1
|
Degro CE, Vida I, Booker SA. Postsynaptic GABA B-receptor mediated currents in diverse dentate gyrus interneuron types. Hippocampus 2024; 34:551-562. [PMID: 39138952 DOI: 10.1002/hipo.23628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
The processing of rich synaptic information in the dentate gyrus (DG) relies on a diverse population of inhibitory GABAergic interneurons to regulate cellular and circuit activity, in a layer-specific manner. Metabotropic GABAB-receptors (GABABRs) provide powerful inhibition to the DG circuit, on timescales consistent with behavior and learning, but their role in controlling the activity of interneurons is poorly understood with respect to identified cell types. We hypothesize that GABABRs display cell type-specific heterogeneity in signaling strength, which will have direct ramifications for signal processing in DG networks. To test this, we perform in vitro whole-cell patch-clamp recordings from identified DG principal cells and interneurons, followed by GABABR pharmacology, photolysis of caged GABA, and extracellular stimulation of endogenous GABA release to classify the cell type-specific inhibitory potential. Based on our previous classification of DG interneurons, we show that postsynaptic GABABR-mediated currents are present on all interneuron types albeit at different amplitudes, dependent largely on soma location and synaptic targets. GABABRs were coupled to inwardly-rectifying K+ channels that strongly reduced the excitability of those interneurons where large currents were observed. These data provide a systematic characterization of GABABR signaling in the rat DG to provide greater insight into circuit dynamics.
Collapse
Affiliation(s)
- Claudius E Degro
- Institute for Integrative Neuroanatomy, Charité-Universitätmedizin Berlin, Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätmedizin Berlin, Berlin, Germany
| | - Sam A Booker
- Institute for Integrative Neuroanatomy, Charité-Universitätmedizin Berlin, Berlin, Germany
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Ahlström S, Reiterä P, Jokela R, Olkkola KT, Kaunisto MA, Kalso E. Influence of Clinical and Genetic Factors on Propofol Dose Requirements: A Genome-wide Association Study. Anesthesiology 2024; 141:300-312. [PMID: 38700459 DOI: 10.1097/aln.0000000000005036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND Propofol is a widely used intravenous hypnotic. Dosing is based mostly on weight, with great interindividual variation in consumption. Suggested factors affecting propofol requirements include age, sex, ethnicity, anxiety, alcohol consumption, smoking, and concomitant valproate use. Genetic factors have not been widely explored. METHODS This study considered 1,000 women undergoing breast cancer surgery under propofol and remifentanil anesthesia. Depth of anesthesia was monitored with State Entropy (GE Healthcare, Finland). Propofol requirements during surgery were recorded. DNA from blood was genotyped with a genome-wide array. A multivariable linear regression model was used to assess the relevance of clinical variables and select those to be used as covariates in a genome-wide association study. Imputed genotype data were used to explore selected loci further. In silico functional annotation was used to explore possible consequences of the discovered genetic variants. Additionally, previously reported genetic associations from candidate gene studies were tested. RESULTS Body mass index, smoking status, alcohol use, remifentanil dose (ln[mg · kg-1 · min-1]), and average State Entropy during surgery remained statistically significant in the multivariable model. Two loci reached genome-wide significance (P < 5 × 10-8). The most significant associations were for single-nucleotide polymorphisms rs997989 (30 kb from ROBO3), likely affecting expression of another nearby gene, FEZ1, and rs9518419, close to NALCN (sodium leak channel); rs10512538 near KCNJ2 encoding the Kir2.1 potassium channel showed suggestive association (P = 4.7 × 10-7). None of these single-nucleotide polymorphisms are coding variants but possibly affect the regulation of nearby genes. None of the single-nucleotide polymorphisms previously reported as affecting propofol pharmacokinetics or pharmacodynamics showed association in the data. CONCLUSIONS In this first genome-wide association study exploring propofol requirements, This study discovered novel genetic associations suggesting new biologically relevant pathways for propofol and general anesthesia. The roles of the gene products of ROBO3/FEZ1, NALCN, and KCNJ2 in propofol anesthesia warrant further studies. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Sirkku Ahlström
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Paula Reiterä
- Department of Public Health, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Ritva Jokela
- HUS Shared Group Services, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Klaus T Olkkola
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland; INDIVIDRUG Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
3
|
Gonzalez-Hernandez AJ, Munguba H, Levitz J. Emerging modes of regulation of neuromodulatory G protein-coupled receptors. Trends Neurosci 2024; 47:635-650. [PMID: 38862331 PMCID: PMC11324403 DOI: 10.1016/j.tins.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
In the nervous system, G protein-coupled receptors (GPCRs) control neuronal excitability, synaptic transmission, synaptic plasticity, and, ultimately, behavior through spatiotemporally precise initiation of a variety of signaling pathways. However, despite their critical importance, there is incomplete understanding of how these receptors are regulated to tune their signaling to specific neurophysiological contexts. A deeper mechanistic picture of neuromodulatory GPCR function is needed to fully decipher their biological roles and effectively harness them for the treatment of neurological and psychiatric disorders. In this review, we highlight recent progress in identifying novel modes of regulation of neuromodulatory GPCRs, including G protein- and receptor-targeting mechanisms, receptor-receptor crosstalk, and unique features that emerge in the context of chemical synapses. These emerging principles of neuromodulatory GPCR tuning raise critical questions to be tackled at the molecular, cellular, synaptic, and neural circuit levels in the future.
Collapse
Affiliation(s)
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
4
|
Mushtaq M, Marshall L, ul Haq R, Martinetz T. Possible mechanisms to improve sleep spindles via closed loop stimulation during slow wave sleep: A computational study. PLoS One 2024; 19:e0306218. [PMID: 38924001 PMCID: PMC11207127 DOI: 10.1371/journal.pone.0306218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Sleep spindles are one of the prominent EEG oscillatory rhythms of non-rapid eye movement sleep. In the memory consolidation, these oscillations have an important role in the processes of long-term potentiation and synaptic plasticity. Moreover, the activity (spindle density and/or sigma power) of spindles has a linear association with learning performance in different paradigms. According to the experimental observations, the sleep spindle activity can be improved by closed loop acoustic stimulations (CLAS) which eventually improve memory performance. To examine the effects of CLAS on spindles, we propose a biophysical thalamocortical model for slow oscillations (SOs) and sleep spindles. In addition, closed loop stimulation protocols are applied on a thalamic network. Our model results show that the power of spindles is increased when stimulation cues are applied at the commencing of an SO Down-to-Up-state transition, but that activity gradually decreases when cues are applied with an increased time delay from this SO phase. Conversely, stimulation is not effective when cues are applied during the transition of an Up-to-Down-state. Furthermore, our model suggests that a strong inhibitory input from the reticular (RE) layer to the thalamocortical (TC) layer in the thalamic network shifts leads to an emergence of spindle activity at the Up-to-Down-state transition (rather than at Down-to-Up-state transition), and the spindle frequency is also reduced (8-11 Hz) by thalamic inhibition.
Collapse
Affiliation(s)
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck, Germany
- University Clinic Hospital Schleswig Holstein, Lübeck, Germany
| | - Rizwan ul Haq
- Department of Pharmacy, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck, Germany
| |
Collapse
|
5
|
Xu W, Wang J, Li XN, Liang J, Song L, Wu Y, Liu Z, Sun B, Li WG. Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease. Transl Neurodegener 2023; 12:55. [PMID: 38037124 PMCID: PMC10688037 DOI: 10.1186/s40035-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.
Collapse
Affiliation(s)
- Wenying Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingxue Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
6
|
Cattani A, Wang S, Lévesque M, Farmer JP, Dudley RWR, Avoli M. GABA B receptor outward currents are transiently disclosed by the convulsant 4-aminopyridine in vitro. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100117. [PMID: 38020804 PMCID: PMC10663127 DOI: 10.1016/j.crneur.2023.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The K+ channel blocker 4-aminopyridine (4AP) has been extensively used to investigate the mechanisms underlying neuronal network synchronization in both in vitro and in vivo animal models of focal epilepsy. 4AP-induced effects are paralleled by an increase in both excitatory and inhibitory neurotransmitter release, but the mechanisms of action of 4AP on neuronal networks remain unclear. By employing simultaneous whole-cell patch clamp and field potential recordings from hippocampal CA3/4 pyramidal layer of acute brain slices obtained from mice (n = 30), we found that the appearance of epileptiform discharges induced by 4AP (100 μM) is consistently preceded by the transient recurrence of presumptive GABAB outward currents, which are not mirrored by any field activity. These GABAB outward currents still occurred during application of ionotropic glutamatergic antagonists (n = 12 cells) but were blocked by the GABAB receptor antagonist CGP55845 (n = 7). Our findings show that the transient occurrence of distinct GABAB outward currents precedes the appearance of 4AP-induced neuronal network synchronization leading to epileptiform activity in the rodent hippocampus in vitro.
