1
|
Saini S, Goel K, Ghosh S, Das A, Saraogi I. Effects of PNA Sequence and Target Site Selection on Function of a 4.5S Non-Coding RNA. Chembiochem 2024:e202400029. [PMID: 38595046 DOI: 10.1002/cbic.202400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Peptide nucleic acid (PNA) based antisense strategy is a promising therapeutic approach to specifically inhibit target gene expression. However, unlike protein coding genes, identification of an ideal PNA binding site for non-coding RNA is not straightforward. Here, we compare the inhibitory activities of PNA molecules that bind a non-coding 4.5S RNA called SRP RNA, a key component of the bacterial signal recognition particle (SRP). A 9-mer PNA (PNA9) complementary to the tetraloop region of the RNA was more potent in inhibiting its interaction with the SRP protein, compared to an 8-mer PNA (PNA8) targeting a stem-loop. PNA9, which contained a homo-pyrimidine sequence could form a triplex with the complementary stretch of RNA in vitro as confirmed using a fluorescent derivative of PNA9 (F-PNA13). The RNA-PNA complex formation resulted in inhibition of SRP function with PNA9 and F-PNA13, but not PNA8 highlighting the importance of target site selection. Surprisingly, F-PNA13 which was more potent in inhibiting SRP function in vitro, showed weaker antibacterial activity compared to PNA9 likely due to poor cell penetration of the longer PNA. Our results underscore the importance of suitable target site selection and optimum PNA length to develop better antisense molecules against non-coding RNA.
Collapse
Affiliation(s)
- Snehlata Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Khushboo Goel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Sudipta Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
2
|
Wang L, Ling Y, Tian Y, Wang X, Sasaki S, Taniguchi Y. The Development of Non-natural Type Nucleoside to Stabilize Triplex DNA Formation against CG and TA Inversion Site. Curr Med Chem 2024; 31:2663-2686. [PMID: 37183460 DOI: 10.2174/0929867330666230512114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/16/2023]
Abstract
Based on the sequence-specific recognition of target duplex DNA by triplexforming oligonucleotides (TFOs) at the major groove side, the antigene strategy has been exploited as a gene-targeting tool with considerable attention. Triplex DNA is formed via the specific base triplets by the Hoogsteen or reverse Hoogsteen hydrogen bond interaction between TFOs and the homo-purine strand from the target duplex DNA, leading to the established sequence-specificity. However, the presence of inversion sites, which are known as non-natural nucleosides that can form satisfactory interactions with 2'- deoxythymidine (dT) and 2'-deoxycytidine (dC) in TA and CG base pairs in the target homo-purine DNA sequences, drastically restricts the formation of classically stable base triplets and even the triplex DNA. Therefore, the design of non-natural type nucleosides, which can effectively recognize CG or/and TA inversion sites with satisfactory selectivity, should be of great significance to expanding the triplex-forming sequence. Here, this review mainly provides a comprehensive review of the current development of novel nonnatural nucleosides to recognize CG or/and TA inversion sites in triplex DNA formation against double-strand DNA (dsDNA).
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong, China
| | - Yan Tian
- School of Pharmacy, Nantong University, Nantong, China
| | - Xiao Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, Nagasaki City, Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Maldonado R, Längst G. The chromatin - triple helix connection. Biol Chem 2023; 404:1037-1049. [PMID: 37506218 DOI: 10.1515/hsz-2023-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Mammalian genomes are extensively transcribed, producing a large number of coding and non-coding transcripts. A large fraction of the nuclear RNAs is physically associated with chromatin, functioning in gene activation and silencing, shaping higher-order genome organisation, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions. Different mechanisms allow the tethering of these chromatin-associated RNAs (caRNA) to chromosomes, including RNA binding proteins, the RNA polymerases and R-loops. In this review, we focus on the sequence-specific targeting of RNA to DNA by forming triple helical structures and describe its interplay with chromatin. It turns out that nucleosome positioning at triple helix target sites and the nucleosome itself are essential factors in determining the formation and stability of triple helices. The histone H3-tail plays a critical role in triple helix stabilisation, and the role of its epigenetic modifications in this process is discussed.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Wang L, Notomi R, Sasaki S, Taniguchi Y. Inhibition of transcription and antiproliferative effects in a cancer cell line using antigene oligonucleotides containing artificial nucleoside analogues. RSC Med Chem 2023; 14:1482-1491. [PMID: 37593572 PMCID: PMC10429662 DOI: 10.1039/d3md00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 08/19/2023] Open
Abstract
Antigene methods are promising novel therapeutic approaches to suppress abnormal gene expression. One of these methods inhibits transcription by forming triplex DNA against duplex DNA. However, by using natural-type triplex-forming oligonucleotides (TFOs), stable triplex formation is limited to homopurine and homopyrimidine strands in targeted duplex DNA. We recently developed artificial nucleoside analogues with the ability to recognize CG and TA inversion sites. We successfully formed stable unnatural-type triplex DNA for duplex DNA containing a CG base pair and extended the target sequence using TFOs containing 2-amino-3-methylpyridinyl pseudo-dC (3MeAP-ΨdC). Therefore, this present study investigated triplex-forming regions and synthesized antigene TFOs containing 3MeAP-ΨdC. Some of the synthesized antigene TFOs reduced transcription products and inhibited cell proliferation in several types of cultured cancer cells. The antigene effects of antigene TFOs containing artificial nucleic acids were markedly stronger than those of natural-type TFOs, and these results clearly demonstrated the usefulness of incorporating artificial nucleic acids within TFOs.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University Nantong 226001 PR China
| | - Ryotaro Notomi
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
- Graduate School of Pharmaceutical Sciences, Nagasaki International University 2825-7 Huis Ten Bosch Machi, Sasebo City Nagasaki 859-3298 Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
5
|
Notomi R, Sasaki S, Taniguchi Y. Recognition of 5-methyl-CG and CG base pairs in duplex DNA with high stability using antiparallel-type triplex-forming oligonucleotides with 2-guanidinoethyl-2'-deoxynebularine. Nucleic Acids Res 2022; 50:12071-12081. [PMID: 36454012 PMCID: PMC9757063 DOI: 10.1093/nar/gkac1110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
The formation of triplex DNA is a site-specific recognition method that directly targets duplex DNA. However, triplex DNA formation is generally formed for the GC and AT base pairs of duplex DNA, and there are no natural nucleotides that recognize the CG and TA base pairs, or even the 5-methyl-CG (5mCG) base pair. Moreover, duplex DNA, including 5mCG base pairs, epigenetically regulates gene expression in vivo, and thus targeting strategies are of biological importance. Therefore, the development of triplex-forming oligonucleotides (TFOs) with artificial nucleosides that selectively recognize these base pairs with high affinity is needed. We recently reported that 2'-deoxy-2-aminonebularine derivatives exhibited the ability to recognize 5mCG and CG base pairs in triplex formation; however, this ability was dependent on sequences. Therefore, we designed and synthesized new nucleoside derivatives based on the 2'-deoxy-nebularine (dN) skeleton to shorten the linker length connecting to the hydrogen-bonding unit in formation of the antiparallel motif triplex. We successfully demonstrated that TFOs with 2-guanidinoethyl-2'-deoxynebularine (guanidino-dN) recognized 5mCG and CG base pairs with very high affinity in all four DNA sequences with different adjacent nucleobases of guanidino-dN as well as in the promoter sequences of human genes containing 5mCG base pairs with a high DNA methylation frequency.
