1
|
Huang C, Wei Z, Zheng N, Yan J, Zhang J, Ye X, Zhao W. The interaction between dysfunction of vasculature and tauopathy in Alzheimer's disease and related dementias. Alzheimers Dement 2025; 21:e14618. [PMID: 39998958 PMCID: PMC11854360 DOI: 10.1002/alz.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 02/27/2025]
Abstract
Tauopathy is one of the pathological features of Alzheimer's disease and related dementias (ADRD). At present, there have been many studies on the formation, deposition, and intercellular transmission of tau in neurons and immune cells. The vasculature is an important component of the central nervous system. This review discusses the interaction between vasculature and tau in detail from three aspects. (1) The vascular risk factors (VRFs) discussed in this review include diabetes mellitus (DM), abnormal blood pressure (BP), and hypercholesterolemia. (2) In ADRD pathology, the hyperphosphorylation and deposition of tau interact with disrupted vasculature, such as different cells (endothelial cells, smooth muscular cells, and pericytes), the blood-brain barrier (BBB), and the cerebral lymphatic system. (3) The functions of vasculature are regulated by various signaling transductions. Endothelial nitric oxide synthase/nitric oxide, calcium signaling, Rho/Rho-associated coiled-coil containing Kinase, and receptors for advanced glycation end products are discussed in this review. Our findings indicate that the prevention and treatment of vascular health may be a potential target for ADRD combination therapy. HIGHLIGHTS: Persistent VRFs increase early disruption of vascular mechanisms and are strongly associated with tau pathology in ADRD. Cell dysfunction in the vasculature causes BBB leakage and drainage incapacity of the cerebral lymphatic system, which interacts with tau pathology. Signaling molecules in the vasculature regulate vasodilation and contraction, angiogenesis, and CBF. Abnormal signaling transduction is related to tau hyperphosphorylation and deposition.
Collapse
Affiliation(s)
- Chuyao Huang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhenwen Wei
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Ningxiang Zheng
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jingsi Yan
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jiayu Zhang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xinyi Ye
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Wei Zhao
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| |
Collapse
|
2
|
Kodosaki E, Bell R, Sogorb-Esteve A, Wiltshire K, Zetterberg H, Heslegrave A. More than microglia: myeloid cells and biomarkers in neurodegeneration. Front Neurosci 2024; 18:1499458. [PMID: 39544911 PMCID: PMC11560917 DOI: 10.3389/fnins.2024.1499458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
The role of myeloid cells (granulocytes and monocytes) in neurodegeneration and neurodegenerative disorders (NDD) is indisputable. Here we discuss the roles of myeloid cells in neurodegenerative diseases, and the recent advances in biofluid and imaging myeloid biomarker research with a focus on methods that can be used in the clinic. For this review, evidence from three neurodegenerative diseases will be included, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We discuss the potential for these biomarkers to be used in humans with suspected NDD as prognostic, diagnostic, or monitoring tools, identify knowledge gaps in literature, and propose potential approaches to further elucidate the role of myeloid cells in neurodegeneration and better utilize myeloid biomarkers in the understanding and treatment of NDD.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Rosie Bell
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at UCL, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katharine Wiltshire
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
3
|
Kulatunga DCM, Ranaraja U, Kim EY, Kim RE, Kim DE, Ji KB, Kim MK. A novel APP splice variant-dependent marker system to precisely demarcate maturity in SH-SY5Y cell-derived neurons. Sci Rep 2024; 14:12113. [PMID: 38802572 PMCID: PMC11130256 DOI: 10.1038/s41598-024-63005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
SH-SY5Y, a neuroblastoma cell line, can be converted into mature neuronal phenotypes, characterized by the expression of mature neuronal and neurotransmitter markers. However, the mature phenotypes described across multiple studies appear inconsistent. As this cell line expresses common neuronal markers after a simple induction, there is a high chance of misinterpreting its maturity. Therefore, sole reliance on common neuronal markers is presumably inadequate. The Alzheimer's disease (AD) central gene, amyloid precursor protein (APP), has shown contrasting transcript variant dynamics in various cell types. We differentiated SH-SY5Y cells into mature neuron-like cells using a concise protocol and observed the upregulation of total APP throughout differentiation. However, APP transcript variant-1 was upregulated only during the early to middle stages of differentiation and declined in later stages. We identified the maturity state where this post-transcriptional shift occurs, terming it "true maturity." At this stage, we observed a predominant expression of mature neuronal and cholinergic markers, along with a distinct APP variant pattern. Our findings emphasize the necessity of using a differentiation state-sensitive marker system to precisely characterize SH-SY5Y differentiation. Moreover, this study offers an APP-guided, alternative neuronal marker system to enhance the accuracy of the conventional markers.
Collapse
Affiliation(s)
- D Chanuka M Kulatunga
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Umanthi Ranaraja
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | | | | | - Dong Ern Kim
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Kuk Bin Ji
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Min Kyu Kim
- Laboratory of Animal Reproduction and Physiology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
- MK Biotech Inc., Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Stanisavljevic A, Schrader JM, Zhu X, Mattar JM, Hanks A, Xu F, Majchrzak M, Robinson JK, Van Nostrand WE. Impact of Non-pharmacological Chronic Hypertension on a Transgenic Rat Model of Cerebral Amyloid Angiopathy. Front Neurosci 2022; 16:811371. [PMID: 35368255 PMCID: PMC8964963 DOI: 10.3389/fnins.2022.811371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), a common comorbidity of Alzheimer’s disease (AD), is a cerebral small vessel disease (CSVD) characterized by deposition of fibrillar amyloid β (Aβ) in blood vessels of the brain and promotes neuroinflammation and vascular cognitive impairment and dementia (VCID). Hypertension, a prominent non-amyloidal CSVD, has been found to increase risk of dementia, but clinical data regarding its effects in CAA patients is controversial. To understand the effects of hypertension on CAA, we bred rTg-DI transgenic rats, a model of CAA, with spontaneously hypertensive, stroke prone (SHR-SP) rats producing bigenic rTg-DI/SHR-SP and non-transgenic SHR-SP littermates. At 7 months (M) of age, cohorts of both rTg-DI/SHR-SP and SHR-SP littermates exhibit elevated systolic blood pressures. However, transgene human amyloid β-protein (Aβ) precursor and Aβ peptide levels, as well as behavioral testing showed no changes between bigenic rTg-DI/SHR-SP and rTg-DI rats. Subsequent cohorts of rats were aged further to 10 M where bigenic rTg-DI/SHR-SP and SHR-SP littermates exhibit elevated systolic and diastolic blood pressures. Vascular amyloid load in hippocampus and thalamus was significantly decreased, whereas pial surface vessel amyloid increased, in bigenic rTg-DI/SHR-SP rats compared to rTg-DI rats suggesting a redistribution of vascular amyloid in bigenic animals. There was activation of both astrocytes and microglia in rTg-DI rats and bigenic rTg-DI/SHR-SP rats not observed in SHR-SP rats indicating that glial activation was likely in response to the presence of vascular amyloid. Thalamic microbleeds were present in both rTg-DI rats and bigenic rTg-DI/SHR-SP rats. Although the number of thalamic small vessel occlusions were not different between rTg-DI and bigenic rTg-DI/SHR-SP rats, a significant difference in occlusion size and distribution in the thalamus was found. Proteomic analysis of cortical tissue indicated that bigenic rTg-DI/SHR-SP rats largely adopt features of the rTg-DI rats with enhancement of certain changes. Our findings indicate that at 10 M of age non-pharmacological hypertension in rTg-DI rats causes a redistribution of vascular amyloid and significantly alters the size and distribution of thalamic occluded vessels. In addition, our findings indicate that bigenic rTg-DI/SHR-SP rats provide a non-pharmacological model to further study hypertension and CAA as co-morbidities for CSVD and VCID.
Collapse
Affiliation(s)
- Aleksandra Stanisavljevic
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | - Joseph M. Schrader
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | - Xiaoyue Zhu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | - Jennifer M. Mattar
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | - Ashley Hanks
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | - Mark Majchrzak
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | - John K. Robinson
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
- Department of Psychology, University of Rhode Island, Kingston, RI, United States
| | - William E. Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
- *Correspondence: William E. Van Nostrand,
| |
Collapse
|
5
|
Davis J, Xu F, Zhu X, Van Nostrand WE. rTg-D: A novel transgenic rat model of cerebral amyloid angiopathy Type-2. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100133. [PMID: 36324401 PMCID: PMC9616389 DOI: 10.1016/j.cccb.2022.100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Background Cerebral amyloid angiopathy (CAA) is common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a transgenic rat model of capillary CAA type-1 that develops many pathological features of human disease. However, a complementary rat model of larger vessel CAA type-2 disease has been lacking. Methods A novel transgenic rat model (rTg-D) was generated that produces human familial CAA Dutch E22Q mutant amyloid β-protein (Aβ) in brain and develops larger vessel CAA type-2. Quantitative biochemical and pathological analyses were performed to characterize the progression of CAA and associated pathologies in aging rTg-D rats. Results rTg-D rats begin to accumulate Aβ in brain and develop varying levels of larger vessel CAA type-2, in the absence of capillary CAA type-1, starting around 18 months of age. Larger vessel CAA was mainly composed of the Aβ40 peptide and most prominent in surface leptomeningeal/pial vessels and arterioles of the cortex and thalamus. Cerebral microbleeds and small vessel occlusions were present mostly in the thalamic region of affected rTg-D rats. In contrast to capillary CAA type-1 the amyloid deposited within the walls of larger vessels of rTg-D rats did not promote perivascular astrocyte and microglial responses or accumulate the Aβ chaperone apolipoprotein E. Conclusion Although variable in severity, the rTg-D rats specifically develop larger vessel CAA type-2 that reflects many of the pathological features of human disease and provide a new model to investigate the pathogenesis of this condition.
