1
|
Li Z, Wu Q, Yan N. A structural atlas of druggable sites on Na v channels. Channels (Austin) 2024; 18:2287832. [PMID: 38033122 PMCID: PMC10732651 DOI: 10.1080/19336950.2023.2287832] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability by initiating and propagating action potentials. Consistent with their physiological significance, dysfunction, or mutations in these channels are associated with various channelopathies. Nav channels are thereby major targets for various clinical and investigational drugs. In addition, a large number of natural toxins, both small molecules and peptides, can bind to Nav channels and modulate their functions. Technological breakthrough in cryo-electron microscopy (cryo-EM) has enabled the determination of high-resolution structures of eukaryotic and eventually human Nav channels, alone or in complex with auxiliary subunits, toxins, and drugs. These studies have not only advanced our comprehension of channel architecture and working mechanisms but also afforded unprecedented clarity to the molecular basis for the binding and mechanism of action (MOA) of prototypical drugs and toxins. In this review, we will provide an overview of the recent advances in structural pharmacology of Nav channels, encompassing the structural map for ligand binding on Nav channels. These findings have established a vital groundwork for future drug development.
Collapse
Affiliation(s)
- Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Liu X, Cao M, Mei W, Wang X, Wu Y. V1848I Mutation in the Voltage-Gated Sodium Channel Confers High-Level Resistance to Indoxacarb and Metaflumizone in Spodoptera exigua. INSECTS 2024; 15:777. [PMID: 39452352 PMCID: PMC11508211 DOI: 10.3390/insects15100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Spodoptera exigua is one of the most serious lepidopteran pests of global importance. With the intensive use of insecticides, S. exigua has evolved resistance to many insecticides, including the sodium channel blocker insecticides (SCBIs) indoxacarb and metaflumizone. In this study, we investigated the role of the V1848I mutation in the voltage-gated sodium channel (VGSC) in SCBI resistance and its inheritance patterns in S. exigua through the development and characterization of a near-isogenic resistant strain. The AQ-23 strain of S. exigua, collected in 2023 from Anqing, Anhui province of China, shows 165-fold resistance to indoxacarb compared with the susceptible WH-S strain. A frequency of 44.6% for the V1848I mutation was detected in the SeVGSC of the AQ-23 strain, while no F1845Y mutation was found. Through repeated backcrossing and marker-assisted selection, the V1848I mutation in the AQ-23 strain was introgressed into the susceptible WH-S strain, creating a near-isogenic strain named WH-1848I. This WH-1848I strain exhibits high levels of resistance to indoxacarb (146-fold) and metaflumizone (431-fold) but remains susceptible to broflanilide and spinosad compared with the WH-S strain. Inheritance analysis revealed that SCBI resistance in the WH-1848I strain is autosomal, nonrecessive, and genetically linked to the V1848I mutation. These findings establish a clear link between the V1848I mutation and SCBI resistance in S. exigua, offering valuable insights for developing molecular detection tools and resistance management strategies.
Collapse
Affiliation(s)
- Xiangjie Liu
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Minhui Cao
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wenjuan Mei
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xingliang Wang
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yidong Wu
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China; (X.L.); (M.C.); (X.W.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
3
|
Thapa A, Beh JH, Robinson SD, Deuis JR, Tran H, Vetter I, Keramidas A. A venom peptide-induced Na V channel modulation mechanism involving the interplay between fixed channel charges and ionic gradients. J Biol Chem 2024; 300:107757. [PMID: 39260690 PMCID: PMC11470524 DOI: 10.1016/j.jbc.2024.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Venoms are used by arthropods either to immobilize prey or as defense against predators. Our study focuses on the venom peptide, Ta3a, from the African ant species, Tetramorium africanum and its effects on voltage-gated sodium (NaV) channels, which are ion channels responsible for the generation of electrical signals in electrically excitable cells, such as neurons. Using the NaV1.7 isoform as our model NaV channel we show that Ta3a prolongs single channel active periods with increased open probability and induces non-inactivating whole-cell currents. Ta3a-affected NaV1.7 channels exhibit a leftward (hyperpolarizing) shift in activation threshold, constitutive activity even in the absence of an activating voltage stimulus, and at cell membrane voltages where channels are normally silent. Current-voltage experiments show that Ta3a shifts the voltage at which NaV current changes direction (reversal potential) by altering the local ionic concentration of permeant ions (Na+) rather than changing the channel's preference for ionic species. We propose a model where Ta3a maintains the positively charged voltage-sensing (S4) domains of the channel in the activated configuration where their electric field is exposed to the extracellular membrane surface to create an ionic bilayer comprising S4 domains and mobile anions (Cl-). This bilayer has a depolarizing effect on the cell membrane, thus reducing the amount of externally applied voltage required for channel activation.
Collapse
Affiliation(s)
- Ashvriya Thapa
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jia Hao Beh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Hue Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
4
|
Catterall WA, Gamal El-Din TM, Wisedchaisri G. The chemistry of electrical signaling in sodium channels from bacteria and beyond. Cell Chem Biol 2024; 31:1405-1421. [PMID: 39151407 DOI: 10.1016/j.chembiol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| |
Collapse
|
5
|
Chen L, Jiang J, Dou B, Feng H, Liu J, Zhu Y, Zhang B, Zhou T, Wei GW. Machine learning study of the extended drug-target interaction network informed by pain related voltage-gated sodium channels. Pain 2024; 165:908-921. [PMID: 37851391 PMCID: PMC11021136 DOI: 10.1097/j.pain.0000000000003089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein-protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug-target interaction network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor data sets from a pool of more than 1000 targets in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced natural language processing (NLP)-based embeddings, specifically pretrained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of more than 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.
Collapse
Affiliation(s)
- Long Chen
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, P R. China
| | - Jian Jiang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, P R. China
- Department of Mathematics, Michigan State University, East Lansing, MI, United States
| | - Bozheng Dou
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, P R. China
| | - Hongsong Feng
- Department of Mathematics, Michigan State University, East Lansing, MI, United States
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, P R. China
| | - Yueying Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, P R. China
| | - Bengong Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, P R. China
| | - Tianshou Zhou
- Key Laboratory of Computational Mathematics, Guangdong Province, and School of Mathematics, Sun Yat-sen University, Guangzhou, P R. China
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Tan ZY, Wu B, Su X, Zhou Y, Ji YH. Differential expression of slow and fast-repriming tetrodotoxin-sensitive sodium currents in dorsal root ganglion neurons. Front Mol Neurosci 2024; 16:1336664. [PMID: 38273939 PMCID: PMC10808659 DOI: 10.3389/fnmol.2023.1336664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Sodium channel Nav1.7 triggers the generation of nociceptive action potentials and is important in sending pain signals under physiological and pathological conditions. However, studying endogenous Nav1.7 currents has been confounded by co-expression of multiple sodium channel isoforms in dorsal root ganglion (DRG) neurons. In the current study, slow-repriming (SR) and fast-repriming (FR) tetrodotoxin-sensitive (TTX-S) currents were dissected electrophysiologically in small DRG neurons of both rats and mice. Three subgroups of small DRG neurons were identified based on the expression pattern of SR and FR TTX-S currents. A majority of rat neurons only expressed SR TTX-S currents, while a majority of mouse neurons expressed additional FR TTX-S currents. ProTx-II inhibited SR TTX-S currents with variable efficacy among DRG neurons. The expression of both types of TTX-S currents was higher in Isolectin B4-negative (IB4-) compared to Isolectin B4-positive (IB4+) neurons. Paclitaxel selectively increased SR TTX-S currents in IB4- neurons. In simulation experiments, the Nav1.7-expressing small DRG neuron displayed lower rheobase and higher frequency of action potentials upon threshold current injections compared to Nav1.6. The results suggested a successful dissection of endogenous Nav1.7 currents through electrophysiological manipulation that may provide a useful way to study the functional expression and pharmacology of endogenous Nav1.7 channels in DRG neurons.
