1
|
Chen Y, Li S, Huang X, Wang C, Pan Y, Xiang Q, Feng Z, Fei L, Wu Y, Ruan Z, An Y, Chen Y. Tetraspan MS4A6D is a coreceptor of MHC class II antigen (MHC-II) that promotes macrophages-derived inflammation. Mol Immunol 2023; 160:121-132. [PMID: 37429063 DOI: 10.1016/j.molimm.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/18/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Our previous research demonstrated that the tetraspan MS4A6D is an adapter of VSIG4 that controls NLRP3 inflammasome activation (Sci Adv. 2019: eaau7426); however, the expression, distribution and biofunction of MS4A6D are still poorly understood. Here, we showed that MS4A6D is restricted to mononuclear phagocytes and that its gene transcript is controlled by the transcription factor NK2 homeobox-1 (NKX2-1). Ms4a6d-deficient (Ms4a6d-/-) mice showed normal macrophage development but manifested a greater survival advantage against endotoxin (lipopolysaccharide) challenge. Mechanistically, MS4A6D homodimers crosslinked with MHC class II antigen (MHC-II) to form a surface signaling complex under acute inflammatory conditions. MHC-II occupancy triggered Tyr241 phosphorylation in MS4A6D, leading to activation of SYK-CREB signaling cascades, further resulting in augmenting the transcription of proinflammatory genes (Il1b, Il6 and Tnfa) and amplifying the secretion of mitochondrial reactive oxygen species (mtROS). Deletion of Tyr241 or interruption of Cys237-mediated MS4A6D homodimerization in macrophages alleviated inflammation. Importantly, both Ms4a6dC237G and Ms4a6dY241G mutation mice phenocopied Ms4a6d-/- animals to prevent endotoxin lethality, highlighting MS4A6D as a novel target for treating macrophage-associated disorders.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Medicine, Southwest University, Chongqing 400033, China
| | - Sirui Li
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China; Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yue Pan
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Qun Xiang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China; Chongqing International Institute for Immunology, Chongqing 400026, China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China; Chongqing International Institute for Immunology, Chongqing 400026, China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Zhihua Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Yunfei An
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
2
|
Huang Q, Li Q, Chen H, Lin B, Chen D. Neuroendocrine immune-regulatory of a neuropeptide ChGnRH from the Hongkong oyster, Crassostrea Hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:911-916. [PMID: 31132465 DOI: 10.1016/j.fsi.2019.05.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
It is increasingly appreciated that neuroendocrine-immune interactions hold the key to understand the complex immune system. In this study, we explored the role of a reproductive regulation-related hormone, GnRH, in the regulation of immunity in Hong Kong oysters. We found that vibrio bacterial strains injection increased the expression of ChGnRH. Moreover, ChGnRH neuropeptide promotes the phagocytic ability and bacterial clearance effect of hemocytes which regarded to be the central immune organ. The content of cAMP after incubation with ChGnRH peptide was increased, which could be blocked by adenylyl cyclase inhibitor SQ 22,536. Furthermore, the stimulated effect of ChGnRH peptide on the phagocytosis and bacterial clearance was also blocked by SQ 22,536, H89 and enzastaurin, strongly demonstrating that cAMP dependent PKA and PKC signaling pathway was involved in ChGnRH mediated immune regulation. In conclusion, this study confirms the presence of neuroendocrine-immune regulatory system in marine invertebrates, which contributes to understand the complexity of oyster immune defense system.
Collapse
Affiliation(s)
- Qingsong Huang
- School of Life Sciences, Bioparmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiuhong Li
- School of Life Sciences, Bioparmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hongmei Chen
- School of Life Sciences, Bioparmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Baohua Lin
- School of Life Sciences, Bioparmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dongbo Chen
- School of Life Sciences, Bioparmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
MHC class II cell-autonomously regulates self-renewal and differentiation of normal and malignant B cells. Blood 2019; 133:1108-1118. [PMID: 30700420 DOI: 10.1182/blood-2018-11-885467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Best known for presenting antigenic peptides to CD4+ T cells, major histocompatibility complex class II (MHC II) also transmits or may modify intracellular signals. Here, we show that MHC II cell-autonomously regulates the balance between self-renewal and differentiation in B-cell precursors, as well as in malignant B cells. Initiation of MHC II expression early during bone marrow B-cell development limited the occupancy of cycling compartments by promoting differentiation, thus regulating the numerical output of B cells. MHC II deficiency preserved stem cell characteristics in developing pro-B cells in vivo, and ectopic MHC II expression accelerated hematopoietic stem cell differentiation in vitro. Moreover, MHC II expression restrained growth of murine B-cell leukemia cell lines in vitro and in vivo, independently of CD4+ T-cell surveillance. Our results highlight an important cell-intrinsic contribution of MHC II expression to establishing the differentiated B-cell phenotype.
Collapse
|
4
|
Harton JA. Class II MHC cytoplasmic domain-mediated signaling in B cells: A tail of two signals. Hum Immunol 2018; 80:32-36. [PMID: 30056069 DOI: 10.1016/j.humimm.2018.07.232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/09/2018] [Accepted: 07/25/2018] [Indexed: 01/25/2023]
Abstract
In addition to their role in antigen presentation, class II MHC molecules also transmit signals to B lymphocytes. Class II MHC-mediated signals initiate a range of events in B cells, including induction of cell surface proteins, initiation of cell-cycle progression/proliferation, activation of or protection from apoptosis, and antigen-dependent plasma cell differentiation. Although various transmembrane signaling proteins associate with class II MHC molecules, the class II MHC cytoplasmic domains are essential for signals leading to increased intracellular cAMP and activation of protein kinase C (PKC). Although truncation and mutagenesis studies have provided considerable information about the cytoplasmic domain sequences required, how class II MHC molecules elicit cAMP and PKC activation is not known. Further, appropriate T-dependent B cell responses require intact cAMP and PKC signaling, but the extent to which class II MHC signals are involved is also unknown. This review details our current knowledge of class II MHC cytoplasmic domain signaling in B cells with an emphasis on the likely importance of class II MHC signals for T-dependent antibody responses.
Collapse
Affiliation(s)
- Jonathan A Harton
- Department of Immunology & Microbial Disease, Albany Medical College, 47 New Scotland Avenue, MC-151, Albany, NY 12208, USA.
| |
Collapse
|
5
|
Katikaneni DS, Jin L. B cell MHC class II signaling: A story of life and death. Hum Immunol 2018; 80:37-43. [PMID: 29715484 DOI: 10.1016/j.humimm.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/08/2018] [Accepted: 04/25/2018] [Indexed: 01/17/2023]
Abstract
MHC class II regulates B cell activation, proliferation, and differentiation during cognate B cell-T cell interaction. This is, in part, due to the MHC class II signaling in B cells. Activation of MHC Class II in human B cells or "primed" murine B cells leads to tyrosine phosphorylation, calcium mobilization, AKT, ERK, JNK activation. In addition, crosslinking MHC class II with monoclonal Abs kill malignant human B cells. Several humanized anti-HLA-DR/MHC class II monoclonal Abs entered clinical trials for lymphoma/leukemia and MHC class II-expressing melanomas. Mechanistically, MHC class II is associated with a wealth of transmembrane proteins including the B cell-specific signaling proteins CD79a/b, CD19 and a group of four-transmembrane proteins including tetraspanins and the apoptotic protein MPYS/STING. Furthermore, MHC class II signals are compartmentalized in the tetraspanin-enriched microdomains. In this review, we discuss our current understanding of MHC class II signaling in B cells focusing on its physiological significance and the therapeutic potential.
Collapse
Affiliation(s)
- Divya Sai Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
6
|
Oh J, Shin JS. Molecular mechanism and cellular function of MHCII ubiquitination. Immunol Rev 2016; 266:134-44. [PMID: 26085212 DOI: 10.1111/imr.12303] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The major histocompatibility complex class II (MHCII) is ubiquitinated via the evolutionarily conserved lysine in the cytoplasmic tail of the β chain in dendritic cells (DCs) and B cells. The ubiquitination is mediated by the membrane-associated RING-CH1 (MARCH1) ubiquitin ligase although it can be also mediated by the homologous ligase MARCH8 in model cell lines. The ubiquitination promotes MHCII endocytosis and lysosomal sorting that results in a reduction in the level of MHCII at cell surface. Functionally, MHCII ubiquitination serves as a means by which DCs suppress MHCII expression and reduce antigen presentation in response to the immune regulatory cytokine interleukin-10 (IL-10) and regulatory T cells. Recently, additional roles of MHCII ubiquitination have emerged. MHCII ubiquitination promoted DC production of inflammatory cytokines in response to the Toll-like receptor ligands. It also potentiated DC ability to activate antigen-specific naive CD4(+) T cells while limiting the amount of antigens presented at cell surface. Similarly, MHCII ubiquitination promoted DC activation of CD4(+) thymocytes supporting regulatory T-cell development independent of its effect of limiting antigen presentation. Thus, ubiquitination appears to confer MHCII a function independent of presenting antigens by a mechanism yet to be identified.