Collapse
Affiliation(s)
- Ryotaro Notomi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo city, Nagasaki 859-3298, Japan
| | - Yosuke Taniguchi
- To whom correspondence should be addressed. Tel: +81 92 642 6569; Fax: +81 92 642 6876;
| |
Collapse
|
6
|
RNA:DNA triple helices: from peculiar structures to pervasive chromatin regulators. Essays Biochem 2021; 65:731-740. [PMID: 33835128 DOI: 10.1042/ebc20200089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
The genomes of complex eukaryotes largely contain non-protein-coding DNA, which is pervasively transcribed into a plethora of non-coding RNAs (ncRNAs). The functional importance of many of these ncRNAs has been investigated in the last two decades, revealing their crucial and multifaceted roles in chromatin regulation. A common mode of action of ncRNAs is the recruitment of chromatin modifiers to specific regions in the genome. Whereas many ncRNA-protein interactions have been characterised in detail, binding of ncRNAs to their DNA target sites is much less understood. Recently developed RNA-centric methods have mapped the genome-wide distribution of ncRNAs, however, how ncRNAs achieve locus-specificity remains mainly unresolved. In terms of direct RNA-DNA interactions, two kinds of triple-stranded structures can be formed: R-loops consisting of an RNA:DNA hybrid and a looped out DNA strand, and RNA:DNA triple helices (triplexes), in which the RNA binds to the major groove of the DNA double helix by sequence-specific Hoogsteen base pairing. In this essay, we will review the current knowledge about RNA:DNA triplexes, summarising triplex formation rules, detection methods, and ncRNAs reported to engage in triplexes. While the functional characterisation of RNA:DNA triplexes is still anecdotal, recent advances in high-throughput and computational analyses indicate their widespread distribution in the genome. Thus, we are witnessing a paradigm shift in the appreciation of RNA:DNA triplexes, away from exotic structures towards a prominent mode of ncRNA-chromatin interactions.
Collapse
|
7
|
Rangel AE, Hariri AA, Eisenstein M, Soh HT. Engineering Aptamer Switches for Multifunctional Stimulus-Responsive Nanosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003704. [PMID: 33165999 DOI: 10.1002/adma.202003704] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/19/2020] [Indexed: 05/15/2023]
Abstract
Although RNA and DNA are best known for their capacity to encode biological information, it has become increasingly clear over the past few decades that these biomolecules are also capable of performing other complex functions, such as molecular recognition (e.g., aptamers) and catalysis (e.g., ribozymes). Building on these foundations, researchers have begun to exploit the predictable base-pairing properties of RNA and DNA in order to utilize nucleic acids as functional materials that can undergo a molecular "switching" process, performing complex functions such as signaling or controlled payload release in response to external stimuli including light, pH, ligand-binding and other microenvironmental cues. Although this field is still in its infancy, these efforts offer exciting potential for the development of biologically based "smart materials". Herein, ongoing progress in the use of nucleic acids as an externally controllable switching material is reviewed. The diverse range of mechanisms that can trigger a stimulus response, and strategies for engineering those functionalities into nucleic acid materials are explored. Finally, recent progress is discussed in incorporating aptamer switches into more complex synthetic nucleic acid-based nanostructures and functionalized smart materials.
Collapse
Affiliation(s)
- Alexandra E Rangel
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Amani A Hariri
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
8
|
Maldonado R, Längst G. Analyzing RNA-DNA Triplex Formation in Chromatin. Methods Mol Biol 2020; 2161:247-254. [PMID: 32681517 DOI: 10.1007/978-1-0716-0680-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A significant fraction of non-coding RNAs (ncRNAs) is associated with chromatin, shown to regulate gene expression and to organize nuclear architecture. Mechanisms of direct and indirect RNA-chromatin interactions have been described, including the sequence-specific formation of triple helix structures. Triplexes are formed by the sequence-specific binding of RNA to the bases located in the major groove of DNA. We recently showed that triplexes do exist in the context of cellular chromatin and that these structures are stabilized by the histone H3 tail of adjacent nucleosomes. The in vitro characterization of the specificity and binding affinity of triplex sequences next to nucleosomes are essential parameters to identify potential sites of RNA-chromatin interaction in vivo. Here we provide a detailed protocol to determine the influence of nucleosome positioning on triple helix formation. This assay allows the comparative quantification of triplex formation and specificity for triplex targeting sequences relative to the spatial nucleosome position.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Laboratorio de Biología Celular y Molecular Aplicada, Universidad Mayor, Temuco, Chile
| | - Gernot Längst
- Biochemistry Center Regensburg, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Park JJ, Han SY. Alternated Branching Ratios by Anomaly in Collision-Induced Dissociation of Proton-Bound Hoogsteen Base Pairs of 1-Methylcytosine with 1-Methylguanine and 9-Methylguanine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:846-854. [PMID: 30911905 DOI: 10.1007/s13361-019-02161-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/26/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
A comparative study on the proton-bound complexes of 1-methylcytosine (1-mC) with 1-methylguanine (1-mG) and 9-methylguanine (9-mG), [1-mC:1-mG:H]+ and [1-mC:9-mG:H]+, respectively, was carried out using energy-resolved collision-induced dissociation (ER-CID) experiments in combination with quantum chemical calculations. In ER-CID experiments, the measured survival yields indicated an essentially identical stability for the two proton-bound complexes. In comparison with the lowest-energy structures and base-pairing energetics predicted at the B3LYP/6-311+G(2d,2p) theory level, both complexes produced in this study were suggested to be proton-bound Hoogsteen base pairs. Curiously, despite the similarity in structures, binding energetics, and potential energy surfaces predicted by the B3LYP theory, the fragment branching ratios exhibited an intriguing alternation between the two proton-bound Hoogsteen base pairs. The CID of [1-mC:1-mG:H]+ produced protonated cytosines, [1-mC:H]+, more abundantly than [1-mG:H]+, whereas that of [1-mC:9-mG:H]+ gave rise to a more pronounced production of protonated guanines, [9-mG:H]+. However, using the proton affinities of moieties predicted by the high-accuracy methods, including CBS-QB3 and the Guassian-4 theory, the anomaly known for [Cytosine:Guanine:H]+ (J. Am. Soc. Mass Spectrom. 29, 2368-2379 (2018)) successfully accounted for the alternated branching ratios. Thereby, the anomaly, more specifically, the production of proton-transferred fragments of O-protonated cytosines in the CID of proton-bound Hoogsteen base pairs, is indeed real, which is disclosed as the alternated branching ratios in the CID spectra of [1-mC:1-mG:H]+ and [1-mC:9-mG:H]+ in this study. Graphical Abstract .