Collapse
Affiliation(s)
- Adriano Cattani
- Department of Pediatric Surgery, Division of Neurosurgery, McGill University Health Centre, Montréal, QC, Canada
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, Canada
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, Canada
| | - Jean-Pierre Farmer
- Department of Pediatric Surgery, Division of Neurosurgery, McGill University Health Centre, Montréal, QC, Canada
| | - Roy William Roland Dudley
- Department of Pediatric Surgery, Division of Neurosurgery, McGill University Health Centre, Montréal, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, Canada
- Physiology, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Nufer TM, Wu BJ, Boyce Z, Steffensen SC, Edwards JG. Ethanol blocks a novel form of iLTD, but not iLTP of inhibitory inputs to VTA GABA neurons. Neuropsychopharmacology 2023; 48:1396-1408. [PMID: 36899030 PMCID: PMC10354227 DOI: 10.1038/s41386-023-01554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
The ventral tegmental area (VTA) is an essential component of the mesocorticolimbic dopamine (DA) circuit that processes reward and motivated behaviors. The VTA contains DA neurons essential in this process, as well as GABAergic inhibitory cells that regulate DA cell activity. In response to drug exposure, synaptic connections of the VTA circuit can be rewired via synaptic plasticity-a phenomenon thought to be responsible for the pathology of drug dependence. While synaptic plasticity to VTA DA neurons as well as prefrontal cortex to nucleus accumbens GABA neurons are well studied, VTA GABA cell plasticity, specifically inhibitory inputs to VTA GABA neurons, is less understood. Therefore, we investigated the plasticity of these inhibitory inputs. Using whole cell electrophysiology in GAD67-GFP mice to identify GABA cells, we observed that these VTA GABA cells experience either inhibitory GABAergic long-term potentiation (iLTP) or inhibitory long-term depression (iLTD) in response to a 5 Hz stimulus. Paired pulse ratios, coefficient of variance, and failure rates suggest a presynaptic mechanism for both plasticity types, where iLTP is NMDA receptor-dependent and iLTD is GABAB receptor-dependent-this being the first report of iLTD onto VTA GABA cells. As illicit drug exposure can alter VTA plasticity, we employed chronic intermittent exposure (CIE) to ethanol (EtOH) vapor in male and female mice to examine its potential impact on VTA GABA input plasticity. Chronic EtOH vapor exposure produced measurable behavioral changes illustrating dependence and concomitantly prevented previously observed iLTD, which continued in air-exposed controls, illustrating the impact of EtOH on VTA neurocircuitry and suggesting physiologic mechanisms at play in alcohol use disorder and withdrawal states. Taken together, these novel findings of unique GABAergic synapses exhibiting either iLTP or iLTD within the mesolimbic circuit, and EtOH blockade specifically of iLTD, characterize inhibitory VTA plasticity as a malleable, experience-dependent system modified by EtOH.
Collapse
Affiliation(s)
- Teresa M Nufer
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA
| | - Bridget J Wu
- Brigham Young University, Department of Cell Biology and Physiology Provo, Provo, UT, 84602, USA
| | - Zachary Boyce
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA
| | | | - Jeffrey G Edwards
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA.
- Brigham Young University, Department of Cell Biology and Physiology Provo, Provo, UT, 84602, USA.
| |
Collapse
|
8
|
Fogarty MJ. Inhibitory Synaptic Influences on Developmental Motor Disorders. Int J Mol Sci 2023; 24:ijms24086962. [PMID: 37108127 PMCID: PMC10138861 DOI: 10.3390/ijms24086962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
9
|
Ables JL, Park K, Ibañez-Tallon I. Understanding the habenula: A major node in circuits regulating emotion and motivation. Pharmacol Res 2023; 190:106734. [PMID: 36933754 PMCID: PMC11081310 DOI: 10.1016/j.phrs.2023.106734] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Over the last decade, the understanding of the habenula has rapidly advanced from being an understudied brain area with the Latin name 'habena" meaning "little rein", to being considered a "major rein" in the control of key monoaminergic brain centers. This ancient brain structure is a strategic node in the information flow from fronto-limbic brain areas to brainstem nuclei. As such, it plays a crucial role in regulating emotional, motivational, and cognitive behaviors and has been implicated in several neuropsychiatric disorders, including depression and addiction. This review will summarize recent findings on the medial (MHb) and lateral (LHb) habenula, their topographical projections, cell types, and functions. Additionally, we will discuss contemporary efforts that have uncovered novel molecular pathways and synaptic mechanisms with a focus on MHb-Interpeduncular nucleus (IPN) synapses. Finally, we will explore the potential interplay between the habenula's cholinergic and non-cholinergic components in coordinating related emotional and motivational behaviors, raising the possibility that these two pathways work together to provide balanced roles in reward prediction and aversion, rather than functioning independently.
Collapse
Affiliation(s)
- Jessica L Ables
- Psychiatry Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kwanghoon Park
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Inés Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Casarotto A, Dolfini E, Cardellicchio P, Fadiga L, D'Ausilio A, Koch G. Mechanisms of Hebbian-like plasticity in the ventral premotor - primary motor network. J Physiol 2023; 601:211-226. [PMID: 36327142 PMCID: PMC10100355 DOI: 10.1113/jp283560] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The functional connection between ventral premotor cortex (PMv) and primary motor cortex (M1) is critical for the organization of goal-directed actions. Repeated activation of this connection by means of cortico-cortical paired associative stimulation (cc-PAS), a transcranial magnetic stimulation (TMS) protocol, may induce Hebbian-like plasticity. However, the physiological modifications produced by Hebbian-like plasticity in the PMv-M1 network are poorly understood. To fill this gap, we investigated the effects of cc-PAS on PMv-M1 circuits. We hypothesized that specific interactions would occur with I2 -wave interneurons as measured by the short intracortical facilitation protocol (SICF). We used different paired-pulse TMS protocols to examine the effects of PMv-M1 cc-PAS on SICF, on GABAergic circuits as measured by short (SICI) and long (LICI) intracortical inhibition protocols, and varied the current direction in M1 to target different M1 neuronal populations. Finally, we examined the effects of cc-PAS on PMv-M1 connectivity using a dual coil approach. We found that PMv-M1 cc-PAS induces both a long-term potentiation (LTP)- or long-term depression (LTD)-like after-effect in M1 neuronal activity that is strongly associated with a bidirectional-specific change in I2 -wave activity (SICF = 2.5 ms ISI). Moreover, cc-PAS induces a specific modulation of the LICI circuit and separately modulates PMv-M1 connectivity. We suggest that plasticity within the PMv-M1 circuit is mediated by a selective mechanism exerted by PMv on M1 by targeting I2 -wave interneurons. These results provide new mechanistic insights into how PMv modulates M1 activity that are relevant for the design of brain stimulation protocols in health and disease. KEY POINTS: The I2 -wave is specifically modulated by the induction of ventral premotor cortex - primary motor cortex (PMv-M1) plasticity. After PMv-M1 cortico-cortical paired associative stimulation (cc-PAS), corticospinal excitability correlates negatively with I2 -wave amplitude. Different cc-PAS coil orientations can lead to a long-term potentiation- or long-term depression-like after-effect in M1.
Collapse
Affiliation(s)
- Andrea Casarotto
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Giacomo Koch
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy.,Experimental Neuropsychophysiology Lab, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
11
|
Mushtaq M, Marshall L, Bazhenov M, Mölle M, Martinetz T. Differential thalamocortical interactions in slow and fast spindle generation: A computational model. PLoS One 2022; 17:e0277772. [PMID: 36508417 PMCID: PMC9744318 DOI: 10.1371/journal.pone.0277772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022] Open
Abstract
Cortical slow oscillations (SOs) and thalamocortical sleep spindles are two prominent EEG rhythms of slow wave sleep. These EEG rhythms play an essential role in memory consolidation. In humans, sleep spindles are categorized into slow spindles (8-12 Hz) and fast spindles (12-16 Hz), with different properties. Slow spindles that couple with the up-to-down phase of the SO require more experimental and computational investigation to disclose their origin, functional relevance and most importantly their relation with SOs regarding memory consolidation. To examine slow spindles, we propose a biophysical thalamocortical model with two independent thalamic networks (one for slow and the other for fast spindles). Our modeling results show that fast spindles lead to faster cortical cell firing, and subsequently increase the amplitude of the cortical local field potential (LFP) during the SO down-to-up phase. Slow spindles also facilitate cortical cell firing, but the response is slower, thereby increasing the cortical LFP amplitude later, at the SO up-to-down phase of the SO cycle. Neither the SO rhythm nor the duration of the SO down state is affected by slow spindle activity. Furthermore, at a more hyperpolarized membrane potential level of fast thalamic subnetwork cells, the activity of fast spindles decreases, while the slow spindles activity increases. Together, our model results suggest that slow spindles may facilitate the initiation of the following SO cycle, without however affecting expression of the SO Up and Down states.
Collapse
Affiliation(s)
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, Lübeck, Germany
- University Clinic Hospital Schleswig Holstein, Lübeck, Germany
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Matthias Mölle
- Center for Brain, Behavior and Metabolism, Lübeck, Germany
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, Lübeck, Germany
- * E-mail:
| |
Collapse
|
12
|
Abstract
GABA is the main inhibitory neurotransmitter in the mammalian central nervous system (CNS) and acts via metabotropic GABAB receptors. Neurodegenerative diseases are a major burden and affect an ever increasing number of humans. The actual therapeutic drugs available are partially effective to slow down the progression of the diseases, but there is a clear need to improve pharmacological treatment thus find alternative drug targets and develop newer pharmaco-treatments. This chapter is dedicated to reviewing the latest evidence about GABAB receptors and their inhibitory mechanisms and pathways involved in the neurodegenerative pathologies.
Collapse
Affiliation(s)
- Alessandra P Princivalle
- Department of Bioscience and Chemistry, Biomolecular Research Centre, College of Health, Wellbeing and Life Sciences at Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
13
|
Zaupa M, Naini SMA, Younes MA, Bullier E, Duboué ER, Le Corronc H, Soula H, Wolf S, Candelier R, Legendre P, Halpern ME, Mangin JM, Hong E. Trans-inhibition of axon terminals underlies competition in the habenulo-interpeduncular pathway. Curr Biol 2021; 31:4762-4772.e5. [PMID: 34529937 DOI: 10.1016/j.cub.2021.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
Survival of animals is dependent on the correct selection of an appropriate behavioral response to competing external stimuli. Theoretical models have been proposed and underlying mechanisms are emerging to explain how one circuit is selected among competing neural circuits. The evolutionarily conserved forebrain to midbrain habenulo-interpeduncular nucleus (Hb-IPN) pathway consists of cholinergic and non-cholinergic neurons, which mediate different aversive behaviors. Simultaneous calcium imaging of neuronal cell bodies and of the population dynamics of their axon terminals reveals that signals in the cell bodies are not reflective of terminal activity. We find that axon terminals of cholinergic and non-cholinergic habenular neurons exhibit stereotypic patterns of spontaneous activity that are negatively correlated and localize to discrete subregions of the target IPN. Patch-clamp recordings show that calcium bursts in cholinergic terminals at the ventral IPN trigger excitatory currents in IPN neurons, which precede inhibition of non-cholinergic terminals at the adjacent dorsal IPN. Inhibition is mediated through presynaptic GABAB receptors activated in non-cholinergic habenular neurons upon GABA release from the target IPN. Together, the results reveal a hardwired mode of competition at the terminals of two excitatory neuronal populations, providing a physiological framework to explore the relationship between different aversive responses.
