1
|
Serreze DV, Dwyer JR, Racine JJ. Advancing Animal Models of Human Type 1 Diabetes. Cold Spring Harb Perspect Med 2024; 14:a041587. [PMID: 38886067 PMCID: PMC11444302 DOI: 10.1101/cshperspect.a041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multiple rodent models have been developed to study the basis of type 1 diabetes (T1D). However, nonobese diabetic (NOD) mice and derivative strains still provide the gold standard for dissecting the basis of the autoimmune responses underlying T1D. Here, we review the developmental origins of NOD mice, and how they and derivative strains have been used over the past several decades to dissect the genetic and immunopathogenic basis of T1D. Also discussed are ways in which the immunopathogenic basis of T1D in NOD mice and humans are similar or differ. Additionally reviewed are efforts to "humanize" NOD mice and derivative strains to provide improved models to study autoimmune responses contributing to T1D in human patients.
Collapse
|
2
|
Rojas M, Heuer LS, Zhang W, Chen YG, Ridgway WM. The long and winding road: From mouse linkage studies to a novel human therapeutic pathway in type 1 diabetes. Front Immunol 2022; 13:918837. [PMID: 35935980 PMCID: PMC9353112 DOI: 10.3389/fimmu.2022.918837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity involves a loss of immune tolerance to self-proteins due to a combination of genetic susceptibility and environmental provocation, which generates autoreactive T and B cells. Genetic susceptibility affects lymphocyte autoreactivity at the level of central tolerance (e.g., defective, or incomplete MHC-mediated negative selection of self-reactive T cells) and peripheral tolerance (e.g., failure of mechanisms to control circulating self-reactive T cells). T regulatory cell (Treg) mediated suppression is essential for controlling peripheral autoreactive T cells. Understanding the genetic control of Treg development and function and Treg interaction with T effector and other immune cells is thus a key goal of autoimmunity research. Herein, we will review immunogenetic control of tolerance in one of the classic models of autoimmunity, the non-obese diabetic (NOD) mouse model of autoimmune Type 1 diabetes (T1D). We review the long (and still evolving) elucidation of how one susceptibility gene, Cd137, (identified originally via linkage studies) affects both the immune response and its regulation in a highly complex fashion. The CD137 (present in both membrane and soluble forms) and the CD137 ligand (CD137L) both signal into a variety of immune cells (bi-directional signaling). The overall outcome of these multitudinous effects (either tolerance or autoimmunity) depends upon the balance between the regulatory signals (predominantly mediated by soluble CD137 via the CD137L pathway) and the effector signals (mediated by both membrane-bound CD137 and CD137L). This immune balance/homeostasis can be decisively affected by genetic (susceptibility vs. resistant alleles) and environmental factors (stimulation of soluble CD137 production). The discovery of the homeostatic immune effect of soluble CD137 on the CD137-CD137L system makes it a promising candidate for immunotherapy to restore tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - William M. Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: William M. Ridgway,
| |
Collapse
|
3
|
Gioia L, Holt M, Costanzo A, Sharma S, Abe B, Kain L, Nakayama M, Wan X, Su A, Mathews C, Chen YG, Unanue E, Teyton L. Position β57 of I-A g7 controls early anti-insulin responses in NOD mice, linking an MHC susceptibility allele to type 1 diabetes onset. Sci Immunol 2019; 4:eaaw6329. [PMID: 31471352 PMCID: PMC6816460 DOI: 10.1126/sciimmunol.aaw6329] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
The class II region of the major histocompatibility complex (MHC) locus is the main contributor to the genetic susceptibility to type 1 diabetes (T1D). The loss of an aspartic acid at position 57 of diabetogenic HLA-DQβ chains supports this association; this single amino acid change influences how TCRs recognize peptides in the context of HLA-DQ8 and I-Ag7 using a mechanism termed the P9 switch. Here, we built register-specific insulin peptide MHC tetramers to examine CD4+ T cell responses to Ins12-20 and Ins13-21 peptides during the early prediabetic phase of disease in nonobese diabetic (NOD) mice. A single-cell analysis of anti-insulin CD4+ T cells performed in 6- and 12-week-old NOD mice revealed tissue-specific gene expression signatures. TCR signaling and clonal expansion were found only in the islets of Langerhans and produced either classical TH1 differentiation or an unusual Treg phenotype, independent of TCR usage. The early phase of the anti-insulin response was dominated by T cells specific for Ins12-20, the register that supports a P9 switch mode of recognition. The presence of the P9 switch was demonstrated by TCR sequencing, reexpression, mutagenesis, and functional testing of TCRαβ pairs in vitro. Genetic correction of the I-Aβ57 mutation in NOD mice resulted in the disappearance of D/E residues in the CDR3β of anti-Ins12-20 T cells. These results provide a mechanistic molecular explanation that links the characteristic MHC class II polymorphism of T1D with the recognition of islet autoantigens and disease onset.
