1
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
2
|
Wang S, Yang L, He W, Zheng M, Zou Y. Cell Membrane Camouflaged Biomimetic Nanoparticles as a Versatile Platform for Brain Diseases Treatment. SMALL METHODS 2024:e2400096. [PMID: 38461538 DOI: 10.1002/smtd.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Although there are various advancements in biomedical in the past few decades, there are still challenges in the treatment of brain diseases. The main difficulties are the inability to deliver a therapeutic dose of the drug to the brain through the blood-brain barrier (BBB) and the serious side effects of the drug. Thus, it is essential to select biocompatible drug carriers and novel therapeutic tools to better enhance the effect of brain disease treatment. In recent years, biomimetic nanoparticles (BNPs) based on natural cell membranes, which have excellent biocompatibility and low immunogenicity, are widely used in the treatment of brain diseases to enable the drug to successfully cross the BBB and target brain lesions. BNPs can prolong the circulation time in vivo, are more conducive to drug aggregation in brain lesions. Cell membranes (CMs) from cancer cells (CCs), red blood cells (RBCs), white blood cells (WBCs), and so on are used as biomimetic coatings for nanoparticles (NPs) to achieve the ability to target, evade clearance, or stimulate the immune system. This review summarizes the application of different cell sources as BNPs coatings in the treatment of brain diseases and discusses the possibilities and challenges of clinical translation.
Collapse
Affiliation(s)
- Shiyu Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Longfei Yang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wenya He
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Zou
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
3
|
Najer A, Kim J, Saunders C, Che J, Baum J, Stevens MM. Enhanced Antimalarial and Antisequestration Activity of Methoxybenzenesulfonate-Modified Biopolymers and Nanoparticles for Tackling Severe Malaria. ACS Infect Dis 2024; 10:732-745. [PMID: 38271991 PMCID: PMC10862538 DOI: 10.1021/acsinfecdis.3c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Severe malaria is a life-threatening condition that is associated with a high mortality. Severe Plasmodium falciparum infections are mediated primarily by high parasitemia and binding of infected red blood cells (iRBCs) to the blood vessel endothelial layer, a process known as sequestration. Here, we show that including the 5-amino-2-methoxybenzenesulfonate (AMBS) chemical modification in soluble biopolymers (polyglutamic acid and heparin) and poly(acrylic acid)-exposing nanoparticles serves as a universal tool to introduce a potent parasite invasion inhibitory function in these materials. Importantly, the modification did not add or eliminated (for heparin) undesired anticoagulation activity. The materials protected RBCs from invasion by various parasite strains, employing both major entry pathways. Two further P. falciparum strains, which either expose ligands for chondroitin sulfate A (CSA) or intercellular adhesion molecule 1 (ICAM-1) on iRBCs, were tested in antisequestration assays due to their relevance in placental and cerebral malaria, respectively. Antisequestration activity was found to be more efficacious with nanoparticles vs gold-standard soluble biopolymers (CSA and heparin) against both strains, when tested on receptor-coated dishes. The nanoparticles also efficiently inhibited and reversed the sequestration of iRBCs on endothelial cells. First, the materials described herein have the potential to reduce the parasite burden by acting at the key multiplication stage of reinvasion. Second, the antisequestration ability could help remove iRBCs from the blood vessel endothelium, which could otherwise cause vessel obstruction, which in turn can lead to multiple organ failure in severe malaria infections. This approach represents a further step toward creation of adjunctive therapies for this devastating condition to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Adrian Najer
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Junyoung Kim
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Catherine Saunders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Junyi Che
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Jake Baum
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
4
|
Gill J, Singh H, Sharma A. Profiles of global mutations in the human intercellular adhesion molecule-1 (ICAM-1) shed light on population-specific malaria susceptibility. BMC Genomics 2023; 24:773. [PMID: 38093209 PMCID: PMC10720214 DOI: 10.1186/s12864-023-09846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Plasmodium falciparum is responsible for malaria-related morbidity and mortality. PfEMP1 (P. falciparum erythrocyte membrane protein 1) mediates infected erythrocytes adhesion to various surface vascular receptors, including intercellular adhesion molecule-1 (ICAM-1), associating this interaction with severe malaria in several studies. Genetic variation in host ICAM-1 plays a significant role in determining susceptibility to malaria infection via clinical phenotypes such as the ICAM-1Kilifi variant which has been reported to be associated with susceptibility in populations. Our genomic and structural analysis of single nucleotide polymorphisms (SNPs) in ICAM-1 revealed 9 unique mutations each in its distinct A-type and BC-type PfEMP1 DBLβ-interacting regions. These mutations are noted in only a few field isolates and mainly in the African/African American population. The ICAM-1Kilifi variant lies in a flexible loop proximal to the DBLβ-interacting region. This analysis will assist in establishing functional correlations of reported global mutations via experimental and clinical studies and in the tailored design of population-specific genetic surveillance studies. Understanding host polymorphism as an evolutionary force in diverse populations can help to predict predisposition to disease severity and will contribute towards laying the framework for designing population-specific personalized medicines for severe malaria.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, Sector-8 Dwarka, New Delhi, India.
| | - Himmat Singh
- ICMR-National Institute of Malaria Research, Sector-8 Dwarka, New Delhi, India
| | - Amit Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
5
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
6
|
Safeukui I, Ware RE, Mohandas N, Haldar K. Simultaneous adjunctive treatment of malaria and its coevolved genetic disorder sickle cell anemia. Blood Adv 2023; 7:5970-5981. [PMID: 37093647 PMCID: PMC10580175 DOI: 10.1182/bloodadvances.2022009124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Effective treatments for genetic disorders that coevolved with pathogens require simultaneous betterment of both conditions. Hydroxyurea (HU) offers safe and efficacious treatment for sickle cell anemia (SCA) by reducing clinical complications, transfusions, and death rates. Despite concerns that the HU treatment for SCA would increase infection risk by the human malaria Plasmodium falciparum, (the genetic driver of the sickle mutation), HU instead reduced clinical malaria. We used physiologically relevant drug exposures that mimic in vivo pharmacokinetics in humans. Under these conditions, we showed that HU and other ribonucleotide reductase (RNR) inhibitors have significant, intrinsic killing activity in vitro against schizont stages of P falciparum in both normal and sickle red blood cells. Long-term in vitro selection with HU increased the expression of Pfrnr genes but showed a low risk of eliciting stably resistant parasites or compromising the potency of current antimalarial drugs. Additive activity devoid of antagonism by HU was observed with a wide spectrum of commonly used antimalarial treatments. These data endorse broad, safe, and long-term use of HU for SCA in malaria-endemic countries and provide a novel biological model for the treatment of a genetic disorder with simultaneous, adjunct therapy of a life-threatening infection needed in a global health setting.
Collapse
Affiliation(s)
- Innocent Safeukui
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN
| | - Russell E. Ware
- Division of Hematology, Department of Pediatrics, The Global Health Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Kasturi Haldar
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
7
|
Wiser MF. Knobs, Adhesion, and Severe Falciparum Malaria. Trop Med Infect Dis 2023; 8:353. [PMID: 37505649 PMCID: PMC10385726 DOI: 10.3390/tropicalmed8070353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Plasmodium falciparum can cause a severe disease with high mortality. A major factor contributing to the increased virulence of P. falciparum, as compared to other human malarial parasites, is the sequestration of infected erythrocytes in the capillary beds of organs and tissues. This sequestration is due to the cytoadherence of infected erythrocytes to endothelial cells. Cytoadherence is primarily mediated by a parasite protein expressed on the surface of the infected erythrocyte called P. falciparum erythrocyte membrane protein-1 (PfEMP1). PfEMP1 is embedded in electron-dense protuberances on the surface of the infected erythrocytes called knobs. These knobs are assembled on the erythrocyte membrane via exported parasite proteins, and the knobs function as focal points for the cytoadherence of infected erythrocytes to endothelial cells. PfEMP1 is a member of the var gene family, and there are approximately 60 antigenically distinct PfEMP1 alleles per parasite genome. Var gene expression exhibits allelic exclusion, with only a single allele being expressed by an individual parasite. This results in sequential waves of antigenically distinct infected erythrocytes and this antigenic variation allows the parasite to establish long-term chronic infections. A wide range of endothelial cell receptors can bind to the various PfEMP1 alleles, and thus, antigenic variation also results in a change in the cytoadherence phenotype. The cytoadherence phenotype may result in infected erythrocytes sequestering in different tissues and this difference in sequestration may explain the wide range of possible clinical manifestations associated with severe falciparum malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
9
|
Song X, Wei W, Cheng W, Zhu H, Wang W, Dong H, Li J. Cerebral malaria induced by plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment. Front Cell Infect Microbiol 2022; 12:939532. [PMID: 35959375 PMCID: PMC9359465 DOI: 10.3389/fcimb.2022.939532] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria (CM) caused by Plasmodium falciparum is a fatal neurological complication of malaria, resulting in coma and death, and even survivors may suffer long-term neurological sequelae. In sub-Saharan Africa, CM occurs mainly in children under five years of age. Although intravenous artesunate is considered the preferred treatment for CM, the clinical efficacy is still far from satisfactory. The neurological damage induced by CM is irreversible and lethal, and it is therefore of great significance to unravel the exact etiology of CM, which may be beneficial for the effective management of this severe disease. Here, we review the clinical characteristics, pathogenesis, diagnosis, and clinical therapy of CM, with the aim of providing insights into the development of novel tools for improved CM treatments.