Collapse
Affiliation(s)
- Jaehak Oh
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Nociceptor beta II, delta, and epsilon isoforms of PKC differentially mediate paclitaxel-induced spontaneous and evoked pain. J Neurosci 2015; 35:4614-25. [PMID: 25788678 DOI: 10.1523/jneurosci.1580-14.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As one of the most effective and frequently used chemotherapeutic agents, paclitaxel produces peripheral neuropathy (paclitaxel-induced peripheral neuropathy or PIPN) that negatively affects chemotherapy and persists after cancer therapy. The mechanisms underlying this dose-limiting side effect remain to be fully elucidated. This study aimed to investigate the role of nociceptor protein kinase C (PKC) isoforms in PIPN. Employing multiple complementary approaches, we have identified a subset of PKC isoforms, namely βII, δ, and ϵ, were activated by paclitaxel in the isolated primary afferent sensory neurons. Persistent activation of PKCβII, PKCδ, and PKCϵ was also observed in the dorsal root ganglion neurons after chronic treatment with paclitaxel in a mouse model of PIPN. Isoform-selective inhibitors of PKCβII, PKCδ, and PKCϵ given intrathecally dose-dependently attenuated paclitaxel-induced mechanical allodynia and heat hyperalgesia. Surprisingly, spinal inhibition of PKCβII and PKCδ, but not PKCϵ, blocked the spontaneous pain induced by paclitaxel. These data suggest that a subset of nociceptor PKC isoforms differentially contribute to spontaneous and evoked pain in PIPN, although it is not clear whether PKCϵ in other regions regulates spontaneous pain in PIPN. The findings can potentially offer new selective targets for pharmacological intervention of PIPN.
Collapse
|
8
|
Park HL, Kim YJ, Na HN, Park MY, Kim JY, Yun CW, Nam JH. IK induced by coxsackievirus B3 infection transiently downregulates expression of MHC class II through increasing cAMP. Viral Immunol 2013; 26:13-24. [PMID: 23409929 DOI: 10.1089/vim.2012.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Major histocompatibility complex (MHC) class II expression is critical for the presentation of antigens in the immune response to viral infection. Consequently, some viruses regulate the MHC class II-mediated presentation of viral antigens as a mechanism of immune escape. In this study, we found that Coxsackievirus B3 (CVB3) infection transiently increased IK expression, which reduced the expression of MHC class II (I-A/I-E) on splenic B cells. Interestingly, CVB3-induced IK elevated cAMP, a downstream molecule of the G protein-coupled receptors, which inhibited MHC class II presentation on B cells. Transgenic mice expressing truncated IK showed lower expression of MHC class II on B cells than did wild-type mice after CVB3 infection. Taken together, these results imply that IK plays a role in downregulating MHC class II expression on B cells during CVB3 infection through the induction of cAMP.
Collapse
Affiliation(s)
- Hye-Lim Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Shao WH, Zhen Y, Finkelman FD, Eisenberg RA, Cohen PL. Intrinsic unresponsiveness of Mertk-/- B cells to chronic graft-versus-host disease is associated with unmodulated CD1d expression. J Autoimmun 2012; 39:412-9. [PMID: 22854104 DOI: 10.1016/j.jaut.2012.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 01/17/2023]
Abstract
Activation and migration of marginal zone B (MZB) cells into follicular (FO) regions of the spleen has been proposed as one of the mechanisms that regulate the development of autoreactive B cells. The mer receptor tyrosine kinase (Mertk) mediates apoptotic cell clearance and regulates activation and cytokine secretion. In the well-studied class II chronic GVH model of bm12 cells into B6 hosts, we observed that Mertk deficient B6 mice did not generate autoantibodies in response to this allogeneic stimulus. We posited that Mertk is important in MHC-II-mediated B cell signaling. In the present study, we show that B cells from Mertk(-/-) mice but not WT B6 mice exhibited decreased calcium mobilization and tyrosine phosphorylation when stimulated by MHC-II cross-linking. The finding that Mertk was important for class II signaling in B cells was further supported by the preponderance of a-allotype autoantibodies in cGVH in RAG-KO mice reconstituted with a mixture of bone marrow from Mertk(-/-) mice (b-allotype) and C20 mice (a-allotype). MZB cells from Mertk(-/-) mice were unable to down regulate surface CD1d expression and subsequent inclusion in the MZ, associated with significantly lower germinal center responses compared to MZB cells from WT. Moreover, Mertk(-/-) mice treated with an anti-CD1d down regulating antibody responded significantly to bm12 cells, while no response was observed in Mertk(-/-) mice treated with control antibodies. Taken together, these findings extend the role of Mertk to include CD1d down regulation on MZB cells, a potential mechanism limiting B cell activation in cGVH.
Collapse
Affiliation(s)
- Wen-Hai Shao
- Section of Rheumatology, Department of Medicine, Temple University, Philadelphia PA 19140, USA
| | | | | | | | | |
Collapse
|
10
|
Liu X, Zhan Z, Li D, Xu L, Ma F, Zhang P, Yao H, Cao X. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol 2011; 12:416-24. [PMID: 21441935 DOI: 10.1038/ni.2015] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/28/2011] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms involved in the full activation of innate immunity achieved through Toll-like receptors (TLRs) remain to be fully elucidated. In addition to their classical antigen-presenting function, major histocompatibility complex (MHC) class II molecules might mediate reverse signaling. Here we report that deficiency in MHC class II attenuated the TLR-triggered production of proinflammatory cytokines and type I interferon in macrophages and dendritic cells, which protected mice from endotoxin shock. Intracellular MHC class II molecules interacted with the tyrosine kinase Btk via the costimulatory molecule CD40 and maintained Btk activation, but cell surface MHC class II molecules did not. Then, Btk interacted with the adaptor molecules MyD88 and TRIF and thereby promoted TLR signaling. Therefore, intracellular MHC class II molecules can act as adaptors, promoting full activation of TLR-triggered innate immune responses.
Collapse
Affiliation(s)
- Xingguang Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kissner TL, Ruthel G, Alam S, Ulrich RG, Fernandez S, Saikh KU. Activation of MyD88 signaling upon staphylococcal enterotoxin binding to MHC class II molecules. PLoS One 2011; 6:e15985. [PMID: 21283748 PMCID: PMC3024394 DOI: 10.1371/journal.pone.0015985] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/01/2010] [Indexed: 11/19/2022] Open
Abstract
Ligands binding to Toll-like receptor (TLR), interleukin 1 receptor (IL-1R), or IFN-γR1 are known to trigger MyD88-mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which bind to MHC class II molecules on APCs and cross link T cell receptors, activate MyD88- mediated pro-inflammatory cytokine responses. We also reported that MyD88−/− mice were resistant to SE- induced toxic shock and had reduced levels of serum cytokines. In this study, we investigated whether MHC class II- SE interaction by itself is sufficient to activate MyD88 in MHC class II+ cells and induce downstream pro-inflammatory signaling and production of cytokines such as TNF-α and IL-1β. Here we report that human monocytes treated with SEA, SEB, or anti-MHC class II monoclonal antibodies up regulated MyD88 expression, induced activation of NF-kB, and increased expression of IL-1R1 accessory protein, TNF-α and IL-1β. MyD88 immunoprecipitated from cell extracts after SEB stimulation showed a greater proportion of MyD88 phosphorylation compared to unstimulated cells indicating that MyD88 was a component of intracellular signaling. MyD88 downstream proteins such as IRAK4 and TRAF6 were also up regulated in monocytes after SEB stimulation. In addition to monocytes, primary B cells up regulated MyD88 in response to SEA or SEB stimulation. Importantly, in contrast to primary B cells, MHC class II deficient T2 cells had no change of MyD88 after SEA or SEB stimulation, whereas MHC class II-independent activation of MyD88 was elicited by CpG or LPS. Collectively, these results demonstrate that MHC class II utilizes a MyD88-mediated signaling mechanism when in contact with ligands such as SEs to induce pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Teri L. Kissner
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gordon Ruthel
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Shahabuddin Alam
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Robert G. Ulrich
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Stefan Fernandez
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kamal U. Saikh
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
AKAPs in lipid rafts are required for optimal antigen presentation by dendritic cells. Immunol Cell Biol 2011; 89:650-8. [PMID: 21221125 DOI: 10.1038/icb.2010.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cell (DC) maturation and antigen presentation are regulated by activation of protein kinase A (PKA) signaling pathways, through unknown mechanisms. We have recently shown that interfering with PKA signaling through the use of anchoring inhibitor peptides hinders antigen presentation and DC maturation. These experiments provide evidence that DC maturation and antigen presentation are regulated by A-kinase anchoring proteins (AKAPs). Herein, we determine that the presence of AKAPs and PKA in lipid rafts regulates antigen presentation. Using a combination of western blotting and immuno-cytochemistry, we illustrate the presence of AKAP149, AKAP79, Ezrin and the regulatory subunits of PKA in DC lipid rafts. Incubation of DCs with the type II anchoring inhibitor, AKAP-in silico (AKAP-IS), removes Ezrin and RII from the lipid raft without disrupting raft formation. Addition of a lipid raft disruptor, methyl-β-cyclodextrin, blocks the efficacy of AKAP-IS, suggesting that the lipid raft must be intact for AKAP-IS to inhibit antigen presentation. Ezrin and AKAP79 are present in the lipid raft of stimulated KG1 cells, but Ezrin is not present in the lipid raft of unstimulated KG1 cells and AKAP79 levels are greatly diminished, suggesting that Ezrin and AKAP79 may be the key AKAPs responsible for regulating antigen presentation.
Collapse
|
13
|
Ishido S, Matsuki Y, Goto E, Kajikawa M, Ohmura-Hoshino M. MARCH-I: a new regulator of dendritic cell function. Mol Cells 2010; 29:229-32. [PMID: 20213309 DOI: 10.1007/s10059-010-0051-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 01/09/2023] Open
Abstract
We and other groups have demonstrated that the expression level of MHC class II (MHC II) is regulated through ubiquitination of the MHC II beta chain. We also reported that MARCH-I, an E3 ubiquitin ligase, is critical for this process. At present, however, the importance of MARCH-I-mediated MHC II regulation in vivo is still unknown. In this review, we will summarize recent advances in our understanding of MARCH-I-mediated MHC II ubiquitination, and discuss how we can overcome the difficulties inherent in these studies.