Collapse
Affiliation(s)
- Louis Gioia
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marie Holt
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anne Costanzo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Siddhartha Sharma
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian Abe
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maki Nakayama
- Department of Pediatrics and Department of Immunology and Microbiology, Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Denver, CO 80045, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew Su
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clayton Mathews
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yi-Guang Chen
- University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Emil Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Transplantation of MHC-mismatched mouse embryonic stem cell-derived thymic epithelial progenitors and MHC-matched bone marrow prevents autoimmune diabetes. Stem Cell Res Ther 2019; 10:239. [PMID: 31387620 PMCID: PMC6685174 DOI: 10.1186/s13287-019-1347-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Type 1 diabetes (T1D) is an autoimmune disease resulting from the destruction of insulin-secreting islet β cells by autoreactive T cells. Non-obese diabetic (NOD) mice are the widely used animal model for human T1D. Autoimmunity in NOD mice is associated with particular major histocompatibility complex (MHC) loci and impaired islet autoantigen expression and/or presentation in the thymus, which results in defects in both central and peripheral tolerance. It has been reported that induction of mixed chimerism with MHC-mismatched, but not MHC-matched donor bone marrow (BM) transplants prevents the development T1D in NOD mice. We have reported that mouse embryonic stem cells (mESCs) can be selectively induced in vitro to generate thymic epithelial progenitors (TEPs) that further develop into thymic epithelial cells (TECs) in vivo to support T cell development. Methods To determine whether transplantation of MHC-mismatched mESC-TEPs could prevent the development of insulitis and T1D, NOD mice were conditioned and injected with MHC-mismatched B6 mESC-TEPs and MHC-matched BM from H-2g7 B6 mice. The mice were monitored for T1D development. The pancreas, spleen, BM, and thymus were then harvested from the mice for evaluation of T1D, insulitis, chimerism levels, and T cells. Results Transplantation of MHC-mismatched mESC-TEPs and MHC-matched donor BM prevented insulitis and T1D development in NOD mice. This was associated with higher expression of proinsulin 2, a key islet autoantigen in the mESC-TECs, and an increased number of regulatory T cells. Conclusions Our results suggest that embryonic stem cell-derived TEPs may offer a new approach to control T1D. Electronic supplementary material The online version of this article (10.1186/s13287-019-1347-1) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Briet C, Bourdenet G, Rogner UC, Becourt C, Tardivel I, Drouot L, Arnoult C, do Rego JC, Prevot N, Massaad C, Boyer O, Boitard C. The Spontaneous Autoimmune Neuromyopathy in ICOSL -/- NOD Mice Is CD4 + T-Cell and Interferon-γ Dependent. Front Immunol 2017; 8:287. [PMID: 28424681 PMCID: PMC5371727 DOI: 10.3389/fimmu.2017.00287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/28/2017] [Indexed: 01/07/2023] Open
Abstract
Abrogation of ICOS/ICOS ligand (ICOSL) costimulation prevents the onset of diabetes in the non-obese diabetic (NOD) mouse but, remarkably, yields to the development of a spontaneous autoimmune neuromyopathy. At the pathological level, ICOSL−/− NOD mice show stronger protection from insulitis than their ICOS−/− counterparts. Also, the ICOSL−/− NOD model carries a limited C57BL/6 region containing the Icosl nul mutation, but, in contrast to ICOS−/− NOD mice, no gene variant previously reported as associated to NOD diabetes. Therefore, we aimed at providing a detailed characterization of the ICOSL−/− NOD model. The phenotype observed