Collapse
Affiliation(s)
- Jeong Ju Park
- Department of Nanochemistry, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Sang Yun Han
- Department of Nanochemistry, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
10
|
Maldonado R, Schwartz U, Silberhorn E, Längst G. Nucleosomes Stabilize ssRNA-dsDNA Triple Helices in Human Cells. Mol Cell 2019; 73:1243-1254.e6. [PMID: 30770238 DOI: 10.1016/j.molcel.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/07/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Chromatin-associated non-coding RNAs modulate the epigenetic landscape and its associated gene expression program. The formation of triple helices is one mechanism of sequence-specific targeting of RNA to chromatin. With this study, we show an important role of the nucleosome and its relative positioning to the triplex targeting site (TTS) in stabilizing RNA-DNA triplexes in vitro and in vivo. Triplex stabilization depends on the histone H3 tail and the location of the TTS close to the nucleosomal DNA entry-exit site. Genome-wide analysis of TTS-nucleosome arrangements revealed a defined chromatin organization with an enrichment of arrangements that allow triplex formation at active regulatory sites and accessible chromatin. We further developed a method to monitor nucleosome-RNA triplexes in vivo (TRIP-seq), revealing RNA binding to TTS sites adjacent to nucleosomes. Our data strongly support an activating role for RNA triplex-nucleosome complexes, pinpointing triplex-mediated epigenetic regulation in vivo.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| | - Uwe Schwartz
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| | - Elisabeth Silberhorn
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| | - Gernot Längst
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
11
|
Park JJ, Lee CS, Han SY. Proton Transfer Accounting for Anomalous Collision-Induced Dissociation of Proton-Bound Hoogsteen Base Pair of Cytosine and Guanine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2368-2379. [PMID: 30215166 DOI: 10.1007/s13361-018-2060-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
To understand the anomalous collision-induced dissociation (CID) behavior of the proton-bound Hoogsteen base pair of cytosine (C) and guanine (G), C:H+∙∙∙G, we investigated CID of a homologue series of proton-bound heterodimers of C, 1-methylcytosine, and 5-methylcytosine with G as a common base partner. The CID experiments were performed in an energy-resolved way (ER-CID) under both multiple and near-single collision conditions. The relative stabilities of the protonated complexes examined by ER-CID suggested that the proton-bound complexes produced by electrospray ionization in this study are proton-bound Hoogsteen base pairs. On the other hand, in contrast to the other base pairs, CID of C:H+∙∙∙G exhibited more abundant productions of C:H+, the fragment protonated on the moiety with a smaller proton affinity, than that of G:H+. This appeared to contradict general prediction based on the kinetic method. However, further theoretical exploration of potential energy surfaces found that there can be facile proton transfers in the proton-bound Hoogsteen base pairs during the CID process, which makes the process accessible to an additional product state of O-protonated C for C:H+ fragments. The presence of an additional dissociation channel, which in other words corresponds to twofold degeneracy in the transition state leading to C:H+ fragments, effectively doubles the apparent reaction rate for production of C:H+. In this way, the process gives rise to the anomaly, the observed pronounced formation of C:H+ in the CID of the proton-bound Hoogsteen base pair, C:H+∙∙∙G. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jeong Ju Park
- Department of Nanochemistry, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Choong Sik Lee
- Scientific Investigation Laboratory, Ministry of National Defense, 22 Itaewon-ro, Yongsan-gu, Seoul, 04383, Republic of Korea
| | - Sang Yun Han
- Department of Nanochemistry, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
12
|
Maldonado R, Filarsky M, Grummt I, Längst G. Purine- and pyrimidine-triple-helix-forming oligonucleotides recognize qualitatively different target sites at the ribosomal DNA locus. RNA (NEW YORK, N.Y.) 2018; 24:371-380. [PMID: 29222118 PMCID: PMC5824356 DOI: 10.1261/rna.063800.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 05/04/2023]
Abstract
Triplexes are noncanonical DNA structures, which are functionally associated with regulation of gene expression through ncRNA targeting to chromatin. Based on the rules of Hoogsteen base-pairing, polypurine sequences of a duplex can potentially form triplex structures with single-stranded oligonucleotides. Prediction of triplex-forming sequences by bioinformatics analyses have revealed enrichment of potential triplex targeting sites (TTS) at regulatory elements, mainly in promoters and enhancers, suggesting a potential function of RNA-DNA triplexes in transcriptional regulation. Here, we have quantitatively evaluated the potential of different sequences of human and mouse ribosomal RNA genes (rDNA) to form triplexes at different salt and pH conditions. We show by biochemical and biophysical approaches that some of these predicted sequences form triplexes with high affinity, following the canonical rules for triplex formation. We further show that RNA triplex-forming oligos (TFOs) are more stable than their DNA counterpart, and point mutations strongly affect triplex formation. We further show differential sequence requirements of pyrimidine and purine TFO sequences for efficient binding, depending on the G-C content of the TTS. The unexpected sequence specificity, revealing distinct sequence requirements for purine and pyrimidine TFOs, shows that in addition to the Hoogsteen pairing rules, a sequence code and mutations have to be taken into account to predict genomic TTS.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| | - Michael Filarsky
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Gernot Längst
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Jun J, Han SY. Theoretical exploration of gas-phase conformers of proton-bound non-covalent heterodimers of guanine and cytosine rare tautomers: structures and energies. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2165-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Komissarov AS, Galkina SA, Koshel EI, Kulak MM, Dyomin AG, O'Brien SJ, Gaginskaya ER, Saifitdinova AF. New high copy tandem repeat in the content of the chicken W chromosome. Chromosoma 2017; 127:73-83. [PMID: 28951974 DOI: 10.1007/s00412-017-0646-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Abstract
The content of repetitive DNA in avian genomes is considerably less than in other investigated vertebrates. The first descriptions of tandem repeats were based on the results of routine biochemical and molecular biological experiments. Both satellite DNA and interspersed repetitive elements were annotated using library-based approach and de novo repeat identification in assembled genome. The development of deep-sequencing methods provides datasets of high quality without preassembly allowing one to annotate repetitive elements from unassembled part of genomes. In this work, we search the chicken assembly and annotate high copy number tandem repeats from unassembled short raw reads. Tandem repeat (GGAAA)n has been identified and found to be the second after telomeric repeat (TTAGGG)n most abundant in the chicken genome. Furthermore, (GGAAA)n repeat forms expanded arrays on the both arms of the chicken W chromosome. Our results highlight the complexity of repetitive sequences and update data about organization of sex W chromosome in chicken.
Collapse
Affiliation(s)
- Aleksey S Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Sredniy av. 41, 199034, Saint Petersburg, Russia
| | - Svetlana A Galkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
- Saint Petersburg Association of Scientists and Scholars, Universitetskaya emb. 5, Saint Petersburg, 199034, Russia
| | - Elena I Koshel
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
| | - Maria M Kulak
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
| | - Aleksander G Dyomin
- Saint Petersburg Association of Scientists and Scholars, Universitetskaya emb. 5, Saint Petersburg, 199034, Russia
- Chromas Research Resource Center, Saint Petersburg State University, Oranienbaumskoye sh. 2, 198504, Saint Petersburg, Russia
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Sredniy av. 41, 199034, Saint Petersburg, Russia
- Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida, 33004, USA
| | - Elena R Gaginskaya
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
| | - Alsu F Saifitdinova
- Chromas Research Resource Center, Saint Petersburg State University, Oranienbaumskoye sh. 2, 198504, Saint Petersburg, Russia.
- International Centre of Reproductive Medicine, Komendantskiy av. 53-1, Saint Petersburg, 197350, Russia.
| |
Collapse
|
15
|
D'Souza DJ, Kool ET. Solvent, pH, and Ionic Effects on the Binding of Single-Stranded DNA by Circular Oligodeoxynucleotides. Bioorg Med Chem Lett 2017; 4:965-970. [PMID: 27840561 DOI: 10.1016/s0960-894x(01)80664-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of changing solution conditions on the strength of triple helical complexes formed between pyrimidine-rich circular DNA oligonucleotides and their homopurine complements are examined. The complexes display properties different from those seen for other types of DNA triplexes.
Collapse
Affiliation(s)
- David J D'Souza
- Department of Chemistry, University of Rochester, Rochester, New York, 14627
| | - Eric T Kool
- Department of Chemistry, University of Rochester, Rochester, New York, 14627
| |
Collapse
|
16
|
Han SY. Investigation of Microscopic Hydration of Protonated Cytosine by Density Functional Theory Calculations. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sang Yun Han
- Department of Nanochemistry; Gachon University; Seongnam Gyeonggi 461-701 Republic of Korea
| |
Collapse
|
17
|
Wu RR, Yang B, Berden G, Oomens J, Rodgers MT. Gas-Phase Conformations and Energetics of Protonated 2'-Deoxyguanosine and Guanosine: IRMPD Action Spectroscopy and Theoretical Studies. J Phys Chem B 2014; 118:14774-84. [PMID: 25423364 DOI: 10.1021/jp508019a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The gas-phase structures of protonated 2'-deoxyguanosine, [dGuo+H](+), and its RNA analogue protonated guanosine, [Guo+H](+), are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical electronic structure calculations. IRMPD action spectra are measured over the range extending from ∼550 to 1900 cm(-1) using the FELIX free electron laser and from ∼2800 to 3800 cm(-1) using an optical parametric oscillator/amplifier (OPO/OPA) laser system. The measured IRMPD spectra of [dGuo+H](+) and [Guo+H](+) are compared to each other and to B3LYP/6-311+G(d,p) linear IR spectra predicted for the stable low-energy conformations computed for these species to determine the most favorable site of protonation, identify the structures accessed in the experiments, and elucidate the influence of the 2'-hydroxyl substituent on the structures and the IRMPD spectral features. Theoretical energetics and the measured IRMPD spectra find that N7 protonation is preferred for both [dGuo+H](+) and [Guo+H](+), whereas O6 and N3 protonated conformers are found to be much less stable. The 2'-hydroxyl substituent does not exert a significant influence on the structures and relative stabilities of the stable low-energy conformations of [dGuo+H](+) versus [Guo+H](+) but does provide additional opportunities for hydrogen bonding such that more low-energy structures are found for [Guo+H](+). [dGuo+H](+) and [Guo+H](+) share very parallel IRMPD spectral features in the FELIX and OPO regions, whereas the effect of the 2'-hydroxyl substituent is primarily seen in the relative intensities of the measured IR bands. The measured OPO/OPA spectral signatures, primarily reflecting the IR features associated with the O-H and N-H stretches, provide complementary information to that of the FELIX region and enable the conformers that arise from different protonation sites to be more readily distinguished. Insight gained from this and parallel studies of other DNA and RNA nucleosides and nucleotides should help better elucidate the effects of the local environment on the overall structures of DNA and RNA.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Bo Yang
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - G Berden
- Institute for Molecules and Materials, Radbound University Nijmegen , FELIX Facility, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, Radbound University Nijmegen , FELIX Facility, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.,van't Hoff Institute for Molecular Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
18
|
Lin LJ, Lin SB, Wu CW, Kan LS. 1H NMR Study on the pH-Dependent Polymorphism of a DNA Triplex with Oligonucleoside Methylphosphonate Analogues. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199500062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Kan LS, Ono A. Triplex Formation as Functions of Variation of Sequence and Chain Length of Deoxyoligonucleotides at Varied Concentrations of NaCl and MgCl2. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199400120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Ono A, Kan LS. Triplex Formation of Oligonucleotides Containing 2′-O-Methylurldine, 5-Bromo-2′-OMethyluridine and 2′-0-Methycytidine. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199400119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo. Proc Natl Acad Sci U S A 2013; 110:10970-5. [PMID: 23776224 DOI: 10.1073/pnas.1309590110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex that extends the 3' ends of linear chromosomes. The specialized telomerase reverse transcriptase requires a multidomain RNA (telomerase RNA, TER), which includes an integral RNA template and functionally important template-adjacent pseudoknot. The structure of the human TER pseudoknot revealed that the loops interact with the stems to form a triple helix shown to be important for activity in vitro. A similar triple helix has been predicted to form in diverse fungi TER pseudoknots. The solution NMR structure of the Kluyveromyces lactis pseudoknot, presented here, reveals that it contains a long pyrimidine motif triple helix with unexpected features that include three individual bulge nucleotides and a C(+)•G-C triple adjacent to a stem 2-loop 2 junction. Despite significant differences in sequence and base triples, the 3D shape of the human and K. lactis TER pseudoknots are remarkably similar. Analysis of the effects of nucleotide substitutions on cell growth and telomere lengths provides evidence that this conserved structure forms in endogenously assembled telomerase and is essential for telomerase function in vivo.
Collapse
|
22
|
Abstract
The physicochemical properties of small molecules as well as macromolecules are modulated by solution pH, and DNA is no exception. Special sequences of DNA can adopt unusual conformations e.g., triplex, i-motif and A-motif, depending on solution pH. The specific range of pH for these unusual structures is dictated by the pKa of protonation of the relevant nucleobase involved in the resultant non-canonical base pairing that is required to stabilise the structure. The biological significance of these pH-dependent structures is not yet clear. However, these non-B-DNA structures have been used to design different devices to direct chemical reactions, generate mechanical force, sense pH, etc. The performance of these devices can be monitored by a photonic signal. They are autonomous and their ‘waste free’ operation cycles makes them highly processive. Applications of these devices help to increase understanding of the structural polymorphism of the motifs themselves. The design of these devices has continuously evolved to improve their performance efficiency in different contexts. In some examples, these devices have been shown to perform inside complex living systems with similar efficiencies, to report on the chemical environment there. The robust performance of these devices opens up exciting possibilities for pH-sensitive DNA devices in the study of various pH-regulated biological events.
Collapse
Affiliation(s)
- Sonali Saha
- National Centre for Biological Sciences TIFR, GKVK, Bellary Road, Bangalore 560065 India
| | - Yamuna Krishnan*
- National Centre for Biological Sciences TIFR, GKVK, Bellary Road, Bangalore 560065 India
| |
Collapse
|
23
|
An in silico study of the protonated DNA triplex: In vivo stability of C+GC in a DNA triple helix. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Jain AK, Bhattacharya S. Groove Binding Ligands for the Interaction with Parallel-Stranded ps-Duplex DNA and Triplex DNA. Bioconjug Chem 2010; 21:1389-403. [DOI: 10.1021/bc900247s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Akash K. Jain
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
25
|
Schneider UV, Mikkelsen ND, Jøhnk N, Okkels LM, Westh H, Lisby G. Optimal design of parallel triplex forming oligonucleotides containing Twisted Intercalating Nucleic Acids--TINA. Nucleic Acids Res 2010; 38:4394-403. [PMID: 20338879 PMCID: PMC2910062 DOI: 10.1093/nar/gkq188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Twisted intercalating nucleic acid (TINA) is a novel intercalator and stabilizer of Hoogsteen type parallel triplex formations (PT). Specific design rules for position of TINA in triplex forming oligonucleotides (TFOs) have not previously been presented. We describe a complete collection of easy and robust design rules based upon more than 2500 melting points (Tm) determined by FRET. To increase the sensitivity of PT, multiple TINAs should be placed with at least 3 nt in-between or preferable one TINA for each half helixturn and/or whole helixturn. We find that ΔTm of base mismatches on PT is remarkably high (between 7.4 and 15.2°C) compared to antiparallel duplexes (between 3.8 and 9.4°C). The specificity of PT by ΔTm increases when shorter TFOs and higher pH are chosen. To increase ΔTms, base mismatches should be placed in the center of the TFO and when feasible, A, C or T to G base mismatches should be avoided. Base mismatches can be neutralized by intercalation of a TINA on each side of the base mismatch and masked by a TINA intercalating direct 3′ (preferable) or 5′ of it. We predict that TINA stabilized PT will improve the sensitivity and specificity of DNA based clinical diagnostic assays.
Collapse
Affiliation(s)
- Uffe V Schneider
- QuantiBact Inc, Department of Clinical Microbiology, Hvidovre Hospital, Kettegaards Alle 30, 2650 Hvidovre, Denmark.
| | | | | | | | | | | |
Collapse
|
26
|
Davenport CF, Tümmler B. Abundant oligonucleotides common to most bacteria. PLoS One 2010; 5:e9841. [PMID: 20352124 PMCID: PMC2843746 DOI: 10.1371/journal.pone.0009841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 03/03/2010] [Indexed: 11/25/2022] Open
Abstract
Background Bacteria show a bias in their genomic oligonucleotide composition far beyond that dictated by G+C content. Patterns of over- and underrepresented oligonucleotides carry a phylogenetic signal and are thus diagnostic for individual species. Patterns of short oligomers have been investigated by multiple groups in large numbers of bacteria genomes. However, global distributions of the most highly overrepresented mid-sized oligomers have not been assessed across all prokaryotes to date. We surveyed overrepresented mid-length oligomers across all prokaryotes and normalised for base composition and embedded oligomers using zero and second order Markov models. Principal Findings Here we report a presumably ancient set of oligomers conserved and overrepresented in nearly all branches of prokaryotic life, including Archaea. These oligomers are either adenine rich homopurines with one to three guanine nucleosides, or homopyridimines with one to four cytosine nucleosides. They do not show a consistent preference for coding or non-coding regions or aggregate in any coding frame, implying a role in DNA structure and as polypeptide binding sites. Structural parameters indicate these oligonucleotides to be an extreme and rigid form of B-DNA prone to forming triple stranded helices under common physiological conditions. Moreover, the narrow minor grooves of these structures are recognised by DNA binding and nucleoid associated proteins such as HU. Conclusion Homopurine and homopyrimidine oligomers exhibit distinct and unusual structural features and are present at high copy number in nearly all prokaryotic lineages. This fact suggests a non-neutral role of these oligonucleotides for bacterial genome organization that has been maintained throughout evolution.
Collapse
Affiliation(s)
- Colin F Davenport
- Pediatric Pneumology and Neonatology, Hanover Medical School, Hanover, Lower Saxony, Germany.
| | | |
Collapse
|
27
|
Schneider UV, Severinsen JK, Géci I, Okkels LM, Jøhnk N, Mikkelsen ND, Klinge T, Pedersen EB, Westh H, Lisby G. A novel FRET pair for detection of parallel DNA triplexes by the LightCycler. BMC Biotechnol 2010; 10:4. [PMID: 20102641 PMCID: PMC2823659 DOI: 10.1186/1472-6750-10-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melting temperature of DNA structures can be determined on the LightCycler using quenching of FAM. This method is very suitable for pH independent melting point (Tm) determination performed at basic or neutral pH, as a high throughput alternative to UV absorbance measurements. At acidic pH quenching of FAM is not very suitable, since the fluorescence of FAM is strongly pH dependent and drops with acidic pH.Hoogsteen based parallel triplex helix formation requires protonation of cytosines in the triplex forming strand. Therefore, nucleic acid triplexes show strong pH dependence and are stable only at acidic pH. This led us to establish a new pH independent fluorophore based measuring system on the LightCycler for thermal stability studies of parallel triplexes. RESULTS A novel LightCycler FRET pair labelled with ATTO495 and ATTO647N was established for parallel triplex detection with antiparallel duplex as a control for the general applicability of these fluorophores for Tm determination. The ATTO fluorophores were pH stable from pH 4.5 to 7.5. Melting of triplex and duplex structures were accompanied by a large decrease in fluorescence intensity leading to well defined Tm and high reproducibility. Validation of Tm showed low intra- and inter-assay coefficient of variation; 0.11% and 0.14% for parallel triplex and 0.19% and 0.12% for antiparallel duplex. Measurements of Tm and fluorescence intensity over time and multiple runs showed great time and light stability of the ATTO fluorophores. The variance on Tm determinations was significant lower on the LightCycler platform compared to UV absorbance measurements, which enable discrimination of DNA structures with very similar Tm. Labelling of DNA probes with ATTO fluorophore increased Tm of antiparallel duplexes significantly, but not Tm of parallel triplexes. CONCLUSIONS We have established a novel pH independent FRET pair with high fluorescence signals on the LightCycler platform for both antiparallel duplex and parallel triplex formation. The method has been thoroughly validated, and is characterized by an excellent accuracy and reproducibility. This FRET pair is especially suitable for DeltaTm and Tm determinations of pH dependent parallel triplex formation.
Collapse
Affiliation(s)
- Uffe V Schneider
- QuantiBact Inc, Department of Clinical Microbiology, Hvidovre Hospital, Kettegaards Alle 30, 2650 Hvidovre, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Višnjevac A, Luić M, Kobetić R, Gembarovski D, Žinić B. Stabilization of the N-1-substituted cytosinate iminooxo form in dinuclear palladium complexes. Polyhedron 2009. [DOI: 10.1016/j.poly.2009.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Unfolding Thermodynamics of DNA Intramolecular Complexes Involving Joined Triple- and Double-Helical Motifs. Methods Enzymol 2009; 466:477-502. [DOI: 10.1016/s0076-6879(09)66020-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Effects of protonation on proton transfer processes in Watson–Crick adenine–thymine base pair. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0248-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Protoberberine Alkaloids: Physicochemical and Nucleic Acid Binding Properties. TOPICS IN HETEROCYCLIC CHEMISTRY 2007. [DOI: 10.1007/7081_2007_071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
|
33
|
Doudna JA, Lorsch JR. Ribozyme catalysis: not different, just worse. Nat Struct Mol Biol 2005; 12:395-402. [PMID: 15870731 DOI: 10.1038/nsmb932] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 04/05/2005] [Indexed: 01/24/2023]
Abstract
Evolution has resoundingly favored protein enzymes over RNA-based catalysts, yet ribozymes occupy important niches in modern cell biology that include the starring role in catalysis of protein synthesis on the ribosome. Recent results from structural and biochemical studies show that natural ribozymes use an impressive range of catalytic mechanisms, beyond metalloenzyme chemistry and analogous to more chemically diverse protein enzymes. These findings make it increasingly possible to compare details of RNA- and protein-based catalysis.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA.
| | | |
Collapse
|
34
|
Ueno Y, Shibata A, Matsuda A, Kitade Y. Thermal stability of triple helical DNAs containing 2'-deoxyinosine and 2'-deoxyxanthosine. Bioorg Med Chem 2005; 12:6581-6. [PMID: 15556774 DOI: 10.1016/j.bmc.2004.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/08/2004] [Accepted: 09/08/2004] [Indexed: 12/01/2022]
Abstract
In this paper, we describe the synthesis and thermal stabilities of the triplexes containing either 2'-deoxyinosine (1) or 2'-deoxyxanthosine (3) in their second strands. It was found that the triplexes with the 2'-deoxy-5-methylcytidine(dM)*1:dC and dM*1:dA base triplets are thermally stable, but those containing the dM*1:T and dM*1:dG base triplets are unstable under both neutral and slightly acidic conditions. On the other hand, it was found that the oligonucleotide containing 3 could form thermally stable triplexes with the oligonucleotides that involve four natural bases opposite the sites of 3. The rank of the thermal stabilities of the triplexes was as follows: the triplex containing the dM*3:dC base triplet > that containing the dM*3:dA base triplet > that containing the dM*3:T base triplet > that containing the dM*3:dG base triplet.