Collapse
Affiliation(s)
- Zhi-Yong Tan
- Department of Pathophysiology, Hebei University School of Basic Medicine, Baoding, China
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bin Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Institute of Special Environment Medicine, Nantong University, Nantong, China
| | - Xiaolin Su
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - You Zhou
- Department of Physiology, Hebei University School of Basic Medicine, Baoding, China
| | - Yong-Hua Ji
- Department of Physiology, Hebei University School of Basic Medicine, Baoding, China
| |
Collapse
|
7
|
Catterall WA. Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels (Austin) 2023; 17:2281714. [PMID: 37983307 PMCID: PMC10761118 DOI: 10.1080/19336950.2023.2281714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve and muscle, and voltage-gated calcium channels couple depolarization of the plasma membrane to intracellular events such as secretion, contraction, synaptic transmission, and gene expression. In this Review and Perspective article, I summarize early work that led to identification, purification, functional reconstitution, and determination of the amino acid sequence of the protein subunits of sodium and calcium channels and showed that their pore-forming subunits are closely related. Decades of study by antibody mapping, site-directed mutagenesis, and electrophysiological recording led to detailed two-dimensional structure-function maps of the amino acid residues involved in voltage-dependent activation and inactivation, ion permeation and selectivity, and pharmacological modulation. Most recently, high-resolution three-dimensional structure determination by X-ray crystallography and cryogenic electron microscopy has revealed the structural basis for sodium and calcium channel function and pharmacological modulation at the atomic level. These studies now define the chemical basis for electrical signaling and provide templates for future development of new therapeutic agents for a range of neurological and cardiovascular diseases.
Collapse
|
8
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:md21040209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
9
|
Panagopoulos DJ, Karabarbounis A, Yakymenko I, Chrousos GP. Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). Int J Oncol 2021; 59:92. [PMID: 34617575 PMCID: PMC8562392 DOI: 10.3892/ijo.2021.5272] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure of animals/biological samples to human‑made electromagnetic fields (EMFs), especially in the extremely low frequency (ELF) band, and the microwave/radio frequency (RF) band which is always combined with ELF, may lead to DNA damage. DNA damage is connected with cell death, infertility and other pathologies, including cancer. ELF exposure from high‑voltage power lines and complex RF exposure from wireless communication antennas/devices are linked to increased cancer risk. Almost all human‑made RF EMFs include ELF components in the form of modulation, pulsing and random variability. Thus, in addition to polarization and coherence, the existence of ELFs is a common feature of almost all human‑made EMFs. The present study reviews the DNA damage and related effects induced by human‑made EMFs. The ion forced‑oscillation mechanism for irregular gating of voltage‑gated ion channels on cell membranes by polarized/coherent EMFs is extensively described. Dysfunction of ion channels disrupts intracellular ionic concentrations, which determine the cell's electrochemical balance and homeostasis. The present study shows how this can result in DNA damage through reactive oxygen species/free radical overproduction. Thus, a complete picture is provided of how human‑made EMF exposure may indeed lead to DNA damage and related pathologies, including cancer. Moreover, it is suggested that the non‑thermal biological effects attributed to RF EMFs are actually due to their ELF components.
Collapse
Affiliation(s)
- Dimitris J. Panagopoulos
- Laboratory of Health Physics, Radiobiology and Cytogenetics, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research 'Demokritos', 15310 Athens, Greece
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Electromagnetic Field-Biophysics Research Laboratory, 10681 Athens, Greece
| | - Andreas Karabarbounis
- Department of Physics, Section of Nuclear and Particle Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Igor Yakymenko
- Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Science of Ukraine, 03022 Kyiv, Ukraine
- Department of Public Health, Kyiv Medical University, 02000 Kyiv, Ukraine
| | - George P. Chrousos
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. iScience 2021; 24:102270. [PMID: 33817575 PMCID: PMC8010468 DOI: 10.1016/j.isci.2021.102270] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - William J. Brackenbury
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Tim G. Hales
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, the University of Dundee, DD1 9SY, Dundee, UK
| | - Pierre Besson
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Juan Carlos Gomora
- Instituto de Fisiología Celular, Circuito Exterior s/n Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City, 04510 México
| | - Sébastien Roger
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
11
|
Structural Pharmacology of Voltage-Gated Sodium Channels. J Mol Biol 2021; 433:166967. [PMID: 33794261 DOI: 10.1016/j.jmb.2021.166967] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate and propagate action potentials in excitable tissues to mediate key physiological processes including heart contraction and nervous system function. Accordingly, NaV channels are major targets for drugs, toxins and disease-causing mutations. Recent breakthroughs in cryo-electron microscopy have led to the visualization of human NaV1.1, NaV1.2, NaV1.4, NaV1.5 and NaV1.7 channel subtypes at high-resolution. These landmark studies have greatly advanced our structural understanding of channel architecture, ion selectivity, voltage-sensing, electromechanical coupling, fast inactivation, and the molecular basis underlying NaV channelopathies. NaV channel structures have also been increasingly determined in complex with toxin and small molecule modulators that target either the pore module or voltage sensor domains. These structural studies have provided new insights into the mechanisms of pharmacological action and opportunities for subtype-selective NaV channel drug design. This review will highlight the structural pharmacology of human NaV channels as well as the potential use of engineered and chimeric channels in future drug discovery efforts.
Collapse
|
12
|
Solé L, Tamkun MM. Trafficking mechanisms underlying Na v channel subcellular localization in neurons. Channels (Austin) 2020; 14:1-17. [PMID: 31841065 PMCID: PMC7039628 DOI: 10.1080/19336950.2019.1700082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage gated sodium channels (Nav) play a crucial role in action potential initiation and propagation. Although the discovery of Nav channels dates back more than 65 years, and great advances in understanding their localization, biophysical properties, and links to disease have been made, there are still many questions to be answered regarding the cellular and molecular mechanisms involved in Nav channel trafficking, localization and regulation. This review summarizes the different trafficking mechanisms underlying the polarized Nav channel localization in neurons, with an emphasis on the axon initial segment (AIS), as well as discussing the latest advances regarding how neurons regulate their excitability by modifying AIS length and location. The importance of Nav channel localization is emphasized by the relationship between mutations, impaired trafficking and disease. While this review focuses on Nav1.6, other Nav isoforms are also discussed.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael M. Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Rubio C, Luna R, Rosiles A, Rubio-Osornio M. Caloric Restriction and Ketogenic Diet Therapy for Epilepsy: A Molecular Approach Involving Wnt Pathway and K ATP Channels. Front Neurol 2020; 11:584298. [PMID: 33250850 PMCID: PMC7676225 DOI: 10.3389/fneur.2020.584298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Epilepsy is a neurological disorder in which, in many cases, there is poor pharmacological control of seizures. Nevertheless, it may respond beneficially to alternative treatments such as dietary therapy, like the ketogenic diet or caloric restriction. One of the mechanisms of these diets is to produce a hyperpolarization mediated by the adenosine triphosphate (ATP)-sensitive potassium (KATP) channels (KATP channels). An extracellular increase of K+ prevents the release of Ca2+ by inhibiting the signaling of the Wnt pathway and the translocation of β-catenin to the cell nucleus. Wnt ligands hyperpolarize the cells by activating K+ current by Ca2+. Each of the diets described in this paper has in common a lower use of carbohydrates, which leads to biochemical, genetic processes presumed to be involved in the reduction of epileptic seizures. Currently, there is not much information about the genetic processes implicated as well as the possible beneficial effects of diet therapy on epilepsy. In this review, we aim to describe some of the possible genes involved in Wnt pathways, their regulation through the KATP channels which are implicated in each one of the diets, and how they can reduce epileptic seizures at the molecular level.
