1
|
Ben Zichri- David S, Shkuri L, Ast T. Pulling back the mitochondria's iron curtain. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:6. [PMID: 40052109 PMCID: PMC11879881 DOI: 10.1038/s44324-024-00045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 03/09/2025]
Abstract
Mitochondrial functionality and cellular iron homeostasis are closely intertwined. Mitochondria are biosynthetic hubs for essential iron cofactors such as iron-sulfur (Fe-S) clusters and heme. These cofactors, in turn, enable key mitochondrial pathways, such as energy and metabolite production. Mishandling of mitochondrial iron is associated with a spectrum of human pathologies ranging from rare genetic disorders to common conditions. Here, we review mitochondrial iron utilization and its intersection with disease.
Collapse
Affiliation(s)
| | - Liraz Shkuri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Tslil Ast
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| |
Collapse
|
2
|
Lee J, Roh JL. Ferroptosis: iron release mechanisms in the bioenergetic process. Cancer Metastasis Rev 2025; 44:36. [PMID: 40000477 DOI: 10.1007/s10555-025-10252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of cell death, has been the focus of extensive research over the past decade, leading to the elucidation of key molecules and mechanisms involved in this process. While several studies have highlighted iron sources for the Fenton reaction, the predominant mechanism for iron release in ferroptosis has been identified as ferritinophagy, which occurs in response to iron starvation. However, much of the existing literature has concentrated on lipid peroxidation rather than on the mechanisms of iron release. This review proposes three distinct mechanisms of iron mobilization: ferritinophagy, reductive pathways with selective gating of ferritin pores, and quinone-mediated iron mobilization. Notably, the latter two mechanisms operate independently of iron starvation and rely primarily on reductants such as NADH and O2•-. The inhibition of the respiratory chain, particularly under the activation of α-ketoglutarate dehydrogenase, leads to the accumulation of these reductants, which in turn promotes iron release from ferritin and indirectly inhibits AMP-activated protein kinase through excessive iron levels. In this work, we delineate the intricate relationship between iron mobilization and bioenergetic processes under conditions of oxidative stress. Furthermore, this review aims to enhance the understanding of the connections between ferroptosis and these mechanisms.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-Do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-Do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
3
|
Ősz F, Nazir A, Takács-Vellai K, Farkas Z. Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in C. elegans. Antioxidants (Basel) 2025; 14:76. [PMID: 39857410 PMCID: PMC11761250 DOI: 10.3390/antiox14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mutations in highly conserved genes encoding components of the electron transport chain (ETC) provide valuable insights into the mechanisms of oxidative stress and mitochondrial ROS (mtROS) in a wide range of diseases, including cancer, neurodegenerative disorders, and aging. This review explores the structure and function of the ETC in the context of its role in mtROS generation and regulation, emphasizing its dual roles in cellular damage and signaling. Using Caenorhabditis elegans as a model organism, we discuss how ETC mutations manifest as developmental abnormalities, lifespan alterations, and changes in mtROS levels. We highlight the utility of redox sensors in C. elegans for in vivo studies of reactive oxygen species, offering both quantitative and qualitative insights. Finally, we examine the potential of C. elegans as a platform for testing ETC-targeting drug candidates, including OXPHOS inhibitors, which represent promising avenues in cancer therapeutics. This review underscores the translational relevance of ETC research in C. elegans, bridging fundamental biology and therapeutic innovation.
Collapse
Affiliation(s)
- Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India;
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| |
Collapse
|
4
|
Gambhir N, Kodati S, Adesemoye AO, Everhart SE. Fungicide Sensitivity and Nontarget Site Resistance in Rhizoctonia zeae Isolates Collected from Corn and Soybean Fields in Nebraska. PLANT DISEASE 2025; 109:217-227. [PMID: 39254848 DOI: 10.1094/pdis-02-24-0352-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Rhizoctonia zeae was recently identified as the major Rhizoctonia species in corn and soybean fields in Nebraska and was shown to be pathogenic on corn and soybean seedlings. Fungicide seed treatments commonly used to manage seedling diseases include prothioconazole (demethylation inhibitor), fludioxonil (phenylpyrrole), sedaxane (succinate dehydrogenase inhibitor), and azoxystrobin (quinone outside inhibitor [QoI]). To establish the sensitivity of R. zeae to these fungicides, we isolated this pathogen from corn and soybean fields in Nebraska during 2015 to 2017 and estimated the relative effective concentration for 50% inhibition (EC50) of a total of 91 R. zeae isolates from Nebraska and Illinois. Average EC50 for prothioconazole, fludioxonil, sedaxane, and azoxystrobin was 0.219, 0.099, 0.078, and >100 µg ml-1, respectively. In planta assays showed that azoxystrobin did not significantly reduce the disease severity on soybean (P > 0.05). The cytochrome b gene of R. zeae did not harbor any mutation known to confer QoI resistance and had a type I intron directly after codon 143, suggesting that a G143A mutation is unlikely to evolve in this pathogen. For prothioconazole, fludioxonil, and sedaxane, the EC50 of the isolates did not differ significantly among the years of collection (P > 0.05), and their single discriminatory concentrations were identified as 0.1 µg ml-1. This is the first study to establish nontarget site resistance of R. zeae to azoxystrobin and the sensitivity of R. zeae to commonly used seed treatment fungicides in Nebraska. This information will help to guide strategies for chemical control of R. zeae and monitor sensitivity shifts in the future.
Collapse
Affiliation(s)
- Nikita Gambhir
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | - Srikanth Kodati
- West Central Research, Education and Extension Center, University of Nebraska, North Platte, NE 69101, U.S.A
| | - Anthony O Adesemoye
- West Central Research, Education and Extension Center, University of Nebraska, North Platte, NE 69101, U.S.A
| | - Sydney E Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| |
Collapse
|
5
|
Pagacz J, Borek A, Osyczka A. ROS production by cytochrome bc 1: Its mechanism as inferred from the effects of heme b cofactor mutants. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149513. [PMID: 39326544 DOI: 10.1016/j.bbabio.2024.149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Cytochrome bc1 is one of the enzymes of electron transport chain responsible for generation of reactive oxygen species (ROS). While ROS are considered to be products of side reactions of quinol oxidation site (Qo), molecular aspects of their generation remain unclear. One of them concerns significance of hemes b (bL and bH) redox potentials (Em) and properties on ROS generation by Qo. Here we addressed this question by examining ROS production in mutants of bacterial cytochrome bc1 that replaced one of the His ligand of either heme bL or bH with Lys or Asn. We observed that severe slowing down of electron flow by the Asn mutants induces similar effects on ROS production as inhibition by antimycin in the native cytochrome bc1 (WT). An increase in the Em of hemes b (either bL or bH) in Lys mutants does not exert major effect on the ROS production level, compared to WT. The experimental data were analyzed in the frame of a dynamic model to conclude that the observed ROS rates and levels reflect a combinatory effect of two factors: probability of heme bL being in the reduced state and probability of electron transfer from heme bL towards Qo. A significant contribution from short-circuits maintains the ROS levels at ~15 % in all tested forms. Overall, ROS production by cytochrome bc1 shows remarkably low susceptibility to changes in the Em of heme b cofactors, leaving significance of tuning the Em of hemes b as factor limiting superoxide production an open question.
Collapse
Affiliation(s)
- Jakub Pagacz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-087 Krakow, Poland
| | - Arkadiusz Borek
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-087 Krakow, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-087 Krakow, Poland.
| |
Collapse
|
6
|
Awalt JK, Su W, Nguyen W, Loi K, Jarman KE, Penington JS, Ramesh S, Fairhurst KJ, Yeo T, Park H, Uhlemann AC, Chandra Maity B, De N, Mukherjee P, Chakraborty A, Churchyard A, Famodimu MT, Delves MJ, Baum J, Mittal N, Winzeler EA, Papenfuss AT, Chowdury M, de Koning-Ward TF, Maier AG, van Dooren GG, Baud D, Brand S, Fidock DA, Jackson PF, Cowman AF, Dans MG, Sleebs BE. Exploration and characterization of the antimalarial activity of cyclopropyl carboxamides that target the mitochondrial protein, cytochrome b. Eur J Med Chem 2024; 280:116921. [PMID: 39388903 PMCID: PMC11609934 DOI: 10.1016/j.ejmech.2024.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Drug resistance against antimalarials is rendering them increasingly ineffective and so there is a need for the development of new antimalarials. To discover new antimalarial chemotypes a phenotypic screen of the Janssen Jumpstarter library against the P. falciparum asexual stage was undertaken, uncovering the cyclopropyl carboxamide structural hit class. Structure-activity analysis revealed that each structural moiety was largely resistant to change, although small changes led to the frontrunner compound, WJM280, which has potent asexual stage activity (EC50 40 nM) and no human cell cytotoxicity. Forward genetics uncovered that cyclopropyl carboxamide resistant parasites have mutations and an amplification in the cytochrome b gene. Cytochrome b was then verified as the target with profiling against cytochrome b drug-resistant parasites and a mitochondrial oxygen consumption assay. Accordingly, the cyclopropyl carboxamide class was shown to have slow-acting asexual stage activity and activity against male gametes and exoerythrocytic forms. Enhancing metabolic stability to attain efficacy in malaria mouse models remains a challenge in the future development of this antimalarial chemotype.