Collapse
Key Words
- AD, Alzheimer's disease
- Amyloid β protein
- ApoE, Apolipoprotein E
- Aβ, Amyloid β-protein
- AβPP, Amyloid β-protein precursor
- CAA, Cerebral amyloid angiopathy
- Cerebral amyloid angiopathy
- Dutch mutation
- GFAP, Glial fibrillary acidic protein
- ICH, Intracerebral hemorrhage
- Iba-1, Ionized calcium-binding adapter molecule 1
- Microbleed
- Small vessel disease
- Transgenic rat
- VCID, Vascular cognitive impairment and dementia
- WT, Wild-type
Collapse
Affiliation(s)
- Judianne Davis
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Xiaoyue Zhu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - William E. Van Nostrand
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| |
Collapse
|
6
|
Zhang X, Zhang CM, Prokopenko D, Liang Y, Zhen SY, Weigle IQ, Han W, Aryal M, Tanzi RE, Sisodia SS. An APP ectodomain mutation outside of the Aβ domain promotes Aβ production in vitro and deposition in vivo. J Exp Med 2021; 218:211936. [PMID: 33822840 PMCID: PMC8034382 DOI: 10.1084/jem.20210313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Familial Alzheimer’s disease (FAD)–linked mutations in the APP gene occur either within the Aβ-coding region or immediately proximal and are located in exons 16 and 17, which encode Aβ peptides. We have identified an extremely rare, partially penetrant, single nucleotide variant (SNV), rs145081708, in APP that corresponds to a Ser198Pro substitution in exon 5. We now report that in stably transfected cells, expression of APP harboring the S198P mutation (APPS198P) leads to elevated production of Aβ peptides by an unconventional mechanism in which the folding and exit of APPS198P from the endoplasmic reticulum is accelerated. More importantly, coexpression of APP S198P and the FAD-linked PS1ΔE9 variant in the brains of male and female transgenic mice leads to elevated steady-state Aβ peptide levels and acceleration of Aβ deposition compared with age- and gender-matched mice expressing APP and PS1ΔE9. This is the first AD-linked mutation in APP present outside of exons 16 and 17 that enhances Aβ production and deposition.
Collapse
Affiliation(s)
- Xulun Zhang
- Department of Neurobiology, University of Chicago, Chicago, IL
| | - Can Martin Zhang
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA
| | - Dmitry Prokopenko
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA
| | - Yingxia Liang
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA
| | - Sherri Y Zhen
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA
| | - Ian Q Weigle
- Department of Neurobiology, University of Chicago, Chicago, IL
| | - Weinong Han
- Department of Neurobiology, University of Chicago, Chicago, IL
| | - Manish Aryal
- Department of Neurobiology, University of Chicago, Chicago, IL
| | - Rudolph E Tanzi
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA
| | | |
Collapse
|
7
|
Visconte C, Canino J, Vismara M, Guidetti GF, Raimondi S, Pula G, Torti M, Canobbio I. Fibrillar amyloid peptides promote platelet aggregation through the coordinated action of ITAM- and ROS-dependent pathways. J Thromb Haemost 2020; 18:3029-3042. [PMID: 32790050 DOI: 10.1111/jth.15055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Amyloid peptides Aβ40 and Aβ42, whose deposition in brain correlates with Alzheimer disease, are also present in platelets and have prothrombotic activities. OBJECTIVE In this study, we analyze the ability of Aβ peptides to form fibrils and to induce platelet activation and aggregation. METHODS Aβ40, Aβ42, and their scrambled peptides were diluted in phosphate buffered saline and fibrillogenesis was investigated by ThioflavinT and Congo Red. Aggregation, protein phosphorylation, and reactive oxygen species (ROS) production were analyzed. RESULTS Aβ40 and Aβ42, but not scrambled peptides, were able to form fibrils when diluted in phosphate buffered saline. Fibrillogenesis of Aβ42 was very rapid, whereas fibril formation by Aβ40 was completed only after 48 hours of incubation. Fibrillar Aβ40 and Aβ42 promoted dose-dependent aggregation of washed platelets in the presence of extracellular CaCl2 . Cleavage of GPIbα by mocarhagin or blockade of the ITAM-containing FcγRIIA prevented platelet aggregation induced by fibrillary Aβ40 and Aβ42. Fibrillar Aβ peptides stimulated the phosphorylation of FcγRIIA, resulting in the downstream stimulation of PLC, protein kinase C, and phosphoinositide 3-kinases, whose activity was necessary for full aggregation of platelets. Fibrillar Aβ peptides also induced ROS generation, and NOX inhibitors, as well as ROS scavengers, prevented platelet aggregation. However, Aβ peptide-induced ROS production did not require binding to GPIbα or activation of FcγRIIA, but was initiated by CD36, which provided an important contribution to full platelet aggregation. CONCLUSION These results suggest that fibrillar amyloid Aβ40 and Aβ42 induce platelet aggregation through the recruitment of GPIb-IX-V and CD36, which requires the convergence of ITAM- and ROS-dependent pathways.
Collapse
Affiliation(s)
- Caterina Visconte
- Neurodegenerative Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jessica Canino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Scuola Universitaria Superiore, IUSS, Pavia, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Sara Raimondi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Eppendorf (UKE), Hamburg, Germany
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Abstract
The ‘amyloid hypothesis’ dominates Alzheimer’s disease (AD) research but has failed to deliver effective therapies. Amyloid precursor protein (APP) and presenilin-1 (PSEN1) genetic mutations are undoubtedly pathogenic, albeit by unclear mechanisms. Conversely, high dose B-vitamins convincingly slow brain atrophy in a pre-stage state of sporadic AD. Here we suggest a link between sporadic and genetic AD: 1) Increased serum homocysteine, a marker of B-vitamin deficiencies, is a significant risk factor for sporadic AD. It also correlates with elevated levels of antichymotrypsin, a serine protease inhibitor. 2) Family members with codon 717 APP mutations and dementia have low serum vitamin B12 values. Overexpression of the APP domain coding for a Kunitz type serine protease inhibitor might explain this. 3) PSEN1 mutations disrupt lysosomal function due to reduced proteolytic activity. They also trap cobalamin (B12) within lysosomes, leading to intracellular deficiency of the vitamin. In summary, APP and PSEN1 mutations both confer a risk for reduced protease activity and B12 bio-availability. Comparably, sporadic AD features a constellation of increased protease inhibition and B-vitamin deficiencies, the central part of which is believed to be B12. These concordant observations in three disparate AD etiologies suggest a common neuropathogenic pathway. This hypothesis is evaluable in laboratory and clinical trials.
Collapse
Affiliation(s)
- Björn Regland
- Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Andrew McCaddon
- University of Chester, Chester Medical School, Bache Hall, Chester, UK
| |
Collapse
|
9
|
Mazinani N, Strilchuk AW, Baylis JR, Hur WS, Jefferies WA, Kastrup CJ. Bleeding is increased in amyloid precursor protein knockout mouse. Res Pract Thromb Haemost 2020; 4:823-828. [PMID: 32685890 PMCID: PMC7354397 DOI: 10.1002/rth2.12375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Amyloid precursor protein (APP) is highly expressed in platelets. APP is the precursor to amyloid beta (Aβ) peptides that accumulate in cerebral amyloid angiopathy and plaques in Alzheimer disease. APP and its metabolites interact with many components of the coagulation system, and have both anticoagulant and procoagulant properties, but it is unclear if APP contributes to hemostasis in vivo. OBJECTIVES To determine whether APP contributes to hemostasis in mice, including when inhibitors of coagulation are administered. METHODS Blood loss in APP knockout (KO) mice was measured in liver laceration and tail transection models of hemorrhage. Blood loss was also measured following tail transection in mice given an inhibitor of coagulation factor Xa (apixaban), platelet inhibitors (aspirin + clopidogrel), tissue-type plasminogen activator (t-PA), or the antifibrinolytic tranexamic acid (TXA). RESULTS AND DISCUSSION Blood loss from liver lacerations was similar between APP KO mice and wild-type (WT) mice, but APP KO mice bled more from tail transections. When mice were challenged with aspirin + clopidogrel, the difference in bleeding between APP KO and WT mice was abrogated. In contrast, a difference in bleeding between the strains persisted when mice were treated with apixaban, t-PA, or TXA. Blood collected from APP KO mice and analyzed with thromboelastography had longer clotting times, and the clots were less stiff and more susceptible to fibrinolysis compared to blood from WT mice. CONCLUSIONS The absence of APP measurably increases bleeding in mice, which is consistent with a role for platelet-derived APP and Aβ peptides in hemostasis.
