1
|
Zhang H, Sheng ZF, Wang J, Zheng PR, Kang XL, Chang HM, Yeh ETH, Li DP. Signaling pathways involved in NMDA-induced suppression of M-channels in corticotropin-releasing hormone neurons in central amygdala. J Neurochem 2022; 161:478-491. [PMID: 35583089 DOI: 10.1111/jnc.15647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Glutamate N-methyl-D-aspartate (NMDA) receptors (NMDARs) and Kv7/M channels are importantly involved in regulating neuronal activity involved in various physiological and pathological functions. Corticotropin-releasing hormone (CRH)-expressing neurons in the central nucleus of the amygdala (CeA) critically mediate autonomic response during stress. However, the interaction between NMDA receptors and Kv7/M channels in the CRHCeA neurons remains unclear. In this study, we identified rat CRHCeA neurons through the expression of an AAV viral vector-mediated enhanced green fluorescent protein (eGFP) driven by the rat CRH promoter. M-currents carried by Kv7/M channels were recorded using the whole-cell patch-clamp approach in eGFP-tagged CRHCeA neurons in brain slices. Acute exposure to NMDA significantly reduced M-currents recorded from the CRHCeA neurons. NMDA-induced suppression of M-currents was eliminated by chelating intracellular Ca2+ , supplying phosphatidylinositol 4,5-bisphosphate (PIP2) intracellularly, or blocking phosphoinositide3-kinase (PI3K). In contrast, inhibiting protein kinase C (PKC) or calmodulin did not alter NMDA-induced suppression of M-currents. Sustained exposure of NMDA decreased Kv7.3 membrane protein levels and suppressed M-currents, while the Kv7.2 expression levels remained unaltered. Pre-treatment of brain slices with PKC inhibitors alleviated the decreases in Kv7.3 and reduction of M-currents in CRHCeA neurons induced by NMDA. PKC inhibitors did not alter Kv7.2 and Kv7.3 membrane protein levels and M-currents in CRHCeA neurons. These data suggest that transient activation of NMDARs suppresses M-currents through the Ca2+ -dependent PI3K-PIP2 signaling pathway. In contrast, sustained activation of NMDARs reduces Kv7.3 protein expression and suppresses M-currents through a PKC-dependent pathway.
Collapse
Affiliation(s)
- Hua Zhang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Zhao-Fu Sheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Jingxiong Wang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Pei Ru Zheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Xun Lei Kang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Hui-Ming Chang
- Departments of Pharmacology and Toxicology and Internal Medicine, The University of Arkansas for Medical Sciences
| | - Edward T H Yeh
- Departments of Pharmacology and Toxicology and Internal Medicine, The University of Arkansas for Medical Sciences
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| |
Collapse
|
2
|
Hoshi N. M-Current Suppression, Seizures and Lipid Metabolism: A Potential Link Between Neuronal Kv7 Channel Regulation and Dietary Therapies for Epilepsy. Front Physiol 2020; 11:513. [PMID: 32523549 PMCID: PMC7261926 DOI: 10.3389/fphys.2020.00513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Neuronal Kv7 channel generates a low voltage-activated potassium current known as the M-current. The M-current can be suppressed by various neurotransmitters that activate Gq-coupled receptors. Because the M-current stabilizes membrane potential at the resting membrane potential, its suppression transiently increase neuronal excitability. However, its physiological and pathological roles in vivo is not well understood to date. This review summarizes the molecular mechanism underlying M-current suppression, and why it remained elusive for many years. I also summarize how regulation of neuronal Kv7 channel contributes to anti-seizure action of valproic acid through inhibition of palmitoylation of a Kv7 channel binding protein, and discuss about a potential link with anti-seizure mechanisms of medium chain triglyceride ketogenic diet.
Collapse
Affiliation(s)
- Naoto Hoshi
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Abstract
Here, I recount some adventures that I and my colleagues have had over some 60 years since 1957 studying the effects of drugs and neurotransmitters on neuronal excitability and ion channel function, largely, but not exclusively, using sympathetic neurons as test objects. Studies include effects of centrally active drugs on sympathetic transmission; neuronal action and neuroglial uptake of GABA in the ganglia and brain; the action of muscarinic agonists on sympathetic neurons; the action of bradykinin on neuroblastoma-derived cells; and the identification of M-current as a target for muscarinic action, including experiments to determine its distribution, molecular composition, neurotransmitter sensitivity, and intracellular regulation by phospholipids and their hydrolysis products. Techniques used include electrophysiological recording (extracellular, intracellular microelectrode, whole-cell, and single-channel patch-clamp), autoradiography, messenger RNA and complementary DNA expression, antibody injection, antisense knockdown, and membrane-targeted lipidated peptides. I finish with some recollections about my scientific career, funding, and changes in laboratory life and pharmacology research over the past 60 years.
Collapse
Affiliation(s)
- David A. Brown
- Departments of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
4
|
Arichi S, Sasaki-Hamada S, Kadoya Y, Ogata M, Ishibashi H. Excitatory effect of bradykinin on intrinsic neurons of the rat heart. Neuropeptides 2019; 75:65-74. [PMID: 31047706 DOI: 10.1016/j.npep.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/07/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023]
Abstract
The heart receives sympathetic and parasympathetic innervation through the intrinsic cardiac nervous system. Although bradykinin (BK) has negative inotropic and chronotropic properties of cardiac contraction, the direct effect of BK on the intrinsic neural network of the heart is still unclear. In the present study, the effect of BK on the intracardiac ganglion neurons isolated from rats was investigated using the perforated patch-clamp technique. Under current-clamp conditions, application of 0.1 μM BK depolarized the membrane, accompanied by repetitive firing of action potentials. When BK was applied repeatedly, the second responses were considerably less intense than the first application. The BK action was fully inhibited by the B2 receptor antagonist Hoe-140, but not by the B1 receptor antagonist des-Arg9-[Leu8]-BK. The BK response was mimicked by the B2 agonist [Hyp3]-BK. The BK-induced depolarization was inhibited by the phospholipase C inhibitor U-73122. BK evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca2+ markedly increased the BK-induced currents, suggesting an involvement of Ca2+-permeable non-selective cation channels. The muscarinic agonist oxotremorine-M (OxoM) also elicited the extracellular Ca2+-sensitive cationic currents. The OxoM response did not exhibit rundown with repeated agonist application. The amplitude of current evoked by 1 μM OxoM was comparable to that induced by 0.1 μM BK. Co-application of 0.1 μM BK and 1 μM OxoM elicited the current whose peak amplitude was almost the same as that elicited by OxoM alone, suggesting that BK and OxoM activate same cation channels. BK also reduced the amplitude of M-current, while the M-current inhibitor XE-991 affected neither resting membrane potential nor the BK-induced depolarization. From these results, we suggest that BK regulates excitability of intrinsic cardiac neurons by both an activation of non-selective cation channels and an inhibition of M-type K+ channels through B2 receptors.
Collapse
Affiliation(s)
- Shiho Arichi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan; Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
| | - Sachie Sasaki-Hamada
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan
| | - Yuichi Kadoya
- Department of Anatomical Science, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan
| | - Masanori Ogata
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan; Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan; Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan.
| |
Collapse
|
5
|
Nociceptor Signalling through ion Channel Regulation via GPCRs. Int J Mol Sci 2019; 20:ijms20102488. [PMID: 31137507 PMCID: PMC6566991 DOI: 10.3390/ijms20102488] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.
Collapse
|
6
|
Cyclic ADP-ribose as an endogenous inhibitor of the mTOR pathway downstream of dopamine receptors in the mouse striatum. J Neural Transm (Vienna) 2016; 125:17-24. [PMID: 28025713 DOI: 10.1007/s00702-016-1666-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
The role of cyclic ADP-ribose (cADPR) as a second messenger and modulator of the mTOR pathway downstream of dopamine (DA) receptors and/or CD38 was re-examined in the mouse. ADP-ribosyl activity was low in the membranes of neonates, but DA stimulated it via both D1- and D2-like receptors. ADP-ribosyl cyclase activity increased significantly during development in association with increased expression of CD38. The cADPR binding proteins, FKBP12 and FKBP12.6, were expressed in the adult mouse striatum. The ratio of phosphorylated to non-phosphorylated S6 kinase (S6K) in whole mouse striatum homogenates decreased after incubation of adult mouse striatum with extracellular cADPR for 5 min. This effect of cADPR was much weaker in MPTP-treated Parkinson's disease model mice. The inhibitory effects of cADPR and rapamycin were identical. These data suggest that cADPR is an endogenous inhibitor of the mTOR signaling pathway downstream of DA receptors in the mouse striatum and that cADPR plays a certain role in the brain in psychiatric and neurodegenerative diseases.
Collapse
|
7
|
Greene DL, Hoshi N. Modulation of Kv7 channels and excitability in the brain. Cell Mol Life Sci 2016; 74:495-508. [PMID: 27645822 DOI: 10.1007/s00018-016-2359-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 11/26/2022]
Abstract
Neuronal Kv7 channels underlie a voltage-gated non-inactivating potassium current known as the M-current. Due to its particular characteristics, Kv7 channels show pronounced control over the excitability of neurons. We will discuss various factors that have been shown to drastically alter the activity of this channel such as protein and phospholipid interactions, phosphorylation, calcium, and numerous neurotransmitters. Kv7 channels locate to key areas for the control of action potential initiation and propagation. Moreover, we will explore the dynamic surface expression of the channel modulated by neurotransmitters and neural activity. We will also focus on known principle functions of neural Kv7 channels: control of resting membrane potential and spiking threshold, setting the firing frequency, afterhyperpolarization after burst firing, theta resonance, and transient hyperexcitability from neurotransmitter-induced suppression of the M-current. Finally, we will discuss the contribution of altered Kv7 activity to pathologies such as epilepsy and cognitive deficits.
Collapse
Affiliation(s)
- Derek L Greene
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA, 92697, USA
| | - Naoto Hoshi
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA, 92697, USA.
- Department of Physiology and Biophysics, University of California, Irvine, USA.
| |
Collapse
|
8
|
Coordinated signal integration at the M-type potassium channel upon muscarinic stimulation. EMBO J 2012; 31:3147-56. [PMID: 22643219 DOI: 10.1038/emboj.2012.156] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/25/2012] [Indexed: 01/08/2023] Open
Abstract
Several neurotransmitters, including acetylcholine, regulate neuronal tone by suppressing a non-inactivating low-threshold voltage-gated potassium current generated by the M-channel. Agonist dependent control of the M-channel is mediated by calmodulin, activation of anchored protein kinase C (PKC), and depletion of the phospholipid messenger phosphatidylinositol 4,5-bisphosphate (PIP2). In this report, we show how this trio of second messenger responsive events acts synergistically and in a stepwise manner to suppress activity of the M-current. PKC phosphorylation of the KCNQ2 channel subunit induces dissociation of calmodulin from the M-channel complex. The calmodulin-deficient channel has a reduced affinity towards PIP2. This pathway enhances the effect of concomitant reduction of PIP2, which leads to disruption of the M-channel function. These findings clarify how a common lipid cofactor, such as PIP2, can selectively regulate ion channels.
Collapse
|
9
|
Higashida H. A personal view from a long-lasting collaborator on the research strategies of Marshall Nirenberg. Neurochem Int 2012; 61:821-7. [PMID: 22414530 DOI: 10.1016/j.neuint.2012.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/19/2012] [Accepted: 02/25/2012] [Indexed: 11/20/2022]
Abstract
In this review, I summarized transition in Dr. Marshall Nirenberg's research interests during 1970s, from a view of a long-lasting collaborator. Nirenberg switched his research filed to neurobiology after his success in deciphering genetic code and being honored with the Nobel Prize in Physiology or Medicine in 1968. His targets were to obtain genetically pure population of neurons, i.e. neuroblastoma clones, to make somatic hydrid cells, to culture neuronal and muscle cells, and to produce monoclonal antibodies against whole retinal or neuroblastoma cells. He studied neurotransmitters, receptors, cyclic nucleotides, cell differentiation, secretion, synapse formation, and chemical recognition. Especially he liked his hypothesis for opiate tolerance and dependency as a model of cellular memory. Through these studies, he seemed to devote all his time of about 50 years from 1960s to decoding brain memory processes.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan.
| |
Collapse
|
10
|
ATP competitive protein kinase C inhibitors demonstrate distinct state-dependent inhibition. PLoS One 2011; 6:e26338. [PMID: 22043317 PMCID: PMC3197134 DOI: 10.1371/journal.pone.0026338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/25/2011] [Indexed: 01/07/2023] Open
Abstract
We previously reported that some ATP competitive protein kinase C (PKC) inhibitors are either competitive or uncompetitive inhibitors with respect to substrate peptides. In this report, we demonstrate how the interactions between PKC and inhibitors change PKC activation kinetics. A substrate competitive inhibitor, bisindolylmaleimide I, targets activated PKC and stabilizes PKC in the activated conformation. This leads to transient activation and prolonged deactivation of PKC in the presence of bisindolylmaleimide I. In contrast, an uncompetitive substrate inhibitor, bisindolylmaleimide IV, targets quiescent PKC and stabilizes PKC in the quiescent conformation, which generates slower activation and suppressed translocation upon activation of PKC.
Collapse
|
11
|
Brown DA, Passmore GM. Some new insights into the molecular mechanisms of pain perception. J Clin Invest 2010; 120:1380-3. [PMID: 20424321 PMCID: PMC2860926 DOI: 10.1172/jci42143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bradykinin is the most potent endogenous inducer of acute pain. However, the way in which it excites nociceptive sensory nerve endings is still unclear. In an article recently published in the JCI, Liu et al. suggest a new mechanism via which bradykinin induces acute spontaneous pain. The authors report that the stimulation of B2 bradykinin receptors by bradykinin triggers the release of intracellular calcium ions from nociceptive sensory neurons of rat dorsal root ganglia. This depolarizes the sensory nerve endings by simultaneously closing M-type potassium channels and opening TMEM16A chloride channels, resulting in the production of nociceptive signals. Here, we discuss the relationship between this effect and a previously described mechanism for pain sensitization and evaluate its potential significance for therapeutic pain control. A separate study by Patwardhan et al. in this issue of the JCI identifies oxidized linoleic acid metabolites as novel mediators of thermally induced pain.
Collapse
Affiliation(s)
- David A Brown
- Department of Neuroscience, Physiology, and Pharmacology, University College London, United Kingdom.
| | | |
Collapse
|
12
|
Gribkoff VK. The therapeutic potential of neuronal K V 7 (KCNQ) channel modulators: an update. Expert Opin Ther Targets 2008; 12:565-81. [PMID: 18410240 DOI: 10.1517/14728222.12.5.565] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neuronal KCNQ channels (K(V)7.2-5) represent attractive targets for the development of therapeutics for chronic and neuropathic pain, migraine, epilepsy and other neuronal hyperexcitability disorders, although there has been only modest progress in translating this potential into useful therapeutics. OBJECTIVE Compelling evidence of the importance of K(V)7 channels as neuronal regulatory elements, readily amenable to pharmacological modulation, has sustained widespread interest in these channels as drug targets. This review will update readers on key aspects of the characterization of these important ion channel targets, and will discuss possible current barriers to their exploitation for CNS therapeutics. METHODS This article is based on a review of recent literature, with a focus on data pertaining to the roles of these channels in neurophysiology. In addition, I review some of the regulatory elements that influence the channels and how these may relate to channel pharmacology, and present a review of recent advances in neuronal K(V)7 channel pharmacology. CONCLUSIONS These channels continue to be valid and approachable targets for CNS therapeutics. However, we may need to understand more about the roles of neuronal K(V)7 channels during the development of disease states, as well as to pay more attention to a detailed analysis of the molecular pharmacology of the different channel subfamily members and the modes of interaction of individual modulators, in order to successfully target these channels for therapeutic development.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Knopp Neurosciences, Inc., 2100 Wharton Street, Suite 615, Pittsburgh, PA 15203, USA.
| |
Collapse
|
13
|
Nakajo K, Kubo Y. Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed in Xenopus oocytes. J Physiol 2005; 569:59-74. [PMID: 16179364 PMCID: PMC1464213 DOI: 10.1113/jphysiol.2005.094995] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is well established that stimulation of G(q)-coupled receptors such as the M1 muscarinic acetylcholine receptor inhibits KCNQ/M currents. While it is generally accepted that this muscarinic inhibition is mainly caused by the breakdown of PIP(2), the role of the subsequent activation of protein kinase C (PKC) is not well understood. By reconstituting M currents in Xenopus oocytes, we observed that stimulation of coexpressed M1 receptors with 10 microm oxotremorine M (oxo-M) induces a positive shift (4-30 mV, depending on which KCNQ channels are expressed) in the conductance-voltage relationship (G-V) of KCNQ channels. When we applied phorbol 12-myristate 13-acetate (PMA), a potent PKC activator, we observed a large positive shift (17.8 +/- 1.6 mV) in the G-V curve for KCNQ2, while chelerythrine, a PKC inhibitor, attenuated the shift caused by the stimulation of M1 receptors. By contrast, reducing PIP(2) had little effect on the G-V curve for KCNQ2 channels; although pretreating cells with 10 mum wortmannin for 30 min reduced KCNQ2 current amplitude by 80%, the G-V curve was shifted only slightly (5 mV). Apparently, the shift induced by muscarinic stimulation in Xenopus oocytes was mainly caused by PKC activation. When KCNQ2/3 channels were expressed in HEK 293T cells, the G-V curve seemed already to be shifted in a positive direction, even before activation of PKC, and PMA failed to shift the curve any further. That alkaline phosphatase in the patch pipette shifted the G-V curve in a negative direction suggests KCNQ2/3 channels are constitutively phosphorylated in HEK 293T cells.
Collapse
Affiliation(s)
- Koichi Nakajo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
| | | |
Collapse
|
14
|
Higashida H, Hoshi N, Zhang JS, Yokoyama S, Hashii M, Jin D, Noda M, Robbins J. Protein kinase C bound with A-kinase anchoring protein is involved in muscarinic receptor-activated modulation of M-type KCNQ potassium channels. Neurosci Res 2005; 51:231-4. [PMID: 15710486 DOI: 10.1016/j.neures.2004.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
The second messenger for closure of M/KCNQ potassium channels in post-ganglionic neurons and central neurons had remained as a 'mystery in the neuroscience field' for over 25 years. However, recently the details of the pathway leading from muscarinic acetylcholine receptor (mAChR)-stimulation to suppression of the M/KCNQ-current were discovered. A key molecule is A-kinase anchoring protein (AKAP; AKAP79 in human, or its rat homolog, AKAP150) which forms a trimeric complex with protein kinase C (PKC) and KCNQ channels. AKAP79 or 150 serves as an adapter that brings the anchored C-kinase to the substrate KCNQ channel to permit the rapid and 'definitive' phosphorylation of serine residues, resulting in avoidance of signal dispersion. Thus, these findings suggest that mAChR-induced short-term modulation (or memory) does occur within the already well-integrated molecular complex, without accompanying Hebbian synapse plasticity. However, before this identity is confirmed, many other modulators which affect M-currents remain to be addressed as intriguing issues.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Noda M, Kariura Y, Amano T, Manago Y, Nishikawa K, Aoki S, Wada K. Kinin receptors in cultured rat microglia. Neurochem Int 2004; 45:437-42. [PMID: 15145558 DOI: 10.1016/j.neuint.2003.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/29/2003] [Accepted: 07/29/2003] [Indexed: 11/30/2022]
Abstract
Kinins are produced and act at the site of injury and inflammation in various tissues. They are likely to initiate a particular cascade of inflammatory events, which evokes physiological and pathophysiological responses including an increase in blood flow and plasma leakage. In the central nervous system (CNS), kinins are potent stimulators of the production and release of pro-inflammatory mediators represented by prostanoids and cytotoxins. They are known to induce neural tissue damage. Many of the cytotoxins such as cytokines and free radicals and prostanoids are released from glial cells. Among glial cells, astrocytes and oligodendrocytes are known to possess bradykinin (BK) B(2) receptors that phosphoinositide (PI) turnover and raise intracellular Ca(2+) concentration. The presence of bradykinin receptors in microglia has been of great significance. We recently showed that rat primary microglia express kinin receptors. In resting microglia, B(2) receptors but not B(1) receptors are expressed. When the microglia are activated by bradykinin, B(1) receptors are up-regulated, while B(2) receptors are down-regulated. As observed in other glial cells, electrophysiological measurements suggest that B(2) receptors in phosphoinositide turnover and intracellular Ca(2+) concentration in microglia. Release of cytotoxins is likely consequent upon the activation of BK receptors. Our study provides the first evidence that microglia express functional kinin receptors and suggests that microglia play an important role in CNS inflammatory responses.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Oh EJ, Weinreich D. Bradykinin decreases K(+) and increases Cl(-) conductances in vagal afferent neurones of the guinea pig. J Physiol 2004; 558:513-26. [PMID: 15169850 PMCID: PMC1664971 DOI: 10.1113/jphysiol.2004.066381] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bradykinin (BK) is an inflammatory mediator that can excite and sensitize primary afferent neurones. The nature of the ionic channels underlying the excitatory actions of BK is still incompletely understood. Using whole-cell patch-clamp recording from acutely dissociated nodose ganglion neurones (NGNs) we have examined the ionic mechanism responsible for BK's excitatory effect. Bath-applied BK (0.1 microM) depolarized the membrane potential (29 +/- 3.1 mV, n= 7), evoked action potentials, and induced an inward ionic current (I(BK)) with two distinctive membrane conductances (g(m)). Initially, g(m) decreased; the ionic current associated with this g(m) had a reversal potential (E(rev)) value of -87 +/- 1.1 mV (n= 26), a value close to E(K) (-89 mV). Subsequently, g(m) increased; the ionic current associated with this g(m) had an estimated E(rev) of 49 +/- 4.3 mV (n= 23). When the second component was isolated from the first component, by replacing [K(+)](o) with Cs(+), E(rev) was 20 +/- 4.7 mV (n= 10). Replacing external NaCl with NMDG-Cl or choline-Cl, or reducing [Ca(2+)](o) did not significantly diminish I(BK). After replacing external NaCl with sodium isethionate, E(rev) for the second component shifted to 56 +/- 8.8 mV (n= 4), a value close to the E(Cl) (66 mV). The second component was inhibited by intracellular BAPTA or by bath application of niflumic acid (100 microM), a Ca(2+)-activated Cl(-) channel blocker. These results suggest that the first and second components of I(BK) are produced by a decrease in K(+) conductance and an increase in Ca(2+)-activated Cl(-) conductance, respectively. The BK-evoked Cl(-) conductance in NGNs may be the first demonstration of an inflammatory mediator exciting primary afferents via an anion channel.
Collapse
Affiliation(s)
- Eun Joo Oh
- University of Maryland School of Medicine, Department of Pharmacology and Experimental Therapeutics, Room 4-002, Bressler Research Building, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | | |
Collapse
|
17
|
Xu C, Loew LM. Activation of phospholipase C increases intramembrane electric fields in N1E-115 neuroblastoma cells. Biophys J 2003; 84:4144-56. [PMID: 12770917 PMCID: PMC1302993 DOI: 10.1016/s0006-3495(03)75139-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We imaged the intramembrane potential (a combination of transmembrane, surface, and dipole potential) on N1E-115 neuroblastoma cells with a voltage-sensitive dye. After activation of the B(2) bradykinin receptor, the electric field sensed by the dye increased by an amount equivalent to a depolarization of 83 mV. The increase in intramembrane potential was blocked by the phospholipase C (PLC) inhibitors U-73122 and neomycin, and was invariably accompanied by a transient rise of [Ca(2+)](i). A depolarized inner surface potential, as the membrane loses negative charges via phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolysis, and an increase in the dipole potential, as PIP(2) is hydrolyzed to 1,2-diacylglycerol (DAG), can each account for a small portion of the change in intramembrane potential. The primary contribution to the measured change in intramembrane potential may arise from an increased dipole potential, as DAG molecules are generated from hydrolysis of other phospholipids. We found bradykinin produced an inhibition of a M-type voltage-dependent K(+) current (I(K(M))). This inhibition was also blocked by the PLC inhibitors and had similar kinetics as the bradykinin-induced modulation of intramembrane potential. Our results suggest that the change in the local intramembrane potential induced by bradykinin may play a role in mediating the I(K(M)) inhibition.
Collapse
Affiliation(s)
- Chang Xu
- Department of Physiology and Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
18
|
Hoshi N, Zhang JS, Omaki M, Takeuchi T, Yokoyama S, Wanaverbecq N, Langeberg LK, Yoneda Y, Scott JD, Brown DA, Higashida H. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci 2003; 6:564-71. [PMID: 12754513 PMCID: PMC3941299 DOI: 10.1038/nn1062] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 03/21/2003] [Indexed: 12/12/2022]
Abstract
M-type (KCNQ2/3) potassium channels are suppressed by activation of G(q/11)-coupled receptors, thereby increasing neuronal excitability. We show here that rat KCNQ2 can bind directly to the multivalent A-kinase-anchoring protein AKAP150. Peptides that block AKAP150 binding to the KCNQ2 channel complex antagonize the muscarinic inhibition of the currents. A mutant form of AKAP150, AKAP(DeltaA), which is unable to bind protein kinase C (PKC), also attenuates the agonist-induced current suppression. Analysis of recombinant KCNQ2 channels suggests that targeting of PKC through association with AKAP150 is important for the inhibition. Phosphorylation of KCNQ2 channels was increased by muscarinic stimulation; this was prevented either by coexpression with AKAP(DeltaA) or pretreatment with PKC inhibitors that compete with diacylglycerol. These inhibitors also reduced muscarinic inhibition of M-current. Our data indicate that AKAP150-bound PKC participates in receptor-induced inhibition of the M-current.
Collapse
Affiliation(s)
- Naoto Hoshi
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang H, Craciun LC, Mirshahi T, Rohács T, Lopes CMB, Jin T, Logothetis DE. PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 2003; 37:963-75. [PMID: 12670425 DOI: 10.1016/s0896-6273(03)00125-9] [Citation(s) in RCA: 433] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
KCNQ channels belong to a family of potassium ion channels with crucial roles in physiology and disease. Heteromers of KCNQ2/3 subunits constitute the neuronal M channels. Inhibition of M currents, by pathways that stimulate phospholipase C activity, controls excitability throughout the nervous system. Here we show that a common feature of all KCNQ channels is their activation by the signaling membrane phospholipid phosphatidylinositol-bis-phosphate (PIP(2)). We show that wortmannin, at concentrations that prevent recovery from receptor-mediated inhibition of M currents, blocks PIP(2) replenishment to the cell surface. Moreover, we identify a C-terminal histidine residue, immediately proximal to the plasma membrane, mutation of which renders M channels less sensitive to PIP(2) and more sensitive to receptor-mediated inhibition. Finally, native or recombinant channels inhibited by muscarinic agonists can be activated by PIP(2). Our data strongly suggest that PIP(2) acts as a membrane-diffusible second messenger to regulate directly the activity of KCNQ currents.
Collapse
Affiliation(s)
- Hailin Zhang
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Noda M, Kariura Y, Amano T, Manago Y, Nishikawa K, Aoki S, Wada K. Expression and function of bradykinin receptors in microglia. Life Sci 2003; 72:1573-81. [PMID: 12551746 DOI: 10.1016/s0024-3205(02)02449-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of bradykinin (BK) receptors and their cellular function were investigated in microglia. Microglial cells were isolated from mixed cultures of cerebrocortical cells from postnatal day 3 Wistar rats. Reverse transcription-PCR (RT-PCR) showed that rat primary microglia express mRNAs for the type 2 bradykinin (B(2)) receptor subtype but not the type 1 (B(1)) receptor subtype under our experimental condition. However, the expression of B(1) receptor was greatly up-regulated after the treatment of microglia with BK for 24 hours. The expression of B(2) receptor in microglia was further confirmed by immunocytochemistry. Membrane currents were measured using whole-cell recording under voltage-clamp conditions. In 14% of patched cells (12/85 cells), BK (100-200 nM) induced an outward current at the holding potential of -20 mV, with oscillations in 2 cases. The BK-induced outward current was transient and desensitized rapidly. TEA inhibited the BK-induced outward current in a dose-dependent manner. These results suggest that microglia express B(2) receptors and presumably increase the intracellular Ca(2+) concentration via inositol trisphosphate with the subsequent activation of Ca(2+)-dependent K(+) channels. Our data provide the first evidence that microglia express functional BK receptors and support the idea that microglia play an important role in CNS inflammatory responses.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, 812-8582, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Bradykinin has long been known to excite sympathetic neurons via B(2) receptors, and this action is believed to be mediated by an inhibition of M-currents via phospholipase C and inositol trisphosphate-dependent increases in intracellular Ca(2+). In primary cultures of rat superior cervical ganglion neurons, bradykinin caused an accumulation of inositol trisphosphate, an inhibition of M-currents, and a stimulation of action potential-mediated transmitter release. Blockade of inositol trisphosphate-dependent signaling cascades failed to affect the bradykinin-induced release of noradrenaline, but prevented the peptide-induced inhibition of M-currents. In contrast, inhibition or downregulation of protein kinase C reduced the stimulation of transmitter release, but not the inhibition of M-currents, by bradykinin. In cultures of superior cervical ganglia, classical (alpha, betaI, betaII), novel (delta, epsilon), and atypical (zeta) protein kinase C isozymes were detected by immunoblotting. Bradykinin induced a translocation of Ca(2+)-independent protein kinase C isoforms (delta and epsilon) from the cytosol to the membrane of the neurons, but left the cellular distribution of other isoforms unchanged. This activation of Ca(2+)-independent protein kinase C enzymes was prevented by a phospholipase C inhibitor. The bradykinin-dependent stimulation of noradrenaline release was reduced by inhibitors of classical and novel protein kinase C isozymes, but not by an inhibitor selective for Ca(2+)-dependent isoforms. These results demonstrate that bradykinin B(2) receptors are linked to phospholipase C to simultaneously activate two signaling pathways: one mediates an inositol trisphosphate- and Ca(2+)-dependent inhibition of M-currents, the other one leads to an excitation of sympathetic neurons independently of changes in M-currents through an activation of Ca(2+)-insensitive protein kinase C.
Collapse
|
22
|
Abstract
Arachidonate 12-lipoxygenase introduces a molecular oxygen at carbon 12 of arachidonic acid to generate a 12-hydroperoxy derivative. The enzymes generate 12-hydroperoxy derivatives with either S- or R-configurations. There are three isoforms of 12S-lipoxygenases named after the cells where they were first identified; platelet, leukocyte and epidermis. The leukocyte-type enzyme is widely distributed among cells, but the tissue distribution varies substantially from species to species. The platelet and epidermal enzymes are present in only a relatively limited number of cell types. Although the structures and enzymatic properties of the three isoforms of 12S-lipoxygenases have been elucidated, the physiological roles of the 12S-lipoxygenases are not yet fully understood. There are important roles for the enzymes and their products in several biological systems including those involved in atherosclerosis and neurotransmission.
Collapse
Affiliation(s)
- Tanihiro Yoshimoto
- Department of Molecular Pharmacology, Kanazawa University Graduate School of Medicine, Japan.
| | | |
Collapse
|
23
|
Mochidome T, Ishibashi H, Takahama K. Bradykinin activates airway parasympathetic ganglion neurons by inhibiting M-currents. Neuroscience 2001; 105:785-91. [PMID: 11516842 DOI: 10.1016/s0306-4522(01)00211-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The action of bradykinin on neurons acutely isolated from airway parasympathetic ganglia of rats and its mechanism were investigated using the nystatin-perforated patch-clamp recording technique. Under current clamp conditions, an application of 0.1 microM bradykinin onto rat airway ganglion neurons induced a depolarization which was accompanied by the action potential firing. Bradykinin elicited inward currents with decreasing the membrane conductance when a ganglion neuron was held at a holding potential of -40 mV. The half-maximum effective concentration was 8.9 nM. The bradykinin response was mimicked by a B(2) receptor agonist, [Hyp(3)]-bradykinin, and was inhibited by HOE-140, a B(2) antagonist, suggesting the contribution of B(2) receptors. The bradykinin-induced inward current reversed at the K(+) equilibrium potential, which shifted 56.5 mV with a 10-fold change in extracellular K(+) concentration. The application of 10(-3) M Ba(2+) induced the inward current, and bradykinin failed to evoke a further inward current in the presence of Ba(2+). Bradykinin also reduced the amplitude of M-current deactivation induced by a hyperpolarizing step from a holding potential of -25 mV to -50 mV with a half-maximum effective concentration of 16 nM. Pretreatment with pertussis toxin had no effect on the bradykinin-induced inhibition of the M-current. From these results we suggest that bradykinin may be able to depolarize the airway parasympathetic ganglion neurons of rats associated with an inhibition of M-type K(+) channels through the B(2) type of bradykinin receptors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Barium/pharmacology
- Bradykinin/metabolism
- Bradykinin/pharmacology
- Bradykinin Receptor Antagonists
- Bronchoconstriction/drug effects
- Bronchoconstriction/physiology
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Ganglia, Parasympathetic/cytology
- Ganglia, Parasympathetic/drug effects
- Ganglia, Parasympathetic/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Patch-Clamp Techniques
- Pertussis Toxin
- Potassium Channel Blockers
- Potassium Channels/metabolism
- Rats
- Rats, Wistar
- Receptors, Bradykinin/agonists
- Receptors, Bradykinin/metabolism
- Trachea/innervation
- Trachea/metabolism
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- T Mochidome
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, 862-0973, Kumamoto, Japan
| | | | | |
Collapse
|
24
|
Chen XL, Zhong ZG, Yokoyama S, Bark C, Meister B, Berggren PO, Roder J, Higashida H, Jeromin A. Overexpression of rat neuronal calcium sensor-1 in rodent NG108-15 cells enhances synapse formation and transmission. J Physiol 2001; 532:649-59. [PMID: 11313436 PMCID: PMC2278582 DOI: 10.1111/j.1469-7793.2001.0649e.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The role of rat neuronal calcium sensor-1 (NCS-1), a Ca2+-binding protein, in synapse formation and transmitter release was examined in mouse neuroblastoma x rat glioma hybrid NG108-15 cells in culture. Wild-type NG108-15 cells expressed rodent NCS-1. Endogenous NCS-1 was partially co-localized with the synaptic protein SNAP-25 at the plasma membrane in both cell bodies and processes, but not with the Golgi marker [beta]-COP, an individual coat subunit of the coatomer complex present on Golgi-derived vesicles. In NG108-15 cells co-cultured with rat myotubes, partial co-localization of SNAP-25 and NCS-1 was observed at the plasma membrane of neurites and growth cones, some of which had synaptic contacts to muscle cells. Transient co-transfection of the rat NCS-1 cDNA and green fluorescent protein (GFP) resulted in NCS-1 overexpression in about 30 % of the cells as determined by fluorescence microscopy. The rate of functional synapse formation with co-cultured rat myotubes increased 2-fold as determined by the presence of miniature endplate potentials (MEPPs) in NCS-1-overexpressing NG108-15 cells compared to non- and mock-transfected cells. The number of neurites per cell, branches per neurite and length of neurites was slightly less in cells that were either transiently transfected (GFP-NCS-1-fluorescence positive) or stably transformed with NCS-1 compared to GFP-NCS-1-negative, non-transfected or mock-transfected NG108-15 cells. The number of action potentials that elicited endplate potentials increased in NG108-15 cells stably transformed with rat NCS-1. The mean number of quanta per impulse (m) increased 5-fold. These results show that NCS-1 functions to facilitate synapse formation, probably because of the increased quantal content of evoked acetylcholine release.
Collapse
Affiliation(s)
- X L Chen
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brown BS, Yu SP. Modulation and genetic identification of the M channel. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:135-66. [PMID: 10958929 DOI: 10.1016/s0079-6107(00)00004-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Potassium channels constitute a superfamily of the most diversified ion channels, acting in delicate and accurate ways to control or modify many physiological and pathological functions including membrane excitability, transmitter release, cell proliferation and cell degeneration. The M-type channel is a unique ligand-regulated and voltage-gated K(+) channel showing distinct physiological and pharmacological characteristics. This review will cover some important progress in the study of M channel modulation, particularly focusing on membrane transduction mechanisms. The K(+) channel genes corresponding to the M channel have been identified and will be reviewed in detail. It has been a long journey since the discovery of M current in 1980 to our present understanding of the mysterious mechanisms for M channel modulation; a journey which exemplifies tremendous achievements in ion channel research and exciting discoveries of elaborate modulatory systems linked to these channels. While substantial evidence has accumulated, challenging questions remain to be answered.
Collapse
Affiliation(s)
- B S Brown
- General Pharmacology Department, DuPont Pharmaceuticals Company, Wilmington, DE 19880-0400, USA
| | | |
Collapse
|
26
|
Brown DA, Filippov AK, Barnard EA. Inhibition of potassium and calcium currents in neurones by molecularly-defined P2Y receptors. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:31-6. [PMID: 10869697 DOI: 10.1016/s0165-1838(00)00150-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Messenger RNAs and cDNAs for individual cloned P2Y(1), P2Y2 and P2Y(6) nucleotide receptors have been expressed by micro-injection into dissociated rat superior cervical sympathetic neurones and the effects of stimulating the expressed receptors on voltage-activated N-type Ca(2+) currents and M-type K(+) currents recorded. Both currents were reduced by stimulating all three receptors, with the following mean IC(50) values: P2Y(1) (agonist: ADP) - I(K(M)) 6.9 nM, I(Ca) 8.2 nM; P2Y(2) (agonist: UTP) - I(K(M)) 1.5 microM, I(Ca) 0.5 microM; P2Y(6) (agonist: UDP) - I(K(M)) 30 nM, I(Ca) 5.9 nM. Inhibition of I(K(M)) was voltage-independent and insensitive to Pertussis toxin; inhibition of I(Ca) showed both voltage-sensitive and insensitive, and Pertussis toxin-sensitive and insensitive components. It is concluded that these P2Y receptors can couple to more than one G protein and thereby modulate more than one ion channel. It is suggested that these effects on K(M) and Ca(N) channels may induce both postsynaptic excitory and presynaptic inhibitory responses.
Collapse
Affiliation(s)
- D A Brown
- Department of Pharmacology, University College London, Gower Street, WC1E 6BT, London, UK
| | | | | |
Collapse
|
27
|
Takahashi Y, Kawajiri H, Yoshimoto T, Hoshi N, Higashida H. 12-Lipoxygenase overexpression in rodent NG108-15 cells enhances membrane excitability by inhibiting M-type K+ channels. J Physiol 1999; 521 Pt 3:567-74. [PMID: 10601489 PMCID: PMC2269696 DOI: 10.1111/j.1469-7793.1999.00567.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. 12-Lipoxygenase produces 12-hydroperoxy acid from arachidonic acid released from membrane phospholipids. To elucidate the role of the enzyme in neuronal functions, mouse neuroblastoma x rat glioma hybrid NG108-15 cells were permanently transfected with the cDNA for human 12-lipoxygenase. 2. The number of action potentials evoked by depolarizing current steps in a current-clamp mode was strikingly increased in 12-lipoxygenase-expressing NG108-15 cells as compared with the wild-type cells which hardly had the enzyme activity. 3. In the transformed cells, the M-type voltage-dependent K+ current was significantly reduced with little or no change in other ion channel currents. 4. Treatment of the transformed cells with a 12-lipoxygenase inhibitor recovered the action potential frequency and the M-current amplitude to the control level. 5. These results indicate that 12-lipoxygenase and/or its metabolites target K+ channels and upregulate the membrane excitability, and thereby modulate neuronal signalling.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Pharmacology, Kanazawa University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
28
|
Two types of K(+) channel subunit, Erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell. J Neurosci 1999. [PMID: 10479678 DOI: 10.1523/jneurosci.19-18-07742.1999] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The potassium M current was originally identified in sympathetic ganglion cells, and analogous currents have been reported in some central neurons and also in some neural cell lines. It has recently been suggested that the M channel in sympathetic neurons comprises a heteromultimer of KCNQ2 and KCNQ3 (Wang et al., 1998) but it is unclear whether all other M-like currents are generated by these channels. Here we report that the M-like current previously described in NG108-15 mouse neuroblastoma x rat glioma cells has two components, "fast" and "slow", that may be differentiated kinetically and pharmacologically. We provide evidence from PCR analysis and expression studies to indicate that these two components are mediated by two distinct molecular species of K(+) channel: the fast component resembles that in sympathetic ganglia and is probably carried by KCNQ2/3 channels, whereas the slow component appears to be carried by merg1a channels. Thus, the channels generating M-like currents in different cells may be heterogeneous in molecular composition.
Collapse
|
29
|
Ueda H. In vivo molecular signal transduction of peripheral mechanisms of pain. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 79:263-8. [PMID: 10230852 DOI: 10.1254/jjp.79.263] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although we have obtained a number of pharmacological tools and mutant mice lacking specific genes related to the pain, the distinct molecular basis of the pain-producing mechanism has remained to be fully clarified since we have been using conventional paradigms of the nociception test that may drive multiple endogenous molecules affecting nociception at the same time. Here, I will introduce a new paradigm of the nociception test. In this test, we focused on polymodal C-fibers by measuring nociceptive flexor responses induced by the peripheral application of a single species of nociceptive molecule. In addition, we identified the site of drug actions on nociceptor endings by the fact that the nociception was abolished by the intrathecal pretreatment with antisense oligodeoxynucleotide for receptors. Throughout experiments using this paradigm of the nociception test, it was firstly revealed that substance P, a major neurotransmitter of polymodal C-fibers, directly stimulates nociceptor endings through activation of Gq/11 and phospholipase C, followed by Ca2+ influx through plasma membrane-bound inositol trisphosphate receptors, and that bradykinin and histamine, both endogenous representative pain-producing substances, share this mechanism. Another unique mechanism is through Gi-coupled receptors such as receptors for nociceptin (orphanin FQ) or kyotorphin (tyrosine-arginine). The latter mechanism was found to be mediated through a substance P release from nociceptor endings. Future studies including some modifications of this paradigm should be also clinically useful for neuropathic pain research as well as understanding of pain physiology.
Collapse
Affiliation(s)
- H Ueda
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University School of Pharmaceutical Sciences, Japan
| |
Collapse
|
30
|
Hoshi N, Takahashi H, Shahidullah M, Yokoyama S, Higashida H. KCR1, a membrane protein that facilitates functional expression of non-inactivating K+ currents associates with rat EAG voltage-dependent K+ channels. J Biol Chem 1998; 273:23080-5. [PMID: 9722534 DOI: 10.1074/jbc.273.36.23080] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebellar granule neurons possess a non-inactivating K+ current, which controls resting membrane potentials and modulates the firing rate by means of muscarinic agonists. kcr1 was cloned from the cerebellar cDNA library by suppression cloning. KCR1 is a novel protein with 12 putative transmembrane domains and enhances the functional expression of the cerebellar non-inactivating K+ current in Xenopus oocytes. KCR1 also accelerates the activation of rat EAG K+ channels expressed in Xenopus oocytes or in COS-7 cells. Far-Western blotting revealed that KCR1 and EAG proteins interacted with each other by means of their C-terminal regions. These results suggest that KCR1 is the regulatory component of non-inactivating K+ channels.
Collapse
Affiliation(s)
- N Hoshi
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | |
Collapse
|
31
|
Abstract
The nervous system and peripheral tissues in mammals contain a large number of biologically active peptides and proteases that function as neurotransmitters or neuromodulators in the nervous system, as hormones or cellular mediators in peripheral tissue, and play a role in human neurological diseases. The existence and possible functional relevance of bradykinin and kallidin (the peptides), kallikreins (the proteolytic enzymes), and kininases (the peptidases) in neurophysiology and neuropathological states are discussed in this review. Tissue kallikrein, the major cellular kinin-generating enzyme, has been localised in various areas of the mammalian brain. Functionally, it may assist also in the normal turnover of brain proteins and the processing of peptide-hormones, neurotransmitters, and some of the nerve growth factors that are essential for normal neuronal function and synaptic transmission. A specific class of kininases, peptidases responsible for the rapid degradation of kinins, is considered to be identical to enkephalinase A. Additionally, kinins are known to mediate inflammation, a cardinal feature of which is pain, and the clearest evidence for a primary neuronal role exists so far in the activation by kinins of peripherally located nociceptive receptors on C-fibre terminals that transmit and modulate pain perception. Kinins are also important in vascular homeostasis, the release of excitatory amino acid neurotransmitters, and the modulation of cerebral cellular immunity. The two kinin receptors, B2 and B1, that modulate the cellular actions of kinins have been demonstrated in animal neural tissue, neural cells in culture, and various areas of the human brain. Their localisation in glial tissue and neural centres, important in the regulation of cardiovascular homeostasis and nociception, suggests that the kinin system may play a functional role in the nervous system.
Collapse
Affiliation(s)
- D M Raidoo
- Department of Physiology, Faculty of Medicine, University of Natal, Durban, South Africa
| | | |
Collapse
|
32
|
Noda M, Obana M, Akaike N. Inhibition of M-type K+ current by linopirdine, a neurotransmitter-release enhancer, in NG108-15 neuronal cells and rat cerebral neurons in culture. Brain Res 1998; 794:274-80. [PMID: 9622649 DOI: 10.1016/s0006-8993(98)00235-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of linopirdine, a neurotransmitter-release enhancer, on the M-type K+-current, IK(M), was examined in NGPM1-27 cells, mouse neuroblastomaxrat glioma NG108-15 cells transformed to express m1-muscarinic acetylcholine (ACh) receptors, using the nystatin-perforated patch-recording mode under voltage-clamp conditions. The application of linopirdine induced the inward current associated with an inhibition of IK(M), which mimics an excitatory part of the ACh-induced responses in NGPM1-27 cells. The affinity of linopirdine for the inhibition of IK(M) was 24.7 microM in NGPM1-27 cells. In the presence of linopirdine, ACh failed to evoke a further inward current, but ACh still elicited an outward current, thus suggesting that the Ca2+-dependent K+ current is rather insensitive to linopirdine. Linopirdine also inhibited another voltage-gated potassium current (IK(V)) at the concentration of 72.3 microM. Finally, the inhibitory effect of linopirdine on IK(M) was confirmed in pyramidal neurons acutely dissociated from the rat cerebral cortex at 35.8 microM. The results suggest that linopirdine is thus considered to be an inhibitor of some type of K+ channels in both NGPM1-27 cells and the rat cerebral neurons.
Collapse
Affiliation(s)
- M Noda
- Department of Physiology, Kyushu University Faculty of Medicine, 3-1-1 Maidashi, Fukuoka 812-82, Japan
| | | | | |
Collapse
|
33
|
Morishita W, Alger BE. Sr2+ supports depolarization-induced suppression of inhibition and provides new evidence for a presynaptic expression mechanism in rat hippocampal slices. J Physiol 1997; 505 ( Pt 2):307-17. [PMID: 9423174 PMCID: PMC1160065 DOI: 10.1111/j.1469-7793.1997.307bb.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. We studied the transient suppression of evoked GABAA ergic inhibitory postsynaptic currents (eIPSCs) that follows brief membrane depolarization in rat CA1 hippocampal pyramidal cells, a process called depolarization-induced suppression of inhibition (DSI). We used whole-cell patch electrodes filled with a CsCl-based solution to voltage clamp the currents. All experiments were done in the presence of 50 microM 2-amino-5-phosphonovaleric acid (APV) and 20 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) to block ionotropic glutamate-induced currents and polysynaptic transmission in the slice preparation. 2. Substituting strontium (Sr2+) for extracellular calcium (Ca2+) led to the appearance of numerous 'asynchronous' small IPSCs following an eIPSC. These asynchronous IPSCs were indistinguishable from TTX-insensitive quantal IPSCs. 3. Although somewhat less effective than Ca2+, Sr2+ was capable of supporting DSI, and both asynchronous and synchronous IPSCs were blocked by the DSI process. 4. During DSI, quantal content of eIPSCs, but not quantal size, was significantly reduced. 5. Sr2+ converted paired-pulse depression (PPD) of eIPSCs to a paired-pulse facilitation (PPF), presumably by altering the probability of release at inhibitory nerve terminals. DSI had no effect on either PPD or PPF. 6. The results show that Sr2+ induces asynchronous release of GABA as it does of other neurotransmitters and changes the probability of release at GABAA ergic terminals as well. Most importantly, the results support the hypothesis that, despite being induced postsynaptically, DSI is expressed presynaptically as a decrease in GABA release, possibly by acting at a site other than the Ca(2+)-dependent release step.
Collapse
Affiliation(s)
- W Morishita
- Department of Physiology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
34
|
Berg T, Koteng O. Signalling pathways in bradykinin- and nitric oxide-induced hypotension in the normotensive rat; role of K+-channels. Br J Pharmacol 1997; 121:1113-20. [PMID: 9249246 PMCID: PMC1564804 DOI: 10.1038/sj.bjp.0701246] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Bradykinin and nitric oxide (NO) are potent hypotensive agents. In the present study, the role of K+-channels in the signalling pathways responsible for their hypotensive action was investigated in normotensive, anaesthetized rats. The rats were treated with ion-channel inhibitors before administration of bradykinin (2.8, 5.6, 28 and 56 nmol kg(-1), i.v.) followed in some of the protocols by nitroprusside (1.1, 3.5, 7, 14, and 28 nmol kg(-1), i.v.). 2. No attenuation of the hypotensive response to bradykinin was detected for inhibitors of the Na-K-Cl-cotransporter (30 micromol kg(-1) furosemide), the ATP-sensitive K+-channel (40 micromol kg(-1) glibenclamide), high conductance Ca2+-activated K+-channel (180 micromol kg(-1) tetraethylammonium, 54 micromol kg(-1) tetrabutylammonium, 35 nmol kg(-1) iberiotoxin, 35 nmol kg(-1) charybdotoxin) or the low conductance Ca2+-activated K+-channel (74 nmol kg(-1) apamin). 3. However, the voltage-sensitive K+-channel (I(A)) inhibitor 4-aminopyridine (4.05-40.5 micromol kg(-1)) induced a concentration-dependent (P<0.0001) attenuation of the hypotensive response (P<0.0001). Bradykinin had no effect on heart rate in anaesthetized rats and this observation was not altered by pretreatment with 4-aminopyridine. 4. 4-Aminopyridine (53 micromol kg(-1)) also significantly attenuated the hypotensive response to nitroprusside (P<0.0003) without altering the heart rate concentration-response curve. Of the two Ca2+-activated K+-channel inhibitors tested on nitroprusside-induced hypotension, tetrabutylammonium induced a slight attenuation (P<0.0101), whereas iberiotoxin had no effect. 5. We therefore concluded that, although the acute hypotensive response to bradykinin in the normotensive rat is not mediated through nitric oxide synthesis, the hypotensive response to both agents was mediated through opening of voltage-sensitive K+-channels (I(A)), resulting in a decrease in peripheral vascular resistance.
Collapse
Affiliation(s)
- T Berg
- Department of Physiology, Institute for Basic Medical Sciences, The Medical Faculty, University of Oslo, Norway
| | | |
Collapse
|
35
|
De Roos AD, Van Zoelen EJ, Theuvenet AP. Membrane depolarization in NRK fibroblasts by bradykinin is mediated by a calcium-dependent chloride conductance. J Cell Physiol 1997; 170:166-73. [PMID: 9009145 DOI: 10.1002/(sici)1097-4652(199702)170:2<166::aid-jcp8>3.0.co;2-m] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of the phosphoinositide-mobilizing agonist bradykinin (BK) on membrane potential and intracellular calcium in monolayers of normal rat kidney (NRK) fibroblasts were investigated. BK induced a rapid transient depolarization in these cells, which was mimicked by other phosphoinositide-mobilizing factors such as prostaglandin F2alpha (PGF2alpha), lysophosphatidic acid (LPA), platelet-derived growth factor (PDGF-BB), and serum. Depolarization by BK was independent of extracellular Ca2+ or Na+. It was shown using extracellular Cl- substitutions that the depolarization was caused by an increased Cl- conductance. Depolarization was inhibited by 5-nitro-2-3-phenylpropyl(amino)benzoic acid (NPPB), niflumic acid, and flufenamic acid, inhibitors of calcium-dependent chloride channels. The depolarization provoked by BK could be mimicked by raising intracellular calcium with ionomycin or thapsigargin and could be blocked with geneticin, a blocker of phospholipase C. When intracellular calcium was buffered by loading the cells with 1,2-bis(2-aminophenoxy)ethane-NNN'N'-tetra-acetic acid (BAPTA), depolarization was prevented. We conclude that in NRK fibroblasts extracellular stimuli that increase intracellular calcium, depolarize the cells via the activation of a calcium-dependent chloride conductance. In addition to an increase in intracellular calcium, depolarization may be an important effector pathway in response to extracellular stimuli in fibroblasts. It is hypothesized that, in electrically coupled cells such as NRK fibroblasts, intercellular transmission of these depolarizations may represent a mechanism to coordinate uniform multicellular responses to Ca2+-mobilizing agonists.
Collapse
Affiliation(s)
- A D De Roos
- Department of Cell Biology, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
36
|
Ahmed IA, Hopkins PM, Winlow W. Low concentrations of caffeine raise intracellular calcium concentration only in the presence of extracellular calcium in cultured molluscan neurons. GENERAL PHARMACOLOGY 1997; 28:245-50. [PMID: 9013202 DOI: 10.1016/s0306-3623(96)00233-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. The effects of low concentrations of caffeine (100 and 300 microM) on the intracellular calcium concentration [Ca2+]i in four cultured, identified neurons of the pond snail Lymnaea stagnalis (L) were investigated. 2. Intracellular CA2+ levels in these neurons were measured with the cell-permeable Ca2+ indicator Fura-2/AM, both in the presence and absence of extracellular Ca2 (o-Ca2+/EGTA). 3. In the presence of Ca2+ in the external medium, caffeine was found to induce a substantial elevation in the free [Ca2+]i in all cell types. 4. In some cases, the rise in [Ca2+]i was found to be both time- and concentration-dependent. 5. Low doses of caffeine did not produce any appreciable rise in [Ca2+]i in the absence of Ca2+ in the external medium, but calcium was still available from stores, as clinical concentrations of halothane rose [Ca2+]i in the absence of extracellular calcium. 6. These results indicate that the actions of caffeine, when applied at low concentrations, are dependent on extracellular calcium.
Collapse
Affiliation(s)
- I A Ahmed
- Department of Physiology, University of Leeds, UK
| | | | | |
Collapse
|
37
|
Abstract
M-current is a non-inactivating potassium current found in many neuronal cell types. In each cell type, it is dominant in controlling membrane excitability by being the only sustained current in the range of action potential initiation. It can be modulated by a large array of receptor types, and the modulation can occur either by suppression or enhancement. Modulation of M-current has dramatic effects on neuronal excitability. This review discusses the numerous second messenger pathways that converge on regulation of this current: in particular, two forms of regulation of the M-current, receptor-mediated modulation and the control of macroscopic current amplitude by intracellular calcium. Both types of regulation are discussed with reference to the modulation of single-channel gating properties.
Collapse
Affiliation(s)
- N V Marrion
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| |
Collapse
|
38
|
Egorova A, Hoshi N, Knijnik R, Shahidullah M, Hashii M, Noda M, Higashida H. Sulfhydryl modification inhibits K+ (M) current with kinetics close to acetylcholine in rodent NG108-15 cells. Neurosci Res 1997; 27:35-44. [PMID: 9089697 DOI: 10.1016/s0168-0102(96)01130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of sulfhydryl reagents on M-type voltage-dependent potassium currents (IK(M)) were examined in NG108-15 cells transformed to express ml muscarinic acetylcholine receptors (mAChRs), a NGPM1-27 clone. Focal application of glutathione at millimolar concentrations dissolved in acidic solutions caused a transient inward current in NGPM1-27 cells at holding potentials of -30mV, associated with an inhibition of IK(M). The glutathione-induced response was mimicked by cysteine. These effects were also reproduced by superfusion with micromolar concentrations of HgCl2, AgNO3, N-methylmaleimide and p-chloromercuribenzoic acid (pCMB), agents which target protein thiols. Glutathione, HgCl2, AgNO3 and pCMB inhibited the peak conductance of IK(M) without shifting the half activating voltage (V1/2), which was comparable to the acetylcholine (ACh)-induced response. The voltage dependence of time constants for IK(M) deactivation in sulfhydryl reagent-, ACh- and non-treated cells resembled, but differed from that in Ba(2+)-treated cells. These results reveal that there is an accessible cysteine moiety, but not a disulfide bond, either on the M channel protein itself or on a protein directly involved in agonist-M channel coupling.
Collapse
Affiliation(s)
- A Egorova
- Department of Biophysics, Kanazawa University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Southan AP, Wann KT. Effects of high helium pressure on intracellular and field potential responses in the CA1 region of the in vitro rat hippocampus. Eur J Neurosci 1996; 8:2571-81. [PMID: 8996806 DOI: 10.1111/j.1460-9568.1996.tb01551.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the effects of high helium pressure (up to 13.3 MPa) on the electrophysiological responses of CA1 neurons in rat hippocampal slices using a purpose built pressure chamber, designed to facilitate field potential and intracellular recording. In field potential experiments, near threshold orthodromic responses were depressed by modest pressure (0.4 MPa). At higher stimulus intensities, orthodromic and antidromic population spike amplitudes were not increased at 5 MPa but were significantly enhanced at 10 MPa, and multiple population spikes were observed in some experiments. Orthodromic paired pulse potentiation was not affected by pressure up to 10 MPa. In intracellular experiments there were no significant differences between mean values obtained for resting membrane potential and input resistance at atmospheric pressure and pressures of up to 10 MPa. However, spontaneous depolarizing membrane potential excursions, decreased slow after-hyperpolarization responses and reduced accommodation properties were observed at pressure (5-10 MPa). One possibility is that the SK and M potassium channel systems may be more sensitive to high pressure than other membrane ion channels. These effects may contribute towards the high pressure neurological syndrome observed in vivo.
Collapse
Affiliation(s)
- A P Southan
- Division of Anaesthesia, Clinical Research Centre, Harrow, Middlesex, UK
| | | |
Collapse
|
40
|
Noda M, Ishizaka N, Yokoyama S, Hoshi N, Kimura Y, Hashii M, Taketo M, Egorova A, Knijnik R, Fukuda K, Morikawa H, Brown DA, Higashida H. Inositol trisphosphate/Ca2+ as messengers of bradykinin B2 and muscarinic acetylcholine m1-m4 receptors in neuroblastoma-derived hybrid cells. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1996; 14:175-85. [PMID: 8906560 DOI: 10.1016/0929-7855(96)00523-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuroblastoma x glioma hybrid NG 108-15 and neuroblastoma x fibroblast hybrid NL308 cells possess endogenous bradykinin B2 receptors and m4 muscarinic acetylcholine receptors (mAChRs), which couple to phospholipase C and adenylate cyclase, respectively. Four genetic subtypes of mAChRs differed in their effects when stimulated in NG108-15 and NL308 cells overexpressing mAChRs. Broadly speaking, the principal effects fell into two categories: the odd-numbered receptors (m1 and m3) activated phospholipase C and increased inositol trisphosphate/Ca2+, as bradykinin did, whereas the even-numbered receptors (m2 and m4) inhibited adenylate cyclase via a pertussis toxin (PTx)-sensitive G-protein in NG108-15 cells. But all four types of NL308 cells overexpressing each m1, m2, m3 and m4 receptor activated phospholipase C, while keeping the PTx-sensitivity in m2/m4, but not in m1/m3 receptors. Coupling to ion channel effectors showed a comparable dichotomy in NG108-15 cells, while cross-activation occurred in NL308 cells.
Collapse
Affiliation(s)
- M Noda
- Department of Biophysics, Kanazawa University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kukkonen JP, Hautala R, Akerman KE. Muscarinic depolarization of SH-SY5Y human neuroblastoma cells as determined using oxonol V. Neurosci Lett 1996; 212:57-60. [PMID: 8823762 DOI: 10.1016/0304-3940(96)12781-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Membrane potential was measured in the suspension of SH-SY5Y cells using the anionic potentiometric probe, oxonol V. The relation of fluorescence to membrane potential was assessed by increasing the external [K+] in the presence of the K+ ionophore valinomycin. The response was linear in the range of 5 to 30 mM K+ (membrane potential change of approximately 40 mV). Muscarine increased the fluorescence indicating a depolarization. The competitive inhibitory constant (112 nM) of the muscarinic antagonist pirenzepine (5,11-dihydro-11-([4-methyl-1-piperazinyl]acetyl)-6H-pyrido[2,3-b] (1,4)benzodiazepin-6-one-dihydrochloride) suggests that Hm1 receptors are not involved. The protein kinase C inhibitor, GF 109203X (3-[1-(3-demethylaminopropyl)-indol-3-yl]-3-(indol-3-yl)-maleimide ), and a reduction of extracellular Na+ both produced an additive partial inhibition. The results suggest that muscarinic receptors depolarize these cells by separate Na(+)-dependent and -independent mechanisms, the Na(+)-independent mechanism being protein kinase C-dependent.
Collapse
Affiliation(s)
- J P Kukkonen
- Department of Biochemistry and Pharmacy, Abo Akademi University BioCity, Turku, Finland.
| | | | | |
Collapse
|
42
|
Wall TM, Linseman DA, Hartman JC. Ramiprilat attenuates hypoxia/reoxygenation injury to cardiac myocytes via a bradykinin-dependent mechanism. Eur J Pharmacol 1996; 306:165-74. [PMID: 8813629 DOI: 10.1016/0014-2999(96)00030-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Isolated rat neonatal cardiac myocytes were subjected to immersion in hypoxic (PO2 < 2 mm Hg), glucose-free Tyrode's solution for 5 h followed by concomitant reoxygenation and staining with the membrane-impermeant fluorophore, propidium iodide, in normoxic (PO2 > 150 mm Hg), serum-free culture media for 15 min in order to assess sarcolemmal damage indicative of myocyte viability due to hypoxia/reoxygenation injury. Prior to hypoxic exposure, cells were pretreated for 90 min with the angiotensin-converting enzyme inhibitor cyclopenta[b]pyrrole-2-carboxylic acid, 1-[2-[(1-carboxy-3-phenylpropyl)amino]-l-oxopropyl]octahydro-[2S-[1[R* (R*)]2 alpha, 3a beta, 6a beta]] (ramiprilat), concomitantly with ramiprilat and H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-OH (bradykinin B2 receptor antagonist HOE 140), the bioactive peptide Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg (bradykinin) or concomitantly with bradykinin and HOE 140. Hypoxia/reoxygenation injury to untreated control cardiac myocytes was characterized by a significant loss of sarcolemmal integrity measured at 75 +/- 4% of total cell fluorescence (mean +/- S.E., n = 42 cultures). Compared to propidium iodide staining of the above untreated control myocytes, those pretreated with 30 or 100 microM ramiprilat showed a significant reduction of propidium iodide staining to 45 +/- 9% and 40 +/- 8% (n = 9, P < 0.05) of untreated controls, respectively. Pretreatment with the protective concentrations of ramiprilat concomitant with 10 microM HOE 140 abolished the significant reduction in propidium iodide staining observed with ramiprilat alone. Similarly, pretreatment with 10 or 100 nM bradykinin significantly reduced propidium iodide staining to 35 +/- 5% and 60 +/- 10% (n = 6, P < 0.05) of the untreated hypoxic controls, respectively. In addition, concomitant pretreatment with protective concentrations of bradykinin and 10 microM HOE 140 also abolished the significant reduction in propidium iodide staining observed with bradykinin alone. The results indicate that the angiotensin-converting enzyme inhibitor ramiprilat has a protective effect on isolated cardiac myocytes exposed to hypoxia/reoxygenation and that this effect is most likely related to a local action of bradykinin on the cardiac myocyte via the activation of the kinin B2 receptor.
Collapse
Affiliation(s)
- T M Wall
- Cardiovascular Pharmacology Unit, Pharmacia and Upjohn Laboratories, Pharmacia and Upjohn Inc., Kalamazoo, MI 49001, USA
| | | | | |
Collapse
|
43
|
Filippov AK, Kozlov SA, Pluzhnikov KA, Grishin EV, Brown DA. M-type K+ current inhibition by a toxin fron the scorpion Buthus eupeus. FEBS Lett 1996; 384:277-80. [PMID: 8617371 DOI: 10.1016/0014-5793(96)00333-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A number of invertebrate venoms have been tested for effects on M-type K+ currents (IK(M)) in differentiated mouse neuroblastoma X rat glioma NG108-15 cells. Among the venoms tested, Buthus eupeus scorpion venom reversibly inhibited IK(M) by approximately 44% at 50 microgram/ml. Inhibition was not due to activation of bradykinin or nucleotide (pyrimidine) receptors. On venom fractionation, a polypeptide of 4 kDa was purified that inhibited IK(M) by approximately 45% with an IC50 of approximately 33 nM. Neither the crude venom nor the purified polypeptide affected the Ca2+ current or the delayed rectifier K+ current. While the crude venom prolonged the Na+ current, the polypeptide did not. Thus, the 4 kDa Buthus eupeus polypeptide appears to be a selective inhibitor of IK(M) in NG108-15 cells.
Collapse
Affiliation(s)
- A K Filippov
- Department of Pharmacology, University College London, UK
| | | | | | | | | |
Collapse
|
44
|
Higashida H, Egorova A, Hoshi N, Noda M. Streptozotocin, an inducer of NAD+ decrease, attenuates M-potassium current inhibition by ATP, bradykinin, angiotensin II, endothelin 1 and acetylcholine in NG108-15 cells. FEBS Lett 1996; 379:236-8. [PMID: 8603696 DOI: 10.1016/0014-5793(95)01516-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The M-potassium current was inhibited by bath application of 100 micron ATP, 10 nM bradykinin, 100 nM angiotensin II and 100 nM endothelin 1 as well as by 10 micron acetylcholine in an m1-muscarinic acetylcholine receptor-transformed NG108-15 cell line. The inhibition of M-current was attenuated in cells pretreated with 5 mM streptozotocin for 5-15 h and restored by simultaneous incubation with 5 mM nicotinamide. The results suggest that signal transduction from these five different receptors to M channels shares a common pathway which is susceptible to a streptozotocin-induced decrease in cellular NAD+ content.
Collapse
Affiliation(s)
- H Higashida
- Department of Biophysics, Kanazawa University School of Medicine, Japan
| | | | | | | |
Collapse
|
45
|
Higashida H, Hashii M, Yokoyama S, Taketo M, Hoshi N, Noda M, Zhong ZG, Shahidullah M, Minabe Y, Nakashima S, Nozawa Y. Bradykinin B2 receptors and signal transduction analyzed in NG108-15 neuroblastoma x glioma hybrid cells, B2 receptor-transformed CHO cells and ras-transformed NIH/3T3 fibroblasts. PROGRESS IN BRAIN RESEARCH 1996; 113:215-30. [PMID: 9009737 DOI: 10.1016/s0079-6123(08)61090-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H Higashida
- Department of Biophysics, Kanazawa University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Selyanko AA, Brown DA. Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron 1996; 16:151-62. [PMID: 8562079 DOI: 10.1016/s0896-6273(00)80032-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Complex effects of altering intracellular [Ca2+] on M-type K+ currents have previously been reported using whole-cell current recording. To study the direct effect of Ca2+ on M-channel activity, we have applied Ca2+ to the inside face of membrane patches excised from rat superior cervical sympathetic ganglion cells. Ca2+ rapidly and reversibly inhibited M-channel activity in 28/44 patches by up to 87%, with a mean IC50 of 100 nM. This effect persisted in the absence of ATP, implying that it was not due to phosphorylation/dephosphorylation. A similar effect was observed in 13/13 cell-attached patches when cells were transiently "Ca(2+)-loaded" by adding 2 mM Ca2+ to a 25 mM K+ solution bathing the extrapatch cell membrane. These observations provide new evidence that Ca2+ can directly inhibit M channels, so supporting the view that Ca2+ might mediate M current inhibition following muscarinic receptor activation.
Collapse
Affiliation(s)
- A A Selyanko
- Department of Pharmacology, University College London, United Kingdom
| | | |
Collapse
|
47
|
Yoshimma M. Chapter 26. Slow synaptic transmission in the spinal dorsal horn. PROGRESS IN BRAIN RESEARCH 1996. [DOI: 10.1016/s0079-6123(08)61103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
48
|
Affiliation(s)
- P Boden
- Parke-Davis Neuroscience Research Centre, Cambridge University Forvie Site, Cambridge, U.K
| | | | | |
Collapse
|
49
|
Takano K, Stanfield PR, Nakajima S, Nakajima Y. Protein kinase C-mediated inhibition of an inward rectifier potassium channel by substance P in nucleus basalis neurons. Neuron 1995; 14:999-1008. [PMID: 7538311 DOI: 10.1016/0896-6273(95)90338-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In nucleus basalis neurons, substance P (SP) causes a slow excitation, mediated through a pertussis toxin-insensitive G protein, by suppressing an inward rectifier K+ channel. Here we report that SP applied outside the patch pipette inhibited the single-channel activity, recorded on-cell, of the inward rectifier. The PKC inhibitors staurosporine and PKC(19-36) suppressed this effect in whole-cell mode and in on-cell single-channel mode. A diacylglycerol analog mimicked the SP effect, and PKC(19-36) suppressed this analog effect. SP irreversibly suppressed the inward rectifier in neurons treated with okadaic acid. These results indicate that a diffusible messenger mediates the SP effect, that its signal transduction involves phosphorylation by PKC, and that dephosphorylation by a serine/threonine protein phosphatase mediates its recovery.
Collapse
Affiliation(s)
- K Takano
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine 60612, USA
| | | | | | | |
Collapse
|
50
|
Inoue M, Sakamoto Y, Imanaga I. Phosphatidylinositol hydrolysis is involved in production of Ca(2+)-dependent currents, but not non-selective cation currents, by muscarine in chromaffin cells. Eur J Pharmacol 1995; 276:123-9. [PMID: 7540139 DOI: 10.1016/0014-2999(95)00029-k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Whether phosphatidylinositol hydrolysis and a subsequent Ca2+ mobilization are responsible for muscarine-induced transient outward currents (IO) and non-selective cation currents (INS) in the guinea-pig chromaffin cell was investigated using the perforated patch method. IO, but not INS, failed to be reproduced in Ca(2+)-free solution and was markedly reduced by prior exposure to caffeine under Ca(2+)-free conditions or by addition to normal solution of cyclopiazonic acid (CPA), a Ca2+ ATPase inhibitor. Application of CPA in Ca(2+)-free solution, however, suppressed INS by about 50% in 73% of the cells tested. Bath application of 1.5 mM neomycin, a phospholipase C inhibitor, induced the time-dependent decline of IO with near abolition at 20 min or less, whereas it produced a time-independent decrease of INS and an inwardly rectifying K+ current. INS in the presence or absence of neomycin was well fitted to rectangular hyperbolas with the same ED50 of 2.17 microM, but with a 33% smaller maximum amplitude in the former, indicating a non-competitive inhibition by neomycin. We conclude that, while phosphatidylinositol hydrolysis mediates the production of IO, it does not mediate that of INS by muscarine.
Collapse
Affiliation(s)
- M Inoue
- Department of Physiology, School of Medicine, Fukuoka University, Japan
| | | | | |
Collapse
|