Collapse
Affiliation(s)
- Jon Kyle Awalt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Wenyin Su
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Katie Loi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Jocelyn S Penington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Saishyam Ramesh
- Research School of Biology, The Australian National University, Canberra, 2600, Australia
| | - Kate J Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Nirupam De
- TCG Lifesciences, Kolkata, West Bengal, 700091, India
| | | | | | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, UK
| | - Mufuliat T Famodimu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Michael J Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, UK; School of Biomedical Sciences, University of New South Wales, Sydney, 2031, Australia
| | - Nimisha Mittal
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth A Winzeler
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Mrittika Chowdury
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, 3216, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, 3216, Australia
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra, 2600, Australia
| | - Giel G van Dooren
- Research School of Biology, The Australian National University, Canberra, 2600, Australia
| | - Delphine Baud
- Medicines for Malaria Venture, Geneva, 1215, Switzerland
| | - Stephen Brand
- Medicines for Malaria Venture, Geneva, 1215, Switzerland
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Paul F Jackson
- Global Public Health, Janssen R&D LLC, La Jolla, 92121, USA
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Madeline G Dans
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
7
|
Venturoli G, Mamedov MD, Vitukhnovskaya LA, Semenov AY, Francia F. Trehalose Interferes with the Photosynthetic Electron Transfer Chain of Cereibacter (Rhodobacter) sphaeroides Permeating the Bacterial Chromatophore Membrane. Int J Mol Sci 2024; 25:13420. [PMID: 39769184 PMCID: PMC11678701 DOI: 10.3390/ijms252413420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium Cereibacter sphaeroides. In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) bc1 complexes is observable. The kinetics of the third phase of the electrochromic carotenoid shift, due to electrogenic events linked to the reduction in cyt bH heme via the low-potential branch of the cyt bc1 complex and its oxidation by quinone molecule on the Qi site, is about four times slower in the presence of trehalose. In parallel, the reduction in oxidized cyt (c1 + c2) and high-potential cyt bH are strongly slowed down, suggesting that the disaccharide interferes with the electron transfer reactions of the high-potential branch of the bc1 complex. A slowing effect of trehalose on the kinetics of the electrogenic protonation of the secondary quinone acceptor QB in the reaction center complex, measured by direct electrometrical methods, was also found, but was much less pronounced. The direct detection of carbohydrate content indicates that trehalose, at high concentrations, permeates the membrane of chromatophores. The possible mechanisms underlying the observed effect of trehalose on the electron/proton transfer process are discussed in terms of trehalose's propensity to form strong hydrogen bonds with its surroundings.
Collapse
Affiliation(s)
- Giovanni Venturoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio n.42, 40126 Bologna, Italy;
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA), Università di Bologna, Via Irnerio 46, 40126 Bologna, Italy
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Liya A. Vitukhnovskaya
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Alexey Y. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119991, Russia; (M.D.M.); (L.A.V.); (A.Y.S.)
| | - Francesco Francia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio n.42, 40126 Bologna, Italy;
| |
Collapse
|
8
|
Decsi K, Ahmed M, Rizk R, Abdul-Hamid D, Tóth Z. Analysis of Plant Physiological Parameters and Gene Transcriptional Changes Under the Influence of Humic Acid and Humic Acid-Amino Acid Combinations in Maize. Int J Mol Sci 2024; 25:13280. [PMID: 39769045 PMCID: PMC11676358 DOI: 10.3390/ijms252413280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The study investigated the application of humic acids (HAs) and a combination of humic acids and amino acids (HA+AA) in maize under field conditions. Based on preliminary data in the literature, the aim was to investigate the effects of the two plant conditioning compounds on plant physiological parameters. In addition to measuring plant physiological parameters in the field, a complete transcriptome analysis was performed to determine exactly which genes were expressed after the treatments and in which physiological processes they play a role. Maize plants showed significant positive yield changes after two priming treatments. Genome-wide transcriptomic analysis revealed the activation of photosynthetic and cellular respiration processes, as well as protein synthesis pathways, which explains the increased yield even under extreme precipitation conditions. The results show that the HA treatment helped in water management and increased the chlorophyll content, while the HA+AA treatment led to higher protein and dry matter contents. The post-harvest tests also show that the HA+AA treatment resulted in the highest yield parameters. Functional annotation of the maize super transcriptome revealed genes related to translation processes, photosynthesis, and cellular respiration. The combined pathway analysis showed that the HA and combined treatments activated genes related to photosynthesis, carbon fixation, and cellular respiration, providing valuable in-depth insight into the usefulness of the HA and HA+AA treatments in priming. Based on the studies, we believe that the use of natural-based humic acid plant conditioners may provide a beneficial opportunity to promote renewable, regenerative agriculture.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary; (K.D.); (R.R.); (Z.T.)
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roquia Rizk
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary; (K.D.); (R.R.); (Z.T.)
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Zoltán Tóth
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary; (K.D.); (R.R.); (Z.T.)
| |
Collapse
|
9
|
Pintscher S, Pietras R, Mielecki B, Szwalec M, Wójcik-Augustyn A, Indyka P, Rawski M, Koziej Ł, Jaciuk M, Ważny G, Glatt S, Osyczka A. Molecular basis of plastoquinone reduction in plant cytochrome b 6f. NATURE PLANTS 2024; 10:1814-1825. [PMID: 39362993 PMCID: PMC11570496 DOI: 10.1038/s41477-024-01804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
A multi-subunit enzyme, cytochrome b6f (cytb6f), provides the crucial link between photosystems I and II in the photosynthetic membranes of higher plants, transferring electrons between plastoquinone (PQ) and plastocyanin. The atomic structure of cytb6f is known, but its detailed catalytic mechanism remains elusive. Here we present cryogenic electron microscopy structures of spinach cytb6f at 1.9 Å and 2.2 Å resolution, revealing an unexpected orientation of the substrate PQ in the haem ligand niche that forms the PQ reduction site (Qn). PQ, unlike Qn inhibitors, is not in direct contact with the haem. Instead, a water molecule is coordinated by one of the carbonyl groups of PQ and can act as the immediate proton donor for PQ. In addition, we identify water channels that connect Qn with the aqueous exterior of the enzyme, suggesting that the binding of PQ in Qn displaces water through these channels. The structures confirm large movements of the head domain of the iron-sulfur protein (ISP-HD) towards and away from the plastoquinol oxidation site (Qp) and define the unique position of ISP-HD when a Qp inhibitor (2,5-dibromo-3-methyl-6-isopropylbenzoquinone) is bound. This work identifies key conformational states of cytb6f, highlights fundamental differences between substrates and inhibitors and proposes a quinone-water exchange mechanism.
Collapse
Affiliation(s)
- Sebastian Pintscher
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rafał Pietras
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Bohun Mielecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Mateusz Szwalec
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Anna Wójcik-Augustyn
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland
| | - Paulina Indyka
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Michał Rawski
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Łukasz Koziej
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
| | - Marcin Jaciuk
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Grzegorz Ważny
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology (MCB), Jagiellonian University, Kraków, Poland.
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Artur Osyczka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
10
|
García-Guerrero AE, Marvin RG, Blackwell AM, Sigala PA. Biogenesis of Cytochromes c and c1 in the Electron Transport Chain of Malaria Parasites. ACS Infect Dis 2024. [PMID: 39481007 DOI: 10.1021/acsinfecdis.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and is a key antimalarial drug target. ETC function requires cytochromes c and c1, which are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate the biogenesis of the mature cytochrome c or c1. Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologues thought to be specific for heme attachment to cyt c (HCCS) or cyt c1 (HCC1S). To test the function and specificity of Plasmodium falciparum HCCS and HCC1S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC1S knockdown selectively impaired cyt c1 biogenesis and caused lethal ETC dysfunction that was not reversed by the overexpression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in Escherichia coli of cyt c hemylation by P. falciparum HCCS and HCC1S strongly suggest that both homologues are essential for mitochondrial ETC function and have distinct specificities for the biogenesis of cyt c and c1, respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.
Collapse
Affiliation(s)
- Aldo E García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| | - Rebecca G Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
García-Guerrero AE, Marvin RG, Blackwell AM, Sigala PA. Biogenesis of cytochromes c and c 1 in the electron transport chain of malaria parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.575742. [PMID: 38352463 PMCID: PMC10862854 DOI: 10.1101/2024.02.01.575742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and a key antimalarial drug target. ETC function requires cytochromes c and c 1 that are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate biogenesis of the mature cytochrome c or c 1. Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologs thought to be specific for heme attachment to cyt c (HCCS) or cyt c 1 (HCC1S). To test the function and specificity of P. falciparum HCCS and HCC1S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC1S knockdown selectively impaired cyt c 1 biogenesis and caused lethal ETC dysfunction that was not reversed by over-expression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in E. coli of cyt c hemylation by P. falciparum HCCS and HCC1S strongly suggest that both homologs are essential for mitochondrial ETC function and have distinct specificities for biogenesis of cyt c and c 1, respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.
Collapse
Affiliation(s)
- Aldo E. García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| |
Collapse
|
12
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
14
|
Ong CT, Mody KT, Cavallaro AS, Yan Y, Nguyen LT, Shao R, Mitter N, Mahony TJ, Ross EM. Chromosome-Scale Genome Assembly of the Sheep-Biting Louse Bovicola ovis Using Nanopore Sequencing Data and Pore-C Analysis. Int J Mol Sci 2024; 25:7824. [PMID: 39063065 PMCID: PMC11276745 DOI: 10.3390/ijms25147824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Bovicola ovis, commonly known as the sheep-biting louse, is an ectoparasite that adversely affects the sheep industry. Sheep louse infestation lowers the quality of products, including wool and leather, causing a loss of approximately AUD 123M per annum in Australia alone. The lack of a high-quality genome assembly for the sheep-biting louse, as well as any closely related livestock lice, has hindered the development of louse research and management control tools. In this study, we present the assembly of B. ovis with a genome size of ~123 Mbp based on a nanopore long-read sequencing library and Illumina RNA sequencing, complemented with a chromosome-level scaffolding using the Pore-C multiway chromatin contact dataset. Combining multiple alignment and gene prediction tools, a comprehensive annotation on the assembled B. ovis genome was conducted and recalled 11,810 genes as well as other genomic features including orf, ssr, rRNA and tRNA. A manual curation using alignment with the available closely related louse species, Pediculus humanus, increased the number of annotated genes to 16,024. Overall, this study reported critical genetic resources and biological insights for the advancement of sheep louse research and the development of sustainable control strategies in the sheep industry.