Collapse
Affiliation(s)
- Nima Mazinani
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBCCanada
| | - Amy W. Strilchuk
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBCCanada
| | - James R. Baylis
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Biomedical Engineering ProgramUniversity of British ColumbiaVancouverBCCanada
| | - Woosuk S. Hur
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBCCanada
| | - Wilfred A. Jefferies
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Christian J. Kastrup
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
10
|
Šimić G, Španić E, Langer Horvat L, Hof PR. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:99-145. [PMID: 31699331 DOI: 10.1016/bs.pmbts.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is only partly understood. This is the probable reason why significant efforts to treat or prevent AD have been unsuccessful. In fact, as of April 2019, there have been 2094 studies registered for AD on the clinicaltrials.gov U.S. National Library of Science web page, of which only a few are still ongoing. In AD, abnormal accumulation of amyloid and tau proteins in the brain are thought to begin 10-20 years before the onset of overt symptoms, suggesting that interventions designed to prevent pathological amyloid and tau accumulation may be more effective than attempting to reverse a pathology once it is established. However, to be successful, such early interventions need to be selectively administered to individuals who will likely develop the disease long before the symptoms occur. Therefore, it is critical to identify early biomarkers that are strongly predictive of AD. Currently, patients are diagnosed on the basis of a variety of clinical scales, neuropsychological tests, imaging and laboratory modalities, but definitive diagnosis can be made only by postmortem assessment of underlying neuropathology. People suffering from AD thus may be misdiagnosed clinically with other primary causes of dementia, and vice versa, thereby also reducing the power of clinical trials. The amyloid cascade hypothesis fits well for the familial cases of AD with known mutations, but is not sufficient to explain sporadic, late-onset AD (LOAD) that accounts for over 95% of all cases. Since the earliest descriptions of AD there have been neuropathological features described other than amyloid plaques (AP) and neurofibrillary tangles (NFT), most notably gliosis and neuroinflammation. However, it is only recently that genetic and experimental studies have implicated microglial dysfunction as a causal factor for AD, as opposed to a merely biological response of its accumulation around AP. Additionally, many studies have suggested the importance of changes in blood-brain barrier (BBB) permeability in the pathogenesis of AD. Here we suggest how these less investigated aspects of the disease that have gained increased attention in recent years may contribute mechanistically to the development of lesions and symptoms of AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
11
|
Davis J, Xu F, Hatfield J, Lee H, Hoos MD, Popescu D, Crooks E, Kim R, Smith SO, Robinson JK, Benveniste H, Van Nostrand WE. A Novel Transgenic Rat Model of Robust Cerebral Microvascular Amyloid with Prominent Vasculopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2877-2889. [PMID: 30446159 PMCID: PMC6334267 DOI: 10.1016/j.ajpath.2018.07.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 10/27/2022]
Abstract
Accumulation of fibrillar amyloid β protein in blood vessels of the brain, a condition known as cerebral amyloid angiopathy (CAA), is a common pathology of elderly individuals, a prominent comorbidity of Alzheimer disease, and a driver of vascular cognitive impairment and dementia. Although several transgenic mouse strains have been generated that develop varying levels of CAA, consistent models of associated cerebral microhemorrhage and vasculopathy observed clinically have been lacking. Reliable preclinical animal models of CAA and microhemorrhage are needed to investigate the molecular pathogenesis of this condition. Herein, we describe the generation and characterization of a novel transgenic rat (rTg-DI) that produces low levels of human familial CAA Dutch/Iowa E22Q/D23N mutant amyloid β protein in brain and faithfully recapitulates many of the pathologic aspects of human small-vessel CAA. rTg-DI rats exhibit early-onset and progressive accumulation of cerebral microvascular fibrillar amyloid accompanied by early-onset and sustained behavioral deficits. Comparable to CAA in humans, the cerebral microvascular amyloid in rTg-DI rats causes capillary structural alterations, promotes prominent perivascular neuroinflammation, and produces consistent, robust microhemorrhages and small-vessel occlusions that are readily detected by magnetic resonance imaging. The rTg-DI rats provide a new model to investigate the pathogenesis of small-vessel CAA and microhemorrhages, to develop effective biomarkers for this condition and to test therapeutic interventions.
Collapse
Affiliation(s)
- Judianne Davis
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - Feng Xu
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - Joshua Hatfield
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - Hedok Lee
- Department of Anesthesiology, Yale University, New Haven, Connecticut
| | - Michael D Hoos
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Dominique Popescu
- Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Elliot Crooks
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Regina Kim
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - John K Robinson
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island; Department of Psychology, University of Rhode Island, Kingston, Rhode Island
| | - Helene Benveniste
- Department of Anesthesiology, Yale University, New Haven, Connecticut
| | - William E Van Nostrand
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island.
| |
Collapse
|
12
|
Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice. Blood 2017; 130:527-536. [DOI: 10.1182/blood-2017-01-764910] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022] Open
Abstract
Key Points
APP is dispensable for platelet activation and arterial thrombosis. APP is an important novel regulator of vein thrombosis and controls coagulation and neutrophil extracellular traps formation.
Collapse
|
13
|
Beckmann AM, Glebov K, Walter J, Merkel O, Mangold M, Schmidt F, Becker-Pauly C, Gütschow M, Stirnberg M. The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2. Biol Chem 2017; 397:777-90. [PMID: 27078672 DOI: 10.1515/hsz-2015-0263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/11/2016] [Indexed: 11/15/2022]
Abstract
Proteolytic processing of the amyloid precursor protein (APP) leads to amyloid-β (Aβ) peptides. So far, the mechanism of APP processing is insufficiently characterized at the molecular level. Whereas the knowledge of Aβ generation by several proteases has been expanded, the contribution of the Kunitz-type protease inhibitor domain (KPI) present in two major APP isoforms to the complex proteolytic processing of APP is poorly understood. In this study, we have identified KPI-containing APP as a very potent, slow-binding inhibitor for the membrane-bound proteolytic regulator of iron homeostasis matriptase-2 by forming stable complexes with its target protease in HEK cells. Inhibition and complex formation depend on the intact KPI domain. By inhibiting matriptase-2, KPI-containing APP is protected from matriptase-2-mediated proteolysis within the Aβ region, thus preventing the generation of N-terminally truncated Aβ.
Collapse
|
14
|
Schmaier AH. The amyloid beta-precursor protein-The unappreciated cerebral anticoagulant. Thromb Res 2017; 155:149-151. [PMID: 28599849 DOI: 10.1016/j.thromres.2017.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Alvin H Schmaier
- Hematology and Oncology Division, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
15
|
Xu F, Davis J, Hoos M, Van Nostrand WE. Mutation of the Kunitz-type proteinase inhibitor domain in the amyloid β-protein precursor abolishes its anti-thrombotic properties in vivo. Thromb Res 2017; 155:58-64. [PMID: 28499154 DOI: 10.1016/j.thromres.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/14/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Kunitz proteinase inhibitor (KPI) domain-containing forms of the amyloid β-protein precursor (AβPP) inhibit cerebral thrombosis. KPI domain-lacking forms of AβPP are abundant in brain. Regions of AβPP other than the KPI domain may also be involved with regulating cerebral thrombosis. To determine the contribution of the KPI domain to the overall function of AβPP in regulating cerebral thrombosis we generated a reactive center mutant that was devoid of anti-thrombotic activity and studied its anti-thrombotic function in vitro and in vivo. METHODS To determine the extent of KPI function of AβPP in regulating cerebral thrombosis we generated a recombinant reactive center KPIR13I mutant devoid of anti-thrombotic activity. The anti-proteolytic and anti-coagulant properties of wild-type and R13I mutant KPI were investigated in vitro. Cerebral thrombosis of wild-type, AβPP knock out and AβPP/KPIR13I mutant mice was evaluated in experimental models of carotid artery thrombosis and intracerebral hemorrhage. RESULTS Recombinant mutant KPIR13I domain was ineffective in the inhibition of pro-thrombotic proteinases and did not inhibit the clotting of plasma in vitro. AβPP/KPIR13I mutant mice were similarly deficient as AβPP knock out mice in regulating cerebral thrombosis in experimental models of carotid artery thrombosis and intracerebral hemorrhage. CONCLUSIONS We demonstrate that the anti-thrombotic function of AβPP primarily resides in the KPI activity of the protein.