Collapse
Affiliation(s)
- Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wei
- Beijing School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| | - Weijia Cheng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Huiyin Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wang
- Key Laboratory of National Health Commission on Technology for Parasitic Diseases Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| | - Haifeng Dong
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| |
Collapse
|
10
|
Silva Pereira S, De Niz M, Serre K, Ouarné M, Coelho JE, Franco CA, Figueiredo L. Immunopathology and Trypanosoma congolense parasite sequestration cause acute cerebral trypanosomiasis. eLife 2022; 11:77440. [PMID: 35787830 PMCID: PMC9307270 DOI: 10.7554/elife.77440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Trypanosoma congolense causes a syndrome of variable severity in animals in Africa. Cerebral trypanosomiasis is a severe form, but the mechanism underlying this severity remains unknown. We developed a mouse model of acute cerebral trypanosomiasis and characterized the cellular, behavioral, and physiological consequences of this infection. We show large parasite sequestration in the brain vasculature for long periods of time (up to 8 hr) and extensive neuropathology that associate with ICAM1-mediated recruitment and accumulation of T cells in the brain parenchyma. Antibody-mediated ICAM1 blocking and lymphocyte absence reduce parasite sequestration in the brain and prevent the onset of cerebral trypanosomiasis. Here, we establish a mouse model of acute cerebral trypanosomiasis and we propose a mechanism whereby parasite sequestration, host ICAM1, and CD4+ T cells play a pivotal role.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Karine Serre
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Marie Ouarné
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio A Franco
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Luisa Figueiredo
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Albrecht-Schgoer K, Lackner P, Schmutzhard E, Baier G. Cerebral Malaria: Current Clinical and Immunological Aspects. Front Immunol 2022; 13:863568. [PMID: 35514965 PMCID: PMC9067128 DOI: 10.3389/fimmu.2022.863568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
This review focuses on current clinical and immunological aspects of cerebral malaria induced by Plasmodium falciparum infection. Albeit many issues concerning the inflammatory responses remain unresolved and need further investigations, current knowledge of the underlying molecular mechanisms is highlighted. Furthermore, and in the light of significant limitations in preventative diagnosis and treatment of cerebral malaria, this review mainly discusses our understanding of immune mechanisms in the light of the most recent research findings. Remarkably, the newly proposed CD8+ T cell-driven pathophysiological aspects within the central nervous system are summarized, giving first rational insights into encouraging studies with immune-modulating adjunctive therapies that protect from symptomatic cerebral participation of Plasmodium falciparum infection.
Collapse
Affiliation(s)
- Karin Albrecht-Schgoer
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Lackner
- Department of Neurology, Klinik Floridsdorf, Wien, Austria
| | - Erich Schmutzhard
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Simwela NV, Waters AP. Current status of experimental models for the study of malaria. Parasitology 2022; 149:1-22. [PMID: 35357277 PMCID: PMC9378029 DOI: 10.1017/s0031182021002134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Infection by malaria parasites (Plasmodium spp.) remains one of the leading causes of morbidity and mortality, especially in tropical regions of the world. Despite the availability of malaria control tools such as integrated vector management and effective therapeutics, these measures have been continuously undermined by the emergence of vector resistance to insecticides or parasite resistance to frontline antimalarial drugs. Whilst the recent pilot implementation of the RTS,S malaria vaccine is indeed a remarkable feat, highly effective vaccines against malaria remain elusive. The barriers to effective vaccines result from the complexity of both the malaria parasite lifecycle and the parasite as an organism itself with consequent major gaps in our understanding of their biology. Historically and due to the practical and ethical difficulties of working with human malaria infections, research into malaria parasite biology has been extensively facilitated by animal models. Animals have been used to study disease pathogenesis, host immune responses and their (dys)regulation and further disease processes such as transmission. Moreover, animal models remain at the forefront of pre-clinical evaluations of antimalarial drugs (drug efficacy, mode of action, mode of resistance) and vaccines. In this review, we discuss commonly used animal models of malaria, the parasite species used and their advantages and limitations which hinder their extrapolation to actual human disease. We also place into this context the most recent developments such as organoid technologies and humanized mice.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Andrew P. Waters
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Wei W, Cheng W, Dai W, Lu F, Cheng Y, Jiang T, Ren Z, Xie Y, Xu J, Zhao Q, Yu X, Yin Y, Li J, Dong H. A Nanodrug Coated with Membrane from Brain Microvascular Endothelial Cells Protects against Experimental Cerebral Malaria. NANO LETTERS 2022; 22:211-219. [PMID: 34967631 DOI: 10.1021/acs.nanolett.1c03514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human malaria is a global life-threatening infectious disease. Cerebral malaria (CM) induced by Plasmodium falciparum parasites accounts for 90% of malaria deaths. Treating CM is challenging due to inadequate treatment options and the development of drug resistance. We describe a nanoparticle formulation of the antimalarial drug dihydroartemisinin that is coated in a biomimetic membrane derived from brain microvascular endothelial cells (BMECs) and test its therapeutic efficacy in a mouse model of experimental cerebral malaria (ECM). The membrane-coated nanoparticle drug has a prolonged drug-release profile and enhanced dual targeting killing efficacy toward parasites residing in red blood cells (iRBCs) and iRBCs obstructed in the BMECs (for both rodent and human). In a mice ECM model, the nanodrug protects the brain, liver, and spleen from infection-induced damage and improves the survival rate of mice. This so-called nanodrug offers new insight into engineering nanoparticle-based therapeutics for malaria and other parasitic pathogen infections.
Collapse
Affiliation(s)
- Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weijia Cheng
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feng Lu
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yaru Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tingting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Zhenyu Ren
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yiting Xie
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Jiahui Xu
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Qun Zhao
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xianjun Yu
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Yi Yin
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing 100083, China
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
Azasi Y, Rowe JA. Selecting Plasmodium falciparum Infected Erythrocytes for Adhesion to Cell Lines. Methods Mol Biol 2022; 2470:91-100. [PMID: 35881341 DOI: 10.1007/978-1-0716-2189-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmodium falciparum expresses variant surface antigens on the surface of mature infected erythrocytes (IEs) for binding to various receptors on host cells (cytoadhesion) to evade host immunity. This enables IEs to sequester in the microvasculature of different organs and tissues of the host, contributing to different outcomes of disease. The in vitro study of cytoadhesion involves the use of IEs and human endothelial cells or other cell lines that express host cell receptors. To enrich for IE populations that bind to certain cell types or receptors, we describe a method for panning mature pigmented trophozoite IEs on cell lines. The method enables coculturing of IEs with cells of interest and the selection of IEs that cytoadhere for continuous culturing. The method serves as a tool for generating IEs with specific cell or cell receptor adhesion phenotypes to allow detailed studies of cytoadhesion interactions.
Collapse
Affiliation(s)
- Yvonne Azasi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - J Alexandra Rowe
- Ashworth Laboratories, Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Renn JP, Doritchamou JYA, Duffy PE. Expression of Large Full-Length PfEMP1 Proteins in HEK293 Cells. Methods Mol Biol 2022; 2470:283-298. [PMID: 35881353 DOI: 10.1007/978-1-0716-2189-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins expressed on the surface of red blood cells infected by Plasmodium falciparum. PfEMP1 proteins play a vital role in parasite virulence, and thus are important vaccine candidates to prevent severe disease. VAR2CSA is one specific PfEMP1 essential for pregnancy malaria pathogenesis, and the primary target in pregnancy malaria vaccine development. However, similar to other PfEMP1 proteins, expression of recombinant full-length VAR2CSA is difficult due to its large size, multidomain architecture and high cysteine content. To date, there has been success using higher ordered expression systems (such as mammalian and insect cells) to generate folded and active VAR2CSA. However, recent improvements with mammalian expression systems including cell lines and promoters have pushed the boundaries of yields. Here, we describe a modified protocol beyond current systems that enhances yields of full-length VAR2CSA and can generate higher quantities of material for protein structural and functional characterization.
Collapse
Affiliation(s)
- Jonathan Paul Renn
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Emmet Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Azasi Y. Assay of Static Adhesion of Plasmodium falciparum-Infected Erythrocytes to Cells, Including Inhibition of the Adhesion. Methods Mol Biol 2022; 2470:515-525. [PMID: 35881371 DOI: 10.1007/978-1-0716-2189-9_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A feature of the virulent malaria parasite, Plasmodium falciparum, is the sequestration of infected erythrocytes (IEs) to host endothelium. The IEs sequester in the microvasculature by adhesion to host cells resulting in the obstruction of blood flow and often harmful consequences in the host. IEs bind to receptors on host cells with the P. falciparum erythrocyte membrane protein 1 (PfEMP1) that is expressed on the surface of the IEs. The study of parasite cytoadhesion is essential to decipher these ligands, including types of PfEMP1 required for cytoadhesion, the receptors the IEs bind, and how they may be related to the type of malaria disease. An assay for IE adhesion to host cells, including the inhibition of cytoadhesion is described here. The assay involves the purification of IEs with knobs and binding of the IEs to a monolayer of host cells under static conditions. Compounds including proteins, antibodies or drugs can be tested for cytoadhesion inhibitory activity in the assay.
Collapse
Affiliation(s)
- Yvonne Azasi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina , Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
17
|
Oleinikov AV. Malaria Parasite Plasmodium falciparum Proteins on the Surface of Infected Erythrocytes as Targets for Novel Drug Discovery. BIOCHEMISTRY (MOSCOW) 2022; 87:S192-S177. [PMID: 35501996 PMCID: PMC8802247 DOI: 10.1134/s0006297922140152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Specific adhesion (sequestration) of Plasmodium falciparum parasite-infected erythrocytes (IEs) in deep vascular beds can cause severe complications resulting in death. This review describes our work on the discovery, characterization, and optimization of novel inhibitors that specifically prevent adhesion of IEs to the host vasculature during severe malaria, especially its placental and cerebral forms. The main idea of using anti-adhesion drugs in severe malaria is to release sequestered parasites (or prevent additional sequestration) as quickly as possible. This may significantly improve the outcomes for patients with severe malaria by decreasing local and systemic inflammation associated with the disease and reestablishing the microvascular blood flow. To identify anti-malarial adhesion-inhibiting molecules, we have developed a high-throughput (HT) screening approach and found a number of promising leads that can be further developed into anti-adhesion drugs providing an efficient adjunct therapy against severe forms of malaria.