Collapse
Affiliation(s)
- Chian Teng Ong
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (C.T.O.); (A.S.C.); (Y.Y.); (L.T.N.); (N.M.); (T.J.M.)
| | - Karishma T. Mody
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (C.T.O.); (A.S.C.); (Y.Y.); (L.T.N.); (N.M.); (T.J.M.)
| | - Antonino S. Cavallaro
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (C.T.O.); (A.S.C.); (Y.Y.); (L.T.N.); (N.M.); (T.J.M.)
| | - Yakun Yan
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (C.T.O.); (A.S.C.); (Y.Y.); (L.T.N.); (N.M.); (T.J.M.)
| | - Loan T. Nguyen
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (C.T.O.); (A.S.C.); (Y.Y.); (L.T.N.); (N.M.); (T.J.M.)
| | - Renfu Shao
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Neena Mitter
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (C.T.O.); (A.S.C.); (Y.Y.); (L.T.N.); (N.M.); (T.J.M.)
| | - Timothy J. Mahony
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (C.T.O.); (A.S.C.); (Y.Y.); (L.T.N.); (N.M.); (T.J.M.)
| | - Elizabeth M. Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (C.T.O.); (A.S.C.); (Y.Y.); (L.T.N.); (N.M.); (T.J.M.)
| |
Collapse
|
15
|
Zheng W, Chai P, Zhu J, Zhang K. High-resolution in situ structures of mammalian respiratory supercomplexes. Nature 2024; 631:232-239. [PMID: 38811722 PMCID: PMC11222160 DOI: 10.1038/s41586-024-07488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Mitochondria play a pivotal part in ATP energy production through oxidative phosphorylation, which occurs within the inner membrane through a series of respiratory complexes1-4. Despite extensive in vitro structural studies, determining the atomic details of their molecular mechanisms in physiological states remains a major challenge, primarily because of loss of the native environment during purification. Here we directly image porcine mitochondria using an in situ cryo-electron microscopy approach. This enables us to determine the structures of various high-order assemblies of respiratory supercomplexes in their native states. We identify four main supercomplex organizations: I1III2IV1, I1III2IV2, I2III2IV2 and I2III4IV2, which potentially expand into higher-order arrays on the inner membranes. These diverse supercomplexes are largely formed by 'protein-lipids-protein' interactions, which in turn have a substantial impact on the local geometry of the surrounding membranes. Our in situ structures also capture numerous reactive intermediates within these respiratory supercomplexes, shedding light on the dynamic processes of the ubiquinone/ubiquinol exchange mechanism in complex I and the Q-cycle in complex III. Structural comparison of supercomplexes from mitochondria treated under different conditions indicates a possible correlation between conformational states of complexes I and III, probably in response to environmental changes. By preserving the native membrane environment, our approach enables structural studies of mitochondrial respiratory supercomplexes in reaction at high resolution across multiple scales, from atomic-level details to the broader subcellular context.
Collapse
Affiliation(s)
- Wan Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jiapeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
16
|
Riepl D, Gamiz-Hernandez AP, Kovalova T, Król SM, Mader SL, Sjöstrand D, Högbom M, Brzezinski P, Kaila VRI. Long-range charge transfer mechanism of the III 2IV 2 mycobacterial supercomplex. Nat Commun 2024; 15:5276. [PMID: 38902248 PMCID: PMC11189923 DOI: 10.1038/s41467-024-49628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.
Collapse
Affiliation(s)
- Daniel Riepl
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sylwia M Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
17
|
Chen J, Chen Y, He W, Liang H, Hong T, Li T, Du H. Transcriptome analysis reveals the molecular mechanism of differences in growth between photoautotrophy and heterotrophy in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2024; 15:1407915. [PMID: 38962244 PMCID: PMC11219824 DOI: 10.3389/fpls.2024.1407915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Background The green alga Chlamydomonas reinhardtii can grow photoautotrophically utilizing light and CO2, and heterotrophically utilizing acetate. The physiological and biochemical responses of autotrophy and heterotrophy are different in C. reinhardtii. However, there is no complete understanding of the molecular physiology between autotrophy and heterotrophy. Therefore, we performed biochemical, molecular and transcriptome analysis of C. reinhardtii between autotrophy and heterotrophy. Results The cell growth characterization demonstrated that heterotrophic cell had enhanced growth rates, and autotrophic cell accumulated more chlorophyll. The transcriptome data showed that a total of 2,970 differentially expressed genes (DEGs) were identified from photoautotrophy 12h (P12h) to heterotrophy 12h (H12h). The DEGs were involved in photosynthesis, the tricarboxylic acid cycle (TCA), pyruvate and oxidative phosphorylation metabolisms. Moreover, the results of qRT-PCR revealed that the relative expression levels of malate dehydrogenase (MDH), succinate dehydrogenase (SDH), ATP synthase (ATPase), and starch synthase (SSS) were increased significantly from P12h and H12h. The protein activity of NAD-malate dehydrogenase (NAD-MDH) and succinate dehydrogenase (SDH) were significantly higher in the H12h group. Conclusion The above results indicated that the high growth rate observed in heterotrophic cell may be the effects of environmental or genetic regulation of photosynthesis. Therefore, the identification of novel candidate genes in heterotrophy will contribute to the development of microalga strains with higher growth capacity and better performance for biomass production.
Collapse
Affiliation(s)
- Jing Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Yuanhao Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Ting Hong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
18
|
Tayier F, Troyano J, Tokuda S, Wang Z, Haga MA, Furukawa S. Redox-Active Ruthenium-Organic Polyhedra with Tunable Surface Functionality and Porosities. Inorg Chem 2024; 63:5559-5567. [PMID: 38470047 DOI: 10.1021/acs.inorgchem.3c04530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Dinuclear ruthenium paddlewheel complexes exhibit high structural stability in redox reactions. The use of these chemical motifs for the construction of Ru-based metal-organic polyhedra (RuMOPs) provides a route for redox-active porous materials. However, there are few studies on the synthesis and characterization of RuMOPs due to the difficulty in controlling the assembly process via the ligand-exchange reaction of equatorial acetates of the diruthenium tetraacetate precursors with dicarboxylic acid ligands. In this study, we synthesized three novel cuboctahedral RuMOPs based on the Ru2(II/III)-paddlewheel units with different alkyl functionalizations on the benzene-1,3-dicarboxylate moieties. We evaluated the effect of external functionalization on the molecular packing and the porous and redox properties. The electrochemical measurements revealed the multielectron transferred redox process where the electron-donating/-withdrawing nature of the functional groups allows the control of the redox behavior.
Collapse
Affiliation(s)
- Fuerkaiti Tayier
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Javier Troyano
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Shun Tokuda
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masa-Aki Haga
- Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
19
|
Tikhonov AN. The cytochrome b 6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. PHOTOSYNTHESIS RESEARCH 2024; 159:203-227. [PMID: 37369875 DOI: 10.1007/s11120-023-01034-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
In oxygenic photosynthetic systems, the cytochrome b6f (Cytb6f) complex (plastoquinol:plastocyanin oxidoreductase) is a heart of the hub that provides connectivity between photosystems (PS) II and I. In this review, the structure and function of the Cytb6f complex are briefly outlined, being focused on the mechanisms of a bifurcated (two-electron) oxidation of plastoquinol (PQH2). In plant chloroplasts, under a wide range of experimental conditions (pH and temperature), a diffusion of PQH2 from PSII to the Cytb6f does not limit the intersystem electron transport. The overall rate of PQH2 turnover is determined mainly by the first step of the bifurcated oxidation of PQH2 at the catalytic site Qo, i.e., the reaction of electron transfer from PQH2 to the Fe2S2 cluster of the high-potential Rieske iron-sulfur protein (ISP). This point has been supported by the quantum chemical analysis of PQH2 oxidation within the framework of a model system including the Fe2S2 cluster of the ISP and surrounding amino acids, the low-potential heme b6L, Glu78 and 2,3,5-trimethylbenzoquinol (the tail-less analog of PQH2). Other structure-function relationships and mechanisms of electron transport regulation of oxygenic photosynthesis associated with the Cytb6f complex are briefly outlined: pH-dependent control of the intersystem electron transport and the regulatory balance between the operation of linear and cyclic electron transfer chains.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
20
|
He Z, Wu M, Tian H, Wang L, Hu Y, Han F, Zhou J, Wang Y, Zhou L. Euglena's atypical respiratory chain adapts to the discoidal cristae and flexible metabolism. Nat Commun 2024; 15:1628. [PMID: 38388527 PMCID: PMC10884005 DOI: 10.1038/s41467-024-46018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Euglena gracilis, a model organism of the eukaryotic supergroup Discoba harbouring also clinically important parasitic species, possesses diverse metabolic strategies and an atypical electron transport chain. While structures of the electron transport chain complexes and supercomplexes of most other eukaryotic clades have been reported, no similar structure is currently available for Discoba, limiting the understandings of its core metabolism and leaving a gap in the evolutionary tree of eukaryotic bioenergetics. Here, we report high-resolution cryo-EM structures of Euglena's respirasome I + III2 + IV and supercomplex III2 + IV2. A previously unreported fatty acid synthesis domain locates on the tip of complex I's peripheral arm, providing a clear picture of its atypical subunit composition identified previously. Individual complexes are re-arranged in the respirasome to adapt to the non-uniform membrane curvature of the discoidal cristae. Furthermore, Euglena's conformationally rigid complex I is deactivated by restricting ubiquinone's access to its substrate tunnel. Our findings provide structural insights for therapeutic developments against euglenozoan parasite infections.