Collapse
Affiliation(s)
- Carmen Rubio
- Neurophysiology Department, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Rudy Luna
- Neurophysiology Department, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Artemio Rosiles
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Moisés Rubio-Osornio
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
14
|
Panagopoulos DJ, Balmori A, Chrousos GP. On the biophysical mechanism of sensing upcoming earthquakes by animals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:136989. [PMID: 32070887 DOI: 10.1016/j.scitotenv.2020.136989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
It is documented that a few days or weeks before major Earthquakes (EQs) there are changes in animal behavior within distances up to 500 km from the seismic epicenter. At the same time Seismic Electric Signals (SES), geomagnetic and ionospheric perturbations, are detected within similar distances. SES consist of single unipolar pulses, and/or groups of such pulses called "SES activities" with an average frequency between successive pulses on the order of ~0.01 Hz and electric field intensity on the order of ~10-5-10-4 V/m (Frazer-Smith et al., 1990; Rikitake, 1998; Varotsos et al., 1993, 2011, 2019; Hayakawa et al., 2013; Grant et al., 2015). We show that the SES activities can be sensed by living organisms through the "Ion Forced-Oscillation Mechanism" for the action of Electromagnetic Fields (EMFs) on cells, according to which polarized EMFs can cause irregular gating of electro-sensitive ion channels on the cell membranes with consequent disruption of the cell electrochemical balance (Panagopoulos et al., 2000, 2002, 2015). This can be sensed by sensitive animals as discomfort in cases of weak and transient exposures, and may even lead to DNA damage and serious health implications in cases of intense exposure conditions (as in certain cases of man-made EMF exposures). Moreover, we show that the geomagnetic and ionospheric perturbations cannot be sensed through this mechanism. The same mechanism has explained meteoropathy, the sensing of upcoming thunderstorms by sensitive individuals, through the action of the EMFs of lightning discharges (Panagopoulos and Balmori, 2017). The present study shows that centuries-long anecdotal rumors of animals sensing intense upcoming EQs and displaying unusual behavior, lately documented by systematic studies, are now explained for the first time on the basis of the electromagnetic nature of all living organisms, and the electromagnetic signals emitted prior to EQs.
Collapse
Affiliation(s)
- Dimitris J Panagopoulos
- National Center for Scientific Research "Demokritos", Athens, Greece; Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, Greece; EMF-Biophysics Research Laboratory, Athens, Greece
| | | | - George P Chrousos
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
15
|
Noebels JL. Predicting the impact of sodium channel mutations in human brain disease. Epilepsia 2020; 60 Suppl 3:S8-S16. [PMID: 31904123 PMCID: PMC6953257 DOI: 10.1111/epi.14724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
Genetic alteration of the sodium channel provides a remarkable opportunity to understand how epilepsy and its comorbidities arise from a molecular disease of excitable membranes, and a chance to create a better future for children with epileptic encephalopathy. In a single cell, the channel reliably acts as a voltage-sensitive switch, enabling axon impulse firing, whereas at a network level, it becomes a variable rheostat for regulating dynamic patterns of neuronal oscillations, including those underlying cognitive development, seizures, and even premature lethality. Despite steady progress linking genetic variation of the channels with distinctive clinical syndromes, our understanding of the intervening biologic complexity underlying each of them is only just beginning. More research on the functional contribution of individual channel subunits to specific brain networks and cellular plasticity in the developing brain is needed before we can reliably advance from precision diagnosis to precision treatment of inherited sodium channel disorders.
Collapse
Affiliation(s)
- Jeffrey L Noebels
- Blue Bird Circle Developmental Neurogenetics Laboratory, Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
16
|
Mantegazza M, Broccoli V. SCN1A/Na V 1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models. Epilepsia 2020; 60 Suppl 3:S25-S38. [PMID: 31904127 DOI: 10.1111/epi.14700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
Pathogenic SCN1A/NaV 1.1 mutations cause well-defined epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and the severe epileptic encephalopathy Dravet syndrome. In addition, they cause a severe form of migraine with aura, familial hemiplegic migraine. Moreover, SCN1A/NaV 1.1 variants have been inferred as risk factors in other types of epilepsy. We review here the advancements obtained studying pathologic mechanisms of SCN1A/NaV 1.1 mutations with experimental systems. We present results gained with in vitro expression systems, gene-targeted animal models, and the induced pluripotent stem cell (iPSC) technology, highlighting advantages, limits, and pitfalls for each of these systems. Overall, the results obtained in the last two decades confirm that the initial pathologic mechanism of epileptogenic SCN1A/NaV 1.1 mutations is loss-of-function of NaV 1.1 leading to hypoexcitability of at least some types of γ-aminobutyric acid (GABA)ergic neurons (including cortical and hippocampal parvalbumin-positive and somatostatin-positive ones). Conversely, more limited results point to NaV 1.1 gain-of-function for familial hemiplegic migraine (FHM) mutations. Behind these relatively simple pathologic mechanisms, an unexpected complexity has been observed, in part generated by technical issues in experimental studies and in part related to intrinsically complex pathophysiologic responses and remodeling, which yet remain to be fully disentangled.
Collapse
Affiliation(s)
- Massimo Mantegazza
- University Cote d'Azur (UCA), CNRS UMR7275, INSERM, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy.,Institute of Neuroscience, National Research Council (CNR), Milan, Italy
| |
Collapse
|
17
|
Adachi K, Yamada T, Ishizuka H, Oki M, Tsunogae S, Shimada N, Chiba O, Orihara T, Hidaka M, Hirokawa T, Odagi M, Konoki K, Yotsu‐Yamashita M, Nagasawa K. Synthesis of C12‐Keto Saxitoxin Derivatives with Unusual Inhibitory Activity Against Voltage‐Gated Sodium Channels. Chemistry 2020; 26:2025-2033. [DOI: 10.1002/chem.201904184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Kanna Adachi
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Tomoshi Yamada
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Hayate Ishizuka
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Mana Oki
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Shunsuke Tsunogae
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Noriko Shimada
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Osamu Chiba
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Tatsuya Orihara
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Masafumi Hidaka
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8575 Japan
- Division of Biomedical Science University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8575 Japan
- Molecular Profiling Research Center for Drug Discovery National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ward Tokyo 135-0064 Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Keiichi Konoki
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Mari Yotsu‐Yamashita
- Graduate School of Agriculture Science Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8572 Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| |
Collapse
|
18
|
Kalina RS, Peigneur S, Zelepuga EA, Dmitrenok PS, Kvetkina AN, Kim NY, Leychenko EV, Tytgat J, Kozlovskaya EP, Monastyrnaya MM, Gladkikh IN. New Insights into the Type II Toxins from the Sea Anemone Heteractis crispa. Toxins (Basel) 2020; 12:E44. [PMID: 31936885 PMCID: PMC7020476 DOI: 10.3390/toxins12010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/23/2022] Open
Abstract
Toxins modulating NaV channels are the most abundant and studied peptide components of sea anemone venom. Three type-II toxins, δ-SHTX-Hcr1f (= RpII), RTX-III, and RTX-VI, were isolated from the sea anemone Heteractis crispa. RTX-VI has been found to be an unusual analog of RTX-III. The electrophysiological effects of Heteractis toxins on nine NaV subtypes were investigated for the first time. Heteractis toxins mainly affect the inactivation of the mammalian NaV channels expressed in the central nervous system (NaV1.1-NaV1.3, NaV1.6) as well as insect and arachnid channels (BgNaV1, VdNaV1). The absence of Arg13 in the RTX-VI structure does not prevent toxin binding with the channel but it has changed its pharmacological profile and potency. According to computer modeling data, the δ-SHTX-Hcr1f binds within the extracellular region of the rNaV1.2 voltage-sensing domain IV and pore-forming domain I through a network of strong interactions, and an additional fixation of the toxin at the channel binding site is carried out through the phospholipid environment. Our data suggest that Heteractis toxins could be used as molecular tools for NaV channel studies or insecticides rather than as pharmacological agents.