Collapse
Affiliation(s)
- Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA.
| |
Collapse
|
18
|
Piatti L, Howard CC, Zheng Y, Bernabeu M. Binding of Plasmodium falciparum-Infected Red Blood Cells to Engineered 3D Microvessels. Methods Mol Biol 2022; 2470:557-585. [PMID: 35881375 DOI: 10.1007/978-1-0716-2189-9_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
P. falciparum-infected red blood cell (iRBC) sequestration in the microvasculature is a pivotal event in severe malaria pathogenesis. In vitro binding assays using endothelial cell monolayers under static and flow conditions have revealed key ligand-receptor interactions for iRBC sequestration. However, mechanisms remain elusive for iRBC sequestration in specific vascular locations, which prevents further development of effective therapies. New models are needed to better recapitulate the complex geometry of blood flow in human blood vessels and organ-specific vascular signatures. Recent advances in engineering 3D microvessels in vitro have emerged as promising technologies to not only model complex human vascular structures but also allow for precise and step-wise control of individual biological and biomechanical parameters. By designing networks with different branching structures and change of vessel diameter along the flow path, these models recapitulate pressure and flow changes occurring in vivo. Here, we describe the methodology employed to build 3D microvessels using soft lithography and injection molding techniques, as well as the protocol to fabricate capillary-size vessels through collagen photoablation. Furthermore, we describe the methodology of using these models to study malaria and narrate necessary steps for perfusion of P. falciparum through 3D microvessels and different options to quantify P. falciparum-iRBC binding.
Collapse
Affiliation(s)
- Livia Piatti
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Caitlin C Howard
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain.
| |
Collapse
|
19
|
Lopez-Perez M, Viwami F, Seidu Z, Jensen ATR, Doritchamou J, Ndam NT, Hviid L. PfEMP1-Specific Immunoglobulin G Reactivity Among Beninese Pregnant Women With Sickle Cell Trait. Open Forum Infect Dis 2021; 8:ofab527. [PMID: 34909438 PMCID: PMC8664683 DOI: 10.1093/ofid/ofab527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Sickle cell trait (HbAS) protects against severe Plasmodium falciparum malaria but not against placental malaria (PM). In this study, P falciparum erythrocyte membrane protein (PfEMP1)-specific antibodies were measured in HbAA and HbAS Beninese pregnant women as a proxy of exposure to specific PfEMP1 variants. METHODS Plasma samples collected at delivery from 338 HbAA and 63 HbAS women were used to measure immunoglobulin (Ig)G levels to 6 recombinant PfEMP1 proteins and 3 corresponding native proteins expressed on the infected erythrocyte (IE) surface. Immunoglobulin G-mediated inhibition of VAR2CSA+ IEs adhesion to chondroitin sulfate A (CSA) was also tested. RESULTS Levels of PfEMP1-specific IgG were similar in the 2 groups, except for native IT4VAR09 on IEs, where IgG levels were significantly higher in HbAS women. Adjusted odds ratios for women with positive IgG to HB3VAR06 and PFD1235w suggest a lower risk of infection with these virulent variants among HbAS individuals. The percentage of IEs binding to CSA did not differ between HbAA and HbAS women, but it correlated positively with levels of anti-VAR2CSA and parity. Women with PM had lower levels of anti-VAR2CSA-specific IgG and lower IgG-mediated inhibition of IE adhesion to CSA. CONCLUSIONS The findings support similar malaria exposure in HbAA and HbAS women and a lack of HbAS-dependent protection against placental infection among pregnant women.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Firmine Viwami
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement, Paris, France
- Institut de Recherche Clinique du Benin, Abomey Calavi, Benin
| | - Zakaria Seidu
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Nicaise Tuikue Ndam
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement, Paris, France
- Institut de Recherche Clinique du Benin, Abomey Calavi, Benin
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
20
|
Possemiers H, Pham TT, Coens M, Pollenus E, Knoops S, Noppen S, Vandermosten L, D’haese S, Dillemans L, Prenen F, Schols D, Franke-Fayard B, Van den Steen PE. Skeleton binding protein-1-mediated parasite sequestration inhibits spontaneous resolution of malaria-associated acute respiratory distress syndrome. PLoS Pathog 2021; 17:e1010114. [PMID: 34843584 PMCID: PMC8659713 DOI: 10.1371/journal.ppat.1010114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/09/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria is a hazardous disease caused by Plasmodium parasites and often results in lethal complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Parasite sequestration in the microvasculature is often observed, but its role in malaria pathogenesis and complications is still incompletely understood. We used skeleton binding protein-1 (SBP-1) KO parasites to study the role of sequestration in experimental MA-ARDS. The sequestration-deficiency of these SBP-1 KO parasites was confirmed with bioluminescence imaging and by measuring parasite accumulation in the lungs with RT-qPCR. The SBP-1 KO parasites induced similar lung pathology in the early stage of experimental MA-ARDS compared to wildtype (WT) parasites. Strikingly, the lung pathology resolved subsequently in more than 60% of the SBP-1 KO infected mice, resulting in prolonged survival despite the continuous presence of the parasite. This spontaneous disease resolution was associated with decreased inflammatory cytokine expression measured by RT-qPCR and lower expression of cytotoxic markers in pathogenic CD8+ T cells in the lungs of SBP-1 KO infected mice. These data suggest that SBP-1-mediated parasite sequestration and subsequent high parasite load are not essential for the development of experimental MA-ARDS but inhibit the resolution of the disease. Malaria is still a severe global disease with more than 200 million cases and 400 000 deaths each year. Plasmodium falciparum is the species responsible for most malaria deaths globally. The propensity of these parasites to sequester in peripheral vascular beds is assumed to play an important role in disease severity and mortality. Although sequestration has been observed in lungs of malaria patients, its role in the pathogenesis of MA-ARDS, a severe lung complication in malaria, was previously unknown. Therefore, we used sequestration-deficient SBP-1 KO Plasmodium berghei NK65 parasites to study the role of sequestration in experimental MA-ARDS. We observed that MA-ARDS developed similarly in WT and SBP-1 KO infected mice, but the majority of SBP-1 KO-infected mice were able to resolve the lung pathology despite the continuous presence of the parasite. This coincided with a prolonged survival, a decrease in inflammatory cytokine expression and lower expression of cytotoxicity markers in pathogenic CD8+ T cells. These results give important new insights in the role of parasite sequestration in malaria pathology.
Collapse
Affiliation(s)
- Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
- Currently at Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Belgium
| | - Marion Coens
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Sigrid D’haese
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
- Currently at Neuro-Aging & Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Luna Dillemans
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | | | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
- * E-mail:
| |
Collapse
|
21
|
Knowlesi malaria: Human risk factors, clinical spectrum, and pathophysiology. ADVANCES IN PARASITOLOGY 2021; 113:1-43. [PMID: 34620381 DOI: 10.1016/bs.apar.2021.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmodium knowlesi is endemic across Southeast Asia, and is the commonest cause of zoonotic malaria. The spectrum of clinical disease from P. knowlesi infection ranges from asymptomatic infection, through to severe malaria and death. Over 90% of clinical disease occurs in adults, mostly living in forest edge areas undergoing intensive land use change. With a 24-h asexual life cycle in humans, high parasite counts are possible, but most clinical cases of knowlesi malaria are uncomplicated with low parasitaemia. In co-endemic areas, median parasitaemia in knowlesi malaria is lower than that seen in vivax and falciparum malaria, suggesting a lower fever threshold. Severe malaria occurs in 6-9% of symptomatic adults. Manifestations of severe malaria from P. knowlesi are similar to those seen with falciparum malaria, with the notable absence of coma. Age, parasitaemia, cardiovascular comorbidities and delayed diagnosis are risk factors for severe disease and death, which are only seen in adults. Thrombocytopenia is near-universal in adults, likely related to platelet-red cell binding and clearance. Mechanisms underlying the microvascular sludging seen in fatal disease in non-natural primate hosts and the microvascular accumulation of parasites in fatal human disease are not clear. Marked reductions in deformability of both infected and uninfected red blood cells are associated with disease severity in both humans and other non-natural primate hosts, likely contributing to impaired microvascular perfusion and organ dysfunction. Endothelial activation, endothelial dysfunction, glycocalyx degradation and haemolysis are also associated with, and likely contribute to, severe disease and organ dysfunction, particularly acute kidney injury.
Collapse
|
22
|
Computational Insights into the Interaction between Cytoadherence Receptor gC1qR and the DBLβ12 Domain of a Plasmodium falciparum PfEMP1 Ligand. Life (Basel) 2021; 11:life11090993. [PMID: 34575142 PMCID: PMC8471399 DOI: 10.3390/life11090993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Human receptor gC1qR is a 32 kD protein that mediates the cytoadherence of Plasmodium falciparum-infected erythrocytes (IEs) to human brain microvascular endothelial cells (HBMEC) and platelets. The cytoadherence of IEs to gC1qR has been associated with severe malaria symptoms. The cytoadherence to gC1qR is mediated by the Duffy binding-like β12 (DBLβ12) domain of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), PFD0020c. Here, we report the structural insights into the binding of the DBLβ12 domain of PfEMP1 with the human receptor gC1qR using computational methods. A molecular model of the DBLβ12 domain was generated and used for protein-protein docking with the host receptor gC1qR. The protein-protein docking revealed that the DBLβ12 asymmetrically interacts with two subunits of the gC1qR trimer at the solution face of gC1qR. A total of 21 amino acid residues of DBLβ12 interact with 26 amino acid residues in the gC1qR trimer through 99 nonbonding interactions and 4 hydrogen bonds. Comparative analysis of binding sites on the DBL domain fold for the two receptors gC1qR and ICAM1 showed that the two sites are distinct. This is the first study that provides structural insights into DBLβ12 binding with its receptor gC1qR and may help in designing novel antisevere malaria interventions.