Collapse
Affiliation(s)
- Feng Xu
- Department of Neurosurgery, Stony Brook University, Stony Brook, NY 11794-8122, United States; Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8122, United States
| | - Judianne Davis
- Department of Neurosurgery, Stony Brook University, Stony Brook, NY 11794-8122, United States; Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8122, United States
| | - Michael Hoos
- Department of Neurosurgery, Stony Brook University, Stony Brook, NY 11794-8122, United States; Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8122, United States
| | - William E Van Nostrand
- Department of Neurosurgery, Stony Brook University, Stony Brook, NY 11794-8122, United States; Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8122, United States.
| |
Collapse
|
16
|
Canobbio I, Visconte C, Oliviero B, Guidetti G, Zarà M, Pula G, Torti M. Increased platelet adhesion and thrombus formation in a mouse model of Alzheimer's disease. Cell Signal 2016; 28:1863-1871. [PMID: 27593518 DOI: 10.1016/j.cellsig.2016.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/01/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Vascular dysfunctions and Alzheimer's disease show significant similarities and overlaps. Cardiovascular risk factors (hypercholesterolemia, hypertension, obesity, atherosclerosis and diabetes) increase the risk of vascular dementia and Alzheimer's disease. Conversely, Alzheimer's patients have considerably increased predisposition of ischemic and hemorrhagic strokes. Platelets are major players in haemostasis and thrombosis and are involved in inflammation. We have investigated morphology and function of platelets in 3xTg-AD animals, a consolidate murine model for Alzheimer's disease. Platelets from aged 3xTg-AD mice are normal in number and glycoprotein expression, but adhere more avidly on matrices such as fibrillar collagen, von Willebrand factor, fibrinogen and amyloid peptides compared to platelets from age-matching wild type mice. 3xTg-AD washed platelets adherent to collagen also show increased phosphorylation of selected signaling proteins, including tyrosine kinase Pyk2, PI3 kinase effector Akt, p38MAP kinase and myosin light chain kinase, and increased ability to form thrombi under shear. In contrast, aggregation and integrin αIIbβ3 activation induced by several agonists in 3xTg-AD mice are similar to wild type platelets. These results demonstrated that Alzheimer's mutations result in a significant hyper-activated state of circulating platelets, evident with the progression of the disease.
Collapse
Affiliation(s)
- Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Caterina Visconte
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Barbara Oliviero
- Research Laboratories, Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gianni Guidetti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Marta Zarà
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Giordano Pula
- Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
17
|
Schmaier AH. Alzheimer disease is in part a thrombohemorrhagic disorder. J Thromb Haemost 2016; 14:991-4. [PMID: 26817920 DOI: 10.1111/jth.13277] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 12/23/2022]
Affiliation(s)
- A H Schmaier
- Department of Medicine, Case Western Reserve University and University Hospital Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
18
|
Van Nostrand WE. The influence of the amyloid ß-protein and its precursor in modulating cerebral hemostasis. Biochim Biophys Acta Mol Basis Dis 2015; 1862:1018-26. [PMID: 26519139 DOI: 10.1016/j.bbadis.2015.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
Ischemic and hemorrhagic strokes are a significant cause of brain injury leading to vascular cognitive impairment and dementia (VCID). These deleterious events largely result from disruption of cerebral hemostasis, a well-controlled and delicate balance between thrombotic and fibrinolytic pathways in cerebral blood vessels and surrounding brain tissue. Ischemia and hemorrhage are both commonly associated with cerebrovascular deposition of amyloid ß-protein (Aß). In this regard, Aß directly and indirectly modulates cerebral thrombosis and fibrinolysis. Further, major isoforms of the Aß precursor protein (AßPP) function as a potent inhibitor of pro-thrombotic proteinases. The purpose of this review article is to summarize recent research on how cerebral vascular Aß and AßPP influence cerebral hemostasis. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- William E Van Nostrand
- Department of Neurosurgery, HSC-T12/086, Stony Brook University, Stony Brook, NY 11794-8122, USA; Department of Medicine, HSC-T12/086, Stony Brook University, Stony Brook, NY 11794-8122, USA.
| |
Collapse
|
19
|
Park HJ, Ran Y, Jung JI, Holmes O, Price AR, Smithson L, Ceballos-Diaz C, Han C, Wolfe MS, Daaka Y, Ryabinin AE, Kim SH, Hauger RL, Golde TE, Felsenstein KM. The stress response neuropeptide CRF increases amyloid-β production by regulating γ-secretase activity. EMBO J 2015; 34:1674-86. [PMID: 25964433 DOI: 10.15252/embj.201488795] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 04/15/2015] [Indexed: 12/26/2022] Open
Abstract
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid-β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ-secretase internalization. Co-immunoprecipitation studies establish that γ-secretase associates with CRFR1; this is mediated by β-arrestin binding motifs. Additionally, CRFR1 and γ-secretase co-localize in lipid raft fractions, with increased γ-secretase accumulation upon CRF treatment. CRF treatment also increases γ-secretase activity in vitro, revealing a second, receptor-independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ-secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ-secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ-secretase.
Collapse
Affiliation(s)
- Hyo-Jin Park
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA Department of Pharmacology and Therapeutics, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Yong Ran
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joo In Jung
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Oliver Holmes
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashleigh R Price
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lisa Smithson
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chul Han
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael S Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Seong-Hun Kim
- Department of Pharmacology and Therapeutics, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Richard L Hauger
- Center of Excellence for Stress and Mental Health, Department of Psychiatry, VA Healthcare System, University of California, San Diego, CA, USA
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin M Felsenstein
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Canobbio I, Abubaker AA, Visconte C, Torti M, Pula G. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease. Front Cell Neurosci 2015; 9:65. [PMID: 25784858 PMCID: PMC4347625 DOI: 10.3389/fncel.2015.00065] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative cause of dementia in the elderly. AD is accompanied by the accumulation of amyloid peptides in the brain parenchyma and in the cerebral vessels. The sporadic form of AD accounts for about 95% of all cases. It is characterized by a late onset, typically after the age of 65, with a complex and still poorly understood aetiology. Several observations point towards a central role of cerebrovascular dysfunction in the onset of sporadic AD (SAD). According to the "vascular hypothesis", AD may be initiated by vascular dysfunctions that precede and promote the neurodegenerative process. In accordance to this, AD patients show increased hemorrhagic or ischemic stroke risks. It is now clear that multiple bidirectional connections exist between AD and cerebrovascular disease, and in this new scenario, the effect of amyloid peptides on vascular cells and blood platelets appear to be central to AD. In this review, we analyze the effect of amyloid peptides on vascular function and platelet activation and its contribution to the cerebrovascular pathology associated with AD and the progression of this disease.
Collapse
Affiliation(s)
- Ilaria Canobbio
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Aisha Alsheikh Abubaker
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Caterina Visconte
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Giordano Pula
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| |
Collapse
|
21
|
Abstract
The β-amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's disease. APP is processed in neurons, but little is known about the relative contributions of presynaptic or postsynaptic compartments to the release of Aβ peptides. To address this issue, we transduced primary neurons from Sprague-Dawley rats or APP(-/-) mice (B6.129S7-App(tm1Dbo)/J) with lentiviral constructs expressing APP chimeras harboring targeting motifs from low-density lipoprotein receptor or neuron-glia cell-adhesion molecule to polarize expression to either dendritic or axonal membranes, respectively. Using imaging and quantitative biochemical approaches, we now report that APP selectively targeted to either axons or dendrites leads to the secretion of full-length Aβ peptides with significantly elevated release from dendritic compartments. These findings reveal that the enzymatic machinery required for production of Aβ peptides are operative both in presynaptic and postsynaptic compartments of primary neurons, leading to the suggestion that Aβ-mediated impairments in glutamatergic neurotransmission is the result of Aβ release from both local and distal neuronal compartments.
Collapse
|
22
|
Zetterberg H, Lautner R, Skillbäck T, Rosén C, Shahim P, Mattsson N, Blennow K. CSF in Alzheimer's disease. Adv Clin Chem 2014; 65:143-72. [PMID: 25233613 DOI: 10.1016/b978-0-12-800141-7.00005-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a progressive brain amyloidosis that injures brain regions involved in memory consolidation and other cognitive functions. Neuropathologically, the disease is characterized by accumulation of a 42-amino acid protein called amyloid beta, and N-terminally truncated fragments thereof, in extracellular senile plaques together with intraneuronal inclusions of hyperphosphorylated tau protein in neurofibrillary tangles, and neuronal and axonal degeneration and loss. Clinical chemistry tests for these pathologies have been developed for use on cerebrospinal fluid samples. Here, we review what these markers have taught us on the disease process in AD and how they can be implemented in routine clinical chemistry. We also provide an update on new marker development and ongoing analytical standardization effort.
Collapse
|
23
|
Affiliation(s)
- Brian H. Anderton
- Department of Neuroscience, Institute of Psychiatry, University of London, London, U.K
| |
Collapse
|
24
|
Saido T, Leissring MA. Proteolytic degradation of amyloid β-protein. Cold Spring Harb Perspect Med 2013; 2:a006379. [PMID: 22675659 DOI: 10.1101/cshperspect.a006379] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The amyloid β-protein (Aβ) is subject to proteolytic degradation by a diverse array of peptidases and proteinases, known collectively as Aβ-degrading proteases (AβDPs). A growing number of AβDPs have been identified, which, under physiological and/or pathophysiological conditions, contribute significantly to the determination of endogenous cerebral Aβ levels. Despite more than a decade of investigation, the complete set of AβDPs remains to be established, and our understanding of even well-established AβDPs is incomplete. Nevertheless, the study of known AβDPs has contributed importantly to our understanding of the molecular pathogenesis of Alzheimer disease (AD) and has inspired the development of several novel therapeutic approaches to the regulation of cerebral Aβ levels. In this article, we discuss the general features of Aβ degradation and introduce the best-characterized AβDPs, focusing on their diverse properties and the numerous conceptual insights that have emerged from the study of each.