Collapse
Affiliation(s)
- Yoshihito Ueno
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Laboratory of Molecular Biochemistry, Yanagido 501-1193, Gifu, Japan
| | | | | | | |
Collapse
|
35
|
Hoshika S, Ueno Y, Kamiya H, Matsuda A. Nucleosides and nucleotides. Part 226: alternate-strand triple-helix formation by 3'-3'-linked oligodeoxynucleotides composed of asymmetrical sequences. Bioorg Med Chem Lett 2005; 14:3333-6. [PMID: 15149701 DOI: 10.1016/j.bmcl.2004.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 03/18/2004] [Indexed: 10/26/2022]
Abstract
In this paper, we describe the synthesis of the 3'-3'-linked oligonucleotides connected with pentaerythritol composed of asymmetrical sequences. Stability of the triplexes between these oligonucleotides and the DNA targets involving the adjacent oligopurine domains on alternate strands was investigated using the electrophoretic mobility shift assay (EMSA) and DNase I footprinting experiment. It was found that the 3'-3'-linked oligonucleotides composed of asymmetrical sequences formed the stable antiparallel triplexes with the DNA targets as compared with the unlinked oligonucleotides. Thus, oligonucleotides linked with pentaerythritol would be useful as antigene oligonucleotides for DNA targets consisting of the alternating oligopyrimidine-oligopurine sequences.
Collapse
Affiliation(s)
- Shuichi Hoshika
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
36
|
Brucale M, Zuccheri G, Samorì B. The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. Org Biomol Chem 2005; 3:575-7. [PMID: 15703789 DOI: 10.1039/b418353n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report that the formation and breakdown of an intramolecular cytosine-thymine (CT) motif DNA triple-helix can be performed repeatedly, quickly and independently of its local concentration without performance reduction over successive cycles; as a consequence, we propose that this set of characteristics makes the DNA duplex-triplex transition an ideal candidate to power simple nanometer-scale devices capable of maintaining effective performance regardless of their local concentration.
Collapse
Affiliation(s)
- Marco Brucale
- Department of Biochemistry G. Moruzzi and National Institute for the Physics of the Matter, University of Bologna, Via Irnerio 48, Bologna 40126
| | | | | |
Collapse
|
37
|
Aviñó A, Cubero E, González C, Eritja R, Orozco M. Antiparallel triple helices. Structural characteristics and stabilization by 8-amino derivatives. J Am Chem Soc 2004; 125:16127-38. [PMID: 14678005 DOI: 10.1021/ja035039t] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural, dynamical, and recognition properties of antiparallel DNA triplexes formed by the antiparallel d(G#G.C), d(A#A.T), and d(T#A.T) motifs (the pound sign and dot mean reverse-Hoogsteen and Watson-Crick hydrogen bonds, respectively) are studied by means of "state of the art" molecular dynamics simulations. Once the characteristics of the helix are defined, molecular dynamics and thermodynamic integration calculations are used to determine the expected stabilization of the antiparallel triplex caused by the introduction of 8-aminopurines. Finally, oligonucleotides containing 8-aminopurine derivatives are synthesized and tested experimentally using several approaches in a variety of systems. A very large stabilization of the triplex is found experimentally, as predicted by simulations. These results open the possibility for the use of oligonucleotides carrying 8-aminopurines to bind single-stranded nucleic acids by formation of antiparallel triplexes.
Collapse
Affiliation(s)
- Anna Aviñó
- Institut de Biologia Molecular de Barcelona, CSIC, C/Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
Armentano D, De Munno G, Di Donna L, Sindona G, Giorgi G, Salvini L, Napoli A. Self-assembling of cytosine nucleoside into triply-bound dimers in acid media. A comprehensive evaluation of proton-bound pyrimidine nucleosides by electrospray tandem mass spectrometry, X-rays diffractometry, and theoretical calculations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:268-279. [PMID: 14766294 DOI: 10.1016/j.jasms.2003.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 10/27/2003] [Accepted: 10/29/2003] [Indexed: 05/24/2023]
Abstract
Electrospray tandem mass spectrometry (ESI-MS/MS) is used to evaluate the assembling of cytosine and thymine nucleosides in the gas phase, through the formation of hydrogen bonded supermolecules. Mixtures of cytidine analogues and homologues deliver in the gas phase proton-bound heterodimers stabilized by multiple interactions, as proven by the kinetics of their dissociation into the corresponding protonated monomers. Theoretical calculations, performed on initial structures of methylcytosine homodimers available in the literature, converged to a minimized structure whereby the two pyrimidine rings interact through the formation of three hydrogen bonds of similar energy. The crystallographic data here reported show the equivalency of the two interacting pyrimidines which is attributable to the presence of an inversion center. Thymine and uracil pyrimidyl nucleosides form, by ESI, gaseous proton-bound dimers. The kinetic of their dissociation into the related protonated monomers shows that the nucleobases are weekly interacting through a single hydrogen bond. The minimized structure of the protonated heterodimer formed by thymine and N-1-methylthymine confirmed the existence of mainly one hydrogen bond which links the two nucleobases through the O4 oxygens. No crystallographic data exists on thymine proton-bound species, nor have we been able to obtain these aggregates in the solid phase. The gaseous phase, under high vacuum conditions, seems therefore a suitable environment where vanishing structures produced by ESI can be studied with a good degree of approximation.
Collapse
Affiliation(s)
- Donatella Armentano
- Dipartimento di Chimica, Università della Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Jaumot J, Aviña A, Eritja R, Tauler R, Gargallo R. Resolution of parallel and antiparallel oligonucleotide triple helices formation and melting processes by multivariate curve resolution. J Biomol Struct Dyn 2003; 21:267-78. [PMID: 12956610 DOI: 10.1080/07391102.2003.10506922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A procedure is described for the complete resolution of concentration profiles of oligonucleotide triplexes as a function of pH and temperature. The pH and temperature ranges at which triplexes are present and the relative concentrations of all the species involved in acid-base and conformational equilibria are successfully estimated from Multivariate Curve Resolution analysis of UV absorbance spectra recorded along acid-base titrations and melting experiments of single stranded, hairpin and their mixtures. The dependence of formation constants upon pH was successfully estimated. The hairpin h26 (5'-GAAGGAGGAGA-TTTT-TCTCCTCCTTC-3'), and the single stranded oligonucleotides s11CT (5'-CTTCCTCCTCT-3'), s11AG (5'-AGAGGAGGAAG-3') and s11TG (5'-TGTGGTGGTTG-3') were synthesized and their protonation and conformational equilibria were studied in detail. The procedure was shown to be especially useful for the study of triplexes with a low hypochromism upon formation.
Collapse
Affiliation(s)
- J Jaumot
- Departament de Quimica Analitica, Universitat de Barcelona, Marti Franques 1 -11, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
Itoh Y, Mizuno S. Molecular and cytological characterization of SspI-family repetitive sequence on the chicken W chromosome. Chromosome Res 2003; 10:499-511. [PMID: 12489831 DOI: 10.1023/a:1020944414750] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A genomic clone, pWS44, isolated from the chicken W chromosome-specific genomic library contained a partial (226-bp) sequence of a novel SspI-family repetitive sequence. A genomic clone, pWPRS09, containing a 508-bp SspI fragment (a repeating unit of the family) was subsequently obtained and sequenced. This 0.5-kb unit is tandemly repeated about 11,300 times. FISH to mitotic and lampbrush W chromosomes indicates that the SspI-family is located on the chromomere 6 between heterochromatic and distal non-heterochromatic regions on the short arm. The SspI-family sequence was proved to be a good positional marker in FISH mapping of active genes in the non-heterochromatic region on the lampbrush W chromosome. The presence of SspI-family repetitive sequence is limited to the genus Gallus (chickens and jungle fowls). The 0.5-kb repeating unit contains a 120-bp stretch of polypurine/polypyrimidine sequence (GGAGA repeats), shows no DNA curvature, and rapid electrophoretic mobility in 4% polyacrylamide gel at 4 degrees C. The SspI-family forms a relatively diffused chromatin structure in nuclei. These features are distinctly different from those of XhoI- and EcoRI-family sequences on the W chromosome. The total amount of non-repetitive DNA in the chicken W chromosome is estimated to be about 10 Mb.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | |
Collapse
|
41
|
Atsumi N, Ueno Y, Kanazaki M, Shuto S, Matsuda A. Nucleosides and nucleotides. Part 214: thermal stability of triplexes containing 4'alpha-C-aminoalkyl-2'-deoxynucleosides. Bioorg Med Chem 2002; 10:2933-9. [PMID: 12110315 DOI: 10.1016/s0968-0896(02)00141-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to develop novel antigene molecules forming thermally stable triplexes with target DNAs and having nuclease resistance properties, we synthesized oligodeoxynucleotides (ODNs) with various lengths of aminoalkyl-linkers at the 4'alpha position of thymidine and the aminoethyl-linker at the 4'alpha position of 2'-deoxy-5-methylcytidine. Thermal stability of triplexes between these ODNs and a DNA duplex was studied by thermal denaturation. The ODNs containing the nucleoside 2 with the aminoethyl-linker or the nucleoside 3 with the aminopropyl-linker thermally stabilized the triplexes, whereas the ODNs containing the nucleoside 1 with the aminomethyl-linker or the nucleoside 4 with the 2-[N-(2-aminoethyl)carbamoyl]oxy]ethyl-linker thermally destabilized the triplexes. The ODNs containing 2 were the most efficient at stabilizing the triplexes with the target DNA. The ODNs containing 4'alpha-C-(2-aminoethyl)-2'-deoxy-5-methylcytidine (5) also efficiently stabilized the triplexes with the target DNA. Stability of the ODN containing 5 to nucleolytic hydrolysis by snake venom phosphodiesterase (a 3'-exonuclease) was studied. It was found that the ODN containing 5 was more resistant to nucleolytic digestion by the enzyme than an unmodified ODN. In a previous paper, we reported that the ODNs containing 2 were more resistant to nucleolytic digestion by DNase I (an endonuclease) than the unmodified ODNs. Thus, it was found that the ODNs containing 4'alpha-C-(2-aminoethyl)-2'-deoxynucleosides were good candidates for antigene molecules.
Collapse
Affiliation(s)
- Naoko Atsumi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | |
Collapse
|
42
|
Ojha RP, Tiwari RK. Molecular dynamics simulation study of DNA triplex formed by mixed sequences in solution. J Biomol Struct Dyn 2002; 20:107-26. [PMID: 12144358 DOI: 10.1080/07391102.2002.10506797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The unrestrained molecular dynamics simulation of the triple helical DNA with mix sequences d(GACTGGTGAC).d(CTGACCACTG)*d (GACTGGTGAC), using the particle mesh Ewald sum, is presented here. The Ewald summation method effectively eliminates the usualcut-of of the long range interactions and allowed us to evaluate the full effect of the electrostatic forces. The AMBER5.0 force field has been used during the simulation in solvent. The MD results support a dynamically stable model of DNA triplex over the entire length of the trajectory. The duplex structure assumes the conformation, which is very close to B-DNA. In mixed sequences the purine bases occurs in both strand of DNA duplex. The bases of third strand do not favor the Hoogsteen or/and reverse Hoogsteen type of Hydrogen bonding but they form hydrogen bonds with the bases of both the strand of DNA duplex. The orientation of the third strand is parallel to one of the strand of duplex and all nucleotides (C, A, G & T) show isomorphic behavior with respect to the DNA duplex. The conformation of all the three strands is almost same except few exceptions. Due to interaction of third strand the conformational change in the duplex structure and a finite amount of displacement in the W-C base pairs have been observed. The conformational variation of the back bone torsion angles and helicoidal parameters, groove widths have been discussed. The sequence dependent effects on local conformation, helicoidal and morphological structure, width of the grooves of DNA helix may have important implication for understanding the functional energetics and specificity of interactions of DNA and its triplexes with proteins, pharmaceutical agents and other ligands.
Collapse
Affiliation(s)
- R P Ojha
- Biophysics Unit, Department of Physics, DDU Gorakhpur University, India.
| | | |
Collapse
|
43
|
Abstract
Although RNA is generally thought to be a passive genetic blueprint, some RNA molecules, called ribozymes, have intrinsic enzyme-like activity--they can catalyse chemical reactions in the complete absence of protein cofactors. In addition to the well-known small ribozymes that cleave phosphodiester bonds, we now know that RNA catalysts probably effect a number of key cellular reactions. This versatility has lent credence to the idea that RNA molecules may have been central to the early stages of life on Earth.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Department of Molecular and Cell Biology, and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
44
|
Pasternack LB, Lin SB, Chin TM, Lin WC, Huang DH, Kan LS. Proton NMR studies of 5'-d-(TC)(3) (CT)(3) (AG)(3)-3'--a paperclip triplex: the structural relevance of turns. Biophys J 2002; 82:3170-80. [PMID: 12023241 PMCID: PMC1302106 DOI: 10.1016/s0006-3495(02)75659-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In this study, we present the results of structural analysis of an 18-mer DNA 5'-T(1)C(2)T(3)C(4)T(5)C(6)C(7)T(8)C(9)T(10)C(11)T(12)A(13)G(14)A(15)G(16)A(17)G(18)-3' by proton nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The NMR data are consistent with characteristics for triple helical structures of DNA: downfield shifting of resonance signals, typical for the H3(+) resonances of Hoogsteen-paired cytosines; pH dependence of these H3(+) resonance; and observed nuclear Overhauser effects consistent with Hoogsteen and Watson-Crick basepairing. A three-dimensional model for the triplex is developed based on data obtained from two-dimensional NMR studies and molecular modeling. We find that this DNA forms an intramolecular "paperclip" pyrimidine-purine-pyrimidine triple helix. The central triads resemble typical Hoogsteen and Watson-Crick basepairing. The triads at each end region can be viewed as hairpin turns stabilized by a third base. One of these turns is comprised of a hairpin turn in the Watson-Crick basepairing portion of the 18-mer with the third base coming from the Hoogsteen pairing strand. The other turn is comprised of two bases from the continuous pyrimidine portion of the 18-mer, stabilized by a hydrogen-bond from a purine. This "triad" has well defined structure as indicated by the number of nuclear Overhauser effects and is shown to play a critical role in stabilizing triplex formation of the internal triads.
Collapse
Affiliation(s)
- Laura B Pasternack
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
45
|
Medhi C. The models of proton assisted and the unassisted formation of CGC base triplets. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2002; 42:598-601. [PMID: 12086520 DOI: 10.1021/ci0100752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The triple helix is formed by combining a double and a single strand DNAs in low pH and dissociates in high pH. Under such conditions, protonation of cytosine in the single strand is necessary for triplex formation where cytosine-guanine-cytosine (CGC+) base triplet stabilizes the triple helix. The mechanism of CGC+ triplet formation from guanine-cytosine (GC) and a protonated cytosine (C+) shows the importance of N3 proton. Similarly in the case of CGC (unprotonated) triplet, the donor acceptor H-bond at N3 hydrogen of the cytosine analog (C) initiates the interaction with GC. The correspondence between the two models of triplets, CGC+ and CGC, unambiguously assigned that protonation at N3 cytosine in low pH to be the first step in triplet formation, but a donor acceptor triplet (CGC) can be designed without involving a proton in the Hoogsteen H-bond. Further, the bases of cytosine analogue also show the capability of forming Watson Crick (WC) H-bonds with guanine.