Collapse
|
23
|
Zhai X, Kong WG, Cheng GF, Cao JF, Dong F, Han GK, Song YL, Qin CJ, Xu Z. Molecular Characterization and Expression Analysis of Intercellular Adhesion Molecule-1 (ICAM-1) Genes in Rainbow Trout ( Oncorhynchus mykiss) in Response to Viral, Bacterial and Parasitic Challenge. Front Immunol 2021; 12:704224. [PMID: 34489953 PMCID: PMC8417878 DOI: 10.3389/fimmu.2021.704224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
The intercellular adhesion molecule-1 (ICAM-1), known as CD54, is a transmembrane cell surface glycoprotein that interacts with two integrins (i.e., LFA-1 and Mac-l) important for trans-endothelial migration of leukocytes. The level of ICAM-1 expression is upregulated in response to some inflammatory stimulations, including pathogen infection and proinflammatory cytokines. Yet, to date, our knowledge regarding the functional role of ICAM-1 in teleost fish remains largely unknown. In this study, we cloned and characterized the sequence of ICAM-1 in rainbow trout (Oncorhynchus mykiss) for the first time, which exhibited that the molecular features of ICAM-1 in fishes were relatively conserved compared with human ICAM-1. The transcriptional level of ICAM-1 was detected in 12 different tissues, and we found high expression of this gene in the head kidney, spleen, gills, skin, nose, and pharynx. Moreover, upon stimulation with infectious hematopoietic necrosis virus (IHNV), Flavobacterium columnare G4 (F. columnare), and Ichthyophthirius multifiliis (Ich) in rainbow trout, the morphological changes were observed in the skin and gills, and enhanced expression of ICAM-1 mRNA was detected both in the systemic and mucosal tissues. These results indicate that ICAM-1 may be implicated in the mucosal immune responses to viral, bacterial, and parasitic infections in teleost fish, meaning that ICAM-1 emerges as a master regulator of mucosal immune responses against pathogen infections in teleost fish.
Collapse
Affiliation(s)
- Xue Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei-Guang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Center for Fish Biology and Fishery Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gao-Feng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jia-Feng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Guang-Kun Han
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yan-Ling Song
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chuan-Jie Qin
- Department of Life Science, Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Center for Fish Biology and Fishery Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
24
|
Chesnokov O, Visitdesotrakul P, Kalani K, Nefzi A, Oleinikov AV. Small Molecule Compounds Identified from Mixture-Based Library Inhibit Binding between Plasmodium falciparum Infected Erythrocytes and Endothelial Receptor ICAM-1. Int J Mol Sci 2021; 22:ijms22115659. [PMID: 34073419 PMCID: PMC8198633 DOI: 10.3390/ijms22115659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
Specific adhesion of P. falciparum parasite-infected erythrocytes (IE) in deep vascular beds can result in severe complications, such as cerebral malaria, placental malaria, respiratory distress, and severe anemia. Cerebral malaria and severe malaria syndromes were associated previously with sequestration of IE to a microvasculature receptor ICAM-1. The screening of Torrey Pines Scaffold Ranking library, which consists of more than 30 million compounds designed around 75 molecular scaffolds, identified small molecules that inhibit cytoadhesion of ICAM-1-binding IE to surface-immobilized receptor at IC50 range down to ~350 nM. With their low cytotoxicity toward erythrocytes and human endothelial cells, these molecules might be suitable for development into potentially effective adjunct anti-adhesion drugs to treat cerebral and/or severe malaria syndromes. Our two-step high-throughput screening approach is specifically designed to work with compound mixtures to make screening and deconvolution to single active compounds fast and efficient.
Collapse
Affiliation(s)
- Olga Chesnokov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA
| | | | - Komal Kalani
- Center for Translational Science, Florida International University (FIU), Port Saint Lucie, FL 34987, USA
| | - Adel Nefzi
- Center for Translational Science, Florida International University (FIU), Port Saint Lucie, FL 34987, USA
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA
| |
Collapse
|
25
|
Red blood cell adhesion to ICAM-1 is mediated by fibrinogen and is associated with right-to-left shunts in sickle cell disease. Blood Adv 2021; 4:3688-3698. [PMID: 32777069 PMCID: PMC7422136 DOI: 10.1182/bloodadvances.2020001656] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Sickle cell disease (SCD), which afflicts 100 000 Americans, as well as millions worldwide, is associated with anemia, lifelong morbidity, and early mortality. Abnormal adhesion of sickle red blood cells (RBCs) to activated vascular endothelium may contribute acutely to the initiation of painful vaso-occlusive crises and chronically to endothelial damage in SCD. Sickle RBCs adhere to activated endothelium through several adhesion mechanisms. In this study, using whole blood from 17 people with heterozygous SCD (HbS variant) and 55 people with homozygous SCD (HbSS) analyzed in an in vitro microfluidic assay, we present evidence for the adhesion of sickle RBCs to immobilized recombinant intercellular adhesion molecule 1 (ICAM-1). We show that sickle RBC adhesion to ICAM-1 in vitro is associated with evidence of hemolysis in vivo, marked by elevated lactate dehydrogenase levels, reticulocytosis, and lower fetal hemoglobin levels. Further, RBC adhesion to ICAM-1 correlates with a history of intracardiac or intrapulmonary right-to-left shunts. Studies of potential ICAM-1 ligands on RBC membranes revealed that RBC-ICAM-1 interactions were mediated by fibrinogen bound to the RBC membrane. We describe, for the first time, RBC rolling behavior on ICAM-1 under high shear rates. Our results suggest that firm adhesion of sickle RBCs to ICAM-1 most likely occurs in postcapillary venules at low physiological shear rates, which is facilitated by initial rolling in high shear regions (eg, capillaries). Inhibition of RBC and ICAM-1 interactions may constitute a novel therapeutic target in SCD.
Collapse
|
26
|
Yadavalli R, Peterson JW, Drazba JA, Sam-Yellowe TY. Trafficking and Association of Plasmodium falciparum MC-2TM with the Maurer's Clefts. Pathogens 2021; 10:pathogens10040431. [PMID: 33916455 PMCID: PMC8066109 DOI: 10.3390/pathogens10040431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/05/2022] Open
Abstract
In this study, we investigated stage specific expression, trafficking, solubility and topology of endogenous PfMC-2TM in P. falciparum (3D7) infected erythrocytes. Following Brefeldin A (BFA) treatment of parasites, PfMC-2TM traffic was evaluated using immunofluorescence with antibodies reactive with PfMC-2TM. PfMC-2TM is sensitive to BFA treatment and permeabilization of infected erythrocytes with streptolysin O (SLO) and saponin, showed that the N and C-termini of PfMC-2TM are exposed to the erythrocyte cytoplasm with the central portion of the protein protected in the MC membranes. PfMC-2TM was expressed as early as 4 h post invasion (hpi), was tightly colocalized with REX-1 and trafficked to the erythrocyte membrane without a change in solubility. PfMC-2TM associated with the MC and infected erythrocyte membrane and was resistant to extraction with alkaline sodium carbonate, suggestive of protein-lipid interactions with membranes of the MC and erythrocyte. PfMC-2TM is an additional marker of the nascent MCs.
Collapse
Affiliation(s)
- Raghavendra Yadavalli
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA;
| | - John W. Peterson
- Imaging Core Facility, The Cleveland Clinic, Cleveland, OH 44195, USA; (J.W.P.); (J.A.D.)
| | - Judith A. Drazba
- Imaging Core Facility, The Cleveland Clinic, Cleveland, OH 44195, USA; (J.W.P.); (J.A.D.)
| | - Tobili Y. Sam-Yellowe
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA;
- Correspondence: ; Tel.: +1-216-687-2068
| |
Collapse
|
27
|
Mejia P, Treviño-Villarreal JH, De Niz M, Meibalan E, Longchamp A, Reynolds JS, Turnbull LB, Opoka RO, Roussilhon C, Spielmann T, Ozaki CK, Heussler VT, Seydel KB, Taylor TE, John CC, Milner DA, Marti M, Mitchell JR. Adipose tissue parasite sequestration drives leptin production in mice and correlates with human cerebral malaria. SCIENCE ADVANCES 2021; 7:7/13/eabe2484. [PMID: 33762334 PMCID: PMC7990332 DOI: 10.1126/sciadv.abe2484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Circulating levels of the adipokine leptin are linked to neuropathology in experimental cerebral malaria (ECM), but its source and regulation mechanism remain unknown. Here, we show that sequestration of infected red blood cells (iRBCs) in white adipose tissue (WAT) microvasculature increased local vascular permeability and leptin production. Mice infected with parasite strains that fail to sequester in WAT displayed reduced leptin production and protection from ECM. WAT sequestration and leptin induction were lost in CD36KO mice; however, ECM susceptibility revealed sexual dimorphism. Adipocyte leptin was regulated by the mechanistic target of rapamycin complex 1 (mTORC1) and blocked by rapamycin. In humans, although Plasmodium falciparum infection did not increase circulating leptin levels, iRBC sequestration, tissue leptin production, and mTORC1 activity were positively correlated with CM in pediatric postmortem WAT. These data identify WAT sequestration as a trigger for leptin production with potential implications for pathogenesis of malaria infection, prognosis, and treatment.