Collapse
Affiliation(s)
- Takaomi Saido
- Riken Brain Science Institute, Saitamo 351-0198, Japan
| | | |
Collapse
|
25
|
Evin G, Li QX. Platelets and Alzheimer’s disease: Potential of APP as a biomarker. World J Psychiatry 2012; 2:102-13. [PMID: 24175176 PMCID: PMC3782192 DOI: 10.5498/wjp.v2.i6.102] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 07/13/2012] [Accepted: 07/23/2012] [Indexed: 02/05/2023] Open
Abstract
Platelets are the first peripheral source of amyloid precursor protein (APP). They possess the proteolytic machinery to produce Aβ and fragments similar to those produced in neurons, and thus offer an ex-vivo model to study APP processing and changes associated with Alzheimer’s disease (AD). Platelet process APP mostly through the α-secretase pathway to release soluble APP (sAPP). They produce small amounts of Aβ, predominantly Aβ40 over Aβ42. sAPP and Aβ are stored in α-granules and are released upon platelet activation by thrombin and collagen, and agents inducing platelet degranulation. A small proportion of full-length APP is present at the platelet surface and this increases by 3-fold upon platelet activation. Immunoblotting of platelet lysates detects APP as isoforms of 130 kDa and 106-110 kDa. The ratio of these of APP isoforms is significantly lower in patients with AD and mild cognitive impairment (MCI) than in healthy controls. This ratio follows a decrease that parallels cognitive decline and can predict conversion from MCI to AD. Alterations in the levels of α-secretase ADAM10 and in the enzymatic activities of α- and β-secretase observed in platelets of patients with AD are consistent with increased processing through the amyloidogenic pathway. β-APP cleaving enzyme activity is increased by 24% in platelet membranes of patients with MCI and by 17% in those with AD. Reports of changes in platelet APP expression with MCI and AD have been promising so far and merit further investigation as the search for blood biomarkers in AD, in particular at the prodromal stage, remains a priority and a challenge.
Collapse
Affiliation(s)
- Geneviève Evin
- Geneviève Evin, Qiao-Xin Li, Department of Pathology and Mental Health Research Institute, The University of Melbourne, Parkville 3010, Australia
| | | |
Collapse
|
26
|
Park HJ, Shabashvili D, Nekorchuk MD, Shyqyriu E, Jung JI, Ladd TB, Moore BD, Felsenstein KM, Golde TE, Kim SH. Retention in endoplasmic reticulum 1 (RER1) modulates amyloid-β (Aβ) production by altering trafficking of γ-secretase and amyloid precursor protein (APP). J Biol Chem 2012; 287:40629-40. [PMID: 23043097 PMCID: PMC3504776 DOI: 10.1074/jbc.m112.418442] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/05/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Aβ production is influenced by intracellular trafficking of secretases and amyloid precursor protein (APP). RESULTS Retention in endoplasmic reticulum 1 (RER1) regulates the trafficking of γ-secretase and APP, thereby influences Aβ production. CONCLUSION RER1, an ER retention/retrieval factor for γ-secretase and APP, modulates Aβ production. SIGNIFICANCE RER1 and its influence on γ-secretase and APP may be implicated for a safe strategy to target Aβ production. The presence of neuritic plaques containing aggregated amyloid-β (Aβ) peptides in the brain parenchyma is a pathological hallmark of Alzheimer disease (AD). Aβ is generated by sequential cleavage of the amyloid β precursor protein (APP) by β- and γ-secretase, respectively. As APP processing to Aβ requires transport through the secretory pathway, trafficking of the substrate and access to the secretases are key factors that can influence Aβ production (Thinakaran, G., and Koo, E. H. (2008) Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283, 29615-29619). Here, we report that retention in endoplasmic reticulum 1 (RER1) associates with γ-secretase in early secretory compartments and regulates the intracellular trafficking of γ-secretase. RER1 overexpression decreases both γ-secretase localization on the cell surface and Aβ secretion and conversely RER1 knockdown increases the level of cell surface γ-secretase and increases Aβ secretion. Furthermore, we find that increased RER1 levels decrease mature APP and increase immature APP, resulting in less surface accumulation of APP. These data show that RER1 influences the trafficking and localization of both γ-secretase and APP, thereby regulating the production and secretion of Aβ peptides.
Collapse
Affiliation(s)
- Hyo-Jin Park
- From the Department of Pharmacology and Therapeutics, and
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | | | | | - Eva Shyqyriu
- From the Department of Pharmacology and Therapeutics, and
| | - Joo In Jung
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Thomas B. Ladd
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Brenda D. Moore
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Kevin M. Felsenstein
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Todd E. Golde
- the Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Seong-Hun Kim
- From the Department of Pharmacology and Therapeutics, and
| |
Collapse
|
27
|
Abstract
Alzheimer's disease (AD) was first described a little more than 100 years ago. It is the most common cause of dementia with an estimated prevalence of 30 million people worldwide, a number that is expected to quadruple in 40 years. There currently is no effective treatment that delays the onset or slows the progression of AD. However, major scientific advances in the areas of genetics, biochemistry, cell biology, and neuroscience over the past 25 years have changed the way we think about AD. This review discusses some of the challenges to translating these basic molecular and cellular discoveries into clinical therapies. Current information suggests that if the disease is detected before the onset of overt symptoms, it is possible that treatments based on knowledge of underlying pathogenesis can and will be effective.
Collapse
Affiliation(s)
- David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
28
|
Norstrom EM, Zhang C, Tanzi R, Sisodia SS. Identification of NEEP21 as a ß-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J Neurosci 2010; 30:15677-85. [PMID: 21084623 PMCID: PMC3104400 DOI: 10.1523/jneurosci.4464-10.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease and the most common form of dementia. AD is pathologically characterized by the deposition of pathogenic Aβ peptides that are derived from larger integral membrane proteins, termed β-amyloid precursor proteins (APPs). In an attempt to understand the function of APP, in vitro studies have focused on the identification of interacting proteins. To investigate the APP in vivo interactome in an unbiased manner, we generated mice that harbor a mouse prion protein promoter-driven cDNA encoding human APP-695 fused to a C-terminal affinity tag. Using this tag, we prepared mild detergent lysates from transgenic mouse brain cortical membrane preparations and isolated a number of previously identified APP-interacting proteins. In addition to these factors, mass spectrometric analysis revealed the presence of NEEP21 as a novel interacting protein. We now report that NEEP21 profoundly affects the processing of APP and Aβ production. Thus, this study demonstrates that using proteomic methods on our transgenic model can uncover important in vivo APP-interacting proteins that will provide insights into the biology of APP.
Collapse
Affiliation(s)
- Eric M. Norstrom
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, and
| | - Can Zhang
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Sangram S. Sisodia
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, and
| |
Collapse
|
29
|
Perreau VM, Orchard S, Adlard PA, Bellingham SA, Cappai R, Ciccotosto GD, Cowie TF, Crouch PJ, Duce JA, Evin G, Faux NG, Hill AF, Hung YH, James SA, Li QX, Mok SS, Tew DJ, White AR, Bush AI, Hermjakob H, Masters CL. A domain level interaction network of amyloid precursor protein and Abeta of Alzheimer's disease. Proteomics 2010; 10:2377-95. [PMID: 20391539 DOI: 10.1002/pmic.200900773] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The primary constituent of the amyloid plaque, beta-amyloid (Abeta), is thought to be the causal "toxic moiety" of Alzheimer's disease. However, despite much work focused on both Abeta and its parent protein, amyloid precursor protein (APP), the functional roles of APP and its cleavage products remain to be fully elucidated. Protein-protein interaction networks can provide insight into protein function, however, high-throughput data often report false positives and are in frequent disagreement with low-throughput experiments. Moreover, the complexity of the CNS is likely to be under represented in such databases. Therefore, we curated the published work characterizing both APP and Abeta to create a protein interaction network of APP and its proteolytic cleavage products, with annotation, where possible, to the level of APP binding domain and isoform. This is the first time that an interactome has been refined to domain level, essential for the interpretation of APP due to the presence of multiple isoforms and processed fragments. Gene ontology and network analysis were used to identify potentially novel functional relationships among interacting proteins.
Collapse
Affiliation(s)
- Victoria M Perreau
- Neuroproteomics and Neurogenomics Platform, National Neurosciences Facility, The University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Gregory J Del Zoppo
- University of Washington, Harborview Medical Center, Seattle, Washington, USA.
| |
Collapse
|
31
|
Butterfield DA, Lange MLB. Multifunctional roles of enolase in Alzheimer's disease brain: beyond altered glucose metabolism. J Neurochem 2009; 111:915-33. [PMID: 19780894 DOI: 10.1111/j.1471-4159.2009.06397.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified alpha-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, alpha-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA.
| | | |
Collapse
|
32
|
Abstract
Criteria for distinguishing among etiologies of thrombocytosis are limited in their capacity to delineate clonal (essential thrombocythemia [ET]) from nonclonal (reactive thrombocytosis [RT]) etiologies. We studied platelet transcript profiles of 126 subjects (48 controls, 38 RT, 40 ET [24 contained the JAK2V(617)F mutation]) to identify transcript subsets that segregated phenotypes. Cross-platform consistency was validated using quantitative real-time polymerase chain reaction (RT-PCR). Class prediction algorithms were developed to assign phenotypic class between the thrombocytosis cohorts, and by JAK2 genotype. Sex differences were rare in normal and ET cohorts (< 1% of genes) but were male-skewed for approximately 3% of RT genes. An 11-biomarker gene subset using the microarray data discriminated among the 3 cohorts with 86.3% accuracy, with 93.6% accuracy in 2-way class prediction (ET vs RT). Subsequent quantitative RT-PCR analysis established that these biomarkers were 87.1% accurate in prospective classification of a new cohort. A 4-biomarker gene subset predicted JAK2 wild-type ET in more than 85% patient samples using either microarray or RT-PCR profiling, with lower predictive capacity in JAK2V(617)F mutant ET patients. These results establish that distinct genetic biomarker subsets can predict thrombocytosis class using routine phlebotomy.