Collapse
Affiliation(s)
- Satoshi Ishido
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, 230-0045, Japan.
| | | | | | | | | |
Collapse
|
14
|
Yang HY, Kim J, Lee KY, Jang YS. Rac/ROS-related protein kinase C and phosphatidylinositol-3-kinase signaling are involved in a negative regulating cascade in B cell activation by antibody-mediated cross-linking of MHC class II molecules. Mol Immunol 2009; 47:706-12. [PMID: 19939451 DOI: 10.1016/j.molimm.2009.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/23/2009] [Indexed: 11/26/2022]
Abstract
In addition to their essential role in antigen presentation, MHC class II molecules have been widely described as receptors associated with signal transduction involved in regulating B cell function. However, their precise function and mechanism in signal transduction are not yet fully elucidated. Our previous studies demonstrated that cross-linking of MHC class II molecules led to the inhibition of resting B cell activation in which various signal molecules were involved. Especially, Rac-associated ROS-dependent MAP kinases, including ERK1/2 and p38, are involved in MHC class II-associated negative signal transduction in the phorbol 12, 13-dibutyrate (PDBU)-treated, but not LPS-treated, resting B cell line, 38B9. In this study, we further illustrated that PKC regulates downstream signal molecules, including MAP kinases and NF-kappaB in PDBU-stimulated resting B cells, together with Rac and ROS. In addition, we found that phosphatidylinositol 3-kinase (PI3K)-dependent activation of ERK/p38 MAP kinases was associated with the signaling procedure in PDBU-induced B cell activation. Collectively, Rac/ROS-related PKC and PI3K signaling are involved in a negative regulation cascade through the cross-linking of MHC class II molecules by anti-MHC class II antibodies in resting B cells.
Collapse
Affiliation(s)
- Hee-Young Yang
- Division of Biological Sciences and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | |
Collapse
|
15
|
Phloridzin-induced melanogenesis is mediated by the cAMP signaling pathway. Food Chem Toxicol 2009; 47:2436-40. [DOI: 10.1016/j.fct.2009.06.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/12/2009] [Accepted: 06/26/2009] [Indexed: 11/23/2022]
|
16
|
Haylett RS, Koch N, Rink L. MHC class II molecules activate NFAT and the ERK group of MAPK through distinct signaling pathways in B cells. Eur J Immunol 2009; 39:1947-55. [PMID: 19544309 DOI: 10.1002/eji.200838992] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MHC class II (MHC-II) molecules are capable of transducing signals with the help of associated molecules. Although the search to find associated molecules over the past few years has been fruitful, it remains clear that not all signaling components and their mechanisms of action have been identified. In this study, we investigated calcium and MAPK signaling pathways using the BJAB and Raji human B cell lines. We demonstrate that calcium mobilization is an isotype-independent event that triggers the dephosphorylation of NFAT. We also show that BCR activation followed by MHC-II ligation increases the activation of NFAT. This signaling pathway differs from MHC-II-mediated MAP activation, where MEK1/2 and ERK1/2 phosphorylation are isotype-specific events, which correspond to the induction of c-Fos and formation of AP-1. Future studies should elucidate the intertwined, intricate signaling cascades triggered by BCR and MHC-II leading to humoral immune responses.
Collapse
|
17
|
Abstract
The high mobility group box 1 (HMGB1) protein, a non-histone nuclear factor, is overexpressed and localizes to the cytoplasm in some cancer cells. However, the mechanism of cytoplasmic HMGB1 transport, extracellular secretion, and its role in cancer progression is not clear. To simulate the activated state of HMGB1, we mutated serine residues of nuclear localization signals (NLSs) to glutamic acid and performed transfection assays. We carried out a kinase inhibitor study and evaluated the cell migration by invasion assay. We showed that phosphorylated HMGB1 localizes in the cytoplasm of colon cancer cells and also showed the interaction of PKC and HMGB1 by immunoprecipitation analysis. Concurrent mutations at six serine residues (35, 39, 42, 46, 53, and 181) to glutamic acid induced the nuclear to cytoplasmic transport of HMGB1, which was detected in the culture medium. We also observed that the secretion of HMGB1 correlated with increased cancer cell invasiveness. Our results suggest that phosphorylated HMGB1 is transported to the cytoplasm, is subsequently secreted from the cell, and has a role in tumor progression through the activation of genes related to cell migration.
Collapse
|
18
|
Villarreal CF, Sachs D, Funez MI, Parada CA, de Queiroz Cunha F, Ferreira SH. The peripheral pro-nociceptive state induced by repetitive inflammatory stimuli involves continuous activation of protein kinase A and protein kinase C epsilon and its Na(V)1.8 sodium channel functional regulation in the primary sensory neuron. Biochem Pharmacol 2008; 77:867-77. [PMID: 19073148 DOI: 10.1016/j.bcp.2008.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/12/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
In the present study, the participation of the Na(V)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKCvarepsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(V)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(V)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(V)1.8 decreased the Na(V)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. Once the persistent hypernociception had been abolished by dipyrone, but not by Na(V)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(V)1.8 mRNA up-regulation in the DRG. In addition, during the persistent hypernociceptive state, the PKA and PKCvarepsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKCvarepsilon inhibitors reduce the hypernociception as well as the Na(V)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(V)1.8 mRNA by PKA and PKCvarepsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception.
Collapse
|
19
|
Hiremath MM, Chen VS, Suzuki K, Ting JPY, Matsushima GK. MHC class II exacerbates demyelination in vivo independently of T cells. J Neuroimmunol 2008; 203:23-32. [PMID: 18805594 PMCID: PMC2913406 DOI: 10.1016/j.jneuroim.2008.06.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/14/2008] [Accepted: 06/16/2008] [Indexed: 11/17/2022]
Abstract
We have shown previously the importance of MHC class II for central nervous system remyelination; however, the function of MHC class II during cuprizone-induced demyelination has not been examined. Here, we show that I-A(beta)-/- mice exhibit significantly reduced inflammation and demyelination. RAG-1(1/1) mice are indistinguishable from controls, indicating T cells may not play a role. The role of MHC class II depends on an intact cytoplasmic tail that leads to the production of IL-1beta, TNF-alpha, and nitric oxide, and oligodendrocyte apoptosis. Thus, the function of MHC class II cytoplasmic tail appears to increase microglial proliferation and activation that exacerbates demyelination.
Collapse
Affiliation(s)
- Meenaxi M. Hiremath
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, NC 27599
- UNC Neuroscience Center, University of North Carolina Chapel Hill, NC 27599
| | - Vivian S. Chen
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, NC 27599
- UNC Neuroscience Center, University of North Carolina Chapel Hill, NC 27599
| | - Kinuko Suzuki
- UNC Neuroscience Center, University of North Carolina Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina Chapel Hill, NC 27599
- Curriculum in Neurobiology, University of North Carolina Chapel Hill, NC 27599
| | - Jenny P. -Y. Ting
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, NC 27599
- Curriculum in Neurobiology, University of North Carolina Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, NC 27599
| | - Glenn K. Matsushima
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, NC 27599
- UNC Neuroscience Center, University of North Carolina Chapel Hill, NC 27599
- Curriculum in Neurobiology, University of North Carolina Chapel Hill, NC 27599
- Program for Molecular Biology and Biotechnology University of North Carolina Chapel Hill, NC 27599
| |
Collapse
|
20
|
MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol 2008; 28:5014-26. [PMID: 18559423 DOI: 10.1128/mcb.00640-08] [Citation(s) in RCA: 366] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the best-defined function of type II major histocompatibility complex (MHC-II) is presentation of antigenic peptides to T lymphocytes, these molecules can also transduce signals leading alternatively to cell activation or apoptotic death. MHC-II is a heterodimer of two transmembrane proteins, each containing a short cytoplasmic tail that is dispensable for transduction of death signals. This suggests the function of an undefined MHC-II-associated transducer in signaling the death response. Here we describe a novel plasma membrane tetraspanner (MPYS) that is associated with MHC-II and mediates its transduction of death signals. MPYS is unusual among tetraspanners in containing an extended C-terminal cytoplasmic tail (approximately 140 amino acids) with multiple embedded signaling motifs. MPYS is tyrosine phosphorylated upon MHC-II aggregation and associates with inositol lipid and tyrosine phosphatases. Finally, MHC class II-mediated cell death signaling requires MPYS-dependent activation of the extracellular signal-regulated kinase signaling pathway.
Collapse
|
21
|
Yao L, Fan P, Jiang Z, Gordon A, Mochly-Rosen D, Diamond I. Dopamine and ethanol cause translocation of epsilonPKC associated with epsilonRACK: cross-talk between cAMP-dependent protein kinase A and protein kinase C signaling pathways. Mol Pharmacol 2008; 73:1105-12. [PMID: 18202306 PMCID: PMC2692587 DOI: 10.1124/mol.107.042580] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We found previously that neural responses to ethanol and the dopamine D2 receptor (D2) agonist 2,10,11-trihydroxy-N-propylnorapomorphine hydrobromide (NPA) involve both epsilon protein kinase C (epsilonPKC) and cAMP-dependent protein kinase A (PKA). However, little is known about the mechanism underlying ethanol- and D2-mediated activation of epsilonPKC and the relationship to PKA activation. In the present study, we used a new epsilonPKC antibody, 14E6, that selectively recognized active epsilonPKC when not bound to its anchoring protein epsilonRACK (receptor for activated C-kinase), and PKC isozyme-selective inhibitors and activators to measure PKC translocation and catalytic activity. We show here that ethanol and NPA activated epsilonPKC and induced translocation of both epsilonPKC and its anchoring protein, epsilonRACK to a new cytosolic site. The selective epsilonPKC agonist, pseudo-epsilonRACK, activated epsilonPKC but did not cause translocation of the epsilonPKC/epsilonRACK complex to the cytosol. These data suggest a step-wise activation and translocation of epsilonPKC after NPA or ethanol treatment, where epsilonPKC first translocates and binds to its RACK and subsequently the epsilonPKC/epsilonRACK complex translocates to a new subcellular site. Direct activation of PKA by adenosine-3',5'-cyclic monophosphorothioate, Sp-isomer (Sp-cAMPS), prostaglandin E1, or the adenosine A2A receptor is sufficient to cause epsilonPKC translocation to the cytosolic compartment in a process that is dependent on PLC activation and requires PKA activity. These data demonstrate a novel cross-talk mechanism between epsilonPKC and PKA signaling systems. PKA and PKC signaling have been implicated in alcohol rewarding properties in the mesolimbic dopamine system. Cross-talk between PKA and PKC may underlie some of the behaviors associated with alcoholism.