Collapse
Affiliation(s)
- Pedro Mejia
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | | | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Elamaran Meibalan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alban Longchamp
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Justin S Reynolds
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lindsey B Turnbull
- Department of Pediatric Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert O Opoka
- Department of Pediatrics and Child Health, Makerere University, Kampala, Uganda
| | | | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - C Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Karl B Seydel
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| | - Terrie E Taylor
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| | - Chandy C John
- Department of Pediatric Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Danny A Milner
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- American Society for Clinical Pathology, Chicago, IL, USA
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
28
|
Abstract
Respiratory distress (RD) is a complication of severe malaria associated with a particularly high risk for death in African children infected with the parasite Plasmodium falciparum. The pathophysiology underlying RD remains poorly understood, and the condition is managed supportively. Respiratory distress in severe malaria is associated with high mortality, but its pathogenesis remains unclear. The malaria pigment hemozoin (HZ) is abundant in target organs of severe malaria, including the lungs, and is known to be a potent innate immune activator of phagocytes. We hypothesized that HZ might also stimulate lung epithelial activation and thereby potentiate lung inflammation. We show here that airway epithelium stimulated with HZ undergoes global transcriptional reprogramming and changes in cell surface protein expression that comprise an epithelial activation phenotype. Proinflammatory signaling is induced, and key cytoadherence molecules are upregulated, including several associated with severe malaria, such as CD36 and ICAM1. Epithelial and extracellular matrix remodeling pathways are transformed, including induction of key metalloproteases and modulation of epithelial junctions. The overall program induced by HZ serves to promote inflammation and neutrophil transmigration, and is recapitulated in a murine model of HZ-induced acute pneumonitis. Together, our data demonstrate a direct role for hemozoin in stimulating epithelial activation that could potentiate lung inflammation in malaria.
Collapse
|
29
|
Bioengineered 3D Microvessels for Investigating Plasmodium falciparum Pathogenesis. Trends Parasitol 2021; 37:401-413. [PMID: 33485788 DOI: 10.1016/j.pt.2020.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022]
Abstract
Plasmodium falciparum pathogenesis is complex and intimately connected to vascular physiology. This is exemplified by cerebral malaria (CM), a neurovascular complication that accounts for most of the malaria deaths worldwide. P. falciparum sequestration in the brain microvasculature is a hallmark of CM and is not replicated in animal models. Numerous aspects of the disease are challenging to fully understand from clinical studies, such as parasite binding tropism or causal pathways in blood-brain barrier breakdown. Recent bioengineering approaches allow for the generation of 3D microvessels and organ-specific vasculature that provide precise control of vessel architecture and flow dynamics, and hold great promise for malaria research. Here, we discuss recent and future applications of bioengineered microvessels in malaria pathogenesis research.
Collapse
|
30
|
Kumar V, Ray S, Aggarwal S, Biswas D, Jadhav M, Yadav R, Sabnis SV, Banerjee S, Talukdar A, Kochar SK, Shetty S, Sehgal K, Patankar S, Srivastava S. Multiplexed quantitative proteomics provides mechanistic cues for malaria severity and complexity. Commun Biol 2020; 3:683. [PMID: 33204009 PMCID: PMC7672109 DOI: 10.1038/s42003-020-01384-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Management of severe malaria remains a critical global challenge. In this study, using a multiplexed quantitative proteomics pipeline we systematically investigated the plasma proteome alterations in non-severe and severe malaria patients. We identified a few parasite proteins in severe malaria patients, which could be promising from a diagnostic perspective. Further, from host proteome analysis we observed substantial modulations in many crucial physiological pathways, including lipid metabolism, cytokine signaling, complement, and coagulation cascades in severe malaria. We propose that severe manifestations of malaria are possibly underpinned by modulations of the host physiology and defense machinery, which is evidently reflected in the plasma proteome alterations. Importantly, we identified multiple blood markers that can effectively define different complications of severe falciparum malaria, including cerebral syndromes and severe anemia. The ability of our identified blood markers to distinguish different severe complications of malaria may aid in developing new clinical tests for monitoring malaria severity.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Manali Jadhav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Radha Yadav
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sanjeev V Sabnis
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Soumaditya Banerjee
- Medicine Department, Medical College Hospital Kolkata, 88, College Street, Kolkata, 700073, India
| | - Arunansu Talukdar
- Medicine Department, Medical College Hospital Kolkata, 88, College Street, Kolkata, 700073, India
| | - Sanjay K Kochar
- Department of Medicine, Malaria Research Centre, S.P. Medical College, Bikaner, 334003, India
| | - Suvin Shetty
- Dr. L H Hiranandani Hospital, Mumbai, 400076, India
| | | | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
31
|
Park EJ, Myint PK, Ito A, Appiah MG, Darkwah S, Kawamoto E, Shimaoka M. Integrin-Ligand Interactions in Inflammation, Cancer, and Metabolic Disease: Insights Into the Multifaceted Roles of an Emerging Ligand Irisin. Front Cell Dev Biol 2020; 8:588066. [PMID: 33195249 PMCID: PMC7649757 DOI: 10.3389/fcell.2020.588066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 01/10/2023] Open
Abstract
Integrins are transmembrane proteins that mediate cellular adhesion and migration to neighboring cells or the extracellular matrix, which is essential for cells to undertake diverse physiological and pathological pathways. For integrin activation and ligand binding, bidirectional signaling across the cell membrane is needed. Integrins aberrantly activated under pathologic conditions facilitate cellular infiltration into tissues, thereby causing inflammatory or tumorigenic progressions. Thus, integrins have emerged to the forefront as promising targets for developing therapeutics to treat autoimmune and cancer diseases. In contrast, it remains a fact that integrin-ligand interactions are beneficial for improving the health status of different tissues. Among these ligands, irisin, a myokine produced mainly by skeletal muscles in an exercise-dependent manner, has been shown to bind to integrin αVβ5, alleviating symptoms under unfavorable conditions. These findings may provide insights into some of the underlying mechanisms by which exercise improves quality of life. This review will discuss the current understanding of integrin-ligand interactions in both health and disease. Likewise, we not only explain how diverse ligands play different roles in mediating cellular functions under both conditions via their interactions with integrins, but also specifically highlight the potential roles of the emerging ligand irisin in inflammation, cancer, and metabolic disease.
Collapse
Affiliation(s)
- Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsushi Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
32
|
Takizawa S, Murao A, Ochani M, Aziz M, Wang P. Frontline Science: Extracellular CIRP generates a proinflammatory Ly6G + CD11b hi subset of low-density neutrophils in sepsis. J Leukoc Biol 2020; 109:1019-1032. [PMID: 33070370 DOI: 10.1002/jlb.3hi0620-416r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/02/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern. Neutrophils present in the mononuclear cell fraction of Ficoll gradient separation are called low-density neutrophils (LDNs). Here we report the novel role of eCIRP on LDNs' heterogeneity in sepsis. Sepsis was induced in male C57BL/6 wild-type (WT) and CIRP-/- mice by cecal ligation and puncture (CLP). At 20 h after CLP, LDNs in the blood were isolated by Ficoll gradient separation, followed by staining the cells with anti-Ly6G and anti-CD11b Abs and detection by flow cytometry. Sepsis or recombinant murine CIRP (rmCIRP) injection in mice resulted in significant increase in the frequency (%) and number of Ly6G+ CD11bhi and Ly6G+ CD11blo LDNs in the blood compared to sham- or vehicle-treated mice. At 20 h of CLP, CIRP-/- mice had significantly lower frequency and number of Ly6G+ CD11bhi and Ly6G+ CD11blo LDNs in the blood compared to WT mice. In sepsis mice or rmCIRP-injected mice, compared to Ly6G+ CD11blo LDNs, the expression of CXCR4, ICAM-1, and iNOS and formation of reactive oxygen species, and neutrophil extracellular traps in Ly6G+ CD11bhi LDNs in the blood were significantly increased. Treatment of WT bone marrow-derived neutrophils (BMDNs) with rmCIRP increased Ly6G+ CD11bhi LDN frequency, whereas treatment of TLR4-/- BMDNs with rmCIRP significantly decreased the frequency of Ly6G+ CD11bhi LDNs. BMDNs' stimulation with rmCIRP increased the expression of transcription factors in LDNs. eCIRP induces the formation of a proinflammatory phenotype Ly6G+ CD11bhi of LDNs through TLR4. Targeting eCIRP may provide beneficial outcomes in sepsis by decreasing proinflammatory Ly6G+ CD11bhi LDNs.