Collapse
Affiliation(s)
- Zhaoxiang He
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengchen Wu
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongtao Tian
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liangdong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiqi Hu
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fangzhu Han
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China.
| | - Long Zhou
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Lu J, Lew MD. Single-molecule electrochemical imaging resolves the midpoint potentials of individual fluorophores on nanoporous antimony-doped tin oxide. Chem Sci 2024; 15:2037-2046. [PMID: 38332827 PMCID: PMC10848685 DOI: 10.1039/d3sc05293a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
We report reversible switching of oxazine, cyanine, and rhodamine dyes by a nanoporous antimony-doped tin oxide electrode that enables single-molecule (SM) imaging of electrochemical activity. Since the emissive state of each fluorophore is modulated by electrochemical potential, the number of emitting single molecules follows a sigmoid function during a potential scan, and we thus optically determine the formal redox potential of each dye. We find that the presence of redox mediators (phenazine methosulfate and riboflavin) functions as an electrochemical switch on each dye's emissive state and observe significantly altered electrochemical potential and kinetics. We are therefore able to measure optically how redox mediators and the solid-state electrode modulate the redox state of fluorescent molecules, which follows an electrocatalytic (EC') mechanism, with SM sensitivity over a 900 μm2 field of view. Our observations indicate that redox mediator-assisted SM electrochemical imaging (SMEC) could be potentially used to sense any electroactive species. Combined with SM blinking and localization microscopy, SMEC imaging promises to resolve the nanoscale spatial distributions of redox species and their redox states, as well as the electron transfer kinetics of electroactive species in various bioelectrochemical processes.
Collapse
Affiliation(s)
- Jin Lu
- Preston M. Green Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
- Institute of Materials Science and Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| | - Matthew D Lew
- Preston M. Green Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
- Institute of Materials Science and Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| |
Collapse
|
22
|
Herrero Martín JC, Salegi Ansa B, Álvarez-Rivera G, Domínguez-Zorita S, Rodríguez-Pombo P, Pérez B, Calvo E, Paradela A, Miguez DG, Cifuentes A, Cuezva JM, Formentini L. An ETFDH-driven metabolon supports OXPHOS efficiency in skeletal muscle by regulating coenzyme Q homeostasis. Nat Metab 2024; 6:209-225. [PMID: 38243131 PMCID: PMC10896730 DOI: 10.1038/s42255-023-00956-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Coenzyme Q (Q) is a key lipid electron transporter, but several aspects of its biosynthesis and redox homeostasis remain undefined. Various flavoproteins reduce ubiquinone (oxidized form of Q) to ubiquinol (QH2); however, in eukaryotes, only oxidative phosphorylation (OXPHOS) complex III (CIII) oxidizes QH2 to Q. The mechanism of action of CIII is still debated. Herein, we show that the Q reductase electron-transfer flavoprotein dehydrogenase (ETFDH) is essential for CIII activity in skeletal muscle. We identify a complex (comprising ETFDH, CIII and the Q-biosynthesis regulator COQ2) that directs electrons from lipid substrates to the respiratory chain, thereby reducing electron leaks and reactive oxygen species production. This metabolon maintains total Q levels, minimizes QH2-reductive stress and improves OXPHOS efficiency. Muscle-specific Etfdh-/- mice develop myopathy due to CIII dysfunction, indicating that ETFDH is a required OXPHOS component and a potential therapeutic target for mitochondrial redox medicine.
Collapse
Affiliation(s)
- Juan Cruz Herrero Martín
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Beñat Salegi Ansa
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Gerardo Álvarez-Rivera
- Laboratorio Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación Universitaria La Paz (IDIPAZ), Madrid, Spain
| | - Belén Pérez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación Universitaria La Paz (IDIPAZ), Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Alberto Paradela
- Proteomics Unit, Centro Nacional de Biotecnología (CNB)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David G Miguez
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Departamento de Física de la Materia Condensada, IFIMAC, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alejandro Cifuentes
- Laboratorio Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Formentini
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
23
|
Hagras MA. Respiratory Complex III: A Bioengine with a Ligand-Triggered Electron-Tunneling Gating Mechanism. J Phys Chem B 2024; 128:990-1000. [PMID: 38241470 DOI: 10.1021/acs.jpcb.3c07095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Respiratory complex III (a.k.a., the bc1 complex) plays a key role in the electron transport chain in aerobic cells. The bc1 complex exhibits multiple unique electron tunneling (ET) processes, such as ET-bifurcation at the Qo site and movement of the Rieske domain. Moreover, we previously discovered that electron tunneling in the low potential arm of the bc1 complex is regulated by a key phenylalanine residue (Phe90). The main goal of the current work is to study the dynamics of the key Phe90 residue in the electron tunneling reaction between heme bL and heme bH as a function of the occupancy of the Qo and Qi binding sites in the bc1 complex. We simulated the molecular dynamics of four model systems of respiratory complex III with different ligands bound at the Qo and Qi binding sites. In addition, we calculated the electron tunneling rate constants between heme bL and heme bH along the simulated molecular dynamics trajectories. The binding of aromatic ligands at the Qo site induces a conformational cascade that properly positions the Phe90 residue, reducing the through-space ET distance from ∼7 to ∼5.5 Å and thus enhancing the electron transfer rate between the heme bL and the heme bH redox pair. Also, the binding of aromatic ligands at the Qi site induces conformational changes that stabilize the Phe90 conformational variation from ∼1.5 to ∼0.5 Å. Hence, our molecular dynamics simulation results show an on-demand two-step conformational connection between the occupancy of the Qo and Qi binding sites and the conformational dynamics of the Phe90 residue. Additionally, our dynamic electron tunneling results confirm our previously reported findings that the Phe90 residue acts as an electron-tunneling gate or switch, controlling the electron transfer rate between the heme bL and heme bH redox systems.
Collapse
Affiliation(s)
- Muhammad A Hagras
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
| |
Collapse
|
24
|
Esser L, Xia D. Mitochondrial Cytochrome bc1 Complex as Validated Drug Target: A Structural Perspective. Trop Med Infect Dis 2024; 9:39. [PMID: 38393128 PMCID: PMC10892539 DOI: 10.3390/tropicalmed9020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial respiratory chain Complex III, also known as cytochrome bc1 complex or cyt bc1, is a validated target not only for antibiotics but also for pesticides and anti-parasitic drugs. Although significant progress has been made in understanding the mechanisms of cyt bc1 function and inhibition by using various natural and synthetic compounds, important issues remain in overcoming drug resistance in agriculture and in evading cytotoxicity in medicine. In this review, we look at these issues from a structural perspective. After a brief description of the essential and common structural features, we point out the differences among various cyt bc1 complexes of different organisms, whose structures have been determined to atomic resolution. We use a few examples of cyt bc1 structures determined via bound inhibitors to illustrate both conformational changes observed and implications to the Q-cycle mechanism of cyt bc1 function. These structures not only offer views of atomic interactions between cyt bc1 complexes and inhibitors, but they also provide explanations for drug resistance when structural details are coupled to sequence changes. Examples are provided for exploiting structural differences in evolutionarily conserved enzymes to develop antifungal drugs for selectivity enhancement, which offer a unique perspective on differential interactions that can be exploited to overcome cytotoxicity in treating human infections.
Collapse
Affiliation(s)
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2122C, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Jena S, Tulsiyan KD, Sahoo RR, Rout S, Sahu AK, Biswal HS. Critical assessment of selenourea as an efficient small molecule fluorescence quenching probe to monitor protein dynamics. Chem Sci 2023; 14:14200-14210. [PMID: 38098725 PMCID: PMC10718066 DOI: 10.1039/d3sc04287a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 12/17/2023] Open
Abstract
Organoselenium compounds have recently been the experimentalists' delight due to their broad applications in organic synthesis, medicinal chemistry, and materials science. Selenium atom replacement of the carbonyl oxygen of the urea moiety dramatically reduces the HOMO-LUMO gap and oxidation potential, which completely changes the physicochemical properties of selenocarbonyl compounds. To our surprise, the photophysics and utility of a simple molecule such as selenourea (SeU) have not been explored in detail, which persuaded us to investigate its role in excited state processes. The steady-state emission, temperature-dependent time-correlated single photon counting, and femtosecond fluorescence upconversion experimental results confirmed that SeU significantly enhances the fluorescence quenching through a photoinduced electron transfer (PET) mechanism with an ∼10 ps ultrafast intrinsic PET lifetime component which is mostly absent in thiourea (TU). A wide range of fluorophores, based on their different redox abilities and fluorescence lifetimes covering a broad spectral window (λex: 390-590 nm and λem: 490-690 nm), were chosen to validate the proof of the concept. It was extended to tetramethylrhodamine (TMR)-5-maleimide labeled lysozyme protein, where we observed significant fluorescence quenching in the presence of SeU. The present work emphasizes that the high quenching efficiency with an ultrafast PET process, reduced orbital energy gap, and higher negative free energy change of the electron transfer reaction are the representative characteristics of selenourea or selenoamides to enable them as potential surrogates of thioamides or oxoamides quenching probes to monitor protein conformational changes and dynamics.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Rudhi Ranjan Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Saiprakash Rout
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
26
|
Wang PH, Nishikawa S, McGlynn SE, Fujishima K. One-Pot De Novo Synthesis of [4Fe-4S] Proteins Using a Recombinant SUF System under Aerobic Conditions. ACS Synth Biol 2023; 12:2887-2896. [PMID: 37467114 PMCID: PMC10594875 DOI: 10.1021/acssynbio.3c00155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 07/21/2023]
Abstract
Fe-S clusters are essential cofactors mediating electron transfer in respiratory and metabolic networks. However, obtaining active [4Fe-4S] proteins with heterologous expression is challenging due to (i) the requirements for [4Fe-4S] cluster assembly, (ii) the O2 lability of [4Fe-4S] clusters, and (iii) copurification of undesired proteins (e.g., ferredoxins). Here, we established a facile and efficient protocol to express mature [4Fe-4S] proteins in the PURE system under aerobic conditions. An enzyme aconitase and thermophilic ferredoxin were selected as model [4Fe-4S] proteins for functional verification. We first reconstituted the SUF system in vitro via a stepwise manner using the recombinant SUF subunits (SufABCDSE) individually purified from E. coli. Later, the incorporation of recombinant SUF helper proteins into the PURE system enabled mRNA translation-coupled [4Fe-4S] cluster assembly under the O2-depleted conditions. To overcome the O2 lability of [4Fe-4S] Fe-S clusters, an O2-scavenging enzyme cascade was incorporated, which begins with formate oxidation by formate dehydrogenase for NADH regeneration. Later, NADH is consumed by flavin reductase for FADH2 regeneration. Finally, bifunctional flavin reductase, along with catalase, removes O2 from the reaction while supplying FADH2 to the SufBC2D complex. These amendments enabled a one-pot, two-step synthesis of mature [4Fe-4S] proteins under aerobic conditions, yielding holo-aconitase with a maximum concentration of ∼0.15 mg/mL. This renovated system greatly expands the potential of the PURE system, paving the way for the future reconstruction of redox-active synthetic cells and enhanced cell-free biocatalysis.
Collapse
Affiliation(s)
- Po-Hsiang Wang
- Department
of Chemical Engineering and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
- Graduate
Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shota Nishikawa
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- School
of Life Science and Technology, Tokyo Institute
of Technology, Tokyo 152-8550, Japan
| | - Shawn Erin McGlynn
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Kosuke Fujishima
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Graduate
School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
27
|
Xie Q, Liu H, Wen S, Wang X, Bing W, Ji W, Zhao B, Ozaki Y, Song W. SERS Tracking Oxidative Stress on a Metalloporphyrin Framework by Vitamin C. Anal Chem 2023; 95:15333-15341. [PMID: 37793058 DOI: 10.1021/acs.analchem.3c02935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Accurate control of charge transfer is crucial to investigate the catalytic reaction mechanism of the biological oxidation process that biomedicine participates in. Herein, we have established an assembly model of metalloporphyrin framework (MPF) nanosheets as the active centers of biological enzymes. The introduction of Vitamin C (VC) into the MPF system can precisely modulate its content of charges. The surface-enhanced Raman scattering activity and peroxidase-like catalytic performance are enhanced simultaneously for the first time by manipulating the optimal molar ratio of an MPF to VC and the reaction sequence with target model molecules. We have confirmed that the formation of the intermediate of Fe(2+)-OOH species is specifically enhanced after VC modulation, which indicates that VC can regulate the oxidative stress of the active center of biological enzymes. This discovery not only accurately resolves the mechanism of VC-selective anticancer therapy but also has important significance for the precise treatment of VC synergistic targeting medicines.
Collapse
Affiliation(s)
- Qinhui Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Sisi Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaojun Wang
- School of Construction Machinery, Shandong Jiaotong University, Changqing University Science Park, Jinan 250357, P. R. China
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yukihiro Ozaki
- School of Biological and Environmatal Sciences, Kwansei Gakuin University, 1-Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
28
|
Borek A, Wójcik-Augustyn A, Kuleta P, Ekiert R, Osyczka A. Identification of hydrogen bonding network for proton transfer at the quinol oxidation site of Rhodobacter capsulatus cytochrome bc 1. J Biol Chem 2023; 299:105249. [PMID: 37714464 PMCID: PMC10583091 DOI: 10.1016/j.jbc.2023.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Cytochrome bc1 catalyzes electron transfer from quinol (QH2) to cytochrome c in reactions coupled to proton translocation across the energy-conserving membrane. Energetic efficiency of the catalytic cycle is secured by a two-electron and two-proton bifurcation reaction leading to oxidation of QH2 and reduction of the Rieske cluster and heme bL. The proton paths associated with this reaction remain elusive. Here, we used site-directed mutagenesis and quantum mechanical calculations to analyze the contribution of protonable side chains located at the heme bL side of the QH2 oxidation site in Rhodobacter capsulatus cytochrome bc1. We observe that the proton path is effectively switched off when H276 and E295 are simultaneously mutated to the nonprotonable residues in the H276F/E295V double mutant. The two single mutants, H276F or E295V, are less efficient but still transfer protons at functionally relevant rates. Natural selection exposed two single mutations, N279S and M154T, that restored the functional proton transfers in H276F/E295V. Quantum mechanical calculations indicated that H276F/E295V traps the side chain of Y147 in a position distant from QH2, whereas either N279S or M154T induce local changes releasing Y147 from that position. This shortens the distance between the protonable groups of Y147 and D278 and/or increases mobility of the Y147 side chain, which makes Y147 efficient in transferring protons from QH2 toward D278 in H276F/E295V. Overall, our study identified an extended hydrogen bonding network, build up by E295, H276, D278, and Y147, involved in efficient proton removal from QH2 at the heme bL side of QH2 oxidation site.
Collapse
Affiliation(s)
- Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Wójcik-Augustyn
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
29
|
Tsutsumi E, Niwa S, Takeda R, Sakamoto N, Okatsu K, Fukai S, Ago H, Nagao S, Sekiguchi H, Takeda K. Structure of a putative immature form of a Rieske-type iron-sulfur protein in complex with zinc chloride. Commun Chem 2023; 6:190. [PMID: 37689761 PMCID: PMC10492824 DOI: 10.1038/s42004-023-01000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Iron-sulfur clusters are prosthetic groups of proteins involved in various biological processes. However, details of the immature state of the iron-sulfur cluster into proteins have not yet been elucidated. We report here the first structural analysis of the Zn-containing form of a Rieske-type iron-sulfur protein, PetA, from Thermochromatium tepidum (TtPetA) by X-ray crystallography and small-angle X-ray scattering analysis. The Zn-containing form of TtPetA was indicated to be a dimer in solution. The zinc ion adopts a regular tetra-coordination with two chloride ions and two cysteine residues. Only a histidine residue in the cluster-binding site exhibited a conformational difference from the [2Fe-2S] containing form. The Zn-containing structure indicates that the conformation of the cluster binding site is already constructed and stabilized before insertion of [2Fe-2S]. The binding mode of ZnCl2, similar to the [2Fe-2S] cluster, suggests that the zinc ions might be involved in the insertion of the [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Erika Tsutsumi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Satomi Niwa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ryota Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Natsuki Sakamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Satoshi Nagao
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
30
|
Lee SH, Duron HE, Chaudhuri D. Beyond the TCA cycle: new insights into mitochondrial calcium regulation of oxidative phosphorylation. Biochem Soc Trans 2023; 51:1661-1673. [PMID: 37641565 PMCID: PMC10508640 DOI: 10.1042/bst20230012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
While mitochondria oxidative phosphorylation is broadly regulated, the impact of mitochondrial Ca2+ on substrate flux under both physiological and pathological conditions is increasingly being recognized. Under physiologic conditions, mitochondrial Ca2+ enters through the mitochondrial Ca2+ uniporter and boosts ATP production. However, maintaining Ca2+ homeostasis is crucial as too little Ca2+ inhibits adaptation to stress and Ca2+ overload can trigger cell death. In this review, we discuss new insights obtained over the past several years expanding the relationship between mitochondrial Ca2+ and oxidative phosphorylation, with most data obtained from heart, liver, or skeletal muscle. Two new themes are emerging. First, beyond boosting ATP synthesis, Ca2+ appears to be a critical determinant of fuel substrate choice between glucose and fatty acids. Second, Ca2+ exerts local effects on the electron transport chain indirectly, not via traditional allosteric mechanisms. These depend critically on the transporters involved, such as the uniporter or the Na+-Ca2+ exchanger. Alteration of these new relationships during disease can be either compensatory or harmful and suggest that targeting mitochondrial Ca2+ may be of therapeutic benefit during diseases featuring impairments in oxidative phosphorylation.
Collapse
Affiliation(s)
- Sandra H. Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - Hannah E. Duron
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
31
|
Geiger O, Sanchez-Flores A, Padilla-Gomez J, Degli Esposti M. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. SCIENCE ADVANCES 2023; 9:eadh0066. [PMID: 37556552 PMCID: PMC10411912 DOI: 10.1126/sciadv.adh0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 08/11/2023]
Abstract
We breathe at the molecular level when mitochondria in our cells consume oxygen to extract energy from nutrients. Mitochondria are characteristic cellular organelles that derive from aerobic bacteria and carry out oxidative phosphorylation and other key metabolic pathways in eukaryotic cells. The precise bacterial origin of mitochondria and, consequently, the ancestry of the aerobic metabolism of our cells remain controversial despite the vast genomic information that is now available. Here, we use multiple approaches to define the most likely living relatives of the ancestral bacteria from which mitochondria originated. These bacteria live in marine environments and exhibit the highest frequency of aerobic traits and genes for the metabolism of fundamental lipids that are present in the membranes of eukaryotes, sphingolipids, and cardiolipin.
Collapse
Affiliation(s)
- Otto Geiger
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, México
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformatica, Institute of Biotechnology, UNAM, Cuernavaca, México
| | | | | |
Collapse
|
32
|
Hutchins GH, Noble CEM, Bunzel HA, Williams C, Dubiel P, Yadav SKN, Molinaro PM, Barringer R, Blackburn H, Hardy BJ, Parnell AE, Landau C, Race PR, Oliver TAA, Koder RL, Crump MP, Schaffitzel C, Oliveira ASF, Mulholland AJ, Anderson JLR. An expandable, modular de novo protein platform for precision redox engineering. Proc Natl Acad Sci U S A 2023; 120:e2306046120. [PMID: 37487099 PMCID: PMC10400981 DOI: 10.1073/pnas.2306046120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.
Collapse
Affiliation(s)
- George H. Hutchins
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Claire E. M. Noble
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - H. Adrian Bunzel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | | | - Paulina Dubiel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Paul M. Molinaro
- Department of Physics, The City College of New York, New York, NY10031
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, NY10016
| | - Rob Barringer
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Hector Blackburn
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Benjamin J. Hardy
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Alice E. Parnell
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Charles Landau
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Paul R. Race
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | | | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY10031
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, NY10016
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - A. Sofia F. Oliveira
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Adrian J. Mulholland
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - J. L. Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| |
Collapse
|
33
|
Leonard RA, Tian Y, Tan F, van Dooren GG, Hayward JA. An essential role for an Fe-S cluster protein in the cytochrome c oxidase complex of Toxoplasma parasites. PLoS Pathog 2023; 19:e1011430. [PMID: 37262100 PMCID: PMC10263302 DOI: 10.1371/journal.ppat.1011430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/13/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) of apicomplexan parasites differs considerably from the ETC of the animals that these parasites infect, and is the target of numerous anti-parasitic drugs. The cytochrome c oxidase complex (Complex IV) of the apicomplexan Toxoplasma gondii ETC is more than twice the mass and contains subunits not found in human Complex IV, including a 13 kDa protein termed TgApiCox13. TgApiCox13 is homologous to a human iron-sulfur (Fe-S) cluster-containing protein called the mitochondrial inner NEET protein (HsMiNT) which is not a component of Complex IV in humans. Here, we establish that TgApiCox13 is a critical component of Complex IV in T. gondii, required for complex activity and stability. Furthermore, we demonstrate that TgApiCox13, like its human homolog, binds two Fe-S clusters. We show that the Fe-S clusters of TgApiCox13 are critical for ETC function, having an essential role in mediating Complex IV integrity. Our study provides the first functional characterisation of an Fe-S protein in Complex IV.
Collapse
Affiliation(s)
- Rachel A. Leonard
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuan Tian
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jenni A. Hayward
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
34
|
Han F, Hu Y, Wu M, He Z, Tian H, Zhou L. Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae. Nat Commun 2023; 14:2542. [PMID: 37248254 DOI: 10.1038/s41467-023-38158-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Tetrahymena thermophila, a classic ciliate model organism, has been shown to possess tubular mitochondrial cristae and highly divergent electron transport chain involving four transmembrane protein complexes (I-IV). Here we report cryo-EM structures of its ~8 MDa megacomplex IV2 + (I + III2 + II)2, as well as a ~ 10.6 MDa megacomplex (IV2 + I + III2 + II)2 at lower resolution. In megacomplex IV2 + (I + III2 + II)2, each CIV2 protomer associates one copy of supercomplex I + III2 and one copy of CII, forming a half ring-shaped architecture that adapts to the membrane curvature of mitochondrial cristae. Megacomplex (IV2 + I + III2 + II)2 defines the relative position between neighbouring half rings and maintains the proximity between CIV2 and CIII2 cytochrome c binding sites. Our findings expand the current understanding of divergence in eukaryotic electron transport chain organization and how it is related to mitochondrial morphology.
Collapse
Affiliation(s)
- Fangzhu Han
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Yiqi Hu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Mengchen Wu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Zhaoxiang He
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Hongtao Tian
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Long Zhou
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
35
|
Abstract
We present a brief review of the mitochondrial respiratory chain with emphasis on complexes I, III and IV, which contribute to the generation of protonmotive force across the inner mitochondrial membrane, and drive the synthesis of ATP by the process called oxidative phosphorylation. The basic structural and functional details of these complexes are discussed. In addition, we briefly review the information on the so-called supercomplexes, aggregates of complexes I-IV, and summarize basic physiological aspects of cell respiration.
Collapse
Affiliation(s)
- Mårten Wikström
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland.
| | - Cristina Pecorilla
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| | - Vivek Sharma
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland; Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| |
Collapse
|
36
|
Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY. Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542198. [PMID: 37292714 PMCID: PMC10245950 DOI: 10.1101/2023.05.24.542198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxaliplatin is a platinum-based alkylating chemotherapeutic agent used for cancer treatment. At high cumulative dosage, the negative effect of oxaliplatin on the heart becomes evident and is linked to a growing number of clinical reports. The aim of this study was to determine how chronic oxaliplatin treatment causes the changes in energy-related metabolic activity in the heart that leads to cardiotoxicity and heart damage in mice. C57BL/6 male mice were treated with a human equivalent dosage of intraperitoneal oxaliplatin (0 and 10 mg/kg) once a week for eight weeks. During the treatment, mice were followed for physiological parameters, ECG, histology and RNA sequencing of the heart. We identified that oxaliplatin induces strong changes in the heart and affects the heart's energy-related metabolic profile. Histological post-mortem evaluation identified focal myocardial necrosis infiltrated with a small number of associated neutrophils. Accumulated doses of oxaliplatin led to significant changes in gene expression related to energy related metabolic pathways including fatty acid (FA) oxidation, amino acid metabolism, glycolysis, electron transport chain, and NAD synthesis pathway. At high accumulative doses of oxaliplatin, the heart shifts its metabolism from FAs to glycolysis and increases lactate production. It also leads to strong overexpression of genes in NAD synthesis pathways such as Nmrk2. Changes in gene expression associated with energy metabolic pathways can be used to develop diagnostic methods to detect oxaliplatin-induced cardiotoxicity early on as well as therapy to compensate for the energy deficit in the heart to prevent heart damage.
Collapse
Affiliation(s)
- Junwei Du
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering Washington University, St. Louis, MO 63130, USA
| | - Leland C Sudlow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Kiana Shahverdi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Haiying Zhou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Megan Michie
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Joshua D Mitchell
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamim Mollah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mikhail Y Berezin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
37
|
Espino-Sanchez T, Wienkers H, Marvin R, Nalder SA, García-Guerrero A, VanNatta P, Jami-Alahmadi Y, Mixon Blackwell A, Whitby F, Wohlschlegel J, Kieber-Emmons M, Hill C, A. Sigala P. Direct tests of cytochrome c and c1 functions in the electron transport chain of malaria parasites. Proc Natl Acad Sci U S A 2023; 120:e2301047120. [PMID: 37126705 PMCID: PMC10175771 DOI: 10.1073/pnas.2301047120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome (cyt) functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs (c and c-2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c-2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c1 for inducible knockdown. Translational repression of cyt c and cyt c1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c-2 knockdown or knockout had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c-2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c-2 has an unusually open active site in which heme is stably coordinated by only a single axial amino acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution.
Collapse
Affiliation(s)
| | - Henry Wienkers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Shai-anne Nalder
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | | | - Peter E. VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, UT84112
| | | | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Frank G. Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | | | | | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| |
Collapse
|
38
|
Guo Y, Karimullina E, Emde T, Otwinowski Z, Borek D, Savchenko A. Monomer and dimer structures of cytochrome bo 3 ubiquinol oxidase from Escherichia coli. Protein Sci 2023; 32:e4616. [PMID: 36880269 PMCID: PMC10037687 DOI: 10.1002/pro.4616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
The Escherichia coli cytochrome bo3 ubiquinol oxidase is a four-subunit heme-copper oxidase that serves as a proton pump in the E. coli aerobic respiratory chain. Despite many mechanistic studies, it is unclear whether this ubiquinol oxidase functions as a monomer, or as a dimer in a manner similar to its eukaryotic counterparts-the mitochondrial electron transport complexes. In this study, we determined the monomeric and dimeric structures of the E. coli cytochrome bo3 ubiquinol oxidase reconstituted in amphipol by cryogenic electron microscopy single particle reconstruction (cryo-EM SPR) to a resolution of 3.15 and 3.46 Å, respectively. We have discovered that the protein can form a dimer with C2 symmetry, with the dimerization interface maintained by interactions between the subunit II of one monomer and the subunit IV of the other monomer. Moreover, the dimerization does not induce significant structural changes in the monomers, except the movement of a loop in subunit IV (residues 67-74).