Collapse
Affiliation(s)
- Chitrani Medhi
- Chemistry Department, Gauhati University, Guwahati-781014, India.
| |
Collapse
|
46
|
Cubero E, Aviñó A, de la Torre BG, Frieden M, Eritja R, Luque FJ, González C, Orozco M. Hoogsteen-based parallel-stranded duplexes of DNA. Effect of 8-amino-purine derivatives. J Am Chem Soc 2002; 124:3133-42. [PMID: 11902902 DOI: 10.1021/ja011928+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of parallel-stranded duplexes of DNA-containing a mixture of guanines (G) and adenines (A) is studied by means of molecular dynamics (MD) simulation, as well as NMR and circular dichroism (CD) spectroscopy. Results demonstrate that the structure is based on the Hoogsteen motif rather than on the reverse Watson-Crick one. Molecular dynamics coupled to thermodynamic integration (MD/TI) calculations and melting experiments allowed us to determine the effect of 8-amino derivatives of A and G and of 8-amino-2'-deoxyinosine on the stability of parallel-stranded duplexes. The large stabilization of the parallel-stranded helix upon 8-amino substitution agrees with a Hoogsteen pairing, confirming MD, NMR, and CD data, and suggests new methods to obtain DNA triplexes for antigene and antisense purposes.
Collapse
Affiliation(s)
- Elena Cubero
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Optimisation of DNA triplex stability is of fundamental importance in the anti-gene strategy. In the present work, thermal denaturation studies by UV-spectrophotometry and structural and dynamical characterizations by NMR spectroscopy have been used systematically to investigate the effects on triplex stability of isolated insertions of different base triplets into an otherwise homogeneous 15-mer dT x dA-dT oligo-triplex. It is found that insertion of a single central C(+) x G-C or T x D-T triplet (D=2,6-diaminopurine) leads to a pronounced stabilization (up to 20 deg. C if the cytosine base is C5 methylated) at acidic as well as neutral pH. To a smaller degree, this is the case also for a C(+) x I-C triplet insertion. Using imino proton exchange measurements, it is shown that insertion of a DT base-pair in the underlying duplex perturbs the intrinsic A-tract structure in the same way as has been shown for a GC insert. We propose that the intrinsic properties of A-tract duplex DNA (e. g. high propeller twist and rigidity) are unfavourable for triplex formation and that GC- or DT-inserts stabilize the triplex by interfering with the A-tract features of the underlying duplex. The C(+) x I-C triplet without the N2 amino group in the minor groove is readily accommodated within the typical, highly propeller-twisted A-tract structure. This might be related to its smaller effect on the stability of the corresponding triplex. These results may be valuable for understanding DNA triplex formation in vivo as well as for the design of efficient triplex-forming oligonucleotides and in choosing suitable target sequences in the anti-gene strategy.
Collapse
Affiliation(s)
- Karin Sandström
- Department of Biochemistry and Biophysics Arrhenius Laboratory, Stockholm University, Stockholm, S-106 91, Sweden
| | | | | | | |
Collapse
|
48
|
Ferdous A, Akaike T, Maruyama A. Inhibition of sequence-specific protein-DNA interaction and restriction endonuclease cleavage via triplex stabilization by poly(L-lysine)-graft-dextran copolymer. Biomacromolecules 2002; 1:186-93. [PMID: 11710099 DOI: 10.1021/bm9900141] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triplex stabilization by poly(L-lysine)-graft-dextran copolymer within a mammalian gene promoter inhibits the DNA binding activity of nuclear proteins from HeLa cells as well as restriction endonuclease cleavage at physiological pH and ionic conditions in vitro. Electrophoretic mobility shift assays using a 30-mer homopurine-homopyrimidine stretch (located between -170 and -141 bp) of rat alpha 1 (I) collagen gene promoter reveal that the copolymer, at its wide range of charge ratio with DNA, stabilizes triplex DNA and enhances triplex-specific inhibition of the protein-DNA interaction. When the triplex-forming region (located between -165 and -146 bp) of the promoter is engineered at the Bam H1 and Pst 1 sites of a plasmid DNA, copolymer-mediated triplex stabilization also remarkably competes endonuclease activity of BamH1. Finally, the triplex-stabilizing efficiency of the copolymer is remarkably higher than that of spermine and benzo[e]pyridoindole. Our results indicate that the copolymer, regardless of the length of the target duplex, stabilizes triplexes for significant inhibition of protein-DNA interaction and endonuclease activity. Since stable triplex formation within a short region out of a long native duplex is a prerequisite to confer the therapeutic potential of antigene strategy, triplex stabilization on a long target duplex and inhibition of nuclear protein-DNA interaction may open the possible in vivo applicability of the copolymer.
Collapse
Affiliation(s)
- A Ferdous
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
49
|
Lupták A, Ferré-D'Amaré AR, Zhou K, Zilm KW, Doudna JA. Direct pK(a) measurement of the active-site cytosine in a genomic hepatitis delta virus ribozyme. J Am Chem Soc 2001; 123:8447-52. [PMID: 11525650 DOI: 10.1021/ja016091x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hepatitis delta virus ribozymes have been proposed to perform self-cleavage via a general acid/base mechanism involving an active-site cytosine, based on evidence from both a crystal structure of the cleavage product and kinetic measurements. To determine whether this cytosine (C75) in the genomic ribozyme has an altered pK(a) consistent with its role as a general acid or base, we used (13)C NMR to determine its microscopic pK(a) in the product form of the ribozyme. The measured pK(a) is moderately shifted from that of a free nucleoside or a base-paired cytosine and has the same divalent metal ion dependence as the apparent reaction pK(a)'s measured kinetically. However, under all conditions tested, the microscopic pK(a) is lower than the apparent reaction pK(a), supporting a model in which C75 is deprotonated in the product form of the ribozyme at physiological pH. While additional results suggest that the pK(a) is not shifted in the reactant state of the ribozyme, these data cannot rule out elevation of the C75 pK(a) in an intermediate state of the transesterification reaction.
Collapse
Affiliation(s)
- A Lupták
- Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
50
|
Giancola C, Petraccone L, Pieri M, De Napoli L, Montesarchio D, Piccialli G, Barone G. Physico-chemical studies on DNA triplexes containing an alternate third strand with a non-nucleotide linker. Int J Biol Macromol 2001; 28:387-94. [PMID: 11325426 DOI: 10.1016/s0141-8130(01)00136-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differential scanning calorimetric (DSC), circular dichroism (CD) and molecular mechanics studies have been performed on two triple helices of DNA. The target duplex consists of 16 base pairs in alternate sequence of the type 5'-(purine)m(pyrimidine)m-3'. In both the triplexes, the third oligopyrimidine strand crosses the major groove at the purine-pyrimidine junction, with a simultaneous binding of the adjacent purine tracts on alternate strands of the Watson-Crick duplex. The switch is ensured by a non-nucleotide linker, the 1,2,3 propanetriol residue, that joins two 3'-3' phosphodiester ends. The third strands differ from each other for a nucleotide in the junction region. The resulting triple helices were termed 14-mer-PXP and 15-mer-PXP (where P = phosphate and X = 1,2,3-propanetriol residue) according to the number of nucleotides that compose the third strand. DSC data show two independent processes: the first corresponding to the dissociation of the third strand from the target duplex, the second to the dissociation of the double helix in two single strands. The two triple helices show the same stability at pH 6.6. At pH 6.0, the 15-mer-PXP triplex is thermodynamically more stable than the 14-mer-PXP triplex. Thermodynamic data are discussed in relation to structural models. The results are useful when considering the design of oligonucleotides that can bind in an antigene approach to the DNA for therapeutic purposes.
Collapse
Affiliation(s)
- C Giancola
- Department of Chemistry, University 'Federico II' of Naples, Via Cintia, Monte Sant' Angelo, 80126, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|