Collapse
Affiliation(s)
- Satoshi Takizawa
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Mahendar Ochani
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| |
Collapse
|
33
|
Lopez-Perez M, van der Puije W, Castberg FC, Ofori MF, Hviid L. Binding of human serum proteins to Plasmodium falciparum-infected erythrocytes and its association with malaria clinical presentation. Malar J 2020; 19:362. [PMID: 33032607 PMCID: PMC7545873 DOI: 10.1186/s12936-020-03438-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/01/2020] [Indexed: 11/10/2022] Open
Abstract
Background The pathogenesis of Plasmodium falciparum malaria is related to the ability of parasite‑infected erythrocytes (IEs) to adhere to the vascular endothelium (cytoadhesion/sequestration) or to surrounding uninfected erythrocytes (rosetting). Both processes are mediated by the expression of members of the clonally variant PfEMP1 parasite protein family on the surface of the IEs. Recent evidence obtained with laboratory-adapted clones indicates that P. falciparum can exploit human serum factors, such as IgM and α2-macroglobulin (α2M), to increase the avidity of PfEMP1-mediated binding to erythrocyte receptors, as well as to evade host PfEMP1-specific immune responses. It has remained unclear whether PfEMP1 variants present in field isolates share these characteristics, and whether they are associated with clinical malaria severity. These issues were investigated here. Methods Children 1–12 years reporting with P. falciparum malaria to Hohoe Municipal Hospital, Ghana were enrolled in the study. Parasites from children with uncomplicated (UM) and severe malaria (SM) were collected. Binding of α2M and IgM from non-immune individuals to erythrocytes infected by P. falciparum isolates from 34 children (UM and SM) were analysed by flow cytometry. Rosetting in the presence of IgM or α2M was also evaluated. Experimental results were analysed according to the clinical presentation of the patients. Results Clinical data from 108 children classified as UM (n = 54) and SM cases (n = 54) were analysed. Prostration, severe malaria anaemia, and hyperparasitaemia were the most frequent complications. Three children were diagnosed with cerebral malaria, and one child died. Parasite isolates from UM (n = 14) and SM (n = 20) children were analysed. Most of the field isolates bound non-immune IgM (33/34), whereas the α2M-binding was less common (23/34). Binding of both non-immune IgM and α2M was higher but not significant in IEs from children with SM than from children with UM. In combination, IgM and α2M supported rosette formation at levels similar to that observed in the presence of 10% human serum. Conclusions The results support the hypothesis that binding of non-immune IgM and/or α2M to IEs facilitates rosette formation and perhaps contributes to P. falciparum malaria severity.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - William van der Puije
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Centre for Medical Parasitology, Department of Infectious Diseases and Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Filip C Castberg
- Centre for Medical Parasitology, Department of Infectious Diseases and Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Centre for Medical Parasitology, Department of Infectious Diseases and Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
34
|
Puchałowicz K, Rać ME. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications-Update in Pathogenesis, Treatment and Monitoring. Cells 2020; 9:cells9081877. [PMID: 32796572 PMCID: PMC7465275 DOI: 10.3390/cells9081877] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
CD36 is a multiligand receptor contributing to glucose and lipid metabolism, immune response, inflammation, thrombosis, and fibrosis. A wide range of tissue expression includes cells sensitive to metabolic abnormalities associated with metabolic syndrome and diabetes mellitus (DM), such as monocytes and macrophages, epithelial cells, adipocytes, hepatocytes, skeletal and cardiac myocytes, pancreatic β-cells, kidney glomeruli and tubules cells, pericytes and pigment epithelium cells of the retina, and Schwann cells. These features make CD36 an important component of the pathogenesis of DM and its complications, but also a promising target in the treatment of these disorders. The detrimental effects of CD36 signaling are mediated by the uptake of fatty acids and modified lipoproteins, deposition of lipids and their lipotoxicity, alterations in insulin response and the utilization of energy substrates, oxidative stress, inflammation, apoptosis, and fibrosis leading to the progressive, often irreversible organ dysfunction. This review summarizes the extensive knowledge of the contribution of CD36 to DM and its complications, including nephropathy, retinopathy, peripheral neuropathy, and cardiomyopathy.
Collapse
|
35
|
van der Puije W, Wang CW, Sudharson S, Hempel C, Olsen RW, Dalgaard N, Ofori MF, Hviid L, Kurtzhals JAL, Staalsoe T. In vitro selection for adhesion of Plasmodium falciparum-infected erythrocytes to ABO antigens does not affect PfEMP1 and RIFIN expression. Sci Rep 2020; 10:12871. [PMID: 32732983 PMCID: PMC7393120 DOI: 10.1038/s41598-020-69666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Plasmodium falciparum causes the most severe form of malaria in humans. The adhesion of the infected erythrocytes (IEs) to endothelial receptors (sequestration) and to uninfected erythrocytes (rosetting) are considered major elements in the pathogenesis of the disease. Both sequestration and rosetting appear to involve particular members of several IE variant surface antigens (VSAs) as ligands, interacting with multiple vascular host receptors, including the ABO blood group antigens. In this study, we subjected genetically distinct P. falciparum parasites to in vitro selection for increased IE adhesion to ABO antigens in the absence of potentially confounding receptors. The selection resulted in IEs that adhered stronger to pure ABO antigens, to erythrocytes, and to various human cell lines than their unselected counterparts. However, selection did not result in marked qualitative changes in transcript levels of the genes encoding the best-described VSA families, PfEMP1 and RIFIN. Rather, overall transcription of both gene families tended to decline following selection. Furthermore, selection-induced increases in the adhesion to ABO occurred in the absence of marked changes in immune IgG recognition of IE surface antigens, generally assumed to target mainly VSAs. Our study sheds new light on our understanding of the processes and molecules involved in IE sequestration and rosetting.
Collapse
Affiliation(s)
- William van der Puije
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.,Centre for Medical Parasitology, Department of Clinical Microbiology, Rigshospitalet, Ole Maaløes Vej, 7602, 2200, Copenhagen, Denmark
| | - Christian W Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Srinidhi Sudharson
- Centre for Medical Parasitology, Department of Clinical Microbiology, Rigshospitalet, Ole Maaløes Vej, 7602, 2200, Copenhagen, Denmark
| | - Casper Hempel
- Centre for Medical Parasitology, Department of Clinical Microbiology, Rigshospitalet, Ole Maaløes Vej, 7602, 2200, Copenhagen, Denmark
| | - Rebecca W Olsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Dalgaard
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.,Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen A L Kurtzhals
- Centre for Medical Parasitology, Department of Clinical Microbiology, Rigshospitalet, Ole Maaløes Vej, 7602, 2200, Copenhagen, Denmark.,Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Staalsoe
- Centre for Medical Parasitology, Department of Clinical Microbiology, Rigshospitalet, Ole Maaløes Vej, 7602, 2200, Copenhagen, Denmark. .,Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Chappell L, Ross P, Orchard L, Russell TJ, Otto TD, Berriman M, Rayner JC, Llinás M. Refining the transcriptome of the human malaria parasite Plasmodium falciparum using amplification-free RNA-seq. BMC Genomics 2020; 21:395. [PMID: 32513207 PMCID: PMC7278070 DOI: 10.1186/s12864-020-06787-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Background Plasmodium parasites undergo several major developmental transitions during their complex lifecycle, which are enabled by precisely ordered gene expression programs. Transcriptomes from the 48-h blood stages of the major human malaria parasite Plasmodium falciparum have been described using cDNA microarrays and RNA-seq, but these assays have not always performed well within non-coding regions, where the AT-content is often 90–95%. Results We developed a directional, amplification-free RNA-seq protocol (DAFT-seq) to reduce bias against AT-rich cDNA, which we have applied to three strains of P. falciparum (3D7, HB3 and IT). While strain-specific differences were detected, overall there is strong conservation between the transcriptional profiles. For the 3D7 reference strain, transcription was detected from 89% of the genome, with over 78% of the genome transcribed into mRNAs. We also find that transcription from bidirectional promoters frequently results in non-coding, antisense transcripts. These datasets allowed us to refine the 5′ and 3′ untranslated regions (UTRs), which can be variable, long (> 1000 nt), and often overlap those of adjacent transcripts. Conclusions The approaches applied in this study allow a refined description of the transcriptional landscape of P. falciparum and demonstrate that very little of the densely packed P. falciparum genome is inactive or redundant. By capturing the 5′ and 3′ ends of mRNAs, we reveal both constant and dynamic use of transcriptional start sites across the intraerythrocytic developmental cycle that will be useful in guiding the definition of regulatory regions for use in future experimental gene expression studies.