Collapse
Affiliation(s)
- Yirui Guo
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexasUSA
- Ligo AnalyticsDallasTexasUSA
| | - Elina Karimullina
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
- Center for Structural Genomics of Infectious Diseases (CSGID)ChicagoIllinoisUSA
- Centers for Research on Structural Biology of Infectious Diseases (CSBID)ChicagoIllinoisUSA
| | - Tabitha Emde
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexasUSA
- Center for Structural Genomics of Infectious Diseases (CSGID)ChicagoIllinoisUSA
- Centers for Research on Structural Biology of Infectious Diseases (CSBID)ChicagoIllinoisUSA
| | - Zbyszek Otwinowski
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexasUSA
- Center for Structural Genomics of Infectious Diseases (CSGID)ChicagoIllinoisUSA
- Centers for Research on Structural Biology of Infectious Diseases (CSBID)ChicagoIllinoisUSA
- Department of BiochemistryThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Dominika Borek
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexasUSA
- Center for Structural Genomics of Infectious Diseases (CSGID)ChicagoIllinoisUSA
- Centers for Research on Structural Biology of Infectious Diseases (CSBID)ChicagoIllinoisUSA
- Department of BiochemistryThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
- Center for Structural Genomics of Infectious Diseases (CSGID)ChicagoIllinoisUSA
- Centers for Research on Structural Biology of Infectious Diseases (CSBID)ChicagoIllinoisUSA
- BioZone, Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
39
|
Havens J, Su T, Wang Q, Yu CA, Yu L, Durham B, Millett F. Photoinduced electron transfer in cytochrome bc 1: Dynamics of rotation of the Iron-sulfur protein during bifurcated electron transfer from ubiquinol to cytochrome c 1 and cytochrome b L. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148957. [PMID: 36709837 DOI: 10.1016/j.bbabio.2023.148957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
The electron transfer reactions within wild-type Rhodobacter sphaeroides cytochrome bc1 (cyt bc1) were studied using a binuclear ruthenium complex to rapidly photooxidize cyt c1. When cyt c1, the iron‑sulfur center Fe2S2, and cyt bH were reduced before the reaction, photooxidation of cyt c1 led to electron transfer from Fe2S2 to cyt c1 with a rate constant of ka = 80,000 s-1, followed by bifurcated reduction of both Fe2S2 and cyt bL by QH2 in the Qo site with a rate constant of k2 = 3000 s-1. The resulting Q then traveled from the Qo site to the Qi site and oxidized one equivalent each of cyt bL and cyt bH with a rate constant of k3 = 340 s-1. The rate constant ka was decreased in a nonlinear fashion by a factor of 53 as the viscosity was increased to 13.7. A mechanism that is consistent with the effect of viscosity involves rotational diffusion of the iron‑sulfur protein from the b state with reduced Fe2S2 close to cyt bL to one or more intermediate states, followed by rotation to the final c1 state with Fe2S2 close to cyt c1, and rapid electron transfer to cyt c1.
Collapse
Affiliation(s)
- Jeffrey Havens
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States of America; Vaccines and Therapeutics Division, Chemical and Biological Technologies, Defense Threat Reduction Agency, Fort Belvoir, VA 22060, United States of America
| | - Ting Su
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States of America; ABclonal Technology Woburn, MA 01801, United States of America
| | - Qiyu Wang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States of America; Vesigen Therapeutics Cambridge, MA 02139, United States of America
| | - Chang-An Yu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Linda Yu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Bill Durham
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Francis Millett
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States of America.
| |
Collapse
|
40
|
Katsyv A, Kumar A, Saura P, Pöverlein MC, Freibert SA, T Stripp S, Jain S, Gamiz-Hernandez AP, Kaila VRI, Müller V, Schuller JM. Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC. J Am Chem Soc 2023; 145:5696-5709. [PMID: 36811855 PMCID: PMC10021017 DOI: 10.1021/jacs.2c11683] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Electron bifurcation is a fundamental energy coupling mechanism widespread in microorganisms that thrive under anoxic conditions. These organisms employ hydrogen to reduce CO2, but the molecular mechanisms have remained enigmatic. The key enzyme responsible for powering these thermodynamically challenging reactions is the electron-bifurcating [FeFe]-hydrogenase HydABC that reduces low-potential ferredoxins (Fd) by oxidizing hydrogen gas (H2). By combining single-particle cryo-electron microscopy (cryoEM) under catalytic turnover conditions with site-directed mutagenesis experiments, functional studies, infrared spectroscopy, and molecular simulations, we show that HydABC from the acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui employ a single flavin mononucleotide (FMN) cofactor to establish electron transfer pathways to the NAD(P)+ and Fd reduction sites by a mechanism that is fundamentally different from classical flavin-based electron bifurcation enzymes. By modulation of the NAD(P)+ binding affinity via reduction of a nearby iron-sulfur cluster, HydABC switches between the exergonic NAD(P)+ reduction and endergonic Fd reduction modes. Our combined findings suggest that the conformational dynamics establish a redox-driven kinetic gate that prevents the backflow of the electrons from the Fd reduction branch toward the FMN site, providing a basis for understanding general mechanistic principles of electron-bifurcating hydrogenases.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Anuj Kumar
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany.,SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg 35032, Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Sven A Freibert
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-University of Marburg, Marburg 35032, Germany.,Core Facility "Protein Biochemistry and Spectroscopy", Marburg 35032, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin 14195, Germany
| | - Surbhi Jain
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Jan M Schuller
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg 35032, Germany
| |
Collapse
|
41
|
Nguyen W, Dans MG, Currie I, Awalt JK, Bailey BL, Lumb C, Ngo A, Favuzza P, Palandri J, Ramesh S, Penington J, Jarman KE, Mukherjee P, Chakraborty A, Maier AG, van Dooren GG, Papenfuss T, Wittlin S, Churchyard A, Baum J, Winzeler EA, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. 7- N-Substituted-3-oxadiazole Quinolones with Potent Antimalarial Activity Target the Cytochrome bc1 Complex. ACS Infect Dis 2023; 9:668-691. [PMID: 36853190 PMCID: PMC10012268 DOI: 10.1021/acsinfecdis.2c00607] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 03/01/2023]
Abstract
The development of new antimalarials is required because of the threat of resistance to current antimalarial therapies. To discover new antimalarial chemotypes, we screened the Janssen Jumpstarter library against the P. falciparum asexual parasite and identified the 7-N-substituted-3-oxadiazole quinolone hit class. We established the structure-activity relationship and optimized the antimalarial potency. The optimized analog WJM228 (17) showed robust metabolic stability in vitro, although the aqueous solubility was limited. Forward genetic resistance studies uncovered that WJM228 targets the Qo site of cytochrome b (cyt b), an important component of the mitochondrial electron transport chain (ETC) that is essential for pyrimidine biosynthesis and an established antimalarial target. Profiling against drug-resistant parasites confirmed that WJM228 confers resistance to the Qo site but not Qi site mutations, and in a biosensor assay, it was shown to impact the ETC via inhibition of cyt b. Consistent with other cyt b targeted antimalarials, WJM228 prevented pre-erythrocytic parasite and male gamete development and reduced asexual parasitemia in a P. berghei mouse model of malaria. Correcting the limited aqueous solubility and the high susceptibility to cyt b Qo site resistant parasites found in the clinic will be major obstacles in the future development of the 3-oxadiazole quinolone antimalarial class.
Collapse
Affiliation(s)
- William Nguyen
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Madeline G. Dans
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Iain Currie
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Jon Kyle Awalt
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brodie L. Bailey
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Chris Lumb
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Anna Ngo
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Paola Favuzza
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Josephine Palandri
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Saishyam Ramesh
- Research
School of Biology, The Australian National
University, Canberra 2600, Australia
| | - Jocelyn Penington
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Kate E. Jarman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | | | | | - Alexander G. Maier
- Research
School of Biology, The Australian National
University, Canberra 2600, Australia
| | - Giel G. van Dooren
- Research
School of Biology, The Australian National
University, Canberra 2600, Australia
| | - Tony Papenfuss
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Sergio Wittlin
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, 4003 Basel, Switzerland
| | - Alisje Churchyard
- Department
of Life Sciences, Imperial College London, South Kensington, SW7
2AZ U.K.
| | - Jake Baum
- Department
of Life Sciences, Imperial College London, South Kensington, SW7
2AZ U.K.