Collapse
Affiliation(s)
- Rimma S. Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N 2, Herestraat~49, P.O. Box 922, 3000 Leuven, Belgium
| | - Elena A. Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Aleksandra N. Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Natalia Y. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Elena V. Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N 2, Herestraat~49, P.O. Box 922, 3000 Leuven, Belgium
| | - Emma P. Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Margarita M. Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Irina N. Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| |
Collapse
|
19
|
Catterall WA, Lenaeus MJ, Gamal El-Din TM. Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels. Annu Rev Pharmacol Toxicol 2020; 60:133-154. [PMID: 31537174 DOI: 10.1146/annurev-pharmtox-010818-021757] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated sodium and calcium channels are evolutionarily related transmembrane signaling proteins that initiate action potentials, neurotransmission, excitation-contraction coupling, and other physiological processes. Genetic or acquired dysfunction of these proteins causes numerous diseases, termed channelopathies, and sodium and calcium channels are the molecular targets for several major classes of drugs. Recent advances in the structural biology of these proteins using X-ray crystallography and cryo-electron microscopy have given new insights into the molecular basis for their function and pharmacology. Here we review this recent literature and integrate findings on sodium and calcium channels to reveal the structural basis for their voltage-dependent activation, fast and slow inactivation, ion conductance and selectivity, and complex pharmacology at the atomic level. We conclude with the theme that new understanding of the diseases and therapeutics of these channels will be derived from application of the emerging structural principles from these recent structural analyses.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| | - Michael J Lenaeus
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| | - Tamer M Gamal El-Din
- Department of Pharmacology and Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
20
|
Synthetic Approaches to Zetekitoxin AB, a Potent Voltage-Gated Sodium Channel Inhibitor. Mar Drugs 2019; 18:md18010024. [PMID: 31888062 PMCID: PMC7024329 DOI: 10.3390/md18010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are membrane proteins that are involved in the generation and propagation of action potentials in neurons. Recently, the structure of a complex made of a tetrodotoxin-sensitive (TTX-s) NaV subtype with saxitoxin (STX), a shellfish toxin, was determined. STX potently inhibits TTX-s NaV, and is used as a biological tool to investigate the function of NaVs. More than 50 analogs of STX have been isolated from nature. Among them, zetekitoxin AB (ZTX) has a distinctive chemical structure, and is the most potent inhibitor of NaVs, including tetrodotoxin-resistant (TTX-r) NaV. Despite intensive synthetic studies, total synthesis of ZTX has not yet been achieved. Here, we review recent efforts directed toward the total synthesis of ZTX, including syntheses of 11-saxitoxinethanoic acid (SEA), which is considered a useful synthetic model for ZTX, since it contains a key carbon-carbon bond at the C11 position.
Collapse
|
21
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
22
|
Clairfeuille T, Cloake A, Infield DT, Llongueras JP, Arthur CP, Li ZR, Jian Y, Martin-Eauclaire MF, Bougis PE, Ciferri C, Ahern CA, Bosmans F, Hackos DH, Rohou A, Payandeh J. Structural basis of α-scorpion toxin action on Na v channels. Science 2019; 363:science.aav8573. [PMID: 30733386 DOI: 10.1126/science.aav8573] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
Abstract
Fast inactivation of voltage-gated sodium (Nav) channels is essential for electrical signaling, but its mechanism remains poorly understood. Here we determined the structures of a eukaryotic Nav channel alone and in complex with a lethal α-scorpion toxin, AaH2, by electron microscopy, both at 3.5-angstrom resolution. AaH2 wedges into voltage-sensing domain IV (VSD4) to impede fast activation by trapping a deactivated state in which gating charge interactions bridge to the acidic intracellular carboxyl-terminal domain. In the absence of AaH2, the S4 helix of VSD4 undergoes a ~13-angstrom translation to unlatch the intracellular fast-inactivation gating machinery. Highlighting the polypharmacology of α-scorpion toxins, AaH2 also targets an unanticipated receptor site on VSD1 and a pore glycan adjacent to VSD4. Overall, this work provides key insights into fast inactivation, electromechanical coupling, and pathogenic mutations in Nav channels.
Collapse
Affiliation(s)
- Thomas Clairfeuille
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Alexander Cloake
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.,Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - José P Llongueras
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Zhong Rong Li
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Yuwen Jian
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA
| | | | - Pierre E Bougis
- Aix Marseille Université, CNRS, LNC, UMR 7291, 13003 Marseille, France
| | - Claudio Ciferri
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA.
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - David H Hackos
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA.
| | - Alexis Rohou
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
23
|
Lyu SY, Nam SO, Lee YJ, Kim G, Kim YA, Kong J, Ko A, Kim YM, Yeon GM. Longitudinal change of cardiac electrical and autonomic function and potential risk factors in children with dravet syndrome. Epilepsy Res 2019; 152:11-17. [PMID: 30870727 DOI: 10.1016/j.eplepsyres.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE This study aimed to investigate cardiac electrical and autonomic function, the longitudinal changes, and the associated risk factors in children with Dravet syndrome (DS). METHODS Twenty-four children with DS (11 boys, 13 girls; mean age, 7.2 ± 2.9 years) and 21 control subjects (9 boys, 12 girls; mean age, 8.2 ± 3.0 years) were enrolled in this study. P dispersion, QTc and QTc dispersion, and heart rate variability (HRV) were evaluated using standard electrocardiography and 24-hr Holter monitoring at the initial and follow-up study of the 6-12 months intervals. RESULTS The DS group had significantly higher P dispersion (p = 0.017), QT and QTc dispersion values (p < 0.001 for two parameters) than the control group. Most HRV parameters, such as SDNN (p < 0.001), SDANN5 (p < 0.001), SDANN-index (p = 0.001), and RMSSD (p = 0.006) were all significantly lower in the DS group than in the control group. The mean values of initial QTc, QTc dispersion, and HRV parameters showed significantly increase (QTc and QTc dispersion) and decrease (HRV) in the follow-up study (mean duration: 1.2 ± 0.5 years) in 13 DS children. ± On multivariate regression analysis, epilepsy duration had an independently significant effect for the longitudinal change of QTc, QTc dispersion, and HRV. CONCLUSIONS DS children had significant different values of cardiac electrical and autonomic function compared with control group. Particularly, longer duration of epilepsy was significantly negative effect on the longitudinal change of cardiac autonomic function.