Collapse
|
33
|
Smalheiser NR, Torvik VI, Zhou W. Arrowsmith two-node search interface: a tutorial on finding meaningful links between two disparate sets of articles in MEDLINE. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2009; 94:190-7. [PMID: 19185946 PMCID: PMC2693227 DOI: 10.1016/j.cmpb.2008.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 10/17/2008] [Accepted: 12/12/2008] [Indexed: 05/27/2023]
Abstract
The Arrowsmith two-node search is a strategy that is designed to assist biomedical investigators in formulating and assessing scientific hypotheses. More generally, it allows users to identify biologically meaningful links between any two sets of articles A and C in PubMed, even when these share no articles or authors in common and represent disparate topics or disciplines. The key idea is to relate the two sets of articles via title words and phrases (B-terms) that they share. We have created a free, public web-based version of the two-node search tool (http://arrowsmith.psych.uic.edu), have described its development and implementation, and have presented analyses of individual two-node searches. In this paper, we provide an updated tutorial intended for end-users, that covers the use of the tool for a variety of potential scientific use case scenarios. For example, one can assess a recent experimental, clinical or epidemiologic finding that connects two disparate fields of inquiry--identifying likely mechanisms to explain the finding, and choosing promising follow-up lines of investigation. Alternatively, one can assess whether the existing scientific literature lends indirect support to a hypothesis posed by the user that has not yet been investigated. One can also employ two-node searches to search for novel hypotheses. Arrowsmith provides a service that cannot be carried out feasibly via standard PubMed searches or by other available text mining tools.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry and Psychiatric Institute, MC912, University of Illinois at Chicago, 1601W. Taylor Street, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
34
|
Xu F, Previti ML, Nieman MT, Davis J, Schmaier AH, Van Nostrand WE. AbetaPP/APLP2 family of Kunitz serine proteinase inhibitors regulate cerebral thrombosis. J Neurosci 2009; 29:5666-70. [PMID: 19403832 PMCID: PMC2719965 DOI: 10.1523/jneurosci.0095-09.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/31/2009] [Accepted: 04/03/2009] [Indexed: 11/21/2022] Open
Abstract
The amyloid beta-protein precursor (AbetaPP) is best recognized as the precursor to the Abeta peptide that accumulates in the brains of patients with Alzheimer's disease, but less is known about its physiological functions. Isoforms of AbetaPP that contain a Kunitz-type serine proteinase inhibitor (KPI) domain are expressed in brain and, outside the CNS, in circulating blood platelets. Recently, we showed that KPI-containing forms of AbetaPP regulates cerebral thrombosis in vivo (Xu et al., 2005, 2007). Amyloid precursor like protein-2 (APLP2), a closely related homolog to AbetaPP, also possesses a highly conserved KPI domain. Virtually nothing is known of its function. Here, we show that APLP2 also regulates cerebral thrombosis risk. Recombinant purified KPI domains of AbetaPP and APLP2 both inhibit the plasma clotting in vitro. In a carotid artery thrombosis model, both AbetaPP(-/-) and APLP2(-/-) mice exhibit similar significantly shorter times to vessel occlusion compared with wild-type mice indicating a prothrombotic phenotype. Similarly, in an experimental model of intracerebral hemorrhage, both AbetaPP(-/-) and APLP2(-/-) mice produce significantly smaller hematomas with reduced brain hemoglobin content compared with wild-type mice. Together, these results indicate that AbetaPP and APLP2 share overlapping anticoagulant functions with regard to regulating thrombosis after cerebral vascular injury.
Collapse
Affiliation(s)
- Feng Xu
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794-8153, and
| | - Mary Lou Previti
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794-8153, and
| | - Marvin T. Nieman
- Department of Medicine, Division of Hematology/Oncology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Judianne Davis
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794-8153, and
| | - Alvin H. Schmaier
- Department of Medicine, Division of Hematology/Oncology, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
35
|
Meilandt WJ, Cisse M, Ho K, Wu T, Esposito LA, Scearce-Levie K, Cheng IH, Yu GQ, Mucke L. Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Abeta oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice. J Neurosci 2009; 29:1977-86. [PMID: 19228952 PMCID: PMC2768427 DOI: 10.1523/jneurosci.2984-08.2009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 12/17/2008] [Accepted: 12/29/2008] [Indexed: 12/31/2022] Open
Abstract
The accumulation of amyloid-beta (Abeta) peptides in the brain of patients with Alzheimer's disease (AD) may arise from an imbalance between Abeta production and clearance. Overexpression of the Abeta-degrading enzyme neprilysin in brains of human amyloid precursor protein (hAPP) transgenic mice decreases overall Abeta levels and amyloid plaque burdens. Because AD-related synaptic and cognitive deficits appear to be more closely related to Abeta oligomers than to plaques, it is important to determine whether increased neprilysin activity also diminishes the levels of pathogenic Abeta oligomers and related neuronal deficits in vivo. To address this question, we crossed hAPP transgenic mice with neprilysin transgenic mice and analyzed their offspring. Neprilysin overexpression reduced soluble Abeta levels by 50% and effectively prevented early Abeta deposition in the neocortex and hippocampus. However, it did not reduce levels of Abeta trimers and Abeta*56 or improve deficits in spatial learning and memory. The differential effect of neprilysin on plaques and oligomers suggests that neprilysin-dependent degradation of Abeta affects plaques more than oligomers and that these structures may form through distinct assembly mechanisms. Neprilysin's inability to prevent learning and memory deficits in hAPP mice may be related to its inability to reduce pathogenic Abeta oligomers. Reduction of Abeta oligomers will likely be required for anti-Abeta treatments to improve cognitive functions.
Collapse
Affiliation(s)
- William J. Meilandt
- Gladstone Institute of Neurological Disease and
- Department of Neurology, University of California, San Francisco, California 94158
| | - Moustapha Cisse
- Gladstone Institute of Neurological Disease and
- Department of Neurology, University of California, San Francisco, California 94158
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease and
| | - Tiffany Wu
- Gladstone Institute of Neurological Disease and
| | - Luke A. Esposito
- Gladstone Institute of Neurological Disease and
- Department of Neurology, University of California, San Francisco, California 94158
| | - Kimberly Scearce-Levie
- Gladstone Institute of Neurological Disease and
- Department of Neurology, University of California, San Francisco, California 94158
| | - Irene H. Cheng
- Gladstone Institute of Neurological Disease and
- Department of Neurology, University of California, San Francisco, California 94158
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease and
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease and
- Department of Neurology, University of California, San Francisco, California 94158
| |
Collapse
|
36
|
Abstract
The biogenesis of the amyloid-beta peptide (Abeta) is a central issue in Alzheimer's disease (AD) research. Abeta is produced by beta- and gamma-secretases from the amyloid-beta protein precursor (AbetaPP). These proteases are targets for the development of therapeutic compounds to downregulate Abeta production. gamma-secretase has received more attention 1) because it generates the C-terminus of Abeta, which is important in the pathogenesis of AD because the longer Abeta species are more amyloidogenic, and 2) because it cleaves AbetaPP within its transmembrane domain. In the understanding the mechanism of gamma-secretase cleavage, three major cleavage sites have been identified, namely, gamma-cleavage site at Abeta(40/42), zeta-cleavage site at Abeta(46), and epsilon-cleavage site at Abeta(49). Moreover, the novel finding that some of the known gamma-secretase inhibitors inhibit the formation of secreted Abeta(40) and Abeta(42), but cause an intracellular accumulation of long Abeta(46), provided information extremely important for the development of strategies aimed at the design of gamma-secretase inhibitors to prevent and treat AD. In addition, it has been established that the C-terminus of Abeta is generated by a series of sequential cleavages: first, epsilon-cleavage, followed by zeta-cleavage and finally by gamma-cleavage, commencing from the membrane boundary to the middle of the AbetaPP membrane domain.