- School
of Biomedical Sciences, University of New
South Wales, Sydney 2031, Australia
| | - Elizabeth A. Winzeler
- School
of Medicine, University of California San
Diego, 9500 Gilman Drive
0760, La Jolla, California 92093, United States
| | - Delphine Baud
- Medicines
for Malaria Venture, Geneva 1215, Switzerland
| | - Stephen Brand
- Medicines
for Malaria Venture, Geneva 1215, Switzerland
| | - Paul F. Jackson
- Global
Public Health, Janssen R&D LLC, La Jolla, California 92121, United States
| | - Alan F. Cowman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E. Sleebs
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
42
|
Mühleip A, Flygaard RK, Baradaran R, Haapanen O, Gruhl T, Tobiasson V, Maréchal A, Sharma V, Amunts A. Structural basis of mitochondrial membrane bending by the I-II-III 2-IV 2 supercomplex. Nature 2023; 615:934-938. [PMID: 36949187 PMCID: PMC10060162 DOI: 10.1038/s41586-023-05817-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/09/2023] [Indexed: 03/24/2023]
Abstract
Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- School of Infection and Immunity, University of Glasgow, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Rasmus Kock Flygaard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Rozbeh Baradaran
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Thomas Gruhl
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- MRC Laboratory of Molecular Biology, Cambridge, UK
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, MD, USA
| | - Amandine Maréchal
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
43
|
In silico investigation of cytochrome bc1 molecular inhibition mechanism against Trypanosoma cruzi. PLoS Negl Trop Dis 2023; 17:e0010545. [PMID: 36689459 PMCID: PMC9894551 DOI: 10.1371/journal.pntd.0010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/02/2023] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Chagas' disease is a neglected tropical disease caused by the kinetoplastid protozoan Trypanosoma cruzi. The only therapies are the nitroheterocyclic chemicals nifurtimox and benznidazole that cause various adverse effects. The need to create safe and effective medications to improve medical care remains critical. The lack of verified T. cruzi therapeutic targets hinders medication research for Chagas' disease. In this respect, cytochrome bc1 has been identified as a promising therapeutic target candidate for antibacterial medicines of medical and agricultural interest. Cytochrome bc1 belongs to the mitochondrial electron transport chain and transfers electrons from ubiquinol to cytochrome c1 by the action of two catalytic sites named Qi and Qo. The two binding sites are highly selective, and specific inhibitors exist for each site. Recent studies identified the Qi site of the cytochrome bc1 as a promising drug target against T. cruzi. However, a lack of knowledge of the drug mechanism of action unfortunately hinders the development of new therapies. In this context, knowing the cause of binding site selectivity and the mechanism of action of inhibitors and substrates is crucial for drug discovery and optimization processes. In this paper, we provide a detailed computational investigation of the Qi site of T. cruzi cytochrome b to shed light on the molecular mechanism of action of known inhibitors and substrates. Our study emphasizes the action of inhibitors at the Qi site on a highly unstructured portion of cytochrome b that could be related to the biological function of the electron transport chain complex.
Collapse
|
44
|
Espino-Sanchez TJ, Wienkers H, Marvin RG, Nalder SA, García-Guerrero AE, VanNatta PE, Jami-Alahmadi Y, Blackwell AM, Whitby FG, Wohlschlegel JA, Kieber-Emmons MT, Hill CP, Sigala PA. Direct Tests of Cytochrome Function in the Electron Transport Chain of Malaria Parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525242. [PMID: 36747727 PMCID: PMC9900762 DOI: 10.1101/2023.01.23.525242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs ( c and c -2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c -2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c 1 for inducible knockdown. Translational repression of cyt c and cyt c 1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c -2 knockdown or knock-out had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c -2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c -2 has an unusually open active site in which heme is stably coordinated by only a single axial amino-acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution. SIGNIFICANCE STATEMENT Mitochondria are critical organelles in eukaryotic cells that drive oxidative metabolism. The mitochondrion of Plasmodium malaria parasites is a major drug target that has many differences from human cells and remains poorly studied. One key difference from humans is that malaria parasites express two cytochrome c proteins that differ significantly from each other and play untested and uncertain roles in the mitochondrial electron transport chain (ETC). Our study revealed that one cyt c is essential for ETC function and parasite viability while the second, more divergent protein has unusual structural and biochemical properties and is not required for growth of blood-stage parasites. This work elucidates key biochemical properties and evolutionary differences in the mitochondrial ETC of malaria parasites.
Collapse
Affiliation(s)
- Tanya J. Espino-Sanchez
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Henry Wienkers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Shai-anne Nalder
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Aldo E. García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Peter E. VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, CA, United States
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Frank G. Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, United States
| | | | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
45
|
Wieferig JP, Kühlbrandt W. Analysis of the conformational heterogeneity of the Rieske iron-sulfur protein in complex III 2 by cryo-EM. IUCRJ 2023; 10:27-37. [PMID: 36598500 PMCID: PMC9812224 DOI: 10.1107/s2052252522010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Movement of the Rieske domain of the iron-sulfur protein is essential for intramolecular electron transfer within complex III2 (CIII2) of the respiratory chain as it bridges a gap in the cofactor chain towards the electron acceptor cytochrome c. We present cryo-EM structures of CIII2 from Yarrowia lipolytica at resolutions up to 2.0 Å under different conditions, with different redox states of the cofactors of the high-potential chain. All possible permutations of three primary positions were observed, indicating that the two halves of the dimeric complex act independently. Addition of the substrate analogue decylubiquinone to CIII2 with a reduced high-potential chain increased the occupancy of the Qo site. The extent of Rieske domain interactions through hydrogen bonds to the cytochrome b and cytochrome c1 subunits varied depending on the redox state and substrate. In the absence of quinols, the reduced Rieske domain interacted more closely with cytochrome b and cytochrome c1 than in the oxidized state. Upon addition of the inhibitor antimycin A, the heterogeneity of the cd1-helix and ef-loop increased, which may be indicative of a long-range effect on the Rieske domain.
Collapse
Affiliation(s)
- Jan-Philip Wieferig
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
46
|
Chorol S, Saini P, Mukhopadhyay S P. Synthesis and Properties of Electron-Deficient and Electron-Rich Redox-Active Ionic π-Systems. CHEM REC 2022; 22:e202200172. [PMID: 36069267 DOI: 10.1002/tcr.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/18/2022] [Indexed: 12/14/2022]
Abstract
There is growing interest towards the design and synthesis of organic redox-active systems, which exist in ionic form. Multi- redox systems entail life-sustaining processes like photosynthesis and cellular respiration. The significant challenge for material scientists is to rationally design complex molecular materials that can store and transfer multiple electrons at low operational potentials and are stable under ambient conditions. Also, important are the designed ionic π-systems that combine efficient electron and ion transport. Here, we discuss the synthesis of ionic π-systems which exist in the closed-shell form. Firstly, different classes of ionic arylenediimides and viologens with different π-linkers are discussed from the synthetic, structural and redox perspective. These ionic π-systems are based on the electron deficient π-scaffolds, and are shown to accumulate upto six electrons. We then discuss electron-rich ionic arylenediimides which can exist in anionic form or zwitterionic form. The anionic electron donors have absorption extending to the near Infrared (NIR) region and can be stabilized in aqueous solution. We also discuss the effect of the electron accumulation on the aromaticity and non-aromaticity of the naphthalene and the imide rings of the naphthalenediimides. We finally discuss in brief, the applications related to the organic mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- Sonam Chorol
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Poonam Saini
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | | |
Collapse
|
47
|
Maclean AE, Hayward JA, Huet D, van Dooren GG, Sheiner L. The mystery of massive mitochondrial complexes: the apicomplexan respiratory chain. Trends Parasitol 2022; 38:1041-1052. [PMID: 36302692 PMCID: PMC10434753 DOI: 10.1016/j.pt.2022.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.
Collapse
Affiliation(s)
- Andrew E Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - Diego Huet
- Center for Tropical & Emerging Diseases, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
48
|
Król S, Fedotovskaya O, Högbom M, Ädelroth P, Brzezinski P. Electron and proton transfer in the M. smegmatis III 2IV 2 supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148585. [PMID: 35753381 DOI: 10.1016/j.bbabio.2022.148585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The M. smegmatis respiratory III2IV2 supercomplex consists of a complex III (CIII) dimer flanked on each side by a complex IV (CIV) monomer, electronically connected by a di-heme cyt. cc subunit of CIII. The supercomplex displays a quinol oxidation‑oxygen reduction activity of ~90 e-/s. In the current work we have investigated the kinetics of electron and proton transfer upon reaction of the reduced supercomplex with molecular oxygen. The data show that, as with canonical CIV, oxidation of reduced CIV at pH 7 occurs in three resolved components with time constants ~30 μs, 100 μs and 4 ms, associated with the formation of the so-called peroxy (P), ferryl (F) and oxidized (O) intermediates, respectively. Electron transfer from cyt. cc to the primary electron acceptor of CIV, CuA, displays a time constant of ≤100 μs, while re-reduction of cyt. cc by heme b occurs with a time constant of ~4 ms. In contrast to canonical CIV, neither the P → F nor the F → O reactions are pH dependent, but the P → F reaction displays a H/D kinetic isotope effect of ~3. Proton uptake through the D pathway in CIV displays a single time constant of ~4 ms, i.e. a factor of ~40 slower than with canonical CIV. The slowed proton uptake kinetics and absence of pH dependence are attributed to binding of a loop from the QcrB subunit of CIII at the D proton pathway of CIV. Hence, the data suggest that function of CIV is modulated by way of supramolecular interactions with CIII.
Collapse
Affiliation(s)
- Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
49
|
Ustynyuk LY, Tikhonov AN. Plastoquinol Oxidation: Rate-Limiting Stage in the Electron Transport Chain of Chloroplasts. BIOCHEMISTRY (MOSCOW) 2022; 87:1084-1097. [DOI: 10.1134/s0006297922100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Zara V, De Blasi G, Ferramosca A. Assembly of the Multi-Subunit Cytochrome bc1 Complex in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms231810537. [PMID: 36142449 PMCID: PMC9502982 DOI: 10.3390/ijms231810537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
The cytochrome bc1 complex is an essential component of the mitochondrial respiratory chain of the yeast Saccharomyces cerevisiae. It is composed of ten protein subunits, three of them playing an important role in electron transfer and proton pumping across the inner mitochondrial membrane. Cytochrome b, the central component of this respiratory complex, is encoded by the mitochondrial genome, whereas all the other subunits are of nuclear origin. The assembly of all these subunits into the mature and functional cytochrome bc1 complex is therefore a complicated process which requires the participation of several chaperone proteins. It has been found that the assembly process of the mitochondrial bc1 complex proceeds through the formation of distinct sub-complexes in an ordered sequence. Most of these sub-complexes have been thoroughly characterized, and their molecular compositions have also been defined. This study critically analyses the results obtained so far and highlights new possible areas of investigation.
Collapse
|