Collapse
Affiliation(s)
- Margherita Zaupa
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Seyedeh Maryam Alavi Naini
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Maroun Abi Younes
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erika Bullier
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erik R Duboué
- Jupiter Life Science Initiative, Wilkes Honors College and Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hervé Le Corronc
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Hédi Soula
- INSERM, Sorbonne Université, Nutriomics, La Pitié Salpétrière, 75013 Paris, France
| | - Sebastien Wolf
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Raphaël Candelier
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pascal Legendre
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jean-Marie Mangin
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Elim Hong
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
14
|
Ozsvár A, Komlósi G, Oláh G, Baka J, Molnár G, Tamás G. Predominantly linear summation of metabotropic postsynaptic potentials follows coactivation of neurogliaform interneurons. eLife 2021; 10:65634. [PMID: 34308838 PMCID: PMC8360660 DOI: 10.7554/elife.65634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/14/2021] [Indexed: 01/13/2023] Open
Abstract
Summation of ionotropic receptor-mediated responses is critical in neuronal computation by shaping input-output characteristics of neurons. However, arithmetics of summation for metabotropic signals are not known. We characterized the combined ionotropic and metabotropic output of neocortical neurogliaform cells (NGFCs) using electrophysiological and anatomical methods in the rat cerebral cortex. These experiments revealed that GABA receptors are activated outside release sites and confirmed coactivation of putative NGFCs in superficial cortical layers in vivo. Triple recordings from presynaptic NGFCs converging to a postsynaptic neuron revealed sublinear summation of ionotropic GABAA responses and linear summation of metabotropic GABAB responses. Based on a model combining properties of volume transmission and distributions of all NGFC axon terminals, we predict that in 83% of cases one or two NGFCs can provide input to a point in the neuropil. We suggest that interactions of metabotropic GABAergic responses remain linear even if most superficial layer interneurons specialized to recruit GABAB receptors are simultaneously active.
Collapse
Affiliation(s)
- Attila Ozsvár
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gergely Komlósi
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gáspár Oláh
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Judith Baka
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Molnár
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences,, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
15
|
Honoré E, Khlaifia A, Bosson A, Lacaille JC. Hippocampal Somatostatin Interneurons, Long-Term Synaptic Plasticity and Memory. Front Neural Circuits 2021; 15:687558. [PMID: 34149368 PMCID: PMC8206813 DOI: 10.3389/fncir.2021.687558] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
A distinctive feature of the hippocampal structure is the diversity of inhibitory interneurons. These complex inhibitory interconnections largely contribute to the tight modulation of hippocampal circuitry, as well as to the formation and coordination of neuronal assemblies underlying learning and memory. Inhibitory interneurons provide more than a simple transitory inhibition of hippocampal principal cells (PCs). The synaptic plasticity of inhibitory neurons provides long-lasting changes in the hippocampal network and is a key component of memory formation. The dendrite targeting interneurons expressing the peptide somatostatin (SOM) are particularly interesting in this regard because they display unique long-lasting synaptic changes leading to metaplastic regulation of hippocampal networks. In this article, we examine the actions of the neuropeptide SOM on hippocampal cells, synaptic plasticity, learning, and memory. We address the different subtypes of hippocampal SOM interneurons. We describe the long-term synaptic plasticity that takes place at the excitatory synapses of SOM interneurons, its singular induction and expression mechanisms, as well as the consequences of these changes on the hippocampal network, learning, and memory. We also review evidence that astrocytes provide cell-specific dynamic regulation of inhibition of PC dendrites by SOM interneurons. Finally, we cover how, in mouse models of Alzheimer’s disease (AD), dysfunction of plasticity of SOM interneuron excitatory synapses may also contribute to cognitive impairments in brain disorders.
Collapse
Affiliation(s)
- Eve Honoré
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Abdessattar Khlaifia
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Anthony Bosson
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
16
|
GABA B Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. Curr Top Behav Neurosci 2021; 52:81-118. [PMID: 34036555 DOI: 10.1007/7854_2021_232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The GABAB receptors are metabotropic G protein-coupled receptors (GPCRs) that mediate the actions of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in behavior, learning and memory, cognition, and stress. GABA is also located throughout the gastrointestinal (GI) tract and is involved in the autonomic control of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor signaling is associated with neurological, mental health, and gastrointestinal disorders; hence, these receptors have been identified as key therapeutic targets and are the focus of multiple drug discovery efforts for indications such as muscle spasticity disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease (GERD). Numerous agonists, antagonists, and allosteric modulators of the GABAB receptor have been described; however, Lioresal® (Baclofen; β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selectively targets GABAB receptors in clinical use; undesirable side effects, such as sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and potential for abuse, limit their therapeutic use. Here, we review GABAB receptor chemistry and pharmacology, presenting orthosteric agonists, antagonists, and positive and negative allosteric modulators, and highlight the therapeutic potential of targeting GABAB receptor modulation for the treatment of various CNS and peripheral disorders.
Collapse
|
17
|
Shaye H, Stauch B, Gati C, Cherezov V. Molecular mechanisms of metabotropic GABA B receptor function. SCIENCE ADVANCES 2021; 7:7/22/eabg3362. [PMID: 34049877 PMCID: PMC8163086 DOI: 10.1126/sciadv.abg3362] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Metabotropic γ-aminobutyric acid G protein-coupled receptors (GABAB) represent one of the two main types of inhibitory neurotransmitter receptors in the brain. These receptors act both pre- and postsynaptically by modulating the transmission of neuronal signals and are involved in a range of neurological diseases, from alcohol addiction to epilepsy. A series of recent cryo-EM studies revealed critical details of the activation mechanism of GABAB Structures are now available for the receptor bound to ligands with different modes of action, including antagonists, agonists, and positive allosteric modulators, and captured in different conformational states from the inactive apo to the fully active state bound to a G protein. These discoveries provide comprehensive insights into the activation of the GABAB receptor, which not only broaden our understanding of its structure, pharmacology, and physiological effects but also will ultimately facilitate the discovery of new therapeutic drugs and neuromodulators.
Collapse
Affiliation(s)
- Hamidreza Shaye
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Stauch
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Cornelius Gati
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
de Sousa N, Santos D, Monteiro S, Silva N, Barreiro-Iglesias A, Salgado AJ. Role of Baclofen in Modulating Spasticity and Neuroprotection in Spinal Cord Injury. J Neurotrauma 2021; 39:249-258. [PMID: 33599153 DOI: 10.1089/neu.2020.7591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal cord injury (SCI) affects an estimated three million persons worldwide, with ∼180,000 new cases reported each year leading to severe motor and sensory functional impairments that affect personal and social behaviors. To date, no effective treatment has been made available to promote neurological recovery after SCI. Deficits in motor function is the most visible consequence of SCI; however, other secondary complications produce a significant impact on the welfare of patients with SCI. Spasticity is a neurological impairment that affects the control of muscle tone as a consequence of an insult, trauma, or injury to the central nervous system, such as SCI. The management of spasticity can be achieved through the combination of both nonpharmacological and pharmacological approaches. Baclofen is the most effective drug for spasticity treatment, and it can be administered both orally and intrathecally, depending on spasticity location and severity. Interestingly, recent data are revealing that baclofen can also play a role in neuroprotection after SCI. This new function of baclofen in the SCI scope is promising for the prospect of developing new pharmacological strategies to promote functional recovery in patients with SCI.
Collapse
Affiliation(s)
- Nídia de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Diogo Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Nuno Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | | | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|
19
|
Augier E. Recent Advances in the Potential of Positive Allosteric Modulators of the GABAB Receptor to Treat Alcohol Use Disorder. Alcohol Alcohol 2021; 56:139-148. [PMID: 33561865 PMCID: PMC7906877 DOI: 10.1093/alcalc/agab003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aims The effects of alcohol on gamma-aminobutyric acid (GABA) transmission are key for the development and maintenance of alcohol use disorder (AUD). Previous research consistently indicates that GABAB receptor agonists such as baclofen can attenuate addiction-related behaviors in preclinical models of AUD. More importantly, baclofen has also shown promise in clinical studies, particularly in severely alcohol-dependent patients. However, despite this promise, other clinical studies have not confirmed its efficacy and chiefly, larger clinical trials have not been conducted. Therefore, with the exception of France, baclofen is not approved for the treatment of AUD in any other country. Furthermore, it is also important to keep in mind that some patients treated with baclofen may experience important side-effects, including sedation, drowsiness and sleepiness. Methods This short review will first discuss the history of baclofen for AUD treatment. We will then summarize preclinical behavioral results that have investigated the efficacy of GABAB PAMs for addiction treatment, with a special focus on our recent work that investigated the effects of ADX71441, a novel GABAB PAM, on several alcohol-related behaviors in rats that model important aspects of human AUD. Finally, in light of the recent criticism about the translational value of animal models of addiction, the specific translational potential of our work and of other preclinical studies that have unanimously reported the efficacy of GABAB PAMs to attenuate multiple alcohol-related behaviors will be discussed. Results Positive allosteric modulators (PAMs) of the GABAB receptor offer an attractive alternative approach to baclofen and have the potential to achieve mechanistic and therapeutic effects similar to GABAB agonists, while avoiding the tolerance and toxicity issues associated with baclofen. To date, all preclinical behavioral results have invariably shown the efficacy of GABAB PAMs for addiction treatment. Conclusions Preclinical studies indicate that GABAB PAMs have a higher therapeutic index than orthosteric agonists, at least in terms of mitigating the sedative effects of GABAB agonism. This predicts that GABAB PAMs have a high translational potential in humans and merit being tested clinically, in particular in patients with severe AUD.