in ICOSL−/− NOD mice is globally similar to that observed in ICOS−/− and ICOS−/−ICOSL−/− double-knockout NOD mice, manifested by a progressive locomotor disability first affecting the front paws as observed by catwalk analysis and a decrease in grip test performance. The pathology remains limited to peripheral nerve and striated muscle. The muscle disease is characterized by myofiber necrosis/regeneration and an inflammatory infiltrate composed of CD4+ T-cells, CD8+ T-cells, and myeloid cells, resembling human myositis. Autoimmune neuromyopathy can be transferred to NOD.scid recipients by CD4+ but not by CD8+ T-cells isolated from 40-week-old female ICOSL−/− NOD mice. The predominant role of CD4+ T-cells is further demonstrated by the observation that neuromyopathy does not develop in CIITA−/−ICOSL−/− NOD in contrast to β2microglobulin−/−ICOSL−/− NOD mice. Also, the cytokine profile of CD4+ T-cells infiltrating muscle and nerve of ICOSL−/− NOD mice is biased toward a Th1 pattern. Finally, adoptive transfer experiments show that diabetes development requires expression of ICOSL, in contrast to neuromyopathy. Altogether, the deviation of autoimmunity from the pancreas to skeletal muscles in the absence of ICOS/ICOSL signaling in NOD mice is strictly dependent on CD4+ T-cells, leads to myofiber necrosis and regeneration. It provides the first mouse model of spontaneous autoimmune myopathy akin to human myositis.
Collapse
Affiliation(s)
- Claire Briet
- INSERM U1016, Cochin Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Gwladys Bourdenet
- Normandie Université, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology, Rouen, France
| | | | | | | | - Laurent Drouot
- Normandie Université, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology, Rouen, France
| | | | | | - Nicolas Prevot
- Developmental Immunology, Department of Paediatrics, and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Olivier Boyer
- Normandie Université, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology, Rouen, France
| | - Christian Boitard
- INSERM U1016, Cochin Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
6
|
Serreze DV, Niens M, Kulik J, DiLorenzo TP. Bridging Mice to Men: Using HLA Transgenic Mice to Enhance the Future Prediction and Prevention of Autoimmune Type 1 Diabetes in Humans. Methods Mol Biol 2016; 1438:137-151. [PMID: 27150089 DOI: 10.1007/978-1-4939-3661-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Similar to the vast majority of cases in humans, the development of type 1 diabetes (T1D) in the NOD mouse model is due to T-cell mediated autoimmune destruction of insulin producing pancreatic β cells. Particular major histocompatibility complex (MHC) haplotypes (designated HLA in humans; and H2 in mice) provide the primary genetic risk factor for T1D development. It has long been appreciated that within the MHC, particular unusual class II genes contribute to the development of T1D in both humans and NOD mice by allowing for the development and functional activation of β cell autoreactive CD4 T cells. However, studies in NOD mice have revealed that through interactions with other background susceptibility genes, the quite common class I variants (K(d), D(b)) characterizing this strain's H2 (g7) MHC haplotype aberrantly acquire an ability to support the development of β cell autoreactive CD8 T cell responses also essential to T1D development. Similarly, recent studies indicate that in the proper genetic context some quite common HLA class I variants also aberrantly contribute to T1D development in humans. This review focuses on how "humanized" HLA transgenic NOD mice can be created and used to identify class I dependent β cell autoreactive CD8 T cell populations of clinical relevance to T1D development. There is also discussion on how HLA transgenic NOD mice can be used to develop protocols that may ultimately be useful for the prevention of T1D in humans by attenuating autoreactive CD8 T cell responses against pancreatic β cells.