Collapse
Affiliation(s)
- Xuemin Xu
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
37
|
|
38
|
|
39
|
Wilhelmus MMM, Otte-Höller I, van Triel JJJ, Veerhuis R, Maat-Schieman MLC, Bu G, de Waal RMW, Verbeek MM. Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1989-99. [PMID: 18055545 PMCID: PMC2111121 DOI: 10.2353/ajpath.2007.070050] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inefficient clearance of A beta, caused by impaired blood-brain barrier crossing into the circulation, seems to be a major cause of A beta accumulation in the brain of late-onset Alzheimer's disease patients and hereditary cerebral hemorrhage with amyloidosis Dutch type. We observed association of receptor for advanced glycation end products, CD36, and low-density lipoprotein receptor (LDLR) with cerebral amyloid angiopathy in both Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis Dutch type brains and increased low-density lipoprotein receptor-related protein-1 (LRP-1) expression by perivascular cells in cerebral amyloid angiopathy. We investigated if these A beta receptors are involved in A beta internalization and in A beta-mediated cell death of human cerebrovascular cells and astrocytes. Expression of both the LRP-1 and LDLR by human brain pericytes and leptomeningeal smooth muscle cells, but not by astrocytes, increased on incubation with A beta. Receptor-associated protein specifically inhibited A beta-mediated up-regulation of LRP-1, but not of LDLR, and receptor-associated protein also decreased A beta internalization and A beta-mediated cell death. We conclude that especially LRP-1 and, to a minor extent, LDLR are involved in A beta internalization by and A beta-mediated cell death of cerebral perivascular cells. Although perivascular cells may adapt their A beta internalization capacity to the levels of A beta present, saturated LRP-1/LDLR-mediated uptake of A beta results in degeneration of perivascular cells.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Neurology and Alzheimer Center, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wischik CM, Harrington CR, Mukaetova-Ladinska EB, Novak M, Edwards PC, McArthur FK. Molecular characterization and measurement of Alzheimer's disease pathology: implications for genetic and environmental aetiology. CIBA FOUNDATION SYMPOSIUM 2007; 169:268-93; discussion 293-302. [PMID: 1490426 DOI: 10.1002/9780470514306.ch16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neuropathological changes seen in Alzheimer's disease represent an interaction between the ageing process in which normal intellectual function is retained, and changes which are specifically associated with severe cognitive deterioration. Molecular analysis of these changes has tended to emphasize the distinction between neurofibrillary pathology, which is intracellular and highly correlated with cognitive deterioration, and the changes associated with the deposition of extracellular amyloid, which appears to be widespread in normal ageing. Extracellular amyloid deposits consist of fibrils composed of a short 42 amino acid peptide (beta/A4) derived by abnormal proteolysis from a much larger precursor molecule (APP). The recent demonstration of a mutation associated with APP in rare cases with familial dementia, neurofibrillary pathology in the hippocampus and atypical cortical Lewy body pathology raises the possibility that abnormal processing of APP could be linked directly with neurofibrillary pathology. Neurofibrillary tangles and neuritic plaques are sites of dense accumulation of pathological paired helical filaments (PHFs) which are composed in part of an antigenically modified form of the microtubule-associated protein tau. The average brain tissue content of PHFs measured biochemically does not increase in the course of normal ageing but increases 10-fold relative to age-matched controls in patients with Alzheimer's disease. There is also a substantial (three-fold) disease-related decline in normal soluble tau protein relative to age-matched controls. This intracellular redistribution of a protein essential for microtubule stability in cortico-cortical association circuits may play an important part in the molecular pathogenesis of dementia in Alzheimer's disease. The role of abnormal proteolysis of APP in this process remains to be elucidated. Immunohistochemical studies on renal dialysis cases have failed to detect evidence of neurofibrillary pathology related to aluminium accumulation in brain tissue. Nevertheless it needs to be seen whether more sensitive biochemical assays of neurofibrillary pathology can demonstrate evidence of an association with aluminium.
Collapse
Affiliation(s)
- C M Wischik
- University of Cambridge Clinical School, Department of Psychiatry, UK
| | | | | | | | | | | |
Collapse
|
41
|
Xu F, Previti ML, Van Nostrand WE. Increased severity of hemorrhage in transgenic mice expressing cerebral protease nexin-2/amyloid beta-protein precursor. Stroke 2007; 38:2598-601. [PMID: 17656662 DOI: 10.1161/strokeaha.106.480103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Secreted isoforms of amyloid beta-protein precursor (AbetaPP) that contain the Kunitz proteinase inhibitor domain, also known as protease nexin-2 (PN2), are enriched in brain. Although little is known of its physiological function, the potent inhibition of certain prothrombotic proteinases by PN2/AbetaPP suggests that it may function to regulate cerebral thrombosis during vascular injury events. METHODS To examine the antithrombotic function of cerebral PN2/AbetaPP in vivo, we performed measurements of carotid artery thrombosis and experimental intracerebral hemorrhage in transgenic mice with specific and modest overexpression of PN2/AbetaPP in brain. Comparisons were made with wild-type mice and Tg-rPF4/APP mice, a model that possesses specific and modest overexpression of PN2/AbetaPP in platelets and exhibits reduced thrombosis in vivo. RESULTS Modest overexpression of PN2/AbetaPP in transgenic mouse brain had no effect on intraluminal carotid arterial thrombosis but resulted in larger hematoma volumes and hemoglobin levels (23.1+/-2.7 mm(3) [n=6; P<0.01] and 1411+/-202 microg/hemisphere [n=12; P<0.01], respectively), compared with wild-type mice (15.9+/-2.2 mm(3) [n=6] and 935+/-418 microg/hemisphere [n=12], respectively). CONCLUSIONS These findings indicate that cerebral PN2/AbetaPP plays a significant role in regulating thrombosis in brain and that modest age-related increases in the cerebral levels of this protein could markedly enhance the extent of cerebral hemorrhage.
Collapse
|
42
|
Beilin O, Karussis DM, Korczyn AD, Gurwitz D, Aronovich R, Mizrachi-Kol R, Chapman J. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains. Neuroreport 2007; 18:581-4. [PMID: 17413661 DOI: 10.1097/wnr.0b013e328091c1e6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.
Collapse
Affiliation(s)
- Orit Beilin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv , Israel
| | | | | | | | | | | | | |
Collapse
|
43
|
Ladenson RC, Crimmins DL, Landt Y, Ladenson JH. Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal Chem 2007; 78:4501-8. [PMID: 16808459 DOI: 10.1021/ac058044j] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have isolated and characterized a caffeine-specific, heavy-chain-only antibody fragment (V(HH)) from llama that is capable of being utilized to analyze caffeine in hot and cold beverages. Camelid species (llama and camel) were selected for immunization because of their potential to make heat-stable, heavy-chain-only antibodies. Llamas and camels were immunized with caffeine covalently linked to keyhole limpet hemocyanin, and recombinant antibody techniques were used to create phage displayed libraries of variable region fragments of the heavy-chain antibodies. Caffeine-specific V(HH) fragments were selected by their ability to bind to caffeine/bovine serum albumin (BSA) and confirmed by a positive reaction in a caffeine enzyme-linked immunosorbent assay (caffeine ELISA). One of these V(HH) fragments (VSA2) was expressed as a soluble protein and shown to recover its reactivity after exposure to temperatures up to 90 degrees C. In addition, VSA2 was able to bind caffeine at 70 degrees C. A competition caffeine ELISA was developed for the measurement of caffeine in beverages, and concentrations of caffeine obtained for coffee, Coca-Cola Classic, and Diet Coke agreed well with high performance liquid chromatography (HPLC) determination and literature values. VSA2 showed minimal cross reactivity with structurally related methylxanthines.
Collapse
Affiliation(s)
- Ruth C Ladenson
- Department of Pathology and Immunology, Division of Laboratory Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
44
|
|
45
|
Diehl HC, Stühler K, Klein-Scory S, Volmer MW, Schöneck A, Bieling C, Schmiegel W, Meyer HE, Schwarte-Waldhoff I. A catalogue of proteins released by colorectal cancer cells in vitro as an alternative source for biomarker discovery. Proteomics Clin Appl 2006; 1:47-61. [PMID: 21136611 DOI: 10.1002/prca.200600491] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Indexed: 01/01/2023]
Abstract
Improved methods for the early diagnosis of colorectal cancer by way of sensitive and specific tumour markers are highly desirable. Therefore, efficient strategies for biomarker discovery are urgently needed. Here we present an approach that is based on the direct experimental access to proteins released by SW620 human colorectal cancer cells in vitro. A 2-D map and a catalogue of this subproteome - here termed the secretome - were established comprising more than 320 identified proteins which translate into approximately 220 distinct genes. As the majority of the secretome constituents were nominally cellular proteins, we directly compared the secretome and the total proteome by 2-D-DIGE analysis. We provide evidence that unspecific release through cell death, classical secretion, ectodomain shedding, and exosomal release contribute to the secretome in vitro, presumably reflecting the mechanisms in vivo which lead to the occurrence of tumour-specific proteins in the circulation. These data together with the fact that the SW620 secretome catalogue, as presented here, does comprise a large number of known and novel biomarker candidates, validates our approach to isolate and characterize the tumour cell secretome in vitro as a rich source for tumour biomarkers.