Collapse
Affiliation(s)
- Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
20
|
Ammari R, Broberger C. Pre- and post-synaptic modulation by GABA B receptors of rat neuroendocrine dopamine neurones. J Neuroendocrinol 2020; 32:e12881. [PMID: 32803906 DOI: 10.1111/jne.12881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
The secretion of prolactin from the pituitary is negatively controlled by tuberoinfundibular dopamine (TIDA) neurones. The electrical properties of TIDA cells have recently been identified as a modulatory target of neurotransmitters and hormones in the lactotrophic axis. The role of the GABAB receptor in this control has received little attention, yet is of particular interest because it may act as a TIDA neurone autoreceptor. Here, this issue was explored in a spontaneously active rat TIDA in vitro slice preparation using whole-cell recordings. Application of the GABAB receptor agonist, baclofen, dose-dependently slowed down or abolished the network oscillations typical of this preparation. Pharmacological manipulations identify the underlying mechanism as an outward current mediated by G-protein-coupled inwardly rectifying K+ -like channels. In addition to this postsynaptic modulation, we describe a presynaptic modulation where GABAB receptors restrain the release of glutamate and GABA onto TIDA neurones. Our data identify both pre- and postsynaptic modulation of TIDA neurones by GABAB receptors that may play a role in the neuronal network control of pituitary prolactin secretion and lactation.
Collapse
Affiliation(s)
- Rachida Ammari
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christian Broberger
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
GABA B receptors: modulation of thalamocortical dynamics and synaptic plasticity. Neuroscience 2020; 456:131-142. [PMID: 32194227 DOI: 10.1016/j.neuroscience.2020.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/03/2023]
Abstract
GABAB-receptors (GABAB-Rs) are metabotropic, G protein-coupled receptors for the neurotransmitter GABA. Their activation induces slow inhibitory control of the neuronal excitability mediated by pre- and postsynaptic inhibition. Presynaptically GABAB-Rs reduce GABA and glutamate release inhibiting presynaptic Ca2+ channels in both inhibitory and excitatory synapses while postsynaptic GABAB-Rs induce robust slow hyperpolarization by the activation of K+ channels. GABAB-Rs are activated by non-synaptic or volume transmission, which requires high levels of GABA release, either by the simultaneous discharge of GABAergic interneurons or very intense discharges in the thalamus or by means of the activation of a neurogliaform interneurons in the cortex. The main receptor subunits GABAB1a, GABAB1b and GABAB2 are strongly expressed in neurons and glial cells throughout the central nervous system and GABAB-R activation is related to many neuronal processes such as the modulation of rhythmic activity in several brain regions. In the thalamus, GABAB-Rs modulate the generation of the main thalamic rhythm, spindle waves. In the cerebral cortex, GABAB-Rs also modulate the most prominent emergent oscillatory activity-slow oscillations-as well as faster oscillations like gamma frequency. Further, recent studies evaluating the complexity expressed by the cortical network, a parameter associated with consciousness levels, have found that GABAB-Rs enhance this complexity, while their blockade decreases it. This review summarizes the current results on how the activation of GABAB-Rs affects the interchange of information between brain areas by controlling rhythmicity as well as synaptic plasticity.
Collapse
|
22
|
Goswamee P, McQuiston AR. Acetylcholine Release Inhibits Distinct Excitatory Inputs Onto Hippocampal CA1 Pyramidal Neurons via Different Cellular and Network Mechanisms. Front Cell Neurosci 2019; 13:267. [PMID: 31249513 PMCID: PMC6582433 DOI: 10.3389/fncel.2019.00267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
In hippocampal CA1, muscarinic acetylcholine (ACh) receptor (mAChR) activation via exogenous application of cholinergic agonists has been shown to presynaptically inhibit Schaffer collateral (SC) glutamatergic inputs in stratum radiatum (SR), and temporoammonic (TA) and thalamic nucleus reuniens (RE) glutamatergic inputs in stratum lacunosum-moleculare (SLM). However, steady-state uniform mAChR activation may not mimic the effect of ACh release in an intact hippocampal network. To more accurately examine the effect of ACh release on glutamatergic synaptic efficacy, we measured electrically evoked synaptic responses in CA1 pyramidal cells (PCs) following the optogenetic release of ACh in genetically modified mouse brain slices. The ratio of synaptic amplitudes in response to paired-pulse SR stimulation (stimulus 2/stimulus 1) was significantly reduced by the optogenetic release of ACh, consistent with a postsynaptic decrease in synaptic efficacy. The effect of ACh release was blocked by the M3 receptor antagonist 4-DAMP, the GABAB receptor antagonist CGP 52432, inclusion of GDP-β-S, cesium, QX314 in the intracellular patch clamp solution, or extracellular barium. These observations suggest that ACh release decreased SC synaptic transmission through an M3 muscarinic receptor-mediated increase in inhibitory interneuron excitability, which activate GABAB receptors and inwardly rectifying potassium channels on CA1 pyramidal cells. In contrast, the ratio of synaptic amplitudes in response to paired-pulse stimulation in the SLM was increased by ACh release, consistent with presynaptic inhibition. ACh-mediated effects in SLM were blocked by the M2 receptor antagonist AF-DX 116, presumably located on presynaptic terminals. Therefore, our data indicate that ACh release differentially modulates excitatory inputs in SR and SLM of CA1 through different cellular and network mechanisms.
Collapse
Affiliation(s)
- Priyodarshan Goswamee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
23
|
Avoli M. Inhibition, oscillations and focal seizures: An overview inspired by some historical notes. Neurobiol Dis 2019; 130:104478. [PMID: 31125597 DOI: 10.1016/j.nbd.2019.104478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GABA (i.e., γ-amino-butyric acid) is the main inhibitory neurotransmitter in the adult mammalian brain. Once released from inhibitory cells, it activates pre- and post-synaptic GABA receptors that have been categorized into type A and type B. GABAA receptors open ionotropic anionic channels while GABAB receptors are metabotropic, acting through second messengers. In the 1980s, decreased GABA receptor signaling was considered an appealing factor in making cortical neurons generate synchronous epileptiform oscillations and thus a good, perhaps obvious, candidate for causing focal epileptic disorders. However, studies published during the last four decades have demonstrated that interneuron firing - which causes GABA release and thus GABAA receptor activation - can lead to the generation of both physiological (e.g., theta and gamma oscillations or sharp wave-ripples) and pathological oscillations including focal interictal spikes, high frequency oscillations and seizures. Taken together, the reviews published in this special issue of Neurobiology of Disease highlight the key role of inhibition, and in particular of GABAA receptor signaling, in neuronal network functions under physiological and pathological conditions that include epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, H3A 2B4, QC, Canada; Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy; Department of Physiology, McGill University, Montreal, H3A 2B4, QC, Canada.
| |
Collapse
|
24
|
GABAergic mediation of hippocampal theta rhythm induced by stimulation of the vagal nerve. Brain Res Bull 2019; 147:110-123. [DOI: 10.1016/j.brainresbull.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
|
25
|
Milosevic L, Kalia SK, Hodaie M, Lozano AM, Fasano A, Popovic MR, Hutchison WD. Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease. Brain 2019; 141:177-190. [PMID: 29236966 PMCID: PMC5917776 DOI: 10.1093/brain/awx296] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease symptoms. The therapeutic benefits of deep brain stimulation are frequency-dependent, but the underlying physiological mechanisms remain unclear. To advance deep brain stimulation therapy an understanding of fundamental mechanisms is critical. The objectives of this study were to (i) compare the frequency-dependent effects on cell firing in subthalamic nucleus and substantia nigra pars reticulata; (ii) quantify frequency-dependent effects on short-term plasticity in substantia nigra pars reticulata; and (iii) investigate effects of continuous long-train high frequency stimulation (comparable to conventional deep brain stimulation) on synaptic plasticity. Two closely spaced (600 µm) microelectrodes were advanced into the subthalamic nucleus (n = 27) and substantia nigra pars reticulata (n = 14) of 22 patients undergoing deep brain stimulation surgery for Parkinson’s disease. Cell firing and evoked field potentials were recorded with one microelectrode during stimulation trains from the adjacent microelectrode across a range of frequencies (1–100 Hz, 100 µA, 0.3 ms, 50–60 pulses). Subthalamic firing attenuated with ≥20 Hz (P < 0.01) stimulation (silenced at 100 Hz), while substantia nigra pars reticulata decreased with ≥3 Hz (P < 0.05) (silenced at 50 Hz). Substantia nigra pars reticulata also exhibited a more prominent increase in transient silent period following stimulation. Patients with longer silent periods after 100 Hz stimulation in the subthalamic nucleus tended to have better clinical outcome after deep brain stimulation. At ≥30 Hz the first evoked field potential of the stimulation train in substantia nigra pars reticulata was potentiated (P < 0.05); however, the average amplitude of the subsequent potentials was rapidly attenuated (P < 0.01). This is suggestive of synaptic facilitation followed by rapid depression. Paired pulse ratios calculated at the beginning of the train revealed that 20 Hz (P < 0.05) was the minimum frequency required to induce synaptic depression. Lastly, the average amplitude of evoked field potentials during 1 Hz pulses showed significant inhibitory synaptic potentiation after long-train high frequency stimulation (P < 0.001) and these increases were coupled with increased durations of neuronal inhibition (P < 0.01). The subthalamic nucleus exhibited a higher frequency threshold for stimulation-induced inhibition than the substantia nigra pars reticulata likely due to differing ratios of GABA:glutamate terminals on the soma and/or the nature of their GABAergic inputs (pallidal versus striatal). We suggest that enhancement of inhibitory synaptic plasticity, and frequency-dependent potentiation and depression are putative mechanisms of deep brain stimulation. Furthermore, we foresee that future closed-loop deep brain stimulation systems (with more frequent off stimulation periods) may benefit from inhibitory synaptic potentiation that occurs after high frequency stimulation.
Collapse
Affiliation(s)
- Luka Milosevic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.,Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, Ontario, M4G 3V9, Canada
| | - Suneil K Kalia
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada
| | - Mojgan Hodaie
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada
| | - Andres M Lozano
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada
| | - Alfonso Fasano
- Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada.,Morton and Gloria Shulman Movement Disorders Center and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital - University Health Network, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.,Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, Ontario, M4G 3V9, Canada
| | - William D Hutchison
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
26
|
Voltage-Dependent Membrane Properties Shape the Size But Not the Frequency Content of Spontaneous Voltage Fluctuations in Layer 2/3 Somatosensory Cortex. J Neurosci 2019; 39:2221-2237. [PMID: 30655351 DOI: 10.1523/jneurosci.1648-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/30/2018] [Accepted: 01/09/2019] [Indexed: 01/18/2023] Open
Abstract
Under awake and idling conditions, spontaneous intracellular membrane voltage is characterized by large, synchronous, low-frequency fluctuations. Although these properties reflect correlations in synaptic inputs, intrinsic membrane properties often indicate voltage-dependent changes in membrane resistance and time constant values that can amplify and help to generate low-frequency voltage fluctuations. The specific contribution of intrinsic and synaptic factors to the generation of spontaneous fluctuations, however, remains poorly understood. Using visually guided intracellular recordings of somatosensory layer 2/3 pyramidal cells and interneurons in awake male and female mice, we measured the spectrum and size of voltage fluctuation and intrinsic cellular properties at different voltages. In both cell types, depolarizing neurons increased the size of voltage fluctuations. Amplitude changes scaled with voltage-dependent changes in membrane input resistance. Because of the small membrane time constants observed in both pyramidal cells and interneuron cell bodies, the low-frequency content of membrane fluctuations reflects correlations in the synaptic current inputs rather than significant filtering associated with membrane capacitance. Further, blocking synaptic inputs minimally altered somatic membrane resistance and time constant values. Overall, these results indicate that spontaneous synaptic inputs generate a low-conductance state in which the amplitude, but not frequency structure, is influenced by intrinsic membrane properties.SIGNIFICANCE STATEMENT In the absence of sensory drive, cortical activity in awake animals is associated with self-generated and seemingly random membrane voltage fluctuations characterized by large amplitude and low frequency. Partially, these properties reflect correlations in synaptic input. Nonetheless, neurons express voltage-dependent intrinsic properties that can potentially influence the amplitude and frequency of spontaneous activity. Using visually guided intracellular recordings of cortical neurons in awake mice, we measured the voltage dependence of spontaneous voltage fluctuations and intrinsic membrane properties. We show that voltage-dependent changes in membrane resistance amplify synaptic activity, whereas the frequency of voltage fluctuations reflects correlations in synaptic inputs. Last, synaptic activity has a small impact on intrinsic membrane properties in both pyramidal cells and interneurons.
Collapse
|
27
|
Impaired Hypothalamic Regulation of Sympathetic Outflow in Primary Hypertension. Neurosci Bull 2018; 35:124-132. [PMID: 30506315 DOI: 10.1007/s12264-018-0316-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/01/2018] [Indexed: 01/01/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is a crucial region involved in maintaining homeostasis through the regulation of cardiovascular, neuroendocrine, and other functions. The PVN provides a dominant source of excitatory drive to the sympathetic outflow through innervation of the brainstem and spinal cord in hypertension. We discuss current findings on the role of the PVN in the regulation of sympathetic output in both normotensive and hypertensive conditions. The PVN seems to play a major role in generating the elevated sympathetic vasomotor activity that is characteristic of multiple forms of hypertension, including primary hypertension in humans. Recent studies in the spontaneously hypertensive rat model have revealed an imbalance of inhibitory and excitatory synaptic inputs to PVN pre-sympathetic neurons as indicated by impaired inhibitory and enhanced excitatory synaptic inputs in hypertension. This imbalance of inhibitory and excitatory synaptic inputs in the PVN forms the basis for elevated sympathetic outflow in hypertension. In this review, we discuss the disruption of balance between glutamatergic and GABAergic inputs and the associated cellular and molecular alterations as mechanisms underlying the hyperactivity of PVN pre-sympathetic neurons in hypertension.
Collapse
|
28
|
Kulik Á, Booker SA, Vida I. Differential distribution and function of GABABRs in somato-dendritic and axonal compartments of principal cells and interneurons in cortical circuits. Neuropharmacology 2018; 136:80-91. [DOI: 10.1016/j.neuropharm.2017.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022]
|
29
|
Constitutive and Synaptic Activation of GIRK Channels Differentiates Mature and Newborn Dentate Granule Cells. J Neurosci 2018; 38:6513-6526. [PMID: 29915136 DOI: 10.1523/jneurosci.0674-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Sparse neural activity in the dentate gyrus is enforced by powerful networks of inhibitory GABAergic interneurons in combination with low intrinsic excitability of the principal neurons, the dentate granule cells (GCs). Although the cellular and circuit properties that dictate synaptic inhibition are well studied, less is known about mechanisms that confer low GC intrinsic excitability. Here we demonstrate that intact G protein-mediated signaling contributes to the characteristic low resting membrane potential that differentiates mature dentate GCs from CA1 pyramidal cells and developing adult-born GCs. In mature GCs from male and female mice, intact G protein signaling robustly reduces intrinsic excitability, whereas deletion of G protein-activated inwardly rectifying potassium channel 2 (GIRK2) increases excitability and blocks the effects of G protein signaling on intrinsic properties. Similarly, pharmacological manipulation of GABAB receptors (GABABRs) or GIRK channels alters intrinsic excitability and GC spiking behavior. However, adult-born new GCs lack functional GIRK activity, with phasic and constitutive GABABR-mediated GIRK signaling appearing after several weeks of maturation. Phasic activation is interneuron specific, arising primarily from nNOS-expressing interneurons rather than parvalbumin- or somatostatin-expressing interneurons. Together, these results demonstrate that G protein signaling contributes to the intrinsic excitability that differentiates mature and developing dentate GCs and further suggest that late maturation of GIRK channel activity is poised to convert early developmental functions of GABAB receptor signaling into GABABR-mediated inhibition.SIGNIFICANCE STATEMENT The dentate gyrus exhibits sparse neural activity that is essential for the computational function of pattern separation. Sparse activity is ascribed to strong local inhibitory circuits in combination with low intrinsic excitability of the principal neurons, the granule cells. Here we show that constitutive activity of G protein-coupled inwardly rectifying potassium channels (GIRKs) underlies to the hallmark low resting membrane potential and input resistance of mature dentate neurons. Adult-born neurons initially lack functional GIRK channels, with constitutive and phasic GABAB receptor-mediated GIRK inhibition developing in tandem after several weeks of maturation. Our results reveal that GABAB/GIRK activity is an important determinant of low excitability of mature dentate granule cells that may contribute to sparse DG activity in vivo.
Collapse
|
30
|
Jacobson LH, Vlachou S, Slattery DA, Li X, Cryan JF. The Gamma-Aminobutyric Acid B Receptor in Depression and Reward. Biol Psychiatry 2018; 83:963-976. [PMID: 29759132 DOI: 10.1016/j.biopsych.2018.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/14/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
The metabotropic gamma-aminobutyric acid B (GABAB) receptor was the first described obligate G protein-coupled receptor heterodimer and continues to set the stage for discoveries in G protein-coupled receptor signaling complexity. In this review, dedicated to the life and work of Athina Markou, we explore the role of GABAB receptors in depression, reward, and the convergence of these domains in anhedonia, a shared symptom of major depressive disorder and withdrawal from drugs of abuse. GABAB receptor expression and function are enhanced by antidepressants and reduced in animal models of depression. Generally, GABAB receptor antagonists are antidepressant-like and agonists are pro-depressive. Exceptions to this rule likely reflect the differential influence of GABAB1 isoforms in depression-related behavior and neurobiology, including the anhedonic effects of social stress. A wealth of data implicate GABAB receptors in the rewarding effects of drugs of abuse. We focus on nicotine as an example. GABAB receptor activation attenuates, and deactivation enhances, nicotine reward and associated neurobiological changes. In nicotine withdrawal, however, GABAB receptor agonists, antagonists, and positive allosteric modulators enhance anhedonia, perhaps owing to differential effects of GABAB1 isoforms on the dopaminergic system. Nicotine cue-induced reinstatement is more reliably attenuated by GABAB receptor activation. Separation of desirable and undesirable side effects of agonists is achievable with positive allosteric modulators, which are poised to enter clinical studies for drug abuse. GABAB1 isoforms are key to understanding the neurobiology of anhedonia, whereas allosteric modulators may offer a mechanism for targeting specific brain regions and processes associated with reward and depression.
Collapse
Affiliation(s)
- Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia.
| | - Styliani Vlachou
- School of Nursing and Human Sciences, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin
| | - David A Slattery
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Xia Li
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Huo Q, Chen M, He Q, Zhang J, Li B, Jin K, Chen X, Long C, Yang L. Prefrontal Cortical GABAergic Dysfunction Contributes to Aberrant UP-State Duration in APP Knockout Mice. Cereb Cortex 2018; 27:4060-4072. [PMID: 27552836 DOI: 10.1093/cercor/bhw218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/24/2016] [Indexed: 01/07/2023] Open
Abstract
Genetic and biochemical studies have focused on the role of amyloid β protein in the pathogenesis of Alzheimer's disease. In comparison, the physiological roles of its precursor protein, amyloid precursor protein (APP), in synaptic and network activity is less well studied. Using an APP knockout (APP-/-) mouse model, we show that the duration of UP state, which is a key feature of cortical synaptic integration occurring predominantly during slow-wave sleep, is significantly increased in the prefrontal cortex (PFC) in the absence of APP. This was accompanied by a specific reduction in the glutamine synthetase and tissue GABA content and sequential upregulation in the levels of GABABR expression. Pharmacological reinforcement of GABA signaling by application of either a GABA uptake inhibitor or an agonist of GABABR rescued the abnormality of UP-state duration and the former rescues altered GABABR expression as well. In addition to revealing an essential role of APP in the regulation of PFC network function, this study evidences the viability of GABA signaling pathway and its receptors, especially GABABRs, as a target for the treatment of aberrant neural network activity and thus information processing.
Collapse
Affiliation(s)
- Qingwei Huo
- School of Psychology South China Normal University, Guangzhou 510631, China.,School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ming Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Quansheng He
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiajia Zhang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bo Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kai Jin
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xi Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Brain Science Institute, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Psychology South China Normal University, Guangzhou 510631, China.,Brain Science Institute, South China Normal University, Guangzhou 510631, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
32
|
Sheilabi MA, Battacharyya D, Caetano L, Thom M, Reuber M, Duncan JS, Princivalle AP. Quantitative expression and localization of GABA B receptor protein subunits in hippocampi from patients with refractory temporal lobe epilepsy. Neuropharmacology 2017; 136:117-128. [PMID: 28782512 DOI: 10.1016/j.neuropharm.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023]
Abstract
This study investigates GABAB protein expression and mRNA levels in three types of specimens. Two types of specimens from patients with temporal lobe epilepsy (TLE), secondary to hippocampal sclerosis, sclerotic hippocampal samples (TLE-HS), and tissue from the structurally preserved non-spiking ipsilateral superior temporal gyrus (TLE-STG) removed from the same patient during epilepsy surgery; and third specimen is hippocampal tissue from individuals with no history of epilepsy (post-mortem controls, PMC). mRNA expression of GABAB subunits was quantified in TLE-HS, TLE-STG and PMC specimens by qRT-PCR. Qualitative and quantitative Western blot (WB) and immunohistochemistry techniques were employed to quantify and localize GABAB proteins subunits. qRT-PCR data demonstrated an overall decrease of both GABAB1 isoforms in TLE-HS compared to TLE-STG. These results were mirrored by the WB findings. GABAB2 mRNA and protein were significantly reduced in TLE-HS samples compared to TLE-STG; however they appeared to be upregulated in TLE-HS compared to the PMC samples. Immunohistochemistry (IHC) showed that GABAB proteins were widely distributed in PMC and TLE-HS hippocampal sections with regional differences in the intensity of the signal. The higher expression of mature GABAB protein in TLE-HS than PMC is in agreement with previous studies. However, these findings could be due to post-mortem changes in PMC specimens. The TLE-STG samples examined here represent a better 'control' tissue compared to TLE-HS samples characterised by lower than expected GABAB expression. This interpretation provides a better explanation for previous functional studies suggesting reduced inhibition in TLE-HS tissue due to attenuated GABAB currents. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Mariam A Sheilabi
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Dev Battacharyya
- Neurosurgery, Sheffield Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | - Laura Caetano
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, UCL, Queen Square, London, UK
| | - Markus Reuber
- Academic Neurology Unit, University of Sheffield, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, Queen Square, London, UK
| | - Alessandra P Princivalle
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK; Division of Neuroscience, Department of Pharmacology, Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
33
|
GABA B receptor modulation — to B or not to be B a pro-cognitive medicine? Curr Opin Pharmacol 2017; 35:125-132. [DOI: 10.1016/j.coph.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/26/2017] [Indexed: 11/20/2022]
|
34
|
The GABA B Positive Allosteric Modulator ADX71441 Attenuates Alcohol Self-Administration and Relapse to Alcohol Seeking in Rats. Neuropsychopharmacology 2017; 42:1789-1799. [PMID: 28294133 PMCID: PMC5520784 DOI: 10.1038/npp.2017.53] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022]
Abstract
GABAergic signaling is involved in modulating the reinforcing properties of alcohol, and GABAB receptors have been proposed as a potential target for clinical treatment of alcoholism. The orthosteric GABAB receptor agonist baclofen has been shown to suppress operant self-administration of alcohol in animals and alcohol use in alcohol-dependent patients, but its utility is limited by a narrow therapeutic index. We tested the effects of ADX71441, a novel GABAB receptor positive allosteric modulator, on alcohol-related behaviors in rats. We first assessed the effects of ADX71441 (1, 3, 10 and 30 mg/kg, I.P.) on both non-dependent and dependent male Wistar rats trained to self-administer 20% alcohol. We then determined the effects of ADX71441 on stress-induced as well as cue-induced relapse-like behavior. Finally, we sought to identify the brain regions through which ADX71441 may act to prevent relapse-like behavior by mapping the neuronal activation induced by stress-induced reinstatement of alcohol-seeking using c-Fos immunohistochemistry. ADX71441 dose-dependently decreased alcohol self-administration of both dependent and non-dependent animals, but its potency was higher in alcohol-dependent rats. Furthermore, both cue- and stress-induced alcohol seeking were blocked by the GABAB receptor positive allosteric modulator. Finally, pretreatment with 3 mg/kg of ADX71441 before stress-induced reinstatement significantly decreased c-Fos expression in a network of brain regions implicated in stress-induced relapse, comprising the nucleus accumbens shell, the dorsal raphe nucleus and the medial prefrontal cortex. Our findings support a causal role of GABAB receptors in alcohol reinforcement and relapse to alcohol seeking. These effects are observed in the absence of significant sedative side effects. Jointly, these observations indicate that GABAB receptor positive allosteric modulators merit being tested clinically for the treatment of alcoholism. Our data also point to a potential biomarker of target engagement for early clinical studies.
Collapse
|
35
|
Chiu WZ, Donker Kaat L, Boon AJW, Kamphorst W, Schleicher A, Zilles K, van Swieten JC, Palomero-Gallagher N. Multireceptor fingerprints in progressive supranuclear palsy. ALZHEIMERS RESEARCH & THERAPY 2017; 9:28. [PMID: 28412965 PMCID: PMC5393015 DOI: 10.1186/s13195-017-0259-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 05/29/2023]
Abstract
Background Progressive supranuclear palsy (PSP) with a frontal presentation, characterized by cognitive deficits and behavioral changes, has been recognized as an early clinical picture, distinct from the classical so-called Richardson and parkinsonism presentations. The midcingulate cortex is associated with executive and attention tasks and has consistently been found to be impaired in imaging studies of patients with PSP. The aim of the present study was to determine alterations in neurotransmission underlying the pathophysiology of PSP, as well as their significance for clinically identifiable PSP subgroups. Methods In vitro receptor autoradiography was used to quantify densities of 20 different receptors in the caudate nucleus and midcingulate area 24' of patients with PSP (n = 16) and age- and sex-matched control subjects (n = 14). Results Densities of γ-aminobutyric acid type B, peripheral benzodiazepine, serotonin receptor type 2, and N-methyl-d-aspartate receptors were significantly higher in area 24′ of patients with PSP, where tau impairment was stronger than in the caudate nucleus. Kainate and nicotinic cholinergic receptor densities were significantly lower, and adenosine receptor type 1 (A1) receptors significantly higher, in the caudate nucleus of patients with PSP. Receptor fingerprints also segregated PSP subgroups when clinical parameters such as occurrence of frontal presentation and tau pathology severity were taken into consideration. Conclusions We demonstrate, for the first time to our knowledge, that kainate and A1 receptors are altered in PSP and that clinically identifiable PSP subgroups differ at the neurochemical level. Numerous receptors were altered in the midcingulate cortex, further suggesting that it may prove to be a key region in PSP. Finally, we add to the evidence that nondopaminergic systems play a role in the pathophysiology of PSP, thus highlighting potential novel treatment strategies.
Collapse
Affiliation(s)
- Wang Zheng Chiu
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Agnita J W Boon
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Wouter Kamphorst
- Department of Neuropathology, Vrije Universiteit Medical Centre, Amsterdam, The Netherlands
| | - Axel Schleicher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.,Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Aachen, Germany
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany. .,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| |
Collapse
|
36
|
Hannan S, Gerrow K, Triller A, Smart TG. Phospho-dependent Accumulation of GABABRs at Presynaptic Terminals after NMDAR Activation. Cell Rep 2016; 16:1962-73. [PMID: 27498877 PMCID: PMC4987283 DOI: 10.1016/j.celrep.2016.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/19/2016] [Accepted: 07/09/2016] [Indexed: 11/24/2022] Open
Abstract
Here, we uncover a mechanism for regulating the number of active presynaptic GABAB receptors (GABABRs) at nerve terminals, an important determinant of neurotransmitter release. We find that GABABRs gain access to axon terminals by lateral diffusion in the membrane. Their relative accumulation is dependent upon agonist activation and the presence of the two distinct sushi domains that are found only in alternatively spliced GABABR1a subunits. Following brief activation of NMDA receptors (NMDARs) using glutamate, GABABR diffusion is reduced, causing accumulation at presynaptic terminals in a Ca(2+)-dependent manner that involves phosphorylation of GABABR2 subunits at Ser783. This signaling cascade indicates how synaptically released glutamate can initiate, via a feedback mechanism, increased levels of presynaptic GABABRs that limit further glutamate release and excitotoxicity.
Collapse
Affiliation(s)
- Saad Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Kim Gerrow
- Biologie Cellulaire de la Synapse, Inserm U1024, Institute of Biology, École Normale Supérieure (ENS), 46 rue d'Ulm, Paris 75005, France
| | - Antoine Triller
- Biologie Cellulaire de la Synapse, Inserm U1024, Institute of Biology, École Normale Supérieure (ENS), 46 rue d'Ulm, Paris 75005, France
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
37
|
Zhang J, Tan L, Ren Y, Liang J, Lin R, Feng Q, Zhou J, Hu F, Ren J, Wei C, Yu T, Zhuang Y, Bettler B, Wang F, Luo M. Presynaptic Excitation via GABA B Receptors in Habenula Cholinergic Neurons Regulates Fear Memory Expression. Cell 2016; 166:716-728. [DOI: 10.1016/j.cell.2016.06.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/02/2016] [Accepted: 06/13/2016] [Indexed: 11/27/2022]
|
38
|
Abstract
Long-term potentiation (LTP) is a widely studied form of activity-dependent synaptic plasticity. Hippocampal LTP evoked in the dentate and CA1 areas requires calcium influx through N-methyl-D-aspartate (NMDA) receptor-channel complexes, a process triggered during high-frequency stimulation by conjunctive presy naptic glutamate release and postsynaptic depolarization. It has been suggested that alterations in GABAergic recurrent and/or feedforward inhibitory synaptic transmission may accompany LTP induction in these hippocampal areas. To this end, possible LTP-related modifications in functional inhibition are ad dressed in the context of both paired-pulse depression and the excitatory postsynaptic potential-spike (E-S) relationship. Consideration is also given as to how GABAergic processes may contribute mechanistically to the induction of NMDA receptor-dependent LTP. It is concluded that although GABAergic disinhibition may contribute to the induction of LTP, it is not yet clear whether or not the induction of LTP has a lasting impact on inhibitory processes. NEUROSCIENTIST 3:226-236, 1997
Collapse
Affiliation(s)
- Laura M. Schultz
- Program in Neuroscience Department of Psychology Princeton
University Princeton, New Jersey
| |
Collapse
|
39
|
Parikh V, Kutlu MG, Gould TJ. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophr Res 2016; 171:1-15. [PMID: 26803692 PMCID: PMC4762752 DOI: 10.1016/j.schres.2016.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. METHODS Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 276 articles were used for the qualitative synthesis of this review. RESULTS Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. CONCLUSIONS The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States.
| | - Munir Gunes Kutlu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| | - Thomas J Gould
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19112, United States
| |
Collapse
|
40
|
Moreno A, Morris RGM, Canals S. Frequency-Dependent Gating of Hippocampal-Neocortical Interactions. Cereb Cortex 2015; 26:2105-2114. [PMID: 25761637 DOI: 10.1093/cercor/bhv033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
How and where hippocampal-neocortical interactions required for memory formation take place is a major issue of current research. Using a combined in vivo functional magnetic resonance imaging/electrophysiology approach, we have investigated whether specific frequencies of CA3 neuronal activation, inducing different forms of short-term plasticity at CA1 synapses, contribute to differential activity propagation in brain-wide networks connected to the hippocampus. We report that localized activation of CA3 neurons in dorsal hippocampus produced activity propagation within the hippocampal formation, including the subiculum and entorhinal cortex, which increased monotonically with frequency to a maximum at 20-40 Hz. However, robust extrahippocampal propagation was seen specifically at theta-beta frequencies (10-20 Hz), reaching a network of midline neocortical and mesolimbic structures. Activation in those regions correlated with a frequency-dependent facilitation of spiking activity recorded in CA1. These results provide a mechanistic link between the dynamic properties of short-term plasticity in the efferent synapses of CA3 neurons in CA1 and activity propagation in brain-wide networks, and identify polysynaptic information channels segregated in the frequency domain.
Collapse
Affiliation(s)
- Andrea Moreno
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, UK.,Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Richard G M Morris
- Centre for Cognitive and Neural Systems, Edinburgh Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| |
Collapse
|
41
|
Rapid antidepressants stimulate the decoupling of GABA(B) receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3η. Mol Psychiatry 2015; 20:298-310. [PMID: 25560757 PMCID: PMC4357863 DOI: 10.1038/mp.2014.165] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 12/28/2022]
Abstract
A single injection of N-methyl-D-aspartate receptor (NMDAR) antagonists produces a rapid antidepressant response. Lasting changes in the synapse structure and composition underlie the effectiveness of these drugs. We recently discovered that rapid antidepressants cause a shift in the γ-aminobutyric acid receptor (GABABR) signaling pathway, such that GABABR activation shifts from opening inwardly rectifiying potassium channels (Kir/GIRK) to increasing resting dendritic calcium signal and mammalian Target of Rapamycin activity. However, little is known about the molecular and biochemical mechanisms that initiate this shift. Herein, we show that GABABR signaling to Kir3 (GIRK) channels decreases with NMDAR blockade. Blocking NMDAR signaling stabilizes the adaptor protein 14-3-3η, which decouples GABABR signaling from Kir3 and is required for the rapid antidepressant efficacy. Consistent with these results, we find that key proteins involved in GABABR signaling bidirectionally change in a depression model and with rapid antidepressants. In socially defeated rodents, a model for depression, GABABR and 14-3-3η levels decrease in the hippocampus. The NMDAR antagonists AP5 and Ro-25-6981, acting as rapid antidepressants, increase GABABR and 14-3-3η expression and decrease Kir3.2. Taken together, these data suggest that the shift in GABABR function requires a loss of GABABR-Kir3 channel activity mediated by 14-3-3η. Our findings support a central role for 14-3-3η in the efficacy of rapid antidepressants and define a critical molecular mechanism for activity-dependent alterations in GABABR signaling.
Collapse
|
42
|
Luján R, Aguado C. Localization and Targeting of GIRK Channels in Mammalian Central Neurons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:161-200. [PMID: 26422985 DOI: 10.1016/bs.irn.2015.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
G protein-gated inwardly rectifying K(+) (GIRK/K(ir)3) channels are critical to brain function. They hyperpolarize neurons in response to activation of different G protein-coupled receptors, reducing cell excitability. Molecular cloning has revealed four distinct mammalian genes (GIRK1-4), which, with the exception of GIRK4, are broadly expressed in the central nervous system (CNS) and have been implicated in a variety of neurological disorders. Although the molecular structure and composition of GIRK channels are key determinants of their biophysical properties, their cellular and subcellular localization patterns and densities on the neuronal surface are just as important to nerve function. Current data obtained with high-resolution quantitative localization techniques reveal complex, subcellular compartment-specific distribution patterns of GIRK channel subunits. Recent efforts have focused on determining the associated proteins that form macromolecular complexes with GIRK channels. Demonstration of the precise subcellular compartmentalization of GIRK channels and their associated proteins represents a crucial step in understanding the contribution of these channels to specific aspects of neuronal function under both physiological and pathological conditions. Here, we present an overview of studies aimed at determining the cellular and subcellular localization of GIRK channel subunits in mammalian brain neurons and discuss implications for neuronal physiology.
Collapse
Affiliation(s)
- Rafael Luján
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain.
| | - Carolina Aguado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| |
Collapse
|
43
|
GIRK Channels: A Potential Link Between Learning and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:239-77. [PMID: 26422987 DOI: 10.1016/bs.irn.2015.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability of drug-associated cues to reinitiate drug craving and seeking, even after long periods of abstinence, has led to the hypothesis that addiction represents a form of pathological learning, in which drugs of abuse hijack normal learning and memory processes to support long-term addictive behaviors. In this chapter, we review evidence suggesting that G protein-gated inwardly rectifying potassium (GIRK/Kir3) channels are one mechanism through which numerous drugs of abuse can modulate learning and memory processes. We will examine the role of GIRK channels in two forms of experience-dependent long-term changes in neuronal function: homeostatic plasticity and synaptic plasticity. We will also discuss how drug-induced changes in GIRK-mediated signaling can lead to changes that support the development and maintenance of addiction.
Collapse
|
44
|
Sebe JY, Looke-Stewart E, Baraban SC. GABAB receptors in maintenance of neocortical circuit function. Exp Neurol 2014; 261:163-70. [PMID: 24873729 PMCID: PMC4324605 DOI: 10.1016/j.expneurol.2014.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/04/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
Activation of metabotropic GABAB receptors (GABABRs) enhances tonic GABA current and substantially increases the frequency of spontaneous seizures. Despite the and pro-epileptic consequences of GABABR activation, mice lacking functional GABAB receptors (GABAB1R KO mice) exhibit clonic and rare absence seizures. To examine these mutant mice further, we recorded excitatory and inhibitory synaptic inputs and tonic mutant GABA currents from Layer 2 neocortical pyramidal neurons of GABAB1R WT and KO mice (P30-40). Tonic current was increased while the frequency of synaptic inputs was unchanged in KO mice relative to WT littermates. The neocortical laminar distribution of interneuron subtypes derived from the medial ganglionic eminence (MGE) was also not statistically different in KO mice relative to WT while the number of calretinin-positive, caudal GE-derived cells in Layer 1 was reduced. Transplantation of MGE progenitors obtained from KO mice lacking functional GABAB1R did not increase tonic inhibition in the host brain above that of media-injected controls. Taken together, these results suggest a complex role for GABAB receptors in mediating neocortical circuit function.
Collapse
Affiliation(s)
- Joy Y Sebe
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth Looke-Stewart
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 941432, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Synchronization of isolated downstates (K-complexes) may be caused by cortically-induced disruption of thalamic spindling. PLoS Comput Biol 2014; 10:e1003855. [PMID: 25255217 PMCID: PMC4177663 DOI: 10.1371/journal.pcbi.1003855] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 08/12/2014] [Indexed: 11/19/2022] Open
Abstract
Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca2+ current (IT). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model of stage 2 NREM sleep a possible mechanism whereby this widespread synchrony may arise. EEG in the most common stage of human sleep is dominated by K-complexes (KCs) and sleep spindles (bursts of 10–14 Hz oscillations) occupying the thalamus and cortex. Recently, we discovered that KCs are brief moments when the cortex becomes almost completely silent. Here, using recordings directly from the cortex of epileptic patients, we show that KCs can be quasi-synchronous across widespread cortical areas, and ask what mechanism could produce such a phenomenon. We created the first network model of realistic cortical and thalamic neurons, which spontaneously generate KCs as well as sleep spindles. We showed that the membrane channels in the reticular nucleus of the thalamus can be inactivated by excitatory inputs from the cortex, and this disrupts the spindle-generating network, which can trigger widespread cortical silence. The model prediction that thalamic spindle disruption occurs prior to KC was then observed in simultaneous recordings from the human thalamus and cortex. Understanding the cellular and network mechanisms whereby KCs arise is crucial to understanding its roles in maintaining sleep and consolidating memories.
Collapse
|
46
|
Fábera P, Mareš P. Effect of GABA(B) receptor agonist SKF97541 on cortical and hippocampal epileptic afterdischarges. Physiol Res 2014; 63:529-34. [PMID: 24702499 DOI: 10.33549/physiolres.932699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Activation of GABA(B) receptors leads to longer inhibitory postsynaptic potentials than activation of GABA(A) receptors. Therefore GABA(B) receptors may be a target for anticonvulsant therapy. The present study examined possible effects of GABA(B) receptor agonist SKF97541 on cortical and hippocampal epileptic afterdischarges (ADs). Epileptic ADs elicited by electrical stimulation of sensorimotor cortex or dorsal hippocampus were studied in adult male Wistar rats. Stimulation series were applied 6 times with 10- or 20-min interval. Either interval was efficient for reliable elicitation of cortical ADs but stimulation at 10-min intervals did not reliably elicit hippocampal ADs, many stimulations were without effect. SKF97541 in dose 1 mg/kg significantly prolonged cortical ADs. Duration of hippocampal ADs was not significantly changed by either dose of SKF97541 in spite of a marked myorelaxant effect of the higher dose. Our present data demonstrated that neither cortical nor hippocampal ADs in adult rats were suppressed by GABA(B) receptor agonist SKF97541. Proconvulsant effect on cortical ADs indicates a different role in these two brain structures. In addition, duration of refractory period for electrically-induced ADs in these two structures in adult rats is different.
Collapse
Affiliation(s)
- P Fábera
- Department of Developmental Epileptology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
47
|
Gaiarsa JL, Porcher C. Emerging neurotrophic role of GABAB receptors in neuronal circuit development. Front Cell Neurosci 2013; 7:206. [PMID: 24282395 PMCID: PMC3824957 DOI: 10.3389/fncel.2013.00206] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/18/2013] [Indexed: 12/22/2022] Open
Abstract
The proper development of highly organized structures in the central nervous system is a complex process during which key events – neurogenesis, migration, growth, differentiation, and synaptogenesis – have to take place in an appropriate manner to create functional neuronal networks. It is now well established that GABA, the main inhibitory neurotransmitter in the adult mammalian brain, plays more than a classical inhibitory role and can function as an important developmental signal early in life. GABA binds to chloride-permeable ionotropic GABAA receptors and to G-protein-coupled GABAB receptors (GABAB-Rs). Although most of the trophic actions of GABA have been attributed to the activation of GABAA receptors, recent advances show that GABAB-Rs also regulate fundamental steps of network development. This review summarizes some of the recent progress about the neurotrophic role of GABAB-Rs to neuronal development.
Collapse
Affiliation(s)
- Jean-Luc Gaiarsa
- Institut National de la Santé et de la Recherche Médicale U-901 Marseille, France ; Aix-Marseille Université, UMR S901 Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | | |
Collapse
|
48
|
Toprani S, Durand DM. Long-lasting hyperpolarization underlies seizure reduction by low frequency deep brain electrical stimulation. J Physiol 2013; 591:5765-90. [PMID: 23981713 DOI: 10.1113/jphysiol.2013.253757] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is a common medically refractory neurological disease. Deep brain electrical stimulation (DBS) of grey matter has been used for MTLE with limited success. However, stimulation of a white matter tract connecting the hippocampi, the ventral hippocampal commissure (VHC), with low frequencies that simulate interictal discharges has shown promising results, with seizure reduction greater than 98% in bilateral hippocampi during stimulation and greater than 50% seizure reduction in bilateral hippocampi after treatment. A major hurdle to the implementation and optimization of this treatment is that the mechanisms of seizure reduction by low frequency electrical stimulation (LFS) are not known. The goal of this study is to understand how commissural fibre tract stimulation reduces bilateral hippocampal epileptic activity in an in vitro slice preparation containing bilateral hippocampi connected by the VHC. It is our hypothesis that electrical stimuli induce hyperpolarization lasting hundreds of milliseconds following each pulse which reduces spontaneous epileptic activity during each inter-stimulus interval (ISI). Stimulus-induced long-lasting-hyperpolarization (LLH) can be mediated by GABA(B) inhibitory post-synaptic potentials (IPSPs) or slow after-hyperpolarization (sAHP). To test the role of LLH in effective bilateral seizure reduction by fibre tract stimulation, we measured stimulus-induced hyperpolarization during LFS of the VHC using electrophysiology techniques. Antagonism of the GABA(B) IPSP and/or sAHP diminished stimulus-induced hyperpolarization concurrently with LFS efficacy (greater than 50% reduction). Blocking both the GABA(B) IPSP and sAHP simultaneously eliminated the effect of electrical stimulation on seizure reduction entirely. These data show that LFS of the VHC is an effective protocol for bilateral hippocampal seizure reduction and that its efficacy relies on the induction of long-lasting hyperpolarization mediated through GABA(B) IPSPs and sAHP. Based on this study, optimization of the timing of LFS and LFS-induced-LLH may lead to improved outcomes from DBS treatments for human epilepsy.
Collapse
Affiliation(s)
- Sheela Toprani
- D. M. Durand: Neural Engineering Center, Departments of Biomedical Engineering and Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
49
|
Therapeutic potential of GABA(B) receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol Biochem Behav 2013; 110:174-84. [PMID: 23872369 DOI: 10.1016/j.pbb.2013.07.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/27/2013] [Accepted: 07/05/2013] [Indexed: 01/06/2023]
Abstract
Glutamate and γ-aminobutyric acid (GABA) are the major excitatory and inhibitory neurotransmitter systems, respectively in the central nervous system (CNS). Dysregulation, in any of these or both, has been implicated in various CNS disorders. GABA acts via ionotropic (GABA(A) and GABA(C) receptor) and metabotropic (GABA(B)) receptor. Dysregulation of GABAergic signaling and alteration in GABA(B) receptor expression has been implicated in various CNS disorders. Clinically, baclofen-a GABA(B) receptor agonist is available for the treatment of spasticity, dystonia etc., associated with various neurological disorders. Moreover, GABAB receptor ligands has also been suggested to be beneficial in various neuropsychiatric and neurodegenerative disorders. The present review is aimed to discuss the role of GABA(B) receptors and the possible outcomes of GABA(B) receptor modulation in CNS disorders.
Collapse
|
50
|
Rogasch NC, Daskalakis ZJ, Fitzgerald PB. Mechanisms underlying long-interval cortical inhibition in the human motor cortex: a TMS-EEG study. J Neurophysiol 2013; 109:89-98. [DOI: 10.1152/jn.00762.2012] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-interval cortical inhibition (LICI) refers to suppression of neuronal activity following paired-pulse transcranial magnetic stimulation (TMS) with interstimulus intervals (ISIs) between 50 and 200 ms. LICI can be measured either from motor-evoked potentials (MEPs) in small hand muscles or directly from the cortex using concurrent electroencephalography (EEG). However, it remains unclear whether EEG inhibition reflects similar mechanisms to MEP inhibition. Eight healthy participants received single- and paired-pulse TMS (ISI = 100 ms) over the motor cortex. MEPs were measured from a small hand muscle (first dorsal interosseus), whereas early (P30, P60) and late (N100) TMS-evoked cortical potentials (TEPs) were measured over the motor cortex using EEG. Conditioning and test TMS intensities were altered, and modulation of LICI strength was measured using both methods. LICI of MEPs and both P30 and P60 TEPs increased in strength with increasing conditioning intensities and decreased with increasing test intensities. LICI of N100 TEPs remained unchanged across all conditions. In addition, MEP and P30 LICI strength correlated with the slope of the N100 evoked by the conditioning pulse. LICI of early and late TEP components was differentially modulated with altered TMS intensities, suggesting independent underlying mechanisms. LICI of P30 is consistent with inhibition of cortical excitation similar to MEPs, whereas LICI of N100 may reflect presynaptic autoinhibition of inhibitory interneurons. The N100 evoked by the conditioning pulse is consistent with the mechanism responsible for LICI, most likely GABAB-mediated inhibition of cortical activity.
Collapse
Affiliation(s)
- Nigel C. Rogasch
- Monash Alfred Psychiatry Research Centre, Alfred and Monash University Central Clinical School, Melbourne, Australia; and
| | - Zafiris J. Daskalakis
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Paul B. Fitzgerald
- Monash Alfred Psychiatry Research Centre, Alfred and Monash University Central Clinical School, Melbourne, Australia; and
| |
Collapse
|