Collapse
Affiliation(s)
- David V Serreze
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Marijke Niens
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - John Kulik
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Teresa P DiLorenzo
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
7
|
Morran MP, Vonberg A, Khadra A, Pietropaolo M. Immunogenetics of type 1 diabetes mellitus. Mol Aspects Med 2015; 42:42-60. [PMID: 25579746 PMCID: PMC4548800 DOI: 10.1016/j.mam.2014.12.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/20/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease arising through a complex interaction of both genetic and immunologic factors. Similar to the majority of autoimmune diseases, T1DM usually has a relapsing remitting disease course with autoantibody and T cellular responses to islet autoantigens, which precede the clinical onset of the disease process. The immunological diagnosis of autoimmune diseases relies primarily on the detection of autoantibodies in the serum of T1DM patients. Although their pathogenic significance remains uncertain, they have the practical advantage of serving as surrogate biomarkers for predicting the clinical onset of T1DM. Type 1 diabetes is a polygenic disease with a small number of genes having large effects (i.e. HLA), and a large number of genes having small effects. Risk of T1DM progression is conferred by specific HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3) or DRB1*04-DQB1*0302 (DR4)]. In addition, HLA alleles such as DQB1*0602 are associated with dominant protection from T1DM in multiple populations. A discordance rate of greater than 50% between monozygotic twins indicates a potential involvement of environmental factors on disease development. Viral infections may play a role in the chain of events leading to disease, albeit conclusive evidence linking infections with T1DM remains to be firmly established. Two syndromes have been described in which an immune-mediated form of diabetes occurs as the result of a single gene defect. These syndromes are termed autoimmune polyglandular syndrome type I (APS-I) or autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), and X-linked poyendocrinopathy, immune dysfunction and diarrhea (XPID). These two syndromes are unique models to understand the mechanisms involved in the loss of tolerance to self-antigens in autoimmune diabetes and its associated organ-specific autoimmune disorders. A growing number of animal models of these diseases have greatly helped elucidate the immunologic mechanisms leading to autoimmune diabetes.
Collapse
Affiliation(s)
- Michael P Morran
- Laboratory of Immunogenetics, The Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew Vonberg
- Laboratory of Immunogenetics, The Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Massimo Pietropaolo
- Laboratory of Immunogenetics, The Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
8
|
Advances in our understanding of the pathophysiology of Type 1 diabetes: lessons from the NOD mouse. Clin Sci (Lond) 2013; 126:1-18. [PMID: 24020444 DOI: 10.1042/cs20120627] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T1D (Type 1 diabetes) is an autoimmune disease caused by the immune-mediated destruction of pancreatic β-cells. Studies in T1D patients have been limited by the availability of pancreatic samples, a protracted pre-diabetic phase and limitations in markers that reflect β-cell mass and function. The NOD (non-obese diabetic) mouse is currently the best available animal model of T1D, since it develops disease spontaneously and shares many genetic and immunopathogenic features with human T1D. Consequently, the NOD mouse has been extensively studied and has made a tremendous contribution to our understanding of human T1D. The present review summarizes the key lessons from NOD mouse studies concerning the genetic susceptibility, aetiology and immunopathogenic mechanisms that contribute to autoimmune destruction of β-cells. Finally, we summarize the potential and limitations of immunotherapeutic strategies, successful in NOD mice, now being trialled in T1D patients and individuals at risk of developing T1D.
Collapse
|
9
|
Abstract
Type 1A diabetes (autoimmune) is now immunologically predictable in man, but preventable only in animal models. What triggers the development of autoimmunity in genetically susceptible individuals remains unknown. Studies of non-obese diabetic (NOD) mice reveal that interactions between T-cell receptors of diabetogenic T cell and an MHC class II loaded with an autoantigen are key determinates of the disease. With insulin as the primary target in the NOD mouse, likely man, and possibly the RT1-U rat models, therapeutic targeting of the components of these anti-insulin trimolecular complexes we believe provide a fulcrum for development of preventive therapy. In particular for the NOD mouse model, there is extensive evidence that the dominant insulin peptide driving disease initiation is insulin B chain amino acids 9-23 (SHLVEALYLVCGERG) recognized predominantly by germ-line sequences of a specific T-cell receptor Valpha (TRAV5D-4), and small molecules or monoclonal antibodies directed at this recognition complex can prevent diabetes.
Collapse
|
10
|
Tsai S, Serra P, Clemente-Casares X, Slattery RM, Santamaria P. Dendritic Cell–Dependent In Vivo Generation of Autoregulatory T Cells by Antