| |
Collapse
|
11
|
Famà R, Borroni E, Merlin S, Airoldi C, Pignani S, Cucci A, Corà D, Bruscaggin V, Scardellato S, Faletti S, Pelicci G, Pinotti M, Walker GE, Follenzi A. Deciphering the Ets-1/2-mediated transcriptional regulation of F8 gene identifies a minimal F8 promoter for hemophilia A gene therapy. Haematologica 2021; 106:1624-1635. [PMID: 32467137 PMCID: PMC8168518 DOI: 10.3324/haematol.2019.239202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Amajor challenge in the development of a gene therapy for hemophilia A is the selection of cell type- or tissue-specific promoters to ensure factor VIII (FVIII) expression without eliciting an immune response. As liver sinusoidal endothelial cells are the major FVIII source, understanding the transcriptional F8 regulation in these cells would help to optimize the minimal F8 promoter (pF8) to efficiently drive FVIII expression. In silico analyses predicted several binding sites (BS) for the E26 transformation-specific (Ets) transcription factors Ets-1 and Ets-2 in the pF8. Reporter assays demonstrated a significant up-regulation of pF8 activity by Ets-1 or Ets- 1/Est-2 combination, while Ets-2 alone was ineffective. Moreover, Ets-1/Ets- 2-DNA binding domain mutants (DBD) abolished promoter activation only when the Ets-1 DBD was removed, suggesting that pF8 up-regulation may occur through Ets-1/Ets-2 interaction with Ets-1 bound to DNA. pF8 carrying Ets-BS deletions unveiled two Ets-BS essential for pF8 activity and response to Ets overexpression. Lentivirus-mediated delivery of green fluorescent protein (GFP) or FVIII cassettes driven by the shortened promoters, led to GFP expression mainly in endothelial cells in the liver and to longterm FVIII activity without inhibitor formation in HA mice. These data strongly support the potential application of these promoters in hemophilia A gene therapy.
Collapse
Affiliation(s)
- Rosella Famà
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Chiara Airoldi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Pignani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Alessia Cucci
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Davide Corà
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | | | - Sharon Scardellato
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuliana Pelicci
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, Universita' di Ferrara, Italy
| | - Gillian E Walker
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
12
|
Pradhan-Sundd T, Gudapati S, Kaminski TW, Ragni MV. Exploring the Complex Role of Coagulation Factor VIII in Chronic Liver Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1061-1072. [PMID: 33705963 PMCID: PMC8342958 DOI: 10.1016/j.jcmgh.2021.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
Chronic liver disease is one of the leading causes of death in the United States. Coagulopathy is often a sequela of chronic liver disease, however, the role and regulation of coagulation components in chronic liver injury remain poorly understood. Clinical and experimental evidence indicate that misexpression of the procoagulant factor VIII (FVIII) is associated with chronic liver disease. Nevertheless, the molecular mechanism of FVIII-induced chronic liver injury progression remains unknown. This review provides evidence supporting a pathologic role for FVIII in the development of chronic liver disease using both experimental and clinical models.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Shweta Gudapati
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Tomasz W Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Margaret V Ragni
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Hemophilia Center of Western Pennsylvania, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
FVIII expression by its native promoter sustains long-term correction avoiding immune response in hemophilic mice. Blood Adv 2020; 3:825-838. [PMID: 30862611 DOI: 10.1182/bloodadvances.2018027979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/04/2019] [Indexed: 12/20/2022] Open
Abstract
Here we describe a successful gene therapy approach for hemophilia A (HA), using the natural F8 promoter (pF8) to direct gene replacement to factor VIII (FVIII)-secreting cells. The promoter sequence and the regulatory elements involved in the modulation of F8 expression are still poorly characterized and biased by the historical assumption that FVIII expression is mainly in hepatocytes. Bioinformatic analyses have highlighted an underestimated complexity in gene expression at this locus, suggesting an activation of pF8 in more cell types than those previously expected. C57Bl/6 mice injected with a lentiviral vector expressing green fluorescent protein (GFP) under the pF8 (lentiviral vector [LV].pF8.GFP) confirm the predominant GFP expression in liver sinusoidal endothelial cells, with a few positive cells detectable also in hematopoietic organs. Therapeutic gene delivery (LV.pF8.FVIII) in hemophilic C57/Bl6 and 129-Bl6 mice successfully corrected the bleeding phenotype, rescuing up to 25% FVIII activity, using a codon-optimized FVIII, with sustained activity for the duration of the experiment (1 year) without inhibitor formation. Of note, LV.pF8.FVIII delivery in FVIII-immunized HA mice resulted in the complete reversion of the inhibitor titer with the recovery of therapeutic FVIII activity. Depletion of regulatory T cells (Tregs) in LV-treated mice allowed the formation of anti-FVIII antibodies, indicating a role for Tregs in immune tolerance induction. The significant blood loss reduction observed in all LV.pF8.FVIII-treated mice 1 year after injection confirmed the achievement of a long-term phenotypic correction. Altogether, our results highlight the potency of pF8-driven transgene expression to correct the bleeding phenotype in HA, as well as potentially in other diseases in which an endothelial-specific expression is required.
Collapse
|
14
|
Martorell L, Cortina V, Parra R, Barquinero J, Vidal F. Variable readthrough responsiveness of nonsense mutations in hemophilia A. Haematologica 2020; 105:508-518. [PMID: 31197069 PMCID: PMC7012483 DOI: 10.3324/haematol.2018.212118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/11/2019] [Indexed: 12/26/2022] Open
Abstract
Readthrough therapy relies on the use of small molecules that enable premature termination codons in mRNA open reading frames to be misinterpreted by the translation machinery, thus allowing the generation of full-length, potentially functional proteins from mRNA carrying nonsense mutations. In patients with hemophilia A, nonsense mutations potentially sensitive to readthrough agents represent approximately 16% of the point mutations. The aim of this study was to measure the readthrough effect of different compounds and to analyze the influence of premature termination codon context in selected nonsense mutations causing hemophilia A. To this end, primary fibroblasts from three patients with hemophilia A caused by nonsense mutations (p.W1586X, p.Q1636X and p.R1960X) and Chinese hamster ovary (CHO) cells transfected with 12 different plasmids encoding mutated F8 (p.Q462X, p.Q1705X, p.Q1764X, p.W274X, p.W1726X, p.W2015X, p.W2131X, p.R1715X, p.R1822X, p.R1960X, p.R2071X and p.R2228X) were treated with gentamicin, geneticin, PTC124, RTC13 or RTC14. Responses were assessed by analyzing not only F8 mRNA expression and FVIII biosynthesis (FVIII antigen by ELISA, western blot and immunofluorescence) but also the FVIII activity (by chromogenic assay). In the patients' fibroblasts, readthrough agents neither stabilized F8 mRNA nor increased FVIII protein or activity to detectable levels. In CHO cells, only in five of the 12 F8 variants, readthrough treatment increased both FVIII antigen and activity levels, which was associated with a reduction in intracellular accumulation of truncated forms and an increase in full-length proteins. These results provide experimental evidence of genetic context dependence of nonsense suppression by readthrough agents and of factors predicting responsiveness.
Collapse
Affiliation(s)
- Lluis Martorell
- Gene and Cell Therapy Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB).,Congenital Coagulopathies Laboratory, Banc de Sang i Teixits (BST)
| | - Vicente Cortina
- Vall d'Hebron Core Laboratory (Section of Thrombosis and Haemostasis), Hospital Vall d'Hebron
| | | | - Jordi Barquinero
- Gene and Cell Therapy Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB)
| | - Francisco Vidal
- Congenital Coagulopathies Laboratory, Banc de Sang i Teixits (BST) .,Molecular Diagnosis and Therapy Unit, VHIR-UAB.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
| |
Collapse
|
15
|
Ling G, Tuddenham EGD. Factor VIII: the protein, cloning its gene, synthetic factor and now - 35 years later - gene therapy; what happened in between? Br J Haematol 2020; 189:400-407. [PMID: 31900934 DOI: 10.1111/bjh.16311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The foundation of haemophilia A therapy in the last 35 years has been critically dependent on isolation of the Factor VIII (FVIII) protein and discovery of the cDNA sequence of the FVIII gene, published in 1984. Identification of the FVIII sequence resulted in a new era of recombinant concentrates and led to significant improvements in safety, set against the tragedy of widespread HIV and hepatitis infections in haemophilia patients from contaminated plasma-based products. We chronicle the scientific methods and race leading up to the publication of the FVIII DNA sequence and the legacy that follows through to revolutionary gene therapy treatment in clinical trials today.
Collapse
Affiliation(s)
- Gavin Ling
- Haemostasis and Thrombosis Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Edward G D Tuddenham
- Katherine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Abstract
Von Willebrand factor (VWF) and coagulation factor VIII (FVIII) circulate as a complex in plasma and have a major role in the hemostatic system. VWF has a dual role in hemostasis. It promotes platelet adhesion by anchoring the platelets to the subendothelial matrix of damaged vessels and it protects FVIII from proteolytic degradation. Moreover, VWF is an acute phase protein that has multiple roles in vascular inflammation and is massively secreted from Weibel-Palade bodies upon endothelial cell activation. Activated FVIII on the other hand, together with coagulation factor IX forms the tenase complex, an essential feature of the propagation phase of coagulation on the surface of activated platelets. VWF deficiency, either quantitative or qualitative, results in von Willebrand disease (VWD), the most common bleeding disorder. The deficiency of FVIII is responsible for Hemophilia A, an X-linked bleeding disorder. Here, we provide an overview on the role of the VWF-FVIII interaction in vascular physiology.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.
| |
Collapse
|
17
|
Venous thromboembolism, factor VIII and chronic kidney disease. Thromb Res 2018; 170:10-19. [PMID: 30081388 DOI: 10.1016/j.thromres.2018.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) affects 30 million Americans and is associated with approximately a two-fold increased risk of venous thromboembolism (VTE). There is a graded increased risk of VTE across declining kidney function, as measured by estimated glomerular filtration rate (eGFR) and albuminuria. When patients with end-stage kidney disease (ESKD) experience VTE they are more likely than the general population to be hospitalized and they have a higher mortality. The incidence and consequences of VTE may also differ depending on the cause of kidney disease. In addition, kidney transplant patients with VTE are at a greater risk for death and graft loss than transplant patients without VTE. The reasons that patients with CKD are at increased risk of VTE are not well understood, but recent data suggest that factor VIII is a mediator. Factor VIII is an essential cofactor in the coagulation cascade and a strong risk factor for VTE in general. It is inversely correlated with eGFR and prospective studies demonstrate that factor VIII activity predicts incident CKD and rapid eGFR decline. The etiology of CKD may also influence factor VIII levels. This review summarizes the epidemiology VTE in CKD and reviews the biochemistry of factor VIII and determinants of its levels, including von Willebrand factor and ABO blood group. We explore mechanisms by which the complications of CKD might give rise to higher factor VIII and suggests future research directions to understand how factor VIII and CKD are linked.
Collapse
|
18
|
Lallukka S, Luukkonen PK, Zhou Y, Isokuortti E, Leivonen M, Juuti A, Hakkarainen A, Orho-Melander M, Lundbom N, Olkkonen VM, Lassila R, Yki-Järvinen H. Obesity/insulin resistance rather than liver fat increases coagulation factor activities and expression in humans. Thromb Haemost 2017; 117:286-294. [DOI: 10.1160/th16-09-0716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
SummaryIncreased liver fat may be caused by insulin resistance and adipose tissue inflammation or by the common I148M variant in PNPLA3 at rs738409, which lacks both of these features. We hypothesised that obesity/insulin resistance rather than liver fat increases circulating coagulation factor activities. We measured plasma prothrombin time (PT, Owren method), activated partial thromboplastin time (APTT), activities of several coagulation factors, VWF:RCo and fibrinogen, and D-dimer concentration in 92 subjects divided into groups based on insulin sensitivity [insulin-resistant (‘IR’) versus insulin-sensitive (‘IS’)] and PNPLA3 genotype (PNPLA3148MM/MI vs PNPLA3148II). Liver fat content (1H-MRS) was similarly increased in ‘IR’ (13 ± 1 %) and PNPLA3148MM/MI (12 ± 2 %) as compared to ‘IS’ (6 ± 1 %, p < 0.05) and PNPLA3148II (8 ± 1 %, p < 0.05), respectively. FVIII, FIX, FXIII, fibrinogen and VWF:RCo activities were increased, and PT and APTT shortened in ‘IR’ versus ‘IS’, in contrast to these factors being similar between PNPLA3148MM/MI and PNPLA3148II groups. In subjects undergoing a liver biopsy and entirely lacking the I148M variant, insulin-resistant subjects had higher hepatic expression of F8, F9 and FGG than equally obese insulin-sensitive subjects. Expression of pro-inflammatory genes in adipose tissue correlated positively with PT (% of normal), circulating FVIII, FIX, FXI, VWR:RCo and fibrinogen, and expression of anti-inflammatory genes negatively with PT (%), FIX and fibrinogen. We conclude that obesity/insulin resistance rather than an increase in liver fat is associated with a procoagulant plasma profile. This reflects adipose tissue inflammation and increased hepatic production of coagulation factors and their susceptibility for activation.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
19
|
Sokal EM, Lombard CA, Roelants V, Najimi M, Varma S, Sargiacomo C, Ravau J, Mazza G, Jamar F, Versavau J, Jacobs V, Jacquemin M, Eeckhoudt S, Lambert C, Stéphenne X, Smets F, Hermans C. Biodistribution of Liver-Derived Mesenchymal Stem Cells After Peripheral Injection in a Hemophilia A Patient. Transplantation 2017; 101:1845-1851. [PMID: 28738402 DOI: 10.1097/tp.0000000000001773] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND With the exception of liver transplantation, there is no cure for hemophilia, which is currently managed by preemptive replacement therapy. Liver-derived stem cells are in clinical development for inborn and acquired liver diseases and could represent a curative treatment for hemophilia A. The liver is a major factor VIII (FVIII) synthesis site, and mesenchymal stem cells have been shown to control joint bleeding in animal models of hemophilia. Adult-derived human liver stem cells (ADHLSCs) have mesenchymal characteristics and have been shown able to engraft in and repopulate both animal and human livers. Thus, the objectives were to evaluate the potency of ADHLSCs to control bleeding in a hemophilia A patient and assess the biodistribution of the cells after intravenous injection. METHODS A patient suffering from hemophilia A was injected with repeated doses of ADHLSCs via a peripheral vein (35 million In-oxine-labeled cells, followed by 125 million cells the next day, and 3 infusions of 250 million cells every 2 weeks thereafter; total infusion period, 50 days). RESULTS After cell therapy, we found a temporary (15 weeks) decrease in the patient's FVIII requirements and severe bleeding complications, despite a lack of increase in circulating FVIII. The cells were safely administered to the patient via a peripheral vein. Biodistribution analysis revealed an initial temporary entrapment of the cells in the lungs, followed by homing to the liver and to a joint afflicted with hemarthrosis. CONCLUSION These results suggest the potential use of ADHLSCs in the treatment of hemophilia A.
Collapse
Affiliation(s)
- Etienne M Sokal
- 1 Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie & Hépatologie Pédiatrique, Brussels, Belgium.2 Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Brussels, Belgium.3 Centre de Thérapie Cellulaire et Tissulaire, Cliniques Universitaires St Luc, Brussels, Belgium.4 Service de Médecine Nucléaire, Cliniques Universitaires St Luc, Brussels, Belgium.5 Division of Medicine, Institute for Liver and Digestive Health, Royal Free Hospital, University College of London, London, United Kingdom.6 Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium.7 Service d'Hématologie, Cliniques Universitaires St Luc, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jourdy Y, Nougier C, Roualdes O, Fretigny M, Durand B, Negrier C, Vinciguerra C. Characterization of five associations ofF8missense mutations containing FVIII B domain mutations. Haemophilia 2016; 22:583-9. [DOI: 10.1111/hae.12906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Y. Jourdy
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon1; Université de Lyon; Lyon France
| | - C. Nougier
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon1; Université de Lyon; Lyon France
| | - O. Roualdes
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon1; Université de Lyon; Lyon France
| | - M. Fretigny
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
| | - B. Durand
- Hospices Civils de Lyon; Hôpital de la Croix Rousse; Service d'hématologie Biologique; Lyon France
| | - C. Negrier
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon1; Université de Lyon; Lyon France
| | - C. Vinciguerra
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon1; Université de Lyon; Lyon France
| |
Collapse
|
21
|
Factor VIII Is Synthesized in Human Endothelial Cells, Packaged in Weibel-Palade Bodies and Secreted Bound to ULVWF Strings. PLoS One 2015; 10:e0140740. [PMID: 26473492 PMCID: PMC4608722 DOI: 10.1371/journal.pone.0140740] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
The cellular synthesis site and ensuing storage location for human factor VIII (FVIII), the coagulation protein deficient in hemophilia A, has been elusive. FVIII stability and half-life is dependent on non-covalent complex formation with von Willebrand factor (VWF) to avoid proteolysis and clearance. VWF is synthesized in megakaryocytes and endothelial cells, and is stored and secreted from platelet alpha granules and Weibel-Palade bodies of endothelial cells. In this paper we provide direct evidence for FVIII synthesis in 2 types of primary human endothelial cells: glomerular microvascular endothelial cells (GMVECs) and umbilical vein endothelial cells (HUVECs). Gene expression quantified by real time PCR revealed that levels of F8 and VWF are similar in GMVECs and HUVECs. Previous clinical studies have shown that stimulation of vasopressin V2 receptors causes parallel secretion of both proteins. In this study, we found that both endothelial cell types express AVPR2 (vasopressin V2 receptor gene) and that AVPR2 mRNA levels are 5-fold higher in GMVECs than HUVECs. FVIII and VWF proteins were detected by fluorescent microscopy in Weibel-Palade bodies within GMVECs and HUVECs using antibodies proven to be target specific. Visual presence of FVIII and VWF in Weibel-Palade bodies was confirmed by correlation measurements. The high extent of correlation was compared with negative correlation values obtained from FVIII detection with cytoplasmic proteins, β-actin and Factor H. FVIII activity was positive in GMVEC and HUVEC cell lysates. Stimulated GMVECs and HUVECs were found to secrete cell-anchored ultra-large VWF strings covered with bound FVIII.
Collapse
|
22
|
Martorell L, Corrales I, Ramirez L, Parra R, Raya A, Barquinero J, Vidal F. Molecular characterization of ten
F8
splicing mutations in RNA isolated from patient's leucocytes: assessment of
in silico
prediction tools accuracy. Haemophilia 2015; 21:249-257. [DOI: 10.1111/hae.12562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2014] [Indexed: 01/01/2023]
Affiliation(s)
- L. Martorell
- Gene and Cell Therapy Vall d'Hebron Research Institute Universitat Autònoma de Barcelona (VHIR‐UAB)Barcelona Spain
- Control of Stem Cell Potency Institute for Bioengineering of Catalonia (IBEC)Barcelona Spain
- Molecular Diagnosis and Therapy Vall d'Hebron Research Institute Universitat Autònoma de Barcelona (VHIR‐UAB)Barcelona Spain
| | - I. Corrales
- Molecular Diagnosis and Therapy Vall d'Hebron Research Institute Universitat Autònoma de Barcelona (VHIR‐UAB)Barcelona Spain
- Congenital Coagulopathies Laboratory Blood and Tissue Bank (BST)Barcelona Spain
| | - L. Ramirez
- Molecular Diagnosis and Therapy Vall d'Hebron Research Institute Universitat Autònoma de Barcelona (VHIR‐UAB)Barcelona Spain
- Congenital Coagulopathies Laboratory Blood and Tissue Bank (BST)Barcelona Spain
| | - R. Parra
- Congenital Coagulopathies Laboratory Blood and Tissue Bank (BST)Barcelona Spain
- Haemophilia Unit Vall d'Hebron University HospitalBarcelona Spain
| | - A. Raya
- Control of Stem Cell Potency Institute for Bioengineering of Catalonia (IBEC)Barcelona Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona Spain
- Center of Regenerative Medicine in Barcelona (CMRB)Barcelona Spain
- Networking Center of Biomedical Research in Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona Spain
| | - J. Barquinero
- Gene and Cell Therapy Vall d'Hebron Research Institute Universitat Autònoma de Barcelona (VHIR‐UAB)Barcelona Spain
| | - F. Vidal
- Molecular Diagnosis and Therapy Vall d'Hebron Research Institute Universitat Autònoma de Barcelona (VHIR‐UAB)Barcelona Spain
- Congenital Coagulopathies Laboratory Blood and Tissue Bank (BST)Barcelona Spain
| |
Collapse
|
23
|
Abstract
Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| | - Roland W Herzog
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| |
Collapse
|
24
|
Fomin ME, Togarrati PP, Muench MO. Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost 2014; 12:1954-65. [PMID: 25297648 PMCID: PMC4388483 DOI: 10.1111/jth.12750] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/11/2022]
Abstract
Hemophilia A results from an insufficiency of factor VIII (FVIII). Although replacement therapy with plasma-derived or recombinant FVIII is a life-saving therapy for hemophilia A patients, such therapy is a life-long treatment rather than a cure for the disease. In this review, we discuss the possibilities, progress, and challenges that remain in the development of a cell-based cure for hemophilia A. The success of cell therapy depends on the type and availability of donor cells, the age of the host and method of transplantation, and the levels of engraftment and production of FVIII by the graft. Early therapy, possibly even prenatal transplantation, may yield the highest levels of engraftment by avoiding immunological rejection of the graft. Potential cell sources of FVIII include a specialized subset of endothelial cells known as liver sinusoidal endothelial cells (LSECs) present in the adult and fetal liver, or patient-specific endothelial cells derived from induced pluripotent stem cells that have undergone gene editing to produce FVIII. Achieving sufficient engraftment of transplanted LSECs is one of the obstacles to successful cell therapy for hemophilia A. We discuss recent results from transplants performed in animals that show production of functional and clinically relevant levels of FVIII obtained from donor LSECs. Hence, the possibility of treating hemophilia A can be envisioned through persistent production of FVIII from transplanted donor cells derived from a number of potential cell sources or through creation of donor endothelial cells from patient-specific induced pluripotent stem cells.
Collapse
Affiliation(s)
- Marina E. Fomin
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Padma Priya Togarrati
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Marcus O. Muench
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
- Liver Center, University of California, San Francisco, CA
| |
Collapse
|
25
|
Brummel-Ziedins KE. Developing individualized coagulation profiling of disease risk: Thrombin generation dynamic models of the pro and anticoagulant balance. Thromb Res 2014; 133 Suppl 1:S9-S11. [DOI: 10.1016/j.thromres.2014.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Aledort L, Ljung R, Mann K, Pipe S. Factor VIII therapy for hemophilia A: current and future issues. Expert Rev Hematol 2014; 7:373-85. [PMID: 24717090 DOI: 10.1586/17474086.2014.899896] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hemophilia A is a congenital, recessive, X-linked bleeding disorder that is managed with infusions of plasma-derived or recombinant factor (F) VIII. The primary considerations in FVIII replacement therapy today are the: 1) immunogenicity of FVIII concentrates, 2) role of longer-acting FVIII products, 3) prophylactic use of FVIII in children and adults with severe hemophilia A, and 4) affordability and availability of FVIII products. Improving patient outcomes by increasing the use of FVIII prophylaxis, preventing or eliminating FVIII inhibitors, and expanding access to FVIII concentrates in developing countries are the major challenges confronting clinicians who care for patients with hemophilia A.
Collapse
Affiliation(s)
- Louis Aledort
- Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1006, Newyork, NY, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The primary cellular source of factor VIII (FVIII) biosynthesis is controversial, with contradictory evidence supporting an endothelial or hepatocyte origin. LMAN1 is a cargo receptor in the early secretory pathway that is responsible for the efficient secretion of factor V (FV) and FVIII to the plasma. Lman1 mutations result in combined deficiency of FV and FVIII, with levels of both factors reduced to ~10% to 15% of normal in human patients. We generated Lman1 conditional knockout mice to characterize the FVIII secretion profiles of endothelial cells and hepatocytes. We demonstrate that endothelial cells are the primary biosynthetic source of murine FVIII and that hepatocytes make no significant contribution to the plasma FVIII pool. Utilizing RiboTag mice and polyribosome immunoprecipitation, we performed endothelial cell-specific messenger RNA isolation and quantitative polymerase chain reaction analyses to confirm that endothelial cells highly express F8 and to explore the heterogeneity of F8 expression in different vascular beds. We demonstrate that endothelial cells from multiple, but not all, tissues contribute to the plasma FVIII pool in the mouse.
Collapse
|
28
|
A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood 2014; 123:3706-13. [PMID: 24705491 DOI: 10.1182/blood-2014-02-555151] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cellular source of coagulation factor VIII (FVIII) remains controversial. Like many coagulation proteins, FVIII is produced in the liver, and FVIII synthesis has long been associated with hepatocytes. But extrahepatic synthesis also occurs, and mounting evidence suggests that hepatocytes are not responsible for FVIII production. To determine the tissue that synthesizes FVIII, we developed a Cre/lox-dependent conditional knockout (KO) model in which exons 17 and 18 of the murine factor VIII gene (F8) are flanked by loxP sites, or floxed (F8(F)). In cells expressing Cre-recombinase, the floxed sequence is deleted, resulting in F8(F→KO) gene inactivation. When F8(F) mice were crossed with various tissue-specific Cre strains, we found that hepatocyte-specific F8-KO mice are indistinguishable from controls, whereas efficient endothelial-KO models display a severe hemophilic phenotype with no detectable plasma FVIII activity. A hematopoietic Cre model was more equivocal, so experimental bone marrow transplantation was used to examine hematopoietic FVIII synthesis. FVIII(null) mice that received bone marrow transplants from wild-type donors were still devoid of plasma FVIII activity after hematopoietic donor cell engraftment. Our results indicate that endothelial cells are the predominant, and possibly exclusive, source of plasma FVIII.
Collapse
|
29
|
Affiliation(s)
- E Tuddenham
- Department of Haematology, Katharine Dormandy Haemophilia Centre, University College London, Royal Free Hospital London, Hampstead, London, UK
| |
Collapse
|
30
|
Shahani T, Covens K, Lavend'homme R, Jazouli N, Sokal E, Peerlinck K, Jacquemin M. Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J Thromb Haemost 2014; 12:36-42. [PMID: 24118899 DOI: 10.1111/jth.12412] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Although the liver is the major site of coagulation factor VIII (FVIII) synthesis, the type of cells producing FVIII within the liver is still unclear. OBJECTIVES To measure FVIII in extracts of primary liver sinusoidal endothelial cells (LSECs) and hepatocytes, thereby preventing potential bias resulting from the modifications of the cell phenotype that can take place during in vitro culture. METHODS LSECs were purified by flow cytometry cell sorting on the basis of their coexpression of Tie2 and CD32b. The purity of the cells was controlled by RNA sequencing. FVIII activity (FVIII:C) in extracts of purified cells was measured with a sensitive FVIII chromogenic assay, in which the specificity of the reaction is controlled by neutralization of FVIII activity with specific inhibitor antibodies. RESULTS The FVIII:C concentration in purified LSECs ranged from 0.3 to 2.8 nU per cell. In contrast, FVIII:C was undetectable in hepatocytes. The intracellular FVIII:C concentrations are therefore at least 10-100-fold higher in LSECs than in hepatocytes. CONCLUSIONS Our data demonstrate that LSECs, but not hepatocytes, contain measurable amounts of FVIII:C, and suggest that the former are the main cells producing FVIII in the human liver.
Collapse
Affiliation(s)
- T Shahani
- Department of Genetics and Molecular Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | | | | | | | | | |
Collapse
|
31
|
Nougier C, Roualdes O, Fretigny M, d'Oiron R, Costa C, Negrier C, Vinciguerra C. Characterization of four novel molecular changes in the promoter region of the factor VIII gene. Haemophilia 2013; 20:e149-56. [DOI: 10.1111/hae.12346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 01/10/2023]
Affiliation(s)
- C. Nougier
- Service d'Hématologie Biologique; HCL, Hôpital Edouard Herriot; Lyon France
- EAM 4174 Hémostase, Inflammation et Sepsis; Université Claude Bernard Lyon 1; Lyon France
| | - O. Roualdes
- Service d'Hématologie Biologique; HCL, Hôpital Edouard Herriot; Lyon France
- EAM 4174 Hémostase, Inflammation et Sepsis; Université Claude Bernard Lyon 1; Lyon France
| | - M. Fretigny
- Service d'Hématologie Biologique; HCL, Hôpital Edouard Herriot; Lyon France
| | - R. d'Oiron
- Centre de Traitement pour Hémophiles, AP-HP Hôpital Bicêtre; Université Paris XI; le Kremlin-Bicêtre France
| | - C. Costa
- Département de Génétique; CHU Henri Mondor-AP-HP; Créteil France
| | - C. Negrier
- Service d'Hématologie Biologique; HCL, Hôpital Edouard Herriot; Lyon France
- EAM 4174 Hémostase, Inflammation et Sepsis; Université Claude Bernard Lyon 1; Lyon France
| | - C. Vinciguerra
- Service d'Hématologie Biologique; HCL, Hôpital Edouard Herriot; Lyon France
- EAM 4174 Hémostase, Inflammation et Sepsis; Université Claude Bernard Lyon 1; Lyon France
| |
Collapse
|
32
|
The mesenchymal stem cells derived from transgenic mice carrying human coagulation factor VIII can correct phenotype in hemophilia A mice. J Genet Genomics 2013; 40:617-28. [PMID: 24377868 DOI: 10.1016/j.jgg.2013.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022]
Abstract
Hemophilia A (HA) is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. Previous studies showed that introduction of mesenchymal stem cells (MSCs) modified by FVIII-expressing retrovirus may result in phenotypic correction of HA animals. This study aimed at the investigation of an alternative gene therapy strategy that may lead to sustained FVIII transgene expression in HA mice. B-domain-deleted human FVIII (hFVIIIBD) vector was microinjected into single-cell embryos of wild-type mice to generate a transgenic mouse line, from which hFVIIIBD-MSCs were isolated, followed by transplantation into HA mice. RT-PCR and real-time PCR analysis demonstrated the expression of hFVIIIBD in multi-organs of recipient HA mice. Immunohistochemistry showed the presence of hFVIIIBD positive staining in multi-organs of recipient HA mice. ELISA indicated that plasma hFVIIIBD level in recipient mice reached its peak (77 ng/mL) at the 3rd week after implantation, and achieved sustained expression during the 5-week observation period. Plasma FVIII activities of recipient HA mice increased from 0% to 32% after hFVIIIBD-MSCs transplantation. APTT (activated partial thromboplastin time) value decreased in hFVIIIBD-MSCs transplanted HA mice compared with untreated HA mice (45.5 s vs. 91.3 s). Our study demonstrated an effective phenotypic correction in HA mice using genetically modified MSCs from hFVIIIBD transgenic mice.
Collapse
|
33
|
Pandey GS, Yanover C, Miller-Jenkins LM, Garfield S, Cole SA, Curran JE, Moses EK, Rydz N, Simhadri V, Kimchi-Sarfaty C, Lillicrap D, Viel KR, Przytycka TM, Pierce GF, Howard TE, Sauna ZE. Endogenous factor VIII synthesis from the intron 22-inverted F8 locus may modulate the immunogenicity of replacement therapy for hemophilia A. Nat Med 2013; 19:1318-24. [PMID: 24037092 PMCID: PMC4123441 DOI: 10.1038/nm.3270] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 06/13/2013] [Indexed: 11/09/2022]
Abstract
Neutralizing antibodies (inhibitors) to replacement factor VIII (FVIII, either plasma derived or recombinant) impair the effective management of hemophilia A. Individuals with hemophilia A due to major deletions of the FVIII gene (F8) lack antigenically cross-reactive material in their plasma ("CRM-negative"), and the prevalence of inhibitors in these individuals may be as high as 90%. Conversely, individuals with hemophilia A caused by F8 missense mutations are CRM-positive, and their overall prevalence of inhibitors is <10% (ref. 2). Individuals with the F8 intron 22 inversion (found in ∼50% of individuals with severe hemophilia A) have been grouped with the former on the basis of their genetic defect and CRM-negative status. However, only ∼20% of these individuals develop inhibitors. Here we demonstrate that the levels of F8 mRNA and intracellular FVIII protein in B lymphoblastoid cells and liver biopsies from individuals with the intron 22 inversion are comparable to those in healthy controls. These results support the hypothesis that most individuals with the intron 22 inversion are tolerized to FVIII and thus do not develop inhibitors. Furthermore, we developed a new pharmacogenetic algorithm that permits the stratification of inhibitor risk for individuals and subpopulations by predicting the immunogenicity of replacement FVIII using, as input, the number of putative T cell epitopes in the infused protein and the competence of major histocompatibility complex class II molecules to present such epitopes. This algorithm showed statistically significant accuracy in predicting the presence of inhibitors in 25 unrelated individuals with the intron 22 inversion.
Collapse
Affiliation(s)
- Gouri Shankar Pandey
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Muciño-Bermejo J, Carrillo-Esper R, Uribe M, Méndez-Sánchez N. Coagulation abnormalities in the cirrhotic patient. Ann Hepatol 2013. [PMID: 24018489 DOI: 10.1016/s1665-2681(19)31312-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
35
|
Sanada C, Kuo CJ, Colletti EJ, Soland M, Mokhtari S, Knovich MA, Owen J, Zanjani ED, Porada CD, Almeida-Porada G. Mesenchymal stem cells contribute to endogenous FVIII:c production. J Cell Physiol 2013; 228:1010-6. [PMID: 23042590 DOI: 10.1002/jcp.24247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/26/2012] [Indexed: 11/08/2022]
Abstract
Besides the liver, it has been difficult to identify which organ(s) and/or cellular component(s) contribute significantly to the production of human FVIII:c (FVIII). Thus far, only endothelial cells have been shown to constitute a robust extrahepatic source of FVIII, possibly explaining both the diverse presence of FVIII mRNA in the body, and the observed increase in FVIII levels during liver failure. Here, we investigate whether human mesenchymal stem cells (MSC), ubiquitously present in different organs, could also contribute to FVIII production. MSC isolated from human lung, liver, brain, and bone marrow expressed FVIII message as determined by quantitative-RT-PCR. Using an antibody specific for FVIII, confocal microscopy, and umbilical cord-derived endothelial cells (HUVEC) as a negative control, we demonstrated that, in MSC, FVIII protein was not stored in granules; rather, it localized to the perinuclear region. Furthermore, functional FVIII was detected in MSC supernatants and cell lysates by aPTT and chromogenic assays. These results demonstrate that MSC can contribute at low levels to the functional FVIII pool, and advance the understanding of the physiology of FVIII production and secretion.
Collapse
Affiliation(s)
- Chad Sanada
- Department of Animal Biotechnology, University of Nevada, Reno, NV, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
In this study, we characterized tissue factor (TF) expression in mouse hepatocytes (HPCs) and evaluated its role in mouse models of HPC transplantation and acetaminophen (APAP) overdose. TF expression was significantly reduced in isolated HPCs and liver homogenates from TF(flox/flox)/albumin-Cre mice (HPC(ΔTF) mice) compared with TF(flox/flox) mice (control mice). Isolated mouse HPCs expressed low levels of TF that clotted factor VII-deficient human plasma. In addition, HPC TF initiated factor Xa generation without exogenous factor VIIa, and TF activity was increased dramatically after cell lysis. Treatment of HPCs with an inhibitory TF antibody or a cell-impermeable lysine-conjugating reagent prior to lysis substantially reduced TF activity, suggesting that TF was mainly present on the cell surface. Thrombin generation was dramatically reduced in APAP-treated HPC(ΔTF) mice compared with APAP-treated control mice. In addition, thrombin generation was dependent on donor HPC TF expression in a model of HPC transplantation. These results suggest that mouse HPCs constitutively express cell surface TF that mediates activation of coagulation during hepatocellular injury.
Collapse
|
37
|
Ferro D, Angelico F, Caldwell SH, Violi F. Bleeding and thrombosis in cirrhotic patients: what really matters? Dig Liver Dis 2012; 44:275-9. [PMID: 22119620 DOI: 10.1016/j.dld.2011.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 12/11/2022]
Abstract
Bleeding complications, particularly in the gastro-intestinal tract, may complicate the clinical course of liver cirrhosis. Coexistence of abnormal global tests exploring the platelet and clotting systems generated the hypothesis that cirrhotic patients have "coagulopathy" predisposing to bleeding complications. Using more sophisticated laboratory methods this hypothesis has been partly confuted as cirrhotic patients actually disclose an ongoing prothrombotic state in the portal and systemic circulation that could predispose to thrombosis. Recent data of the literature support this hypothesis as portal vein thrombosis and peripheral thrombosis are frequent features of cirrhosis. We reviewed the literature data to assess the prevalence of bleeding and thrombotic complication in cirrhosis and the role of clotting activation in precipitating them. Whilst it appears scarcely relevant the interplay between the so called "coagulopathy" and bleeding, the interplay between clotting activation and thrombosis seems to be relevant but needs more accurate investigation in larger study populations.
Collapse
Affiliation(s)
- Domenico Ferro
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | | | | | | |
Collapse
|
38
|
Abstract
To better understand cellular basis of hemophilia, cell types capable of producing FVIII need to be identified. We determined whether bone marrow (BM)-derived cells would produce cells capable of synthesizing and releasing FVIII by transplanting healthy mouse BM into hemophilia A mice. To track donor-derived cells, we used genetic reporters. Use of multiple coagulation assays demonstrated whether FVIII produced by discrete cell populations would correct hemophilia A. We found that animals receiving healthy BM cells survived bleeding challenge with correction of hemophilia, although donor BM-derived hepatocytes or endothelial cells were extremely rare, and these cells did not account for therapeutic benefits. By contrast, donor BM-derived mononuclear and mesenchymal stromal cells were more abundant and expressed FVIII mRNA as well as FVIII protein. Moreover, injection of healthy mouse Kupffer cells (liver macrophage/mononuclear cells), which predominantly originate from BM, or of healthy BM-derived mesenchymal stromal cells, protected hemophilia A mice from bleeding challenge with appearance of FVIII in blood. Therefore, BM transplantation corrected hemophilia A through donor-derived mononuclear cells and mesenchymal stromal cells. These insights into FVIII synthesis and production in alternative cell types will advance studies of pathophysiological mechanisms and therapeutic development in hemophilia A.
Collapse
|
39
|
Expression of coagulation factors from murine induced pluripotent stem cell-derived liver cells. Blood Coagul Fibrinolysis 2011; 22:271-9. [PMID: 21415711 DOI: 10.1097/mbc.0b013e328344c63b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A protocol to differentiate liver cells from induced pluripotent stem (iPS) cells is being established. However, the ability of these differentiated iPS cells to express liver-specific proteins, such as coagulation cascade and related factors, has yet to be assessed. This study evaluated whether liver-like populations differentiated from murine iPS cells gain the ability to produce coagulation-related factors. Following differentiation of murine iPS cells into hematopoietic-like and liver-like embryoid bodies, we assessed gene expression profiles for coagulation-related markers, including fibrinogen, factors II, V, VII, VIII, IX, X, XI, XII, and XIIIβ, protein C, protein S, antithrombin, plasminogen, von Willebrand factor, and ADAMTS13 by real-time reverse transcription PCR. Liver-like embryoid bodies demonstrated strong expression levels of nearly all the coagulation-related genes assessed, compared with undifferentiated iPS cells and hematopoietic-like embryoid bodies. We also confirmed efficient translation and secretion of fibrinogen and albumin (hepatocyte-specific marker proteins) into the conditioned medium by these differentiated cells, suggesting successful differentiation of iPS cells into the liver lineage. These findings suggest that iPS cells can be differentiated into liver-like populations that express coagulation-related factors. Liver-like embryoid bodies may provide a source for cell-based therapies directed toward liver diseases, including coagulation factor deficiencies in the future.
Collapse
|
40
|
Yadav N, Kanjirakkuzhiyil S, Ramakrishnan M, Das TK, Mukhopadhyay A. Factor VIII can be synthesized in hemophilia A mice liver by bone marrow progenitor cell-derived hepatocytes and sinusoidal endothelial cells. Stem Cells Dev 2011; 21:110-20. [PMID: 21480781 DOI: 10.1089/scd.2010.0569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hemophilia A (HA) is caused by mutation in factor VIII (FVIII) gene in humans; it leads to inadequate synthesis of active protein. Liver is the primary site of FVIII synthesis; however, the specific cell types responsible for its synthesis remain controversial. We propose that the severity of the bleeding disorder could be ameliorated by partial replacement of mutated liver cells by healthy cells in HA mice. The aim of this investigation was to study the cellular origin of FVIII by examining bone marrow cell therapy for treatment of HA in mice. Recipient liver was perturbed with either acetaminophen or monocrotaline to facilitate the engraftment and differentiation of lineage-depleted (Lin(-)) enhanced green fluorescent protein-expressing bone marrow cells. Immunohistochemical analysis of liver tissue was conducted to identify the donor-derived cells that expressed FVIII. This identification was confirmed by transmission electron microscopy and quantitative gene expression analysis. The phenotypic correction in HA mice was determined by tail-clip challenge and FVIII level in plasma by Chromogenix and activated partial thromboplastin time assays. Immunohistochemical analysis showed that von Willebrand factor and cytokeratin-18-expressing endothelial cells and hepatocytes, respectively, were obtained from BM-derived cells. Both cell types expressed FVIII light chain mRNA and protein, which was further confirmed by transmission electron microscopy. The transplanted HA mice showed FVIII activity in plasma (P<0.01) and survived tail-clip challenge (P<0.001). Thus, we conclude that BM-derived hepatocytes and endothelial cells can synthesize FVIII in liver and correct bleeding phenotype in HA mice.
Collapse
Affiliation(s)
- Neelam Yadav
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | |
Collapse
|
41
|
Recent advances in the development of coagulation factors and procoagulants for the treatment of hemophilia. Biochem Pharmacol 2011; 82:91-8. [PMID: 21453683 DOI: 10.1016/j.bcp.2011.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/14/2011] [Accepted: 03/18/2011] [Indexed: 12/20/2022]
Abstract
Hemophilia is a family of rare bleeding disorders. The two primary types, hemophilia A and hemophilia B, are caused by recessive X-chromosome linked mutations that result in deficiency of coagulation factor VIII (FVIII) or factor IX (FIX), respectively. Clinically, hemophilia is manifested by spontaneous bleeding, particularly into the joints (haemarthrosis) and soft tissue, and excessive bleeding following trauma or surgery. The total overall number of hemophilia patients worldwide is approximately 400,000, however only about 100,000 of these individuals are treated. The first treatment of hemophilia was initiated when it was determined that the clotting deficiency could be corrected by a plasma fraction taken from normal blood. The discovery of factor VIII enrichment by cryoprecipitation of plasma opened a new era of therapy which eventually led to the production of factor concentrates and the subsequent development of highly purified forms of plasma factors. The most significant improvements have been the availability of recombinant forms of factors VIII and IX. Unfortunately, recombinant factors still retain some of the limitations of plasma concentrates. These limitations include development of antibody responses in patients and the relatively short half-life of the molecules requiring frequent injection to maintain effective concentration. Treatment beyond replacement of native factors has been tried. They include the development of modified factor VIII and IX molecules with improved potency, stability and circulating half-life and enhancement of a prothrombotic responses and/or stabilization of coagulation factors via inhibition of key negative regulatory pathways. These approaches will be reviewed in this commentary.
Collapse
|
42
|
Factor VIII A3 domain substitution N1922S results in hemophilia A due to domain-specific misfolding and hyposecretion of functional protein. Blood 2011; 117:3190-8. [PMID: 21217077 DOI: 10.1182/blood-2010-09-307074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A point mutation leading to amino acid substitution N1922S in the A3 domain of factor VIII (fVIII) results in moderate to severe hemophilia A. A heterologous expression system comparing N1922S-fVIII and wild-type fVIII (wt-fVIII) demonstrated similar specific coagulant activities but poor secretion of N1922S-fVIII. Immunocytochemical analysis revealed that intracellular levels of N1922S-fVIII were similar to those of wt-fVIII. The specific activity of intracellular N1922S-fVIII was 10% of that of wt-fVIII, indicating the presence of large amounts of a nonfunctional N1922S-fVIII-folding intermediate. wt-fVIII colocalized with both endoplasmic reticulum (ER)- and Golgi-resident proteins. In contrast, N1922S-fVIII colocalized only with ER-resident proteins, indicating a block in transit from the ER to the Golgi. A panel of conformation-dependent monoclonal antibodies was used to determine native or nonnative folding of N1922S-fVIII. Intracellular N1922S-fVIII but not secreted N1922S-fVIII displayed abnormal folding in the A3 and C1 domains, indicating that the A1, A2, and C2 domains fold independently into antigenically intact tertiary structures, but that folding is stalled in the mutant A3 and its contiguous C1 domain. In summary, the N1922S substitution results in poor secretion of a functional protein, and the domain-specific defect in folding and intracellular trafficking of N1922S-fVIII is a novel mechanism for secretion defects leading to hemophilia A.
Collapse
|
43
|
Abstract
Liver cirrhosis is associated with number of hematological complications and coagulation disturbances. In view of various haemostatic abnormalities it is surprising that many patients do not bleed spontaneously. Severe coagulopathy of liver disease is more frequently seen in acute liver failure, but still remains important complication of liver cirrhosis and chronic liver failure. Decreased production of blood coagulation factors by the liver plays a key role in altered haemostasis in liver diseases. Altered fragile balance of blood coagulation proteins and infection are associated with both worsening coagulopathy and bleeding risk. Additional haemostatic abnormalities in patients with severe liver diseases are thrombocytopenia, chronic disseminated intravascular coagulation, accelerated fibrinolysis, hypofibrinogenemia and dysfibrinogenemia. In this review we discuss a complicated issue of multiple coagulopathies in patients with advanced liver dysfunction.
Collapse
|
44
|
Activation of human endothelial cells from specific vascular beds induces the release of a FVIII storage pool. Blood 2010; 115:4902-9. [DOI: 10.1182/blood-2009-07-232546] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAlthough the liver is known to be the main site of factor VIII (FVIII) production, other organs are probably also important for the regulation of FVIII secretion. However, the study of the regulation of extrahepatic FVIII production has been hampered by the lack of definitive identification of human tissues able to secrete FVIII. Recent studies have shown that lung endothelial cells can synthesize FVIII. We therefore studied the production of FVIII by endothelial cells purified from other vascular beds. Because physiologic stress results in a rapid elevation of FVIII, we also investigated whether endothelial cells can store FVIII and secrete it after treatment with agonists. Microvascular endothelial cells from lung, heart, intestine, and skin as well as endothelial cells from pulmonary artery constitutively secreted FVIII and released it after treatment with phorbol-myristate acetate and epinephrine. By contrast, endothelial cells from the aorta, umbilical artery and umbilical vein did not constitutively secrete FVIII or release it after treatment with agonists, probably because of a lack of FVIII synthesis. Extrahepatic endothelial cells from certain vascular beds therefore appear to be an important FVIII production and storage site with the potential to regulate FVIII secretion in chronic and acute conditions.
Collapse
|
45
|
Jeon HJ, Oh TK, Kim OH, Kim ST. Delivery of factor VIII gene into skeletal muscle cells using lentiviral vector. Yonsei Med J 2010; 51:52-7. [PMID: 20046514 PMCID: PMC2799978 DOI: 10.3349/ymj.2010.51.1.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/27/2009] [Accepted: 03/27/2009] [Indexed: 11/27/2022] Open
Abstract
PURPOSE This study was designed to investigate whether transduction of lentiviral vectors (LV) carrying human coagulation factor VIII (hFVIII) cDNA into skeletal muscle could increase circulating hFVIII concentrations. MATERIALS AND METHODS A LV containing bacterial LacZ gene as a control or human FVIII gene was intramuscularly administered into the thigh muscle of 5 weeks old Sparague-Dawley rats. The plasma human FVIII concentration and neutralizing anti-FVIII antibodies were measured for up to 12 weeks in these experimental animals. RESULTS The plasma human FVIII levels in the rats injected with LV carrying FVIII cDNA peaked at post-injection 1st week (5.19 +/- 0.14 ng/mL vs. 0.21 +/- 0.05 ng/mL in control rats , p < 0.05). Elevated hFVIII concentrations were maintained for 4 weeks (2.52 +/- 0.83 ng/mL vs. 0.17 +/- 0.08 ng/mL in control rats, p < 0.05) after a single intramuscular injection. In the Bethesda assay, neutralizing antibodies for FVIII protein were detected only in FVIII-LV injected rats by the 10th week, but not in control rats. CONCLUSION This study suggested that a single administration of an advanced generation LV carrying the human FVIII cDNA resulted in elevation of FVIII level in immune competent rats, and that this gene transfer approach to the skeletal muscle could be an effective tool in treatment of hemophilia A.
Collapse
Affiliation(s)
- Hyun Jeong Jeon
- Department of Internal Medicine, Chungbuk National University School of Medicine, Cheongju, Korea
| | - Tae Keun Oh
- Department of Internal Medicine, Chungbuk National University School of Medicine, Cheongju, Korea
| | - Oak Hee Kim
- Department of Internal Medicine, Chungbuk National University School of Medicine, Cheongju, Korea
| | - Seung Taik Kim
- Department of Internal Medicine, Chungbuk National University School of Medicine, Cheongju, Korea
| |
Collapse
|
46
|
The therapeutic effect of bone marrow-derived liver cells in the phenotypic correction of murine hemophilia A. Blood 2009; 114:4552-61. [PMID: 19752394 DOI: 10.1182/blood-2009-02-202788] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transdifferentiation of bone marrow cells (BMCs) into hepatocytes has created enormous interest in applying this process to the development of cellular medicine for degenerative and genetic diseases. Because the liver is the primary site of factor VIII (FVIII) synthesis, we hypothesized that the partial replacement of mutated liver cells by healthy cells in hemophilia A mice could manage the severity of the bleeding disorder. We perturbed the host liver with acetaminophen to facilitate the engraftment and hepatic differentiation of lineage-depleted enhanced green fluorescent protein-expressing BMCs. Immunohistochemistry experiments with the liver tissue showed that the donor-derived cells expressed the markers of both hepatocytes (albumin and cytokeratin-18) and endothelial cells (von Willebrand factor). The results of fluorescent in situ hybridization and immunocytochemistry experiments suggested that differentiation was direct in this model. The BMC-recipient mice expressed FVIII protein and survived in a tail clip challenge experiment. Furthermore, a coagulation assay confirmed that the plasma FVIII activity was maintained at 20.4% (+/- 3.6%) of normal pooled plasma activity for more than a year without forming its inhibitor. Overall, this report demonstrated that BMCs rescued the bleeding phenotype in hemophilia A mice, suggesting a potential therapy for this and other related disorders.
Collapse
|
47
|
|
48
|
Terraube V, O'Donnell JS, Jenkins PV. Factor VIII and von Willebrand factor interaction: biological, clinical and therapeutic importance. Haemophilia 2009; 16:3-13. [PMID: 19473409 DOI: 10.1111/j.1365-2516.2009.02005.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of factor VIII (FVIII) with von Willebrand Factor (VWF) is of direct clinical significance in the diagnosis and treatment of patients with haemophilia A and von Willebrand disease (VWD). A normal haemostatic response to vascular injury requires both FVIII and VWF. It is well-established that in addition to its role in mediating platelet to platelet and platelet to matrix binding, VWF has a direct role in thrombin and fibrin generation by acting as a carrier molecule for the cofactor FVIII. Recent studies show that the interaction affects not only the biology of both FVIII and VWF, and the pathology of haemophilia and VWD, but also presents opportunities in the treatment of haemophilia. This review details the mechanisms and the molecular determinants of FVIII interaction with VWF, and the role of FVIII-VWF interaction in modulating FVIII interactions with other proteases, cell types and cellular receptors. The effect of defective interaction of FVIII with VWF as a result of mutations in either protein is discussed.
Collapse
Affiliation(s)
- V Terraube
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
49
|
|
50
|
Theophilus BDM, Enayat MS, Williams MD, Hill FGH. Site and type of mutations in the factor VIII gene in patients and carriers of haemophilia A. Haemophilia 2008. [DOI: 10.1111/j.1365-2516.2001.00528.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|