Collapse
Affiliation(s)
- Hanna C Diehl
- Medical Proteome-Center, University of Bochum, Bochum, Germany; Department of Internal Medicine, IMBL, Knappschaftskrankenhaus, University of Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rebeck GW, LaDu MJ, Estus S, Bu G, Weeber EJ. The generation and function of soluble apoE receptors in the CNS. Mol Neurodegener 2006; 1:15. [PMID: 17062143 PMCID: PMC1635701 DOI: 10.1186/1750-1326-1-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 10/24/2006] [Indexed: 01/11/2023] Open
Abstract
More than a decade has passed since apolipoprotein E4 (APOE-epsilon4) was identified as a primary risk factor for Alzheimer 's disease (AD), yet researchers are even now struggling to understand how the apolipoprotein system integrates into the puzzle of AD etiology. The specific pathological actions of apoE4, methods of modulating apolipoprotein E4-associated risk, and possible roles of apoE in normal synaptic function are still being debated. These critical questions will never be fully answered without a complete understanding of the life cycle of the apolipoprotein receptors that mediate the uptake, signaling, and degradation of apoE. The present review will focus on apoE receptors as modulators of apoE actions and, in particular, explore the functions of soluble apoE receptors, a field almost entirely overlooked until now.
Collapse
Affiliation(s)
- G William Rebeck
- Department of Neuroscience, Georgetown University, Washington DC, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky, Lexington, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| | - Guojun Bu
- Department of Pediatrics, Washington University, St. Louis, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, USA
- Hope Center for Neurological Disorders, Washington University, St. Louis, USA
| | - Edwin J Weeber
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Department of Pharmacology, Vanderbilt University, Nashville, USA
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, USA
| |
Collapse
|
47
|
Menéndez-González M, Pérez-Pinera P, Martínez-Rivera M, Calatayud MT, Blázquez Menes B. APP processing and the APP-KPI domain involvement in the amyloid cascade. NEURODEGENER DIS 2006; 2:277-83. [PMID: 16909010 DOI: 10.1159/000092315] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 12/08/2005] [Indexed: 12/21/2022] Open
Abstract
Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.
Collapse
Affiliation(s)
- M Menéndez-González
- Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
48
|
Previti ML, Zhang W, Van Nostrand WE. Dexamethasone diminishes the pro-inflammatory and cytotoxic effects of amyloid beta-protein in cerebrovascular smooth muscle cells. J Neuroinflammation 2006; 3:18. [PMID: 16887032 PMCID: PMC1557842 DOI: 10.1186/1742-2094-3-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 08/03/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebrovascular deposition of fibrillar amyloid beta-protein (Abeta), a condition known as cerebral amyloid angiopathy (CAA), is a prominent pathological feature of Alzheimer's disease (AD) and related disorders. Accumulation of cerebral vascular fibrillar Abeta is implicated in promoting local neuroinflammation, causes marked degeneration of smooth muscle cells, and can lead to loss of vessel wall integrity with hemorrhage. However, the relationship between cerebral vascular fibrillar Abeta-induced inflammatory responses and localized cytotoxicity in the vessel wall remains unclear.Steroidal-based anti-inflammatory agents, such as dexamethasone, have been reported to reduce neuroinflammation and hemorrhage associated with CAA. Nevertheless, the basis for the beneficial effects of steroidal anti-inflammatory drug treatment with respect to local inflammation and hemorrhage in CAA is unknown. The cultured human cerebrovascular smooth muscle (HCSM) cell system is a useful in vitro model to study the pathogenic effects of Abeta in CAA. To examine the possibility that dexamethasone may influence CAA-induced cellular pathology, we investigated the effect of this anti-inflammatory agent on inflammatory and cytotoxic responses to Abeta by HCSM cells. METHODS Primary cultures of HCSM cells were treated with or without pathogenic Abeta in the presence or absence of the steroidal anti-inflammatory agent dexamethasone or the non-steroidal anti-inflammatory drugs indomethacin or ibuprofen. Cell viability was measured using a fluorescent live cell/dead cell assay. Quantitative immunoblotting was performed to determine the amount of cell surface Abeta and amyloid beta-protein precursor (AbetaPP) accumulation and loss of vascular smooth cell alpha actin. To assess the extent of inflammation secreted interleukin-6 (IL-6) levels were measured by ELISA and active matrix metalloproteinase-2 (MMP-2) levels were evaluated by gelatin zymography. RESULTS Pathogenic Abeta-induced HCSM cell death was markedly reduced by dexamethasone but was unaffected by ibuprofen or indomethacin. Dexamethasone had no effect on the initial pathogenic effects of Abeta including HCSM cell surface binding, cell surface fibril-like assembly, and accumulation of cell surface AbetaPP. However, later stage pathological consequences of Abeta treatment associated with inflammation and cell degeneration including increased levels of IL-6, activation of MMP-2, and loss of HCSM alpha actin were significantly diminished by dexamethasone but not by indomethacin or ibuprofen. CONCLUSION Our results suggest that although dexamethasone has no appreciable consequence on HCSM cell surface fibrillar Abeta accumulation it effectively reduces the subsequent pathologic responses including elevated levels of IL-6, MMP-2 activation, and depletion of HCSM alpha actin. Dexamethasone, unlike indomethacin or ibuprofen, may diminish these pathological processes that likely contribute to inflammation and loss of vessel wall integrity leading to hemorrhage in CAA.
Collapse
Affiliation(s)
- Mary Lou Previti
- Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8153, USA
| | - Weibing Zhang
- Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8153, USA
| | - William E Van Nostrand
- Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8153, USA
| |
Collapse
|
49
|
Xu F, Davis J, Miao J, Previti ML, Romanov G, Ziegler K, Van Nostrand WE. Protease nexin-2/amyloid beta-protein precursor limits cerebral thrombosis. Proc Natl Acad Sci U S A 2005; 102:18135-40. [PMID: 16330760 PMCID: PMC1312400 DOI: 10.1073/pnas.0507798102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The amyloid beta-protein precursor (AbetaPP) is best known as the parent molecule to the amyloid beta-peptide that accumulates in the brains of patients with Alzheimer's disease. Secreted isoforms of AbetaPP that contain the Kunitz proteinase inhibitor domain are analogous to the previously identified cell-secreted proteinase inhibitor known as protease nexin-2 (PN2). Although PN2/AbetaPP is enriched in brain and in circulating blood platelets, little is understood of its physiological function and potential role in disease processes outside of amyloid beta-peptide generation. We hypothesized that the potent inhibition of certain procoagulant proteinases by PN2/AbetaPP, coupled with its abundance in platelets and brain, indicate that it may function to regulate cerebral thrombosis. Here we show that specific and modest 2-fold overexpression of PN2/AbetaPP in circulating platelets of transgenic mice caused a marked inhibition of thrombosis in vivo. In contrast, deletion of PN2/AbetaPP in AbetaPP gene knockout mice resulted in a significant increase in thrombosis. Similarly, platelet PN2/AbetaPP transgenic mice developed larger hematomas in experimental intracerebral hemorrhage, whereas AbetaPP gene knockout mice exhibited reduced hemorrhage size. These findings indicate that PN2/AbetaPP plays a significant role in regulating cerebral thrombosis and that modest increases in this protein can profoundly enhance cerebral hemorrhage.
Collapse
Affiliation(s)
- Feng Xu
- Department of Medicine, Stony Brook University, NY 11794, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Davis J, Xu F, Miao J, Previti ML, Romanov G, Ziegler K, Van Nostrand WE. Deficient cerebral clearance of vasculotropic mutant Dutch/Iowa Double A beta in human A betaPP transgenic mice. Neurobiol Aging 2005; 27:946-54. [PMID: 16105708 DOI: 10.1016/j.neurobiolaging.2005.05.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 05/05/2005] [Accepted: 05/11/2005] [Indexed: 11/27/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is a prominent pathological feature of Alzheimer's disease and related familial CAA disorders. However, the mechanisms that account for the cerebral vascular accumulation of amyloid beta-peptide (A beta) have not been defined. Recently, we reported novel transgenic mice (Tg-SwDI) expressing neuronally derived Swedish/Dutch/Iowa vasculotropic mutant human A beta precursor (A betaPP) that develop early-onset and robust accumulation of fibrillar cerebral microvascular A beta. Deficient clearance of Dutch/Iowa mutant A beta from brain across the capillary blood-brain barrier into the circulation may contribute to its potent cerebral accumulation. To further evaluate this theory, we generated a new transgenic mouse (Tg-Sw) that is nearly identical to Tg-SwDI, except lacking the Dutch/Iowa A beta mutations. Tg-Sw and Tg-SwDI mice expressed comparable levels of human A betaPP in brain and not in peripheral tissues. However, Tg-SwDI mice strongly accumulated Dutch/Iowa mutant A beta in brain, particularly in the cerebral microvasculature, whereas Tg-Sw mice exhibited no accumulations of wild-type A beta. Conversely, Tg-SwDI mice had no detectable Dutch/Iowa mutant A beta in plasma whereas Tg-Sw mice exhibited consistent levels of human wild-type A beta in plasma. Together, these findings suggest that while wild-type A beta is readily transported out of brain into plasma, Dutch/Iowa mutant A beta is deficient in this clearance process, likely contributing to its robust accumulation in the cerebral vasculature.
Collapse
Affiliation(s)
- Judianne Davis
- Department of Medicine, Health Sciences Center, Stony Brook University, HSC T-15/083, Stony Brook, NY 11794-8153, USA
| | | | | | | | | | | | | |
Collapse
|