Collapse
Affiliation(s)
- Lina Yao
- CV Therapeutics, Inc., 3172 Porter Drive, Palo Alto, CA 94304, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Gross U, Schroder AK, Haylett RS, Arlt S, Rink L. The superantigen staphylococcal enterotoxin A (SEA) and monoclonal antibody L243 share a common epitope but differ in their ability to induce apoptosis via MHC-II. Immunobiology 2006; 211:807-14. [PMID: 17113918 DOI: 10.1016/j.imbio.2006.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 12/13/2022]
Abstract
Crosslinking of MHC class II (MHC-II) molecules by antibodies or by superantigens (SAg) induces a variety of functional responses in the antigen presenting cell. We were able to allocate K39 as the residue that is essential for binding of antibody L243 to the alpha chain of HLA-DR. K39 is also essential for binding of staphylococcal enterotoxin A (SEA). However, the functional responses of the two ligands differ considerably exemplified by the ability of L243 to induce apoptosis in monocytic cells and in B cells, whereas SEA is unable to activate the apoptosis pathway. Despite the differences in functional responses, both ligands induce cell aggregation in MonoMac-1 cells. The SEA molecule with its two different binding sites associates one MHC alpha chain with one beta chain as opposed to two alpha chains that are brought into close proximity by the two identical antigen binding sites of L243. We therefore conclude that the spatial orientation of dimerized MHC-II and their associated proteins is an important factor for the nature of the transduced signal and consequently the outcome of functional responses.
Collapse
Affiliation(s)
- Ulrike Gross
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
23
|
Yang HY, Kim J, Chung GH, Lee JC, Jang YS. Cross-linking of MHC class II molecules interferes with phorbol 12,13-dibutyrate-induced differentiation of resting B cells by inhibiting Rac-associated ROS-dependent ERK/p38 MAP kinase pathways leading to NF-kappaB activation. Mol Immunol 2006; 44:1577-86. [PMID: 17011624 DOI: 10.1016/j.molimm.2006.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
In addition to their essential role in antigen presentation, major histocompatibility complex (MHC) class II molecules have been described as the receptor associated with signal transduction regulating B-cell function. In previous experiments, we found that cross-linking of MHC class II molecules with corresponding anti-MHC class II antibodies inhibited NF-kappaB-activated signaling pathways associated with the proliferation and differentiation of the LPS-stimulated primary and resting B-cell line, 38B9. We also found that exposure to the anti-MHC class II antibody reduced the production of ROS, which function as secondary signal transducers, in the phorbol 12,13-dibutyrate (PDBU)-treated (but not in the LPS-treated) resting B-cell line. In this study, we investigated the molecular mechanisms in the ROS-associated signaling pathway leading to PDBU-induced NF-kappaB activation that results in B-cell differentiation and speculated that the signaling pathway was inhibited by exposure to the anti-MHC class II antibody. We also found that this inhibition was mediated through down-regulation of the activated Rac/ROS-associated ERK/p38 MAPK signaling pathway in PDBU-treated 38B9 cells. Collectively, these findings suggest that ROS-associated molecules are involved in MHC class II-associated negative signal transduction in resting B cells.
Collapse
Affiliation(s)
- Hee-Young Yang
- Division of Biological Sciences and the Institute for Molecular Biology and Genetics, Chonbuk National University, Chonju 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Zhou Y, Wang D, Li F, Shi J, Song J. Different roles of protein kinase C-betaI and -delta in the regulation of adipocyte differentiation. Int J Biochem Cell Biol 2006; 38:2151-63. [PMID: 16950644 DOI: 10.1016/j.biocel.2006.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/08/2006] [Accepted: 06/20/2006] [Indexed: 12/22/2022]
Abstract
Protein kinase C (PKC) is a member of serine/threonine protein kinase family that plays important roles in the control of vast variety of cellular functions. Nevertheless, the regulatory effect of PKC on adipogenesis remained not well understood. In this study, we investigated the effect of several PKC isoforms on the adipogenic conversion of 3T3-L1 preadipocytes induced by dexamethasone, isobutylmethylxanthine and insulin. Treatment of cells with broad-spectrum PKC inhibitor Rö318220 suppressed the adipogenesis. Gö6976, a selective inhibitor for PKC isoforms-alpha, -betaI and -mu, also inhibited the adipogenesis of cells. Pretreatment of cells with peroxisomal proliferator activated receptor-gamma (PPARgamma) agonist troglitazone abolished the inhibitory effect of Gö6976 on adipogenesis. The plasmic membrane translocation of PKC-betaI was observed at the first 2 days of differentiation. Whereas no translocation of PKC-alpha and -mu was observed. Overexpression of dominant negative PKC-betaI, but not wild-type PKC-betaI, blocked adipogenesis. This effect of dominant negative PKC-betaI can be reversed by troglitazone, suggesting that PKC-betaI is required for the initiation of adipogenesis. In addition, rottlerin, a specific inhibitor of PKC-delta, can reverse the suppression of adipogenesis mediated by 12-O-tetradecanoyl-phorbol-13-acetate, transforming growth factor-beta1, and epidermal growth factor. These data suggest that PKC-betaI is important in the induction of adipogenesis, while the PKC-delta has an inhibitory role for adipogenesis.
Collapse
Affiliation(s)
- Yiran Zhou
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
25
|
Nashar TO, Drake JR. Dynamics of MHC Class II-Activating Signals in Murine Resting B Cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:827-38. [PMID: 16393966 DOI: 10.4049/jimmunol.176.2.827] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II (MHC II) proteins are competent signaling molecules on APC. However, little is known about the mechanisms that control generation of their activating signals. Previous reports highlighted a number of factors that could affect the nature and outcome of MHC II signals, including the inability of MHC II ligation on resting vs activated murine B cells to induce mobilization of Ca2+. In the present study, we report that ligation of MHC II on resting murine B cells reproducibly induces mobilization of intracellular Ca2+ using both mAbs and cognate T cells as ligands. Mobilization of Ca2+ was independent of MHC II haplotype, isotype, or mouse genetic background. MHC II-mediated mobilization of Ca2+ is completely inhibited by inhibitors of src-like kinases and syk, and MHC II ligation increases overall tyrosine phosphorylation level. Moreover, MHC II ligation results in specific up-regulation of CD86. However, induction of these responses is dependent on the type of anti-MHC II Ab used, suggesting that epitope specificity and/or the nature of ligation is important. Moreover, we demonstrate that MHC II-derived signals are strictly regulated by the order and timing of BCR and CD40 signals, suggesting coordination of these signals preserves the integrity of early B cell priming events. Thus, the mode and the context of MHC II ligation influence generation of MHC II-derived activating signals in resting B cells. Based on these results, a new model that highlights the role of MHC II-activating signals in regulation of Ag presentation by B cells is proposed.
Collapse
Affiliation(s)
- Toufic O Nashar
- Albany Medical College, Center for Immunology and Microbial Disease, Albany, NY 12208, USA
| | | |
Collapse
|
26
|
Zilber MT, Setterblad N, Vasselon T, Doliger C, Charron D, Mooney N, Gelin C. MHC class II/CD38/CD9: a lipid-raft–dependent signaling complex in human monocytes. Blood 2005; 106:3074-81. [PMID: 15941914 DOI: 10.1182/blood-2004-10-4094] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractDespite a lack of signaling motifs in their cytoplasmic domain, major histocompatibility complex (MHC) class II molecules trigger a variety of intracellular signals that regulate antigen-presenting cell function. They thus may use associated effector molecules as demonstrated on B cells and dendritic cells. The starting point of this study comes from our previous work, which demonstrated that the ecto-enzyme CD38 is functionally linked to MHC class II molecules. We report that CD38 and human leukocyte antigen-DR (HLA-DR) are functionally and physically associated in lipid rafts microdomains of cellsurface monocytes and that the integrity of these domains is necessary for the HLA-DR and CD38 signaling events. Moreover, we identified the tetraspanin CD9 molecule as a partner of the CD38/HLA-DR complex and demonstrated that HLA-DR, CD38, and CD9 share a common pathway of tyrosine kinase activation in human monocytes. The analysis of conjugate formation between monocytes presenting superantigen and T cells shows the active participation of CD9 and HLA-DR on the monocyte surface. Together, these observations demonstrate the presence of a CD38 and HLA-DR signaling complex within tetraspanin-containing lipid rafts and the functional impact of their molecular partner CD9 in antigen presentation.