Collapse
Affiliation(s)
- Soo Young Lyu
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sang Ook Nam
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yun-Jin Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Geena Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Young A Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Juhyun Kong
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Ara Ko
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Young Mi Kim
- Department of Pediatrics, Pusan National University Hospital, Busan, Republic of Korea
| | - Gyu Min Yeon
- Department of Pediatrics, Kosin University Gospel Hospital, Kosin University, Busan, Republic of Korea
| |
Collapse
|
24
|
OKAMURA Y, OKOCHI Y. Molecular mechanisms of coupling to voltage sensors in voltage-evoked cellular signals. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:111-135. [PMID: 30853698 PMCID: PMC6541726 DOI: 10.2183/pjab.95.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The voltage sensor domain (VSD) has long been studied as a unique domain intrinsic to voltage-gated ion channels (VGICs). Within VGICs, the VSD is tightly coupled to the pore-gate domain (PGD) in diverse ways suitable for its specific function in each physiological context, including action potential generation, muscle contraction and relaxation, hormone and neurotransmitter secretion, and cardiac pacemaking. However, some VSD-containing proteins lack a PGD. Voltage-sensing phosphatase contains a cytoplasmic phosphoinositide phosphatase with similarity to phosphatase and tensin homolog (PTEN). Hv1, a voltage-gated proton channel, also lacks a PGD. Within Hv1, the VSD operates as a voltage sensor, gate, and pore for both proton sensing and permeation. Hv1 has a C-terminal coiled coil that mediates dimerization for cooperative gating. Recent progress in the structural biology of VGICs and VSD proteins provides insights into the principles of VSD coupling conserved among these proteins as well as the hierarchy of protein organization for voltage-evoked cell signaling.
Collapse
Affiliation(s)
- Yasushi OKAMURA
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | - Yoshifumi OKOCHI
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
25
|
Nakatani Y, Amano T. Functional Modulation of Na v1.2 Voltage-Gated Sodium Channels Induced by Escitalopram. Biol Pharm Bull 2018; 41:1471-1474. [DOI: 10.1248/bpb.b18-00214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshihiko Nakatani
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare
| | - Taku Amano
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare
| |
Collapse
|
26
|
Abstract
Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.
Collapse
Affiliation(s)
- Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, China.
| |
Collapse
|
27
|
Panagopoulos DJ, Balmori A. On the biophysical mechanism of sensing atmospheric discharges by living organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:2026-2034. [PMID: 28558424 DOI: 10.1016/j.scitotenv.2017.05.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 05/21/2023]
Abstract
Atmospheric electrical discharges during thunderstorms, and the related electromagnetic fields (EMFs)/waves called sferics, can be sensed by humans at long distances through a variety of symptoms, mainly headache, fatigue, etc. Up to today there is no explanation for this association. Sferics consist of partially polarized electromagnetic pulses with an oscillating carrier signal in the very low frequency (VLF) band and a pulse repetition frequency in the extremely low frequency (ELF) band. Their ELF intensity may reach ~5mV/m at global ranges, and ~0.5V/m at ~1000km from the lightning. The health symptoms associated with sferics are also associated with antennas of mobile telephony base stations and handsets, which emit radio frequency (RF) radiation pulsed on ELF, and expose humans at similar or stronger electric field intensities with sferics. According to the Ion Forced-Oscillation mechanism, polarized ELF EMFs of intensities down to 0.1-1mV/m are able to disrupt any living cell's electrochemical balance and function by irregular gating of electro-sensitive ion channels on the cell membranes, and thus initiate a variety of health symptoms, while VLF EMFs need to be thousands of times stronger in order to be able to initiate health effects. We examine EMFs from sferics in terms of their bioactivity on the basis of this mechanism. We introduce the hypothesis that stronger atmospheric discharges may reasonably be considered to be ~70% along a straight line, and thus the associated EMFs (sferics) ~70% polarized. We find that sferics mainly in the ELF band have adequate intensity and polarization to cause biological/health effects. We provide explanation for the effects of sferics on human/animal health on the basis of this mechanism.
Collapse
Affiliation(s)
- Dimitris J Panagopoulos
- National Center for Scientific Research "Demokritos", Athens, Greece; Radiation and Environmental Biophysics Research Centre, Greece; Department of Biology, University of Athens, Greece
| | - Alfonso Balmori
- Consejería de Medio Ambiente, Junta de Castilla y León, C/Rigoberto Cortejoso, 14, 47071 Valladolid, Spain.
| |
Collapse
|
28
|
Wang J, Ou SW, Zhang ZY, Qiu B, Wang YJ. Molecular expression of multiple Nav1.5 splice variants in the frontal lobe of the human brain. Int J Mol Med 2017; 41:915-923. [PMID: 29207052 PMCID: PMC5752160 DOI: 10.3892/ijmm.2017.3286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/22/2017] [Indexed: 11/29/2022] Open
Abstract
Voltage-gated sodium channels serve an essential role in the initiation and propagation of action potentials for central neurons. Previous studies have demonstrated that two novel variants of Nav1.5, designated Nav1.5e and Nav1.5f, were expressed in the human brain cortex. To date, nine distinct sodium channel isoforms of Nav1.5 have been identified. In the present study, the expression of Nav1.5 splice variants in the frontal lobe of the human brain cortex was systematically investigated. The results demonstrated that wild Nav1.5 and its splice variants, Nav1.5c and Nav1.5e, were expressed in the frontal lobe of the human brain cortex. Nav1.5a, Nav1.5b and Nav1.5d splice variants were not detected. However, the expression level of different Nav1.5 variants was revealed to vary. The expression ratio of wild Nav1.5 vs. Nav1.5c and Nav1.5e was approximately 5:1 and 1:5, respectively. Immunochemistry results revealed that Nav1.5 immunoreactivity was predominantly in neuronal cell bodies and processes, including axons and dendrites, whereas little immunoreactivity was detected in the glial components. These results revealed that a minimum of four Nav1.5 splice variants are expressed in the frontal lobe of the human brain cortex. This indicates that the previously reported tetrodotoxin-resistant sodium current was a compound product of different Nav1.5 variants. The present study revealed that Nav1.5 channels have a more abundant expression in the human brain than previously considered. It also provided further insight into the complexity and functional significance of Nav1.5 channels in human brain neurons.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shao-Wu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Yong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bo Qiu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yun-Jie Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
29
|
Wang J, Ou SW, Wang YJ. Distribution and function of voltage-gated sodium channels in the nervous system. Channels (Austin) 2017; 11:534-554. [PMID: 28922053 DOI: 10.1080/19336950.2017.1380758] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Shao-Wu Ou
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Yun-Jie Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| |
Collapse
|
30
|
Deuis JR, Mueller A, Israel MR, Vetter I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology 2017; 127:87-108. [PMID: 28416444 DOI: 10.1016/j.neuropharm.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
31
|
Vetter I, Deuis JR, Mueller A, Israel MR, Starobova H, Zhang A, Rash LD, Mobli M. NaV1.7 as a pain target – From gene to pharmacology. Pharmacol Ther 2017; 172:73-100. [DOI: 10.1016/j.pharmthera.2016.11.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Panagopoulos DJ, Johansson O, Carlo GL. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity. Sci Rep 2015; 5:14914. [PMID: 26456585 PMCID: PMC4601073 DOI: 10.1038/srep14914] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/07/2015] [Indexed: 11/09/2022] Open
Abstract
In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell's electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.