Collapse
Affiliation(s)
- Lia Chappell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Philipp Ross
- Department of Biochemistry & Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA.,Present Address: Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Lindsey Orchard
- Department of Biochemistry & Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Timothy J Russell
- Department of Biochemistry & Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Thomas D Otto
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Present Address: Institute of Infection, Immunity and Inflammation, MVLS, University of Glasgow, Glasgow, G12 8TA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Present Address: Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
37
|
Murao A, Arif A, Brenner M, Denning NL, Jin H, Takizawa S, Nicastro B, Wang P, Aziz M. Extracellular CIRP and TREM-1 axis promotes ICAM-1-Rho-mediated NETosis in sepsis. FASEB J 2020; 34:9771-9786. [PMID: 32506691 DOI: 10.1096/fj.202000482r] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022]
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern (DAMP). Intercellular adhesion molecule-1 (ICAM-1) expressing neutrophils produce excessive amounts of neutrophil extracellular traps (NETs). We reveal that eCIRP generates ICAM-1+ neutrophils through triggering receptor expressed on myeloid cells-1 (TREM-1) and the ICAM-1+ neutrophils involve Rho GTPase to promote NETosis. Treatment of BMDN with rmCIRP increased the frequency of ICAM-1+ BMDN, while rmCIRP-treated TREM-1-/- BMDN or pretreatment of BMDN with TREM-1 inhibitor LP17 significantly decreased the frequency of ICAM-1+ neutrophils. The frequencies of ICAM-1+ neutrophils in blood and lungs were markedly decreased in rmCIRP-injected mice or septic mice treated with LP17. Coculture of ICAM-1-/- neutrophils or wild-type (WT) neutrophils with WT macrophages in the presence of a peptidylarginine deiminase 4 (PAD4) inhibitor reduced TNF-α and IL-6 compared to WT neutrophils treated with rmCIRP. Treatment of ICAM-1-/- neutrophils with rmCIRP resulted in reduced quantities of NETs compared to WT rmCIRP-treated neutrophils. Treatment of BMDN with rmCIRP-induced Rho activation, while blockade of ICAM-1 significantly decreased Rho activation. Inhibition of Rho significantly decreased rmCIRP-induced NET formation in BMDN. TREM-1 plays a critical role in the eCIRP-mediated increase of ICAM-1 expression in neutrophils, leading to the increased NET formation via Rho activation to exaggerate inflammation.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Adnan Arif
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Naomi-Liza Denning
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Hui Jin
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Satoshi Takizawa
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Benjamin Nicastro
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| |
Collapse
|
38
|
Quintana MDP, Smith-Togobo C, Moormann A, Hviid L. Endemic Burkitt lymphoma - an aggressive childhood cancer linked to Plasmodium falciparum exposure, but not to exposure to other malaria parasites. APMIS 2020; 128:129-135. [PMID: 32133709 DOI: 10.1111/apm.13018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Burkitt lymphoma (BL) is an aggressive non-Hodgkin lymphoma. The prevalence of BL is ten-fold higher in areas with stable transmission of Plasmodium falciparum malaria, where it is the most common childhood cancer, and is referred to as endemic BL (eBL). In addition to its association with exposure to P. falciparum infection, eBL is strongly associated with Epstein-Barr virus (EBV) infection (>90%). This is in contrast to BL as it occurs outside P. falciparum-endemic areas (sporadic BL), where only a minority of the tumours are EBV-positive. Although the striking geographical overlap in the distribution of eBL and P. falciparum was noted shortly after the first detailed description of eBL in 1958, the molecular details of the interaction between malaria and eBL remain unresolved. It is furthermore unexplained why exposure to P. falciparum appears to be essentially a prerequisite to the development of eBL, whereas other types of malaria parasites that infect humans have no impact. In this brief review, we summarize how malaria exposure may precipitate the malignant transformation of a B-cell clone that leads to eBL, and propose an explanation for why P. falciparum uniquely has this capacity.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilia Smith-Togobo
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry, Cell and Molecular Biology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Ann Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
39
|
Stringent Selection of Knobby Plasmodium falciparum-Infected Erythrocytes during Cytoadhesion at Febrile Temperature. Microorganisms 2020; 8:microorganisms8020174. [PMID: 31991814 PMCID: PMC7074740 DOI: 10.3390/microorganisms8020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/17/2022] Open
Abstract
Changes in the erythrocyte membrane induced by Plasmodium falciparum invasion allow cytoadhesion of infected erythrocytes (IEs) to the host endothelium, which can lead to severe complications. Binding to endothelial cell receptors (ECRs) is mainly mediated by members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, encoded by var genes. Malaria infection causes several common symptoms, with fever being the most apparent. In this study, the effects of febrile conditions on cytoadhesion of predominately knobless erythrocytes infected with the laboratory isolate IT4 to chondroitin-4-sulfate A (CSA), intercellular adhesion molecule 1 (ICAM-1), and CD36 were investigated. IEs enriched for binding to CSA at 40 °C exhibited significantly increased binding capacity relative to parasites enriched at 37 °C. This interaction was due to increased var2csa expression and trafficking of the corresponding PfEMP1 to the IE surface as well as to a selection of knobby IEs. Furthermore, the enrichment of IEs to ICAM-1 at 40 °C also led to selection of knobby IEs over knobless IEs, whereas enrichment on CD36 did not lead to a selection. In summary, these findings demonstrate that knobs are crucial for parasitic survival in the host, especially during fever episodes, and thus, that selection pressure on the formation of knobs could be controlled by the host.
Collapse
|
40
|
Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev 2020; 293:230-252. [PMID: 31562653 PMCID: PMC6972667 DOI: 10.1111/imr.12807] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Malaria, a mosquito-borne infectious disease caused by parasites of the genus Plasmodium continues to be a major health problem worldwide. The unicellular Plasmodium-parasites have the unique capacity to infect and replicate within host erythrocytes. By expressing variant surface antigens Plasmodium falciparum has evolved to avoid protective immune responses; as a result in endemic areas anti-malaria immunity develops gradually over many years of multiple and repeated infections. We are studying the role of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed by asexual stages of P. falciparum responsible for the pathogenicity of severe malaria. The immunopathology of falciparum malaria has been linked to cyto-adhesion of infected erythrocytes to specific host receptors. A greater appreciation of the PfEMP1 molecules important for the development of protective immunity and immunopathology is a prerequisite for the rational discovery and development of a safe and protective anti-disease malaria vaccine. Here we review the role of ICAM-1 and EPCR receptor adhering falciparum-parasites in the development of severe malaria; we discuss our current research to understand the factors involved in the pathogenesis of cerebral malaria and the feasibility of developing a vaccine targeted specifically to prevent this disease.
Collapse
Affiliation(s)
- Anja Ramstedt Jensen
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesRigshospitaletCopenhagenDenmark
| |
Collapse
|
41
|
Gangnard S, Chêne A, Dechavanne S, Srivastava A, Avril M, Smith JD, Gamain B. VAR2CSA binding phenotype has ancient origin and arose before Plasmodium falciparum crossed to humans: implications in placental malaria vaccine design. Sci Rep 2019; 9:16978. [PMID: 31740695 PMCID: PMC6861233 DOI: 10.1038/s41598-019-53334-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
VAR2CSA is a leading candidate for developing a placental malaria (PM) vaccine that would protect pregnant women living in malaria endemic areas against placental infections and improve birth outcomes. Two VAR2CSA-based PM vaccines are currently under clinical trials, but it is still unclear if the use of a single VAR2CSA variant will be sufficient to induce a broad enough humoral response in humans to cross-react with genetically diverse parasite populations. Additional immuno-focusing vaccine strategies may therefore be required to identify functionally conserved antibody epitopes in VAR2CSA. We explored the possibility that conserved epitopes could exist between VAR2CSA from the chimpanzee parasite Plasmodium reichenowi and Plasmodium falciparum sequences. Making use of VAR2CSA recombinant proteins originating from both species, we showed that VAR2CSA from P. reichenowi (Pr-VAR2CSA) binds to the placental receptor CSA with high specificity and affinity. Antibodies raised against Pr-VAR2CSA were able to recognize native VAR2CSA from different P. falciparum genotypes and to inhibit the interaction between CSA and P. falciparum-infected erythrocytes expressing different VAR2CSA variants. Our work revealed the existence of cross-species inhibitory epitopes in VAR2CSA and calls for pre-clinical studies assessing the efficacy of novel VAR2CSA-based cross-species boosting regimens.
Collapse
Affiliation(s)
- Stéphane Gangnard
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, F-75015, Paris, France.,Laboratory of excellence GR-Ex, F-75015, Paris, France
| | - Arnaud Chêne
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, F-75015, Paris, France.,Laboratory of excellence GR-Ex, F-75015, Paris, France
| | - Sébastien Dechavanne
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, F-75015, Paris, France.,Laboratory of excellence GR-Ex, F-75015, Paris, France
| | - Anand Srivastava
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, F-75015, Paris, France.,Laboratory of excellence GR-Ex, F-75015, Paris, France
| | - Marion Avril
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, WA, 98109, USA.,Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Benoît Gamain
- Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France. .,Institut National de la Transfusion Sanguine, F-75015, Paris, France. .,Laboratory of excellence GR-Ex, F-75015, Paris, France.
| |
Collapse
|
42
|
Takaya S, Kutsuna S, Suzuki T, Komaki-Yasuda K, Kano S, Ohmagari N. Case Report: Plasmodium knowlesi Infection with Rhabdomyolysis in a Japanese Traveler to Palawan, the Philippines. Am J Trop Med Hyg 2019; 99:967-969. [PMID: 30182921 DOI: 10.4269/ajtmh.18-0348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Skeletal muscle is known to be damaged by falciparum malaria via sequestration of infected erythrocytes. We present a case of rhabdomyolysis caused by Plasmodium knowlesi infection. The patient had fever, myalgia, and muscle weakness 5 days after returning to Japan from Palawan, the Philippines. Blood test revealed thrombocytopenia and an elevated creatine kinase level. Although rhabdomyolysis resolved with fluid therapy, fever of 24-hour cycle continued and thrombocytopenia intensified. On day 7 of illness, Giemsa-stained thin blood smear revealed malaria parasites, with a parasite count of 2,380/μL, which were morphologically indistinguishable between P. knowlesi and Plasmodium malariae. Rapid diagnostic test showed a negative result. The pathogen was later confirmed to be P. knowlesi by nested polymerase chain reaction (PCR). The patient was successfully treated with artemether/lumefantrine. This case suggests that knowlesi malaria might be able to cause skeletal muscle damage.
Collapse
Affiliation(s)
- Saho Takaya
- Diseases Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Kutsuna
- Diseases Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Suzuki
- Diseases Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kanako Komaki-Yasuda
- Department of Tropical Medicine and Malaria, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Shigeyuki Kano
- Department of Tropical Medicine and Malaria, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Norio Ohmagari
- Diseases Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Quintana MDP, Ecklu-Mensah G, Tcherniuk SO, Ditlev SB, Oleinikov AV, Hviid L, Lopez-Perez M. Comprehensive analysis of Fc-mediated IgM binding to the Plasmodium falciparum erythrocyte membrane protein 1 family in three parasite clones. Sci Rep 2019; 9:6050. [PMID: 30988351 PMCID: PMC6465264 DOI: 10.1038/s41598-019-42585-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
PfEMP1 is a family of adhesive proteins expressed on the surface of Plasmodium falciparum-infected erythrocytes (IEs), where they mediate adhesion of IEs to a range of host receptors. Efficient PfEMP1-dependent IE sequestration often depends on soluble serum proteins, including IgM. Here, we report a comprehensive investigation of which of the about 60 var gene-encoded PfEMP1 variants per parasite genome can bind IgM via the Fc part of the antibody molecule, and which of the constituent domains of those PfEMP1 are involved. We erased the epigenetic memory of var gene expression in three distinct P. falciparum clones, 3D7, HB3, and IT4/FCR3 by promoter titration, and then isolated individual IEs binding IgM from malaria-unexposed individuals by fluorescence-activated single-cell sorting. The var gene transcription profiles of sub-clones measured by real-time qPCR were used to identify potential IgM-binding PfEMP1 variants. Recombinant DBL and CIDR domains corresponding to those variants were tested by ELISA and protein arrays to confirm their IgM-binding capacity. Selected DBL domains were used to raise specific rat anti-sera to select IEs with uniform expression of candidate PfEMP1 proteins. Our data document that IgM-binding PfEMP1 proteins are common in each of the three clones studied, and that the binding epitopes are mainly found in DBLε and DBLζ domains near the C-terminus.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrude Ecklu-Mensah
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Sergey O Tcherniuk
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Sisse Bolm Ditlev
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew V Oleinikov
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| | - Mary Lopez-Perez
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Attaher O, Mahamar A, Swihart B, Barry A, Diarra BS, Kanoute MB, Dembele AB, Keita S, Gaoussou S, Issiaka D, Dicko A, Duffy PE, Fried M. Age-dependent increase in antibodies that inhibit Plasmodium falciparum adhesion to a subset of endothelial receptors. Malar J 2019; 18:128. [PMID: 30971252 PMCID: PMC6458601 DOI: 10.1186/s12936-019-2764-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/03/2019] [Indexed: 11/30/2022] Open
Abstract
Background Plasmodium falciparum-infected erythrocytes (IE) sequester in deep vascular beds where their adhesion is mediated by an array of endothelial surface receptors. Because parasite adhesion has been associated with disease, antibodies that block this activity may confer protective immunity. Here, levels of plasma anti-adhesion activity and surface reactivity against freshly collected IEs from malaria-infected children were measured in a Malian birth cohort and related to child age and malaria infection history. Methods Plasma samples from children enrolled at birth in a longitudinal cohort study of mother–infant pairs in Ouelessebougou, Mali were collected at multiple time points during follow-up visits. Anti-adhesion antibodies (i.e., inhibit IE binding to any of several endothelial receptors) and reactivity with surface IE proteins were measured using a binding inhibition assay and by flow cytometry, respectively. Results Levels of antibodies that inhibit the binding of children’s IE to the receptors ICAM-1, integrin α3β1 and laminin increased with age. The breadth of antibodies that inhibit ICAM-1 and laminin adhesion (defined as the proportion of IE isolates whose binding was reduced by ≥ 50%) also significantly increased with age. The number of malaria infections prior to plasma collection was associated with levels of plasma reactivity to IE surface proteins, but not levels of anti-adhesion activity. Conclusions Age is associated with increased levels of antibodies that reduce adhesion of children’s IE to three of the ten endothelial receptors evaluated here. These results suggest that anti-adhesion antibodies to some but not all endothelial receptors are acquired during the first few years of life. Electronic supplementary material The online version of this article (10.1186/s12936-019-2764-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oumar Attaher
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Almahamoudou Mahamar
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Bruce Swihart
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Amadou Barry
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Bacary S Diarra
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Moussa B Kanoute
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Adama B Dembele
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Sekouba Keita
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Santara Gaoussou
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Djibrilla Issiaka
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Alassane Dicko
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O Box 1805, Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA.
| |
Collapse
|
45
|
Reduced red blood cell deformability in Plasmodium knowlesi malaria. Blood Adv 2019; 2:433-443. [PMID: 29487058 DOI: 10.1182/bloodadvances.2017013730] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/26/2018] [Indexed: 01/08/2023] Open
Abstract
The simian parasite Plasmodium knowlesi can cause severe and fatal human malaria. However, little is known about the pathogenesis of this disease. In falciparum malaria, reduced red blood cell deformability (RBC-D) contributes to microvascular obstruction and impaired organ perfusion. In P knowlesi infection, impaired microcirculatory flow has been observed in Macaca mulatta (rhesus macaques), unnatural hosts who develop severe and fatal disease. However, RBC-D has not been measured in human infection or in the natural host M fascicularis (long-tailed macaques). Using ektacytometry, we measured RBC-D in adults with severe and non-severe knowlesi and falciparum malaria and in healthy controls. In addition, we used micropipette aspiration to determine the relative stiffness of infected RBCs (iRBCs) and uninfected RBCs (uRBCs) in P knowlesi-infected humans and M fascicularis Ektacytometry demonstrated that RBC-D overall was reduced in human knowlesi malaria in proportion to disease severity, and in severe knowlesi malaria, it was comparable to that of severe falciparum malaria. RBC-D correlated inversely with parasitemia and lactate in knowlesi malaria and HRP2 in falciparum malaria, and it correlated with hemoglobin nadir in knowlesi malaria. Micropipette aspiration confirmed that in humans, P knowlesi infection increased stiffness of both iRBCs and uRBCs, with the latter mostly the result of echinocytosis. In contrast, in the natural host M fascicularis, echinocyte formation was not observed, and the RBC-D of uRBCs was unaffected. In unnatural primate hosts of P knowlesi, including humans, reduced deformability of iRBCs and uRBCs may represent a key pathogenic mechanism leading to microvascular accumulation, impaired organ perfusion, and anemia.
Collapse
|
46
|
|
47
|
Kaur J, Kumar V, Singh AP, Singh V, Bisht A, Dube T, Panda JJ, Behl A, Mishra PC, Hora R. Plasmodium falciparumprotein ‘PfJ23’ hosts distinct binding sites for major virulence factor ‘PfEMP1’ and Maurer's cleft marker ‘PfSBP1’. Pathog Dis 2018; 76:5255127. [DOI: 10.1093/femspd/fty090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Jasweer Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vikash Kumar
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amrit Pal Singh
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vineeta Singh
- National Institute of Malaria Research, Sector 8 Dwarka, New Delhi, 110077 India. 4. Institute of Nanoscience and Technology, Habitat Centre, Phase 10, Sector 64, Sahibzada Ajit Singh Nagar, Punjab 160062 India
| | - Anjali Bisht
- Institute of Nanoscience and Technology, Mohali, Punjab, India
| | - Taru Dube
- Institute of Nanoscience and Technology, Mohali, Punjab, India
| | | | - Ankita Behl
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
48
|
Abstract
Neutrophils are abundant in the circulation and are one of the immune system's first lines of defense against infection. There has been substantial work carried out investigating the role of neutrophils in malaria and it is clear that during infection neutrophils are activated and are capable of clearing malaria parasites by a number of mechanisms. This review focuses on neutrophil responses to human malarias, summarizing evidence which helps us understand where neutrophils are, what they are doing, how they interact with parasites as well as their potential role in vaccine mediated immunity. We also outline future research priorities for these, the most abundant of leukocytes.
Collapse
Affiliation(s)
- Elizabeth H Aitken
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Agersew Alemu
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Wei H, Lv M, Wen C, Zhang A, Yang K, Zhou H, Wang X. Identification of an intercellular cell adhesion molecule-1 homologue from grass carp: Evidence for its involvement in the immune cell adhesion in teleost. FISH & SHELLFISH IMMUNOLOGY 2018; 81:67-72. [PMID: 29981884 DOI: 10.1016/j.fsi.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Intercellular cell adhesion molecule-1 (ICAM-1) is a single-chain transmembrane glycoprotein which plays key roles in transendothelial migration of leukocytes and interaction between antigen presenting cells and T cells. In teleost, information of cell adhesion-related molecules is still lacking. In this study, we identified a gene from grass carp sharing similar exon and intron organization with human ICAM-1. Cloning and in silico analysis of its homologues in zebrafish and other two cyprinid fishes, respectively demonstrated the existence of the gene in these fishes. Moreover, the molecular features of these genes in fishes were conserved compared with human ICAM-1. In grass carp, the transcripts of this gene were detected with high levels in heart and liver and its mRNA expression in headkidney leukocytes was induced by Il-1β. Overexpression of this molecule in COS-7 cells could increase the adhesion of the cells with grass carp peripheral blood lymphocytes (PBLs), and the adhesion was further enhanced by lipopolysaccharide stimulation on PBLs. Further studies revealed that the mRNA levels of lymphocyte function-associated antigen-1, a ligand for ICAM-1, were much higher in the PBLs adhering to the COS-7 cells with overexpressing this molecule than in the PBLs alone. These results collectively showed that the newly cloned cDNA encodes grass carp intercellular cell adhesion molecule-1 (Icam-1) and it can mediate the adhesion of PBLs. This provides functional evidence for the existence of Icam-1 in teleost and will facilitate investigation on the transendothelial migration of leukocytes in fish species.
Collapse
Affiliation(s)
- He Wei
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; School of Biomedical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Mengyuan Lv
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Chao Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
50
|
Vagianou CD, Stuhr-Hansen N, Moll K, Bovin N, Wahlgren M, Blixt O. ABO Blood Group Antigen Decorated Giant Unilamellar Vesicles Exhibit Distinct Interactions with Plasmodium falciparum Infected Red Blood Cells. ACS Chem Biol 2018; 13:2421-2426. [PMID: 30080386 DOI: 10.1021/acschembio.8b00635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Severe malaria is considered to be the deadliest disease of this century, primarily among children in sub-Saharan Africa. It stems from infection by the virulent parasite Plasmodium falciparum. The pathogenesis of the disease is based on the rosetting phenomenon, which occurs during the life cycle of the parasite in red blood cells (RBCs) and promotes the binding of parasitized RBCs to healthy ones. The role of the ABO blood group antigens in relation to the phenomenon has previously only been investigated in clinical isolates obtained from malaria patients. Here, we aim to clarify their role using synthetic ABO-decorated giant unilamellar vesicles (GUVs), which serve as simple biomimetic models of RBC-size cell membranes. Our results suggest clearly and for the first time that the blood group A and O antigens have a direct impact on receptor-specific rosetting phenomena when compared to the B antigen, which only participates in rosetting to an insignificant degree. Thus, glycodecorated GUVs represent a practical tool for studying cell-surface interactions.
Collapse
Affiliation(s)
- Charikleia-Despoina Vagianou
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Nicolai Stuhr-Hansen
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, SE-171 77 Stockholm, Sweden
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, SE-171 77 Stockholm, Sweden
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|