Collapse
Affiliation(s)
- Marie-Thérèse Zilber
- Institut National de la Santé et de la Recherche Médicale (INSERM) U662, and Service Commun d'Imagerie, Institut d'Hématologie, Hôpital SaintLouis, Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Zang W, Kalache S, Lin M, Schroppel B, Murphy B. MHC Class II–Mediated Apoptosis by a Nonpolymorphic MHC Class II Peptide Proceeds by Activation of Protein Kinase C. J Am Soc Nephrol 2005; 16:3661-8. [PMID: 16221866 DOI: 10.1681/asn.2005050523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
It was demonstrated previously that a peptide derived from a conserved region of MHC class II, HLA-DQA1, inhibits proliferation of allogeneic T cells in vitro. Administration of HLA-DQA1 in conjunction with allogeneic cells at the time of priming or at the time of rechallenge prevented the development of the delayed type hypersensitivity response in vivo. The immunomodulatory effects of HLA-DQA1 were associated with the induction of apoptosis in B cells, macrophages, and dendritic cells via a caspase-independent pathway. This study investigated the binding site and mechanism that mediates cell death induced by HLA-DQA1. It was demonstrated that HLA-DQA1 binds to MHC class II on the cell surface, causing MHC class II signaling, initiation of protein kinase C signaling, and mitochondrial membrane depolarization with resultant apoptosis. The data indicate that HLA-DQA1 binds to MHC class II outside the groove, in a manner similar to superantigen. These results suggest that HLA-DQA1 is a novel immunotherapy that may provide an effective means of targeting professional antigen-presenting cells, in particular B cells.
Collapse
Affiliation(s)
- Weiping Zang
- Division of Nephrology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
28
|
Nashar TO, Drake JR. The Pathway of Antigen Uptake and Processing Dictates MHC Class II-Mediated B Cell Survival and Activation. THE JOURNAL OF IMMUNOLOGY 2005; 174:1306-16. [PMID: 15661887 DOI: 10.4049/jimmunol.174.3.1306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The influence of the pathway of Ag uptake and processing on MHC class II (CII)-mediated B cell function is unknown. In this study, we investigate in resting and activated (via the BCR or CD40) B cells the biological properties of CII-peptide complexes (CII-peptide) generated by either the BCR-mediated Ag processing (type I complex) or fluid phase Ag processing (type II complex). Compared with type I complex, ligation of type II complex by either specific Ab or the TCR in Ag-presenting assay results in significant decreases in B cell survival rate (50-100%) and expression levels of CII, CD86, and CD54. Loss of B cells following ligation of type II complex occurs in the presence of a comparatively good level of specific CD4(+) T cell division, indicating that B cell loss is a late event following T cell stimulation. Comparative analysis of T and B cell conjugates after Ab ligation of type I or II complex reveals decreased efficiency of the latter in forming conjugates. Neither initial differential levels of CII and other studied surface markers, B cell type inherent differences, BCR signaling, T cell proliferation, nor initial density of CII-peptide complexes could explain the T cell-induced B cell loss. We propose that the context in which CII-peptide complexes are present in the membrane following BCR uptake and processing leads to B cell survival. Thus, appropriate targeting of Ag ensures generation of relevant immune responses.
Collapse
Affiliation(s)
- Toufic O Nashar
- Albany Medical College, Center for Immunology and Microbial Disease, Albany, NY 12208, USA
| | | |
Collapse
|
29
|
Khundmiri SJ, Dean WL, McLeish KR, Lederer ED. Parathyroid hormone-mediated regulation of Na+-K+-ATPase requires ERK-dependent translocation of protein kinase Calpha. J Biol Chem 2005; 280:8705-13. [PMID: 15637080 DOI: 10.1074/jbc.m408606200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Parathyroid hormone (PTH) inhibits Na+-K+-ATPase activity by serine phosphorylation of the alpha1 subunit through protein kinase C (PKC)- and extracellular signal-regulated kinase (ERK)-dependent pathways. Based on previous studies we postulated that PTH regulates sodium pump activity through isoform-specific PKC-dependent activation of ERK. In the present work utilizing opossum kidney cells, a model of renal proximal tubule, PTH stimulated membrane translocation of PKCalpha by 102 +/- 16% and PKCbetaI by 41 +/- 7% but had no effect on PKCbetaII and PKCzeta. Both PKCalpha and PKCbetaI phosphorylated the Na+-K+-ATPase alpha1 subunit in vitro. PTH increased the activity of PKCalpha but not PKCbetaI. Coimmunoprecipitation assays demonstrated that treatment with PTH enhanced the association between Na+-K+-ATPase alpha1 subunit and PKCalpha, whereas the association between Na+-K+-ATPase alpha1 subunit and PKCbetaI remained unchanged. A PKCalpha inhibitory peptide blocked PTH-stimulated serine phosphorylation of the Na+-K+-ATPase alpha1 subunit and inhibition of Na+-K+-ATPase activity. Pharmacologic inhibition of MEK-1 blocked PTH-stimulated translocation of PKCalpha, whereas transfection of constitutively active MEK-1 cDNA induced translocation of PKCalpha and increased phosphorylation of the Na+-K+-ATPase alpha1 subunit. In contrast, PTH-stimulated ERK activation was not inhibited by pretreatment with the PKCalpha inhibitory peptide. Inhibition of PKCalpha expression by siRNA did not inhibit PTH-mediated ERK activation but significantly reduced PTH-mediated phosphorylation of the Na+-K+-ATPase alpha1 subunit. Pharmacologic inhibition of phosphoinositide 3-kinase blocked PTH-stimulated ERK activation, translocation of PKCalpha, and phosphorylation of the Na+-K+-ATPase alpha1 subunit. We conclude that PTH stimulates Na+-K+-ATPase phosphorylation and decreases the activity of Na+-K+-ATPase by ERK-dependent activation of PKCalpha.
Collapse
Affiliation(s)
- Syed J Khundmiri
- Department of Medicine, University of Louisville and Veterans Affairs Medical Center, Louisville, Kentucky 40202, USA.
| | | | | | | |
Collapse
|
30
|
Ahn YH, Jung JM, Hong SH. 8-Cl-cAMP and its metabolite, 8-Cl-adenosine induce growth inhibition in mouse fibroblast DT cells through the same pathways: protein kinase C activation and cyclin B down-regulation. J Cell Physiol 2004; 201:277-85. [PMID: 15334662 DOI: 10.1002/jcp.20047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
8-Chloro-cyclic AMP (8-Cl-cAMP) is known to be most effective in inducing growth inhibition and differentiation of a number of cancer cells. Also, its cellular metabolite, 8-Cl-adenosine was shown to induce growth inhibition in a variety of cell lines. However, the signaling mechanism that governs the effects of 8-Cl-cAMP and/or 8-Cl-adenosine is still uncertain and it is not even sure which of the two is the key molecule that induces growth inhibition. In this study using mouse fibroblast DT cells, it was found that adenosine kinase inhibitor and adenosine deaminase could reverse cellular growth inhibition induced by 8-Cl-cAMP and 8-Cl-adenosine. And 8-Cl-cAMP could not induce growth inhibition in the presence of phosphodiesterase (PDE) inhibitor, but 8-Cl-adenosine could. We also found that protein kinase C (PKC) inhibitor could restore this growth inhibition, and both the 8-Cl-cAMP and 8-Cl-adenosine could activate the enzymatic activity of PKC. Besides, after 8-Cl-cAMP and 8-Cl-adenosine treatment, cyclin B was down-regulated and a CDK inhibitor, p27 was up-regulated in a time-dependent manner. These results suggest that it is not 8-Cl-cAMP but 8-Cl-adenosine which induces growth inhibition, and 8-Cl-cAMP must be metabolized to exert this effect. Furthermore, there might exist signaling cascade such as PKC activation and cyclin B down-regulation after 8-Cl-cAMP and 8-Cl-adenosine treatment.
Collapse
Affiliation(s)
- Young-Ho Ahn
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
31
|
Setterblad N, Bécart S, Charron D, Mooney N. B cell lipid rafts regulate both peptide-dependent and peptide-independent APC-T cell interaction. THE JOURNAL OF IMMUNOLOGY 2004; 173:1876-86. [PMID: 15265920 DOI: 10.4049/jimmunol.173.3.1876] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Formation of an immunological synapse (IS) between APCs and T CD4(+) lymphocytes is a key event in the initiation and the termination of the cognate immune response. We have analyzed the contribution of the APC to IS formation and report the implication of the actin cytoskeleton, the signaling proteins and the lipid rafts of B lymphocytes. Recruitment of MHC class II molecules to the IS is concomitant with actin cytoskeleton-dependent B cell raft recruitment. B cell actin cytoskeleton disruption abrogates both IS formation and T cell activation, whereas protein kinase C inhibition only impairs T cell activation. Pharmacological B cell lipid raft disruption inhibited peptide-dependent T lymphocyte activation and induced peptide-independent but HLA-DR-restricted APC-T cell conjugate formation. Such peptide-independent conjugates did not retain the ability to activate T cells. Thus, B cell lipid rafts are bifunctional by regulating T cell activation and imposing peptide stringency.
Collapse
Affiliation(s)
- Niclas Setterblad
- Institut National de la Santé et de la Recherche Médicale Unité 396, Institut Universitaire d'Hématologie, Hôpital St.-Louis, Paris, France
| | | | | | | |
Collapse
|
32
|
Al-Daccak R, Mooney N, Charron D. MHC class II signaling in antigen-presenting cells. Curr Opin Immunol 2004; 16:108-13. [PMID: 14734118 DOI: 10.1016/j.coi.2003.11.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The MHC class II molecules have been recognized as signaling receptors for more than a decade, and recent work has revealed the importance of their signaling for the immune response. Today, we know that the function of MHC class II molecules on antigen-presenting cells (APCs) is not limited to their role as antigen-presenting structures; they are flexible receptors that, by triggering a variety of signaling pathways, can regulate APC activities from proliferation and maturation to apoptosis. Recent advances have provided insights into how these molecules might accommodate such regulation.
Collapse
Affiliation(s)
- Reem Al-Daccak
- Institut Universitaire d'Hématologie, IFR105, Hôpital Saint Louis AP-HP, 10 rue Claude Vellefaux, 75475 Paris, France.
| | | | | |
Collapse
|
33
|
El Fakhry Y, Bouillon M, Léveillé C, Brunet A, Khalil H, Thibodeau J, Mourad W. Delineation of the HLA-DR Region and the Residues Involved in the Association with the Cytoskeleton. J Biol Chem 2004; 279:18472-80. [PMID: 14976194 DOI: 10.1074/jbc.m401159200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whereas the association of major histocompatibility complex (MHC) class II molecules with the cytoskeleton and their recruitment into lipid rafts play a critical role during cognate T/antigen-presenting cell interactions, MHC class II-induced signals, regions, and residues involved in their association and recruitment have not yet been fully deciphered. In this study, we show that oligomerization of HLA-DR molecules induces their association with the cytoskeleton and their recruitment into lipid rafts. The association of oligomerized HLA-DR molecules with the cytoskeleton and their recruitment into lipid rafts occur independently. Furthermore, the association with the cytoskeleton is HLA-DR-specific, since oligomerization of HLA-DP triggers its recruitment only into lipid rafts. HLA-DR molecules devoid of both alpha and beta cytoplasmic tails did not associate with the cytoskeleton, but their recruitment into lipid rafts was unimpeded. Deletion of either the alpha or beta cytoplasmic tail did not affect the association of HLA-DR with the cytoskeleton and/or recruitment into lipid rafts. HLA-DR molecules that were devoid of the alpha cytoplasmic chain and that had their beta cytoplasmic chain replaced with the HLA-DP beta chain or with a beta chain in which the residues at positions Gly(226)-His(227)-Ser(228) were substituted by alanine no longer associated with the cytoskeleton. They were, however, still recruited into lipid rafts. Together, these results support the involvement of different regions of the cytoplasmic tails in the association and the recruitment of HLA-DR into different compartments. The differential behavior of HLA-DP and -DR with respect to their association with the cytoskeleton may explain the previously described difference in their transduced signals.
Collapse
Affiliation(s)
- Youssef El Fakhry
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier de l'Université Laval (CHUL), Département de médecine, Université Laval, Quebec City, Quebec, G1V 4G2 Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Mills DM, Cambier JC. B lymphocyte activation during cognate interactions with CD4+ T lymphocytes: molecular dynamics and immunologic consequences. Semin Immunol 2004; 15:325-9. [PMID: 15001171 DOI: 10.1016/j.smim.2003.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Productive interaction between T and B lymphocytes is required for humoral immune responses to many foreign protein antigens and production of pathogenic antibodies characteristic of several autoimmune conditions. Thus, much attention has been given in recent years to understand the dynamic molecular interactions and signal transduction required for productive T-B interaction. In this review we highlight current knowledge of signaling and biologic responses that occur in B cells during cognate interactions with helper T cells, focusing on the dynamic function of B cell-surface molecules in T-B synapses.
Collapse
Affiliation(s)
- David M Mills
- Integrated Department of Immunology, National Jewish Medical and Research Center, University of Colorado Health Sciences Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | |
Collapse
|
35
|
Altomonte M, Visintin A, Tecce R, Leonardi A, Calabro L, Fonsatti E, Pucillo C, Maio M. Targeting of HLA-DR molecules transduces agonistic functional signals in cutaneous melanoma. J Cell Physiol 2004; 200:272-6. [PMID: 15174097 DOI: 10.1002/jcp.20015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role of human leukocyte antigens (HLA) class II molecules in transducing intracellular signals in immune cells is well established. Solid tumors of different histotype can also express HLA class II antigens; however, their intracellular signaling ability is essentially unknown. Due to the frequent expression of HLA class II molecules in primary and metastatic lesions, cutaneous melanoma was utilized to investigate whether the engagement of HLA-DR molecules transduces functional intracellular signal(s). Triggering of HLA-DR molecules by the anti-HLA-DR monoclonal antibody (mAb) L243 induced a significant (P < 0.05) and dose-dependent growth-inhibition of metastatic melanoma cells Mel 120, as well as their homotypic aggregation. Furthermore, an increase in tyrosine phosphorylation of multiple cellular proteins with a molecular weight ranging from 66 to 130 kD, including p125 focal adhesion kinase, was observed. Lastly, the engagement of HLA-DR molecules by mAb L243 inhibited activator protein-1-DNA binding. Thus, HLA-DR molecules expressed on melanoma cells can transduce functional intracellular signals. This finding is consistent with evidences obtained in hematological malignancies, and suggests the potential usefulness of HLA-DR molecules to set-up new approaches of targeted therapy in metastatic melanoma.
Collapse
Affiliation(s)
- Maresa Altomonte
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Alexandre-Moreira MS, Piuvezam MR, Peçanha LMT. Modulation of B lymphocyte function by an aqueous fraction of the ethanol extract of Cissampelos sympodialis Eichl (Menispermaceae). Braz J Med Biol Res 2003; 36:1511-22. [PMID: 14576907 DOI: 10.1590/s0100-879x2003001100010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cissampelos sympodialis Eichl species are used in folk medicine for the treatment of asthma, arthritis and rheumatism. In the present study, we investigated the immunomodulatory effect of an aqueous fraction of a 70% (v/v) ethanol extract of C. sympodialis leaves on B lymphocyte function. The hydroalcoholic extract inhibited the in vitro proliferative response of resting B cells induced by LPS (IC50 = 17.2 g/ml), anti-delta-dextran (IC50 = 13.9 g/ml) and anti-IgM (IC50 = 24.3 g/ml) but did not affect the anti-MHC class II antibody-stimulated proliferative response of B cell blasts obtained by stimulation with IL-4 and anti-IgM. Incubation with the hydroalcoholic extract used at 50 g/ml induced a 700% increase in intracellular cAMP levels. IgM secretion by resting B cells (obtained from normal mice) and polyclonally activated B cells (obtained from Trypanosoma cruzi-infected animals) was inhibited by the hydroalcoholic extract. The latter were more sensitive to the hydroalcoholic extract since 6.5 g/ml induced a 20% inhibition in the response of cells from normal mice while it inhibited the response of B cells from infected animals by 75%. The present data indicate that the alcoholic extract of C. sympodialis inhibited B cell function through an increase in intracellular cAMP levels. The finding that the hydroalcoholic extract inhibited immunoglobulin secretion suggests a therapeutic use for the extract from C. sympodialis in conditions associated with unregulated B cell function and enhanced immunoglobulin secretion. Finally, the inhibitory effect of the hydroalcoholic extract on B cells may indicate an anti-inflammatory effect of this extract.
Collapse
Affiliation(s)
- M S Alexandre-Moreira
- Departamento de Imunologia, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
37
|
Setterblad N, Roucard C, Bocaccio C, Abastado JP, Charron D, Mooney N. Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells. J Leukoc Biol 2003; 74:40-8. [PMID: 12832441 DOI: 10.1189/jlb.0103045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen presenting cells. Major histocompatibility complex (MHC) class II molecule expression changes with maturation; immature DCs concentrate MHC class II molecules intracellularly, whereas maturation increases surface expression of MHC class II and costimulatory molecules to optimize antigen presentation. Signal transduction via MHC class II molecules localized in lipid microdomains has been described in B lymphocytes and in the THP-1 monocyte cell line. We have characterized MHC class II molecules throughout human DC maturation with particular attention to their localization in lipid-rich microdomains. Only immature DCs expressed empty MHC class II molecules, and maturation increased the level of peptide-bound heterodimers. Ligand binding to surface human leukocyte antigen (HLA)-DR induced rapid internalization in immature DCs. The proportion of cell-surface detergent-insoluble glycosphingolipid-enriched microdomain-clustered HLA-DR was higher in immature DCs despite the higher surface expression of HLA-DR in mature DCs. Constituents of HLA-DR containing microdomains included the src kinase Lyn and the cytoskeletal protein tubulin in immature DCs. Maturation modified the composition of the HLA-DR-containing microdomains to include protein kinase C (PKC)-delta, Lyn, and the cytoskeletal protein actin, accompanied by the loss of tubulin. Signaling via HLA-DR redistributed HLA-DR and -DM and PKC-delta as well as enriching the actin content of mature DC microdomains. The increased expression of HLA-DR as a result of DC maturation was therefore accompanied by modification of the spatial organization of HLA-DR. Such regulation could contribute to the distinct responses induced by ligand binding to MHC class II molecules in immature versus mature DCs.
Collapse
Affiliation(s)
- Niclas Setterblad
- INSERM U396 and. IDM (Immuno-Designed Molecules), Institut Biomédical des Cordeliers, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Bécart S, Setterblad N, Ostrand-Rosenberg S, Ono SJ, Charron D, Mooney N. Intracytoplasmic domains of MHC class II molecules are essential for lipid-raft-dependent signaling. J Cell Sci 2003; 116:2565-75. [PMID: 12766188 DOI: 10.1242/jcs.00449] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to their role in antigen presentation, major histocompatibility complex (MHC) class II molecules have been widely described as signaling proteins in diverse antigen-presenting cells (APCs) including B cells and dendritic cells. By contrast, little is known of the signaling function of MHC class II molecules expressed in solid tumors. We describe the functional organization and signaling ability of I-Ak expressed in a sarcoma, and report the recruitment of I-Ak to lipid rafts after MHC class II engagement. Lipid raft integrity was required for I-Ak-mediated reorganization of the actin cytoskeleton and translocation of protein kinase C-alpha(PKC-alpha) to the precise site of stimulation via I-Ak. Truncation of the intracytoplasmic domains of I-Ak did not perturb I-Ak recruitment to lipid rafts but abrogated PKC-alpha translocation and actin rearrangement. PKC-alpha was detected in lipid microdomains and enrichment of activated PKC-alphain lipid rafts was induced by I-Ak signaling. Ordering of the molecular events following engagement of the MHC class II molecules revealed that I-Ak recruitment to lipid rafts precedes signaling. This is consistent with the absence of a requirement for the intracytoplasmic tails for localization to lipid rafts. These data reveal that lipid-rich microdomains play a key role in MHC class II-mediated signaling in a solid tumor.
Collapse
Affiliation(s)
- Stéphane Bécart
- Unité INSERM U 396, Institut Biomédical des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
39
|
Fernández EM, O'Toole PJ, Morrison IEG, Cherry RJ, Fernández N. Interaction of HLA-DR with actin microfilaments. Hum Immunol 2003; 64:327-37. [PMID: 12590977 DOI: 10.1016/s0198-8859(02)00803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capping of HLA-DR on the surface of a human lymphoblastoid cell line (RAJI) and a transfectant human fibroblast cell line (M1DR1) was studied by confocal microscopy. Capping was induced at 22 degrees C after treating cells with an HLA-DR specific monoclonal antibody, L243, followed by a secondary antibody conjugated with FITC. Cytoskeletal actin filaments (F-actin) accumulated under the caps were detected by rhodamine-phalloidin fluorescence. Two processes appear to take place: in the round lymphoblastoid cells, actin, initially distributed uniformly at the cell periphery, redistributes and becomes concentrated underneath HLA-DR patches or caps. In the non-round, substrate-attached fibroblasts, actin was organized in tightly packed filaments along the plasma membrane. It was observed that crosslinked HLA-DR receptors were associated with these filaments and were dragged toward the perinuclear area of the cells, where they coalesce to form a cap. The cytoskeleton-disrupting drugs that inhibit actin polymerisation were used to investigate the mechanism of capping of HLA-DR molecules. Sodium nitroprusside, a nitric oxide releasing agent, cytochalasin D both inhibited the percentage of capping in a dose-dependent manner. These data suggest that on antigen presenting cells, such as B cells and fibroblasts, actin microfilaments acts as a regulator of the movement and capping of HLA-DR receptors.
Collapse
Affiliation(s)
- Eva M Fernández
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | | | | | | | | |
Collapse
|
40
|
Bouillon M, El Fakhry Y, Girouard J, Khalil H, Thibodeau J, Mourad W. Lipid raft-dependent and -independent signaling through HLA-DR molecules. J Biol Chem 2003; 278:7099-107. [PMID: 12499388 DOI: 10.1074/jbc.m211566200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid rafts are plasma membrane microdomains that are highly enriched in signaling molecules and that act as signal transduction platforms for many immune receptors. The involvement of these microdomains in HLA-DR-induced signaling is less well defined. We examined the constitutive presence of HLA-DR molecules in lipid rafts, their possible recruitment into these microdomains, and the role of these microdomains in HLA-DR-induced responses. We detected significant amounts of HLA-DR molecules in the lipid rafts of EBV(+) and EBV(-) B cell lines, monocytic cell lines, transfected HeLa cells, tonsillar B cells, and human monocytes. Localization of HLA-DR in these microdomains was unaffected by the deletion of the cytoplasmic domain of both the alpha and beta chains. Ligation of HLA-DR with a bivalent, but not a monovalent, ligand resulted in rapid tyrosine phosphorylation of many substrates, especially Lyn, and activation of ERK1/2 MAP kinase. However, the treatment failed to induce further recruitment of HLA-DR molecules into lipid rafts. The HLA-DR-induced signaling events were accompanied by the induction of cell-cell adhesion that could be inhibited by PTK and Lyn but not ERK1/2 inhibitors. Disruption of lipid rafts by methyl-beta-cyclodextrin (MbetaCD) resulted in the loss of membrane raft association with HLA-DR molecules, inhibition of HLA-DR-mediated protein tyrosine phosphorylation and cell-cell adhesion. MbetaCD did not affect the activation of ERK1/2, which was absent from lipid rafts. These results indicate that although all the HLA-DR-induced events studied are dependent on HLA-DR dimerization, some require the presence of HLA-DR molecules in lipid rafts, whereas others do not.
Collapse
Affiliation(s)
- Marlene Bouillon
- Centre de Recherche en Rhumatologie et Immunologie, (CHUL), Département de Médecine, Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
Abundant evidence now supports the existence of phospholipids in the nucleus that resist washing of nuclei with detergents. These lipids are apparently not in the nuclear envelope as part of a bilayer membrane, but are actually within the nucleus in the form of proteolipid complexes with unidentified proteins. This review discusses the experimental evidence that attempts to explain their existence. Among these nuclear lipids are the polyphosphoinositol lipids which, together with the enzymes that synthesize them, form an intranuclear phospholipase C (PI-PLC) signaling system that generates diacylglycerol (DAG) and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The isoforms of PI-PLC that are involved in this signaling system, and how they are regulated, are not yet entirely clear. Generation of DAG within the nucleus is believed to recruit protein kinase C (PKC) to the nucleus to phosphorylate intranuclear proteins. Generation of Ins(1,4,5)P3 may mobilize Ca2+ from the space between the nuclear membranes and thus increase nucleoplasmic Ca2+. Less well understood are the increasing number of variations and complications on the "simple" idea of a PI-PLC system. These include, all apparently within the nucleus, (i) two routes of synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]; (ii) two sources of DAG, one from the PI-PLC pathway and the other probably from phosphatidylcholine; (iii) several isoforms of PKC translocating to nuclei; (iv) increases in activity of the PI-PLC pathway at two points in the cell cycle; (v) a pathway of phosphorylation of Ins(1,4,5)P3, which may have several functions, including a role in the transfer of mRNA out of the nucleus; and (vi) the possible existence of other lipid signaling pathways that may include sphingolipids, phospholipase A2, and, in particular, 3-phosphorylated inositol lipids, which are now emerging as possible major players in nuclear signaling.
Collapse
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1QJ, UK.
| |
Collapse
|
43
|
Kudo H, Matsuoka T, Mitsuya H, Nishimura Y, Matsushita S. Cross-linking HLA-DR molecules on Th1 cells induces anergy in association with increased level of cyclin-dependent kinase inhibitor p27(Kip1). Immunol Lett 2002; 81:149-55. [PMID: 11852120 DOI: 10.1016/s0165-2478(01)00341-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HLA class II molecules play pivotal roles in antigen presentation to CD4+ T cells. We investigated signaling via HLA-DR molecules expressed on CD4+ T cells. When HLA-DR or CD3 molecules on cloned CD4+ T cells were cross-linked by solid-phase mAbs, T cells proliferated, and this resulted in anergy. Whereas cross-linking of HLA-DR and CD3 resulted in secretion of the same levels of IFN-gamma and IL-8, secretion of IL-10 induced by cross-linking of HLA-DR was less than that induced by cross-linking of CD3 on CD4+ T cells. Interestingly, expression of p27(Kip1) but not p21(Cip1) increased after stimulation by either anti-HLA-DR or anti-CD3 mAb. This was indeed the case, when T cells were rendered anergic using a soluble form of antigenic peptide. In contrast, T cells stimulated by peptide-pulsed PBMC expressed little p27(Kip1). We propose that signaling via HLA-DR molecules on CD4+ T cells at least in part contributes to the induction of T cell anergy, through the upregulated expression of the p27(Kip1). The implication of our finding is that HLA-DR molecules play a role in human T cell anergy induced by a soluble form of antigenic peptide.
Collapse
Affiliation(s)
- Hironori Kudo
- Department of Neuroscience and Immunology, Division of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
44
|
Kim J, Kim HR, Lee JC, Jang YS. Involvement of ERK, p38 MAP kinase, and PKC in MHC class II-mediated signal transduction in a resting B cell line. Biochem Biophys Res Commun 2002; 291:139-45. [PMID: 11829473 DOI: 10.1006/bbrc.2002.6404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Substantial evidence suggests that MHC class II molecules play a critical role in transducing signals during B cell activation and differentiation. In addition, we previously found that cross-linking of MHC class II molecules using anti-MHC class II antibodies inhibited NF-kappaB activation in resting B cells isolated from mouse spleen. In this study, we investigated the mechanism of anti-MHC class II antibody-mediated inhibition of LPS-induced NF-kappaB activation using a resting B cell line, 38B9. We found that treatment with a corresponding anti-MHC class II antibody reduced the activation of NF-kappaB in LPS-stimulated 38B9 cells, treatment of the antibody mediated down-regulation of PKC and ERK/p38 MAP kinase pathways, and treatment with PKC inhibitors caused down-regulation of ERK and p38 MAP kinase activities in LPS-stimulated 38B9 cells. Our results suggest that the PKC and ERK/p38 MAP kinase pathways are regulated by anti-MHC class II antibodies, and that MHC class II molecules are actively involved in the signal transduction pathway in the resting B cell line, 38B9. Consequently, disruption of these pathways might contribute to the inhibition of LPS-induced NF-kappaB activation in 38B9 cells.
Collapse
Affiliation(s)
- Ju Kim
- Division of Biological Sciences, Chonbuk National University, Chonju, 561-756, Korea
| | | | | | | |
Collapse
|
45
|
Setterblad N, Becart S, Charron D, Mooney N. Signalling via MHC class II molecules modifies the composition of GEMs in APC. Scand J Immunol 2001; 54:87-92. [PMID: 11439153 DOI: 10.1046/j.1365-3083.2001.00969.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are responsible for peptide presentation to helper T lymphocytes and as such play an essential role in the immune response. These molecules transmit intracellular signals leading to diverse consequences in B lymphocytes including proliferation and apoptosis. Recent studies have revealed that glycolipid enriched membrane microdomains (GEMs) behave as signalling platforms for a variety of lymphocyte receptors. We have quantified human leucocyte antigen (HLA)-DR molecules localized in GEMs in human B lymphocytes. Use of a model imitating the interaction of HLA-DR with a T-cell receptor (TCR) modified the constituents of the HLA-DR-enriched GEMs. Confocal microscopy demonstrated a recruitment of HLA-DR and the ganglioside GM1 at the site of HLA-DR interaction with the stimulating ligand. Moreover, cholesterol depletion efficiently impaired this recruitment. Co-localizing proteins detected in HLA-DR-enriched GEMs include protein kinase C (PKC)-delta and actin. These data reveal that MHC class II antigens are localized in GEMs in mature human B lymphocytes and indicates that the formation of the immunological synapse regulates the composition of HLA-DR enriched GEMs in the antigen presenting cell (APC).