Collapse
Affiliation(s)
- Dimitris J Panagopoulos
- National Center for Scientific Research "Demokritos", Athens, Greece.,Department of Biology, University of Athens, Greece.,Radiation and Environmental Biophysics Research Centre, Greece
| | - Olle Johansson
- Experimental Dermatology Unit, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - George L Carlo
- The Science and Public Policy Institute, Institute for Healthful Adaptation, Washington, DC, USA
| |
Collapse
|
33
|
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280.
| |
Collapse
|
34
|
Hatanaka Y. Development and Leading-Edge Application of Innovative Photoaffinity Labeling. Chem Pharm Bull (Tokyo) 2015; 63:1-12. [DOI: 10.1248/cpb.c14-00645] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Zimmer T, Haufe V, Blechschmidt S. Voltage-gated sodium channels in the mammalian heart. Glob Cardiol Sci Pract 2014; 2014:449-63. [PMID: 25780798 PMCID: PMC4355518 DOI: 10.5339/gcsp.2014.58] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022] Open
Abstract
Mammalian species express nine functional voltage-gated Na(+) channels. Three of them, the cardiac-specific isoform Nav1.5 and the neuronal isoforms Nav1.8 and Nav1.9, are relatively resistant to the neurotoxin tetrodotoxin (TTX; IC50 ≥ 1 μM). The other six isoforms are highly sensitive to TTX with IC50 values in the nanomolar range. These isoforms are expressed in the central nervous system (Nav1.1, Nav1.2, Nav1.3, Nav1.6), in the skeletal muscle (Nav1.4), and in the peripheral nervous system (Nav1.6, Nav1.7). The isoform Nav1.5, encoded by the SCN5A gene, is responsible for the upstroke of the action potential in the heart. Mutations in SCN5A are associated with a variety of life-threatening arrhythmias, like long QT syndrome type 3 (LQT3), Brugada syndrome (BrS) or cardiac conduction disease (CCD). Previous immunohistochemical and electrophysiological assays demonstrated the cardiac expression of neuronal and skeletal muscle Na(+) channels in the heart of various mammals, which led to far-reaching speculations on their function. However, when comparing the Na(+) channel mRNA patterns in the heart of various mammalian species, only minute quantities of transcripts for TTX-sensitive Na(+) channels were detectable in whole pig and human hearts, suggesting that these channels are not involved in cardiac excitation phenomena in higher mammals. This conclusion is strongly supported by the fact that mutations in TTX-sensitive Na(+) channels were associated with epilepsy or skeletal muscle diseases, rather than with a pathological cardiac phenotype. Moreover, previous data from TTX-intoxicated animals and from cases of human tetrodotoxication showed that low TTX dosages caused at most little alterations of both the cardiac output and the electrocardiogram. Recently, genome-wide association studies identified SCN10A, the gene encoding Nav1.8, as a determinant of cardiac conduction parameters, and mutations in SCN10A have been associated with BrS. These novel findings opened a fascinating new research area in the cardiac ion channel field, and the on-going debate on how SCN10A/Nav1.8 affects cardiac conduction is very exciting.
Collapse
Affiliation(s)
- Thomas Zimmer
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Kollegiengasse 9, 07743 Jena, Germany
| | | | - Steve Blechschmidt
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Kollegiengasse 9, 07743 Jena, Germany
| |
Collapse
|
36
|
Cammen KM, Rosel PE, Wells RS, Read AJ. Lack of variation in voltage-gated sodium channels of common bottlenose dolphins (Tursiops truncatus) exposed to neurotoxic algal blooms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:150-158. [PMID: 25456229 DOI: 10.1016/j.aquatox.2014.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 06/04/2023]
Abstract
In coastal marine ecosystems, neurotoxins produced by harmful algal blooms (HABs) often result in large-scale mortality events of many marine species. Historical and frequent exposure to HABs therefore may provide a strong selective pressure for adaptations that result in toxin resistance. Neurotoxin resistance has independently evolved in a variety of terrestrial and marine species via mutations in genes encoding the toxin binding sites within the voltage-gated sodium channel gene complex. Accordingly, we tested the hypothesis that genetic variation in the putative binding site of brevetoxins in common bottlenose dolphins (Tursiops truncatus) explains differences among individuals or populations in resistance to harmful Karenia brevis blooms in the Gulf of Mexico. We found very little variation in the sodium channel exons encoding the putative brevetoxin binding site among bottlenose dolphins from central-west Florida and the Florida Panhandle. Our study included samples from several bottlenose dolphin mortality events associated with HABs, but we found no association between genetic variation and survival. We observed a significant effect of geographic region on genetic variation for some sodium channel isoforms, but this can be primarily explained by rare private alleles and is more likely a reflection of regional genetic differentiation than the cause of different levels of HAB resistance between regions. In contrast to many other previously studied neurotoxin-resistant species, we conclude that bottlenose dolphins have not evolved resistance to HABs via mutations in genes encoding the brevetoxin binding site on the voltage-gated sodium channels.
Collapse
Affiliation(s)
- Kristina M Cammen
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA.
| | - Patricia E Rosel
- National Marine Fisheries Service, Southeast Fisheries Science Center, 646 Cajundome Blvd, Lafayette, LA 70506, USA
| | - Randall S Wells
- Chicago Zoological Society, c/o Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| | - Andrew J Read
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| |
Collapse
|
37
|
Gazina EV, Leaw BTW, Richards KL, Wimmer VC, Kim TH, Aumann TD, Featherby TJ, Churilov L, Hammond VE, Reid CA, Petrou S. 'Neonatal' Nav1.2 reduces neuronal excitability and affects seizure susceptibility and behaviour. Hum Mol Genet 2014; 24:1457-68. [PMID: 25378553 DOI: 10.1093/hmg/ddu562] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Developmentally regulated alternative splicing produces 'neonatal' and 'adult' isoforms of four Na(+) channels in human brain, NaV1.1, NaV1.2, NaV1.3 and NaV1.6. Heterologously expressed 'neonatal' NaV1.2 channels are less excitable than 'adult' channels; however, functional importance of this difference is unknown. We hypothesized that the 'neonatal' NaV1.2 may reduce neuronal excitability and have a seizure-protective role during early brain development. To test this hypothesis, we generated NaV1.2(adult) mice expressing only the 'adult' NaV1.2, and compared the firing properties of pyramidal cortical neurons, as well as seizure susceptibility, between the NaV1.2(adult) and wild-type (WT) mice at postnatal day 3 (P3), when the 'neonatal' isoform represents 65% of the WT NaV1.2. We show significant increases in action potential firing in NaV1.2(adult) neurons and in seizure susceptibility of NaV1.2(adult) mice, supporting our hypothesis. At postnatal day 15 (P15), when 17% of the WT NaV1.2 is 'neonatal', the firing properties of NaV1.2(adult) and WT neurons converged. However, inhibitory postsynaptic currents in NaV1.2(adult) neurons were larger and the expression level of Scn2a mRNA was 24% lower compared with the WT. The enhanced seizure susceptibility of the NaV1.2(adult) mice persisted into adult age. The adult NaV1.2(adult) mice also exhibited greater risk-taking behaviour. Overall, our data reveal a significant impact of 'neonatal' NaV1.2 on neuronal excitability, seizure susceptibility and behaviour and may contribute to our understanding of NaV1.2 roles in health and diseases such as epilepsy and autism.
Collapse
Affiliation(s)
- Elena V Gazina
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Bryan T W Leaw
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Kay L Richards
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Verena C Wimmer
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Tae H Kim
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Timothy D Aumann
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Travis J Featherby
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Leonid Churilov
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Vicki E Hammond
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia Centre for Neural Engineering, University of Melbourne, Parkville VIC 3052, Australia
| |
Collapse
|
38
|
Hetz S, Acikgoez A, Moll C, Jahnke HG, Robitzki AA, Metzger R, Metzger M. Age-related gene expression analysis in enteric ganglia of human colon after laser microdissection. Front Aging Neurosci 2014; 6:276. [PMID: 25360110 PMCID: PMC4197768 DOI: 10.3389/fnagi.2014.00276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/24/2014] [Indexed: 01/16/2023] Open
Abstract
The enteric nervous system (ENS) poses the intrinsic innervation of the gastrointestinal tract and plays a critical role for all stages of postnatal life. There is increasing scientific and clinical interest in acquired or age-related gastrointestinal dysfunctions that can be manifested in diseases such as gut constipation or fecal incontinence. In this study, we sought to analyze age-dependent changes in the gene expression profile of the human ENS, particularly in the myenteric plexus. Therefore, we used the laser microdissection technique which has been proven as a feasible tool to analyze distinct cell populations within heterogeneously composed tissues. Full biopsy gut samples were prepared from children (4-12 months), middle aged (48-58 years) and aged donors (70-95 years). Cryosections were histologically stained with H&E, the ganglia of the myenteric plexus identified and RNA isolated using laser microdissection technique. Quantitative PCR was performed for selected neural genes, neurotransmitters and receptors. Data were confirmed on protein level using NADPH-diaphorase staining and immunohistochemistry. As result, we demonstrate age-associated alterations in site-specific gene expression pattern of the ENS. Thus, in the adult and aged distal parts of the colon a marked decrease in relative gene expression of neural key genes like NGFR, RET, NOS1 and a concurrent increase of CHAT were observed. Further, we detected notable regional differences of RET, CHAT, TH, and S100B comparing gene expression in aged proximal and distal colon. Interestingly, markers indicating cellular senescence or oxidative stress (SNCA, CASP3, CAT, SOD2, and TERT) were largely unchanged within the ENS. For the first time, our study also describes the age-dependent expression pattern of all major sodium channels within the ENS. Our results are in line with previous studies showing spatio-temporal differences within the mammalian ENS.
Collapse
Affiliation(s)
- Susan Hetz
- CELLT Research Group, Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany
| | - Ali Acikgoez
- Department of General and Visceral Surgery, St. George's Hospital Leipzig, Germany
| | - Corinna Moll
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg Wuerzburg, Germany
| | - Heinz-Georg Jahnke
- Division of Molecular biological-biochemical Processing Technology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig Leipzig, Germany
| | - Andrea A Robitzki
- Division of Molecular biological-biochemical Processing Technology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig Leipzig, Germany
| | - Roman Metzger
- Department of Pediatric Surgery, University of Leipzig Leipzig, Germany
| | - Marco Metzger
- CELLT Research Group, Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany ; Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg Wuerzburg, Germany
| |
Collapse
|
39
|
Genomic biomarkers of SUDEP in brain and heart. Epilepsy Behav 2014; 38:172-9. [PMID: 24139807 PMCID: PMC3989471 DOI: 10.1016/j.yebeh.2013.09.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 01/22/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality, but how to predict which patients are at risk and how to prevent it remain uncertain. The underlying pathomechanisms of SUDEP are still largely unknown, but the general consensus is that seizures somehow disrupt normal cardiac or respiratory physiology leading to death. However, the proportion of SUDEP cases exhibiting cardiac or respiratory dysfunction as a critical factor in the terminal cascade of events remains unresolved. Although many general risk factors for SUDEP have been identified, the development of reliable patient-specific biomarkers for SUDEP is needed to provide more accurate risk prediction and personalized patient management strategies. Studies in animal models and patient groups have revealed at least nine different brain-heart genes that may contribute to a genetic susceptibility for SUDEP, making them potentially useful as genomic biomarkers. This review summarizes data on the relationship between these neurocardiac genes and SUDEP, discussing their brain-heart expression patterns and genotype-phenotype correlations in mouse models and people with epilepsy. These neurocardiac genes represent good first candidates for evaluation as genomic biomarkers of SUDEP in future studies. The development of validated reliable genomic biomarkers for SUDEP has the potential to transform the clinical treatment of epilepsy by pinpointing patients at risk of SUDEP and allowing optimized, genotype-guided therapeutic and prevention strategies.
Collapse
|
40
|
Abstract
The paralytic agent (+)-saxitoxin (STX), most commonly associated with oceanic red tides and shellfish poisoning, is a potent inhibitor of electrical conduction in cells. Its nefarious effects result from inhibition of voltage-gated sodium channels (Na(V)s), the obligatory proteins responsible for the initiation and propagation of action potentials. In the annals of ion channel research, the identification and characterization of Na(V)s trace to the availability of STX and an allied guanidinium derivative, tetrodotoxin. The mystique of STX is expressed in both its function and form, as this uniquely compact dication boasts more heteroatoms than carbon centers. This Review highlights both the chemistry and chemical biology of this fascinating natural product, and offers a perspective as to how molecular design and synthesis may be used to explore Na(V) structure and function.
Collapse
Affiliation(s)
- Arun P Thottumkara
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
| | | | | |
Collapse
|
41
|
|
42
|
Abstract
Prolonged depolarizing pulses that last seconds to minutes cause slow inactivation of Na(+) channels, which regulates neuron and myocyte excitability by reducing availability of inward current. In neurons, slow inactivation has been linked to memory of previous excitation and in skeletal muscle it ensures myocytes are able to contract when K(+) is elevated. The molecular mechanisms underlying slow inactivation are unclear even though it has been studied for 50+ years. This chapter reviews what is known to date regarding the definition, measurement, and mechanisms of voltage-gated Na(+) channel slow inactivation.
Collapse
Affiliation(s)
- Jonathan Silva
- Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, St. Louis, MO, 63116, USA,
| |
Collapse
|
43
|
O'Brien JE, Meisler MH. Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 2013; 4:213. [PMID: 24194747 PMCID: PMC3809569 DOI: 10.3389/fgene.2013.00213] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/04/2013] [Indexed: 11/13/2022] Open
Abstract
The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major voltage-gated channels in human brain. The sequences of sodium channels have been highly conserved during evolution, and minor changes in biophysical properties can have a major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous and induced mutations of mouse Scn8a during the past 18 years. Only within the past year has the role of SCN8A in human disease become apparent from whole exome and genome sequences of patients with sporadic disease. Unique features of Nav1.6 include its contribution to persistent current, resurgent current, repetitive neuronal firing, and subcellular localization at the axon initial segment (AIS) and nodes of Ranvier. Loss of Nav1.6 activity results in reduced neuronal excitability, while gain-of-function mutations can increase neuronal excitability. Mouse Scn8a (med) mutants exhibit movement disorders including ataxia, tremor and dystonia. Thus far, more than ten human de novo mutations have been identified in patients with two types of disorders, epileptic encephalopathy and intellectual disability. We review these human mutations as well as the unique features of Nav1.6 that contribute to its role in determining neuronal excitability in vivo. A supplemental figure illustrating the positions of amino acid residues within the four domains and 24 transmembrane segments of Nav1.6 is provided to facilitate the location of novel mutations within the channel protein.
Collapse
Affiliation(s)
- Janelle E O'Brien
- Department of Human Genetics, University of Michigan Ann Arbor, MI, USA
| | | |
Collapse
|
44
|
Abstract
Molecular pain research is a relatively new and rapidly expanding field that represents advancement in conventional pain research. One of the fundamentals of molecular pain involves the cloning of genes and especially the ion channels specifically involved in nociceptive processing at the periphery and centrally. A variety of approaches were used to isolate these critically important genes. Cloning of these genes involved innovative strategies based on existing molecular approaches. This review will discuss well-utilized cloning approaches and their exploitation in molecular pain research.
Collapse
Affiliation(s)
- Armen N Akopian
- Department of Endodontics, Dental School, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
45
|
Akimoto T, Masuda A, Yotsu-Yamashita M, Hirokawa T, Nagasawa K. Synthesis of saxitoxin derivatives bearing guanidine and urea groups at C13 and evaluation of their inhibitory activity on voltage-gated sodium channels. Org Biomol Chem 2013; 11:6642-9. [DOI: 10.1039/c3ob41398e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Moczydlowski EG. The molecular mystique of tetrodotoxin. Toxicon 2012; 63:165-83. [PMID: 23261990 DOI: 10.1016/j.toxicon.2012.11.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/30/2012] [Indexed: 01/06/2023]
Abstract
In many respects tetrodotoxin (TTX) is the quintessential natural toxin. It is unequivocally toxic to mammals with LD(50) values for mice in the range of 10 μg/kg (intraperitoneal), 16 μg/kg (subcutaneous), and 332 μg/kg (oral) (Kao, 1966). Its biothreat status is recognized by its listing as a "Select Agent" by the US Department of Health and Human Services which includes regulated agents "determined to have the potential to pose a severe threat to both human and animal health" (http://www.selectagents.gov/). It has a well-defined cellular target (i.e., NaV channels) and pharmacological mode of action (i.e., block of nerve and muscle action potentials), and it is an indispensable chemical tool in neuroscience. It is widely distributed in marine and terrestrial ecosystems where it plays a role in the chemical ecology of predator-prey relationships and drives evolutionary selection of TTX-resistance (Hanifin, 2010; Williams, 2010; Zimmer and Ferrer, 2007). Lastly, TTX has acquired a certain mystique in scientific lore attributable to many fascinating aspects of its natural history and molecular interactions as presented in selected summary below. Additional information may be found in other excellent reviews (Fozzard and Lipkind, 2010; Kao, 1966; Lee and Ruben, 2008; Narahashi, 2001, 2008).
Collapse
Affiliation(s)
- Edward G Moczydlowski
- Nanobiology, Sandia National Laboratories, P.O. Box 5800, MS1413, Albuquerque, NM 87185-1413, USA
| |
Collapse
|
47
|
Abstract
Analysis of multidrug resistant cell lines has led to the identification of the P-glycoprotein multigene family. Two of the three classes of mammalian P-glycoproteins have the ability to confer cellular resistance to a broad range of structurally and functionally diverse cytotoxic agents. P-glycoproteins are integral membrane glycoproteins comprised of two similar halves, each consisting of six membrane spanning domains followed by a cytoplasmic domain which includes a nucleotide binding fold. The P-glycoprotein is a member of a large superfamily of transport proteins which utilize ATP to translocate a wide range of substrates across biological membranes. This superfamily includes transport complexes comprised of multicomponent systems, half P-glycoproteins and P-glycoprotein-like homologs which appear to require approximately 12 alpha-helical transmembrane domains and two nucleotide binding folds for substrate transport. P-glycoprotein homologs have been isolated and characterized from a wide range of species. Amino acid sequences, the similarities between the halves and intron/exon boundaries have been compared to understand the evolutionary origins of the P-glycoprotein.
Collapse
Affiliation(s)
- I Bosch
- Harvard Medical School, The Dana-Faber Cancer Institute, Boston, MA, U.S.A
| | | |
Collapse
|
48
|
Villalba-Galea CA. Voltage-Controlled Enzymes: The New JanusBifrons. Front Pharmacol 2012; 3:161. [PMID: 22993507 PMCID: PMC3440755 DOI: 10.3389/fphar.2012.00161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/19/2012] [Indexed: 12/25/2022] Open
Abstract
The Ciona intestinalis voltage-sensitive phosphatase, Ci-VSP, was the first Voltage-controlled Enzyme (VEnz) proven to be under direct command of the membrane potential. The discovery of Ci-VSP conjugated voltage sensitivity and enzymatic activity in a single protein. These two facets of Ci-VSP activity have provided a unique model for studying how membrane potential is sensed by proteins and a novel mechanism for control of enzymatic activity. These facets make Ci-VSP a fascinating and versatile enzyme. Ci-VSP has a voltage sensing domain (VSD) that resembles those found in voltage-gated channels (VGC). The VSD resides in the N-terminus and is formed by four putative transmembrane segments. The fourth segment contains charged residues which are likely involved in voltage sensing. Ci-VSP produces sensing currents in response to changes in potential, within a defined range of voltages. Sensing currents are analogous to “gating” currents in VGC. As known, these latter proteins contain four VSDs which are entangled in a complex interaction with the pore domain – the effector domain in VGC. This complexity makes studying the basis of voltage sensing in VGC a difficult enterprise. In contrast, Ci-VSP is thought to be monomeric and its catalytic domain – the VSP’s effector domain – can be cleaved off without disrupting the basic electrical functioning of the VSD. For these reasons, VSPs are considered a great model for studying the activity of a VSD in isolation. Finally, VSPs are also phosphoinositide phosphatases. Phosphoinositides are signaling lipids found in eukaryotes and are involved in many processes, including modulation of VGC activity and regulation of cell proliferation. Understanding VSPs as enzymes has been the center of attention in recent years and several reviews has been dedicated to this area. Thus, this review will be focused instead on the other face of this true JanusBifrons and recapitulate what is known about VSPs as electrically active proteins.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
49
|
Savio-Galimberti E, Gollob MH, Darbar D. Voltage-gated sodium channels: biophysics, pharmacology, and related channelopathies. Front Pharmacol 2012; 3:124. [PMID: 22798951 PMCID: PMC3394224 DOI: 10.3389/fphar.2012.00124] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 06/11/2012] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSC) are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit) that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (INa) and can also function as cell adhesion molecules. In vitro some of the cell-adhesive functions of the β-subunits may play important physiological roles independently of the α-subunits. Other endogenous regulatory proteins named “channel partners” or “channel interacting proteins” (ChiPs) like caveolin-3 and calmodulin/calmodulin kinase II (CaMKII) can also interact and modulate the expression and/or function of VGSC. In addition to their physiological roles in cell excitability and cell adhesion, VGSC are the site of action of toxins (like tetrodotoxin and saxitoxin), and pharmacologic agents (like antiarrhythmic drugs, local anesthetics, antiepileptic drugs, and newly developed analgesics). Mutations in genes that encode α- and/or β-subunits as well as the ChiPs can affect the structure and biophysical properties of VGSC, leading to the development of diseases termed sodium “channelopathies”. This review will outline the structure, function, and biophysical properties of VGSC as well as their pharmacology and associated channelopathies and highlight some of the recent advances in this field.
Collapse
Affiliation(s)
- Eleonora Savio-Galimberti
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Nashville, TN, USA
| | | | | |
Collapse
|
50
|
Sutton KA, Jungnickel MK, Jovine L, Florman HM. Evolution of the voltage sensor domain of the voltage-sensitive phosphoinositide phosphatase VSP/TPTE suggests a role as a proton channel in eutherian mammals. Mol Biol Evol 2012; 29:2147-55. [PMID: 22396523 DOI: 10.1093/molbev/mss083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The voltage-sensitive phosphoinositide phosphatases provide a mechanism to couple changes in the transmembrane electrical potential to intracellular signal transduction pathways. These proteins share a domain architecture that is conserved in deuterostomes. However, gene duplication events in primates, including humans, give rise to the paralogs TPTE and TPTE2 that retain protein domain organization but, in the case of TPTE, have lost catalytic activity. Here, we present evidence that these human proteins contain a functional voltage sensor, similar to that in nonmammalian orthologs. However, domains of these human proteins can also generate a noninactivating outward current that is not observed in zebra fish or tunicate orthologs. This outward current has the anticipated characteristics of a voltage-sensitive proton current and is due to the appearance of a single histidine residue in the S4 transmembrane segment of the voltage sensor. Histidine is observed at this position only during the eutherian radiation. Domains from both human paralogs generate proton currents. This apparent gain of proton channel function during the evolution of the TPTE protein family may account for the conservation of voltage sensor domains despite the loss of phosphatase activity in some human paralogs.
Collapse
Affiliation(s)
- Keith A Sutton
- Department of Cell Biology, University of Massachusetts Medical School, MA, USA
| | | | | | | |
Collapse
|