Collapse
Affiliation(s)
- N Setterblad
- INSERM U396, Institut Biomedical des Cordeliers, 15, rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | |
Collapse
|
46
|
Vereshchagina LA, Tolnay M, Tsokos GC. Multiple transcription factors regulate the inducible expression of the human complement receptor 2 promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6156-63. [PMID: 11342636 DOI: 10.4049/jimmunol.166.10.6156] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement receptor 2 (CR2) is regulated at the transcriptional level, but the promoter elements and the transcription factors that bind to them and contribute to its regulation are unknown. After documenting that PMA and cAMP induced the activity of the CR2 promoter by 10-fold, we conducted promoter truncation and mutagenesis experiments, in conjunction with shift assays, to determine the functionally important regions of the promoter and the proteins that bind to them. We identified two regions, separated by approximately 900 nucleotides, which together were responsible for inducible promoter activity. Mutagenesis of single promoter elements demonstrated a functional upstream stimulatory factor/E box in the TATA box-proximal region and three equally important, closely spaced, CREB/AP-1 half-sites in the upstream promoter region. The cAMP response element-binding protein (CREB)/AP-1 half-sites bound in vitro Jun and CREB that are induced by protein kinases A and/or C. The 900-nucleotide segment stretching between the above two regions had no functional impact on the induced transcription, and its deletion increased the promoter activity. Finally, a region upstream of the distal site had a repressor activity on CR2 transcription. Moreover, IL-4 induced binding of CREB and AP-1 to the upstream promoter elements and resulted in increased CR2 surface protein expression. These studies have characterized regions of the CR2 promoter and the transcription factors that bind to them and are crucial to induced CR2 expression. Our studies may provide insights to novel approaches to modulate B cell function by regulating CR2 gene transcription.
Collapse
MESH Headings
- 5' Untranslated Regions/drug effects
- 5' Untranslated Regions/immunology
- Antibodies, Monoclonal/pharmacology
- Base Sequence
- Binding Sites, Antibody/genetics
- Bucladesine/pharmacology
- CD40 Antigens/immunology
- Cell Line, Transformed
- Cell Membrane/immunology
- Cell Membrane/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Genes, Reporter/drug effects
- Genes, Reporter/immunology
- Humans
- Interleukin-4/pharmacology
- Mutagenesis, Site-Directed
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/immunology
- Receptors, Complement 3d/biosynthesis
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/physiology
- Regulatory Sequences, Nucleic Acid/immunology
- Sequence Deletion/immunology
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transfection
Collapse
Affiliation(s)
- L A Vereshchagina
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | |
Collapse
|
47
|
Catlett IM, Xie P, Hostager BS, Bishop GA. Signaling through MHC class II molecules blocks CD95-induced apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6019-24. [PMID: 11342618 DOI: 10.4049/jimmunol.166.10.6019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells are induced to express CD95 upon interaction with T cells. This interaction renders the B cells sensitive to CD95-mediated apoptosis, but ligation of proviability surface receptors is able to inhibit apoptosis induction. MHC class II is a key molecule required for Ag presentation to Th cells, productive T cell-B cell interaction, and B cell activation. We demonstrate here for the first time that MHC class II ligation also confers a rapid resistance to CD95-induced apoptosis, an affect that does not require de novo protein synthesis. Signaling through class II molecules blocks the activation of caspase 8, but does not affect the association of CD95 and Fas-associated death domain-containing protein. MHC class II ligation thus blocks proximal signaling events in the CD95-mediated apoptotic pathway.
Collapse
Affiliation(s)
- I M Catlett
- Department of Microbiology, University of Iowa, and Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
48
|
Matsuoka T, Tabata H, Matsushita S. Monocytes are differentially activated through HLA-DR, -DQ, and -DP molecules via mitogen-activated protein kinases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2202-8. [PMID: 11160273 DOI: 10.4049/jimmunol.166.4.2202] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
When HLA-DR, -DQ, and -DP were cross-linked by solid-phase mAbs, monocytes produced monokines and only anti-DR markedly activated mitogen-activated protein (MAP) kinase extracellular signal-related kinase, whereas anti-DR, anti-DQ, and anti-DP all activated MAP kinase p38. Activation of extracellular signal-related kinase was not inhibited by neutralizing Ab to TNF-alpha. Anti-DR and DR-restricted T cells stimulated monocytes to produce relatively higher levels of proinflammatory monokines, such as IL-1beta, whereas anti-DQ/DP and DQ-/DP-restricted T cells stimulated higher levels of anti-inflammatory monokine IL-10. IL-10 production was abrogated by the p38 inhibitor SB203580, but rather enhanced by the MAP/extracellular signal-related kinase kinase-I-specific inhibitor PD98059, whereas IL-1beta was only partially abrogated by SB203580 and PD98059. Furthermore, DR-restricted T cells established from PBMC, which are reactive with mite Ags, purified protein derivative, and random 19-mer peptides, exhibited a higher IFN-gamma:IL-4 ratio than did DQ- or DP-restricted T cells. These results indicate that HLA-DR, -DQ, and -DP molecules transmit distinct signals to monocytes via MAP kinases and lead to distinct monokine activation patterns, which may affect T cell responses in vivo. Thus, the need for generation of a multigene family of class II MHC seems apparent.
Collapse
Affiliation(s)
- T Matsuoka
- Department of Neuroscience and Immunology, Division of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Honjo, Kumamoto, Japan
| | | | | |
Collapse
|
49
|
Bobbitt KR, Justement LB. Regulation of MHC class II signal transduction by the B cell coreceptors CD19 and CD22. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5588-96. [PMID: 11067914 DOI: 10.4049/jimmunol.165.10.5588] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The major histocompatability class II heterodimer (class II) is expressed on the surface of both resting and activated B cells. Although it is clear that class II expression is required for Ag presentation to CD4(+) T cells, substantial evidence suggests that class II serves as a signal transducing receptor that regulates B cell function. In ex vivo B cells primed by Ag receptor (BCR) cross-linking and incubation with IL-4, or B cell lines such as K46-17 micromlambda, class II ligation leads to the activation of protein tyrosine kinases, including Lyn and Syk and subsequent phospholipase Cgamma-dependent mobilization of Ca(2+). In this study, experiments demonstrated reciprocal desensitization of class II and BCR signaling upon cross-linking of either receptor, suggesting that the two receptors transduce signals via common processes and/or effector proteins. Because class II and BCR signal transduction pathways exhibit functional similarities, additional studies were conducted to evaluate whether class II signaling is regulated by BCR coreceptors. Upon cross-linking of class II, the BCR coreceptors CD19 and CD22 were inducibly phosphorylated on tyrosine residues. Phosphorylation of CD22 was associated with increased recruitment and binding of the protein tyrosine phosphatase SHP-1. Similarly, tyrosine phosphorylation of CD19 resulted in recruitment and binding of Vav and phosphatidylinositol 3-kinase. Finally, co-cross-linking studies demonstrated that signaling via class II was either attenuated (CD22/SHP-1) or enhanced (CD19/Vav and phosphatidylinositol 3-kinase), depending on the coreceptor that was brought into close proximity. Collectively, these results suggest that CD19 and CD22 modulate class II signaling in a manner similar to that for the BCR.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, CD19/metabolism
- Antigens, CD19/physiology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/physiology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Adhesion Molecules
- Cells, Cultured
- Cytoplasm/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Lectins
- Ligands
- Mice
- Mice, Inbred C57BL
- Phosphorylation
- Phosphotyrosine/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- K R Bobbitt
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|
50
|
Tabata H, Matsuoka T, Endo F, Nishimura Y, Matsushita S. Ligation of HLA-DR molecules on B cells induces enhanced expression of IgM heavy chain genes in association with Syk activation. J Biol Chem 2000; 275:34998-5005. [PMID: 10948188 DOI: 10.1074/jbc.m002089200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signals transmitted by class II major histocompatibility complex are important regarding cell function related to antigen presentation. We examined effects of DR-mediated signaling on Ig production from B cells. Cross-linking HLA-DR molecules on B cells by solid-phase anti-HLA-DR monoclonal antibodies, led to an increased production of IgM, without proliferation or apoptosis. This event was accompanied by an enhanced expression of both membrane- and secretory-type IgM heavy chain mRNA. When peptide-pulsed B cells were co-incubated with an HLA-DR-restricted T cell clone treated by the protein synthesis inhibitor emetine, peptide-induced de novo expression of lymphokines and cell-surface molecules on T cells can be neglected. CD40-CD154 interaction was not involved in IgM enhancement, in such a system. The protein-tyrosine kinase inhibitors and the Syk inhibitor piceatannol, but not the Src inhibitor PP2 had a marked inhibitory effect on IgM secretion. Furthermore, ligation of HLA-DR on B cells using the F(ab')2 fragment of anti-DR monoclonal antibody, enhanced Syk activity. Our data suggest that HLA-DR on B cells not only present antigenic peptides to T cells, but also up-regulate IgM production, in association with Syk activation and without the involvement of Src kinases, hence the possible physiological relevance of Src-independent Syk activation.
Collapse
Affiliation(s)
- H Tabata
- Division of Immunogenetics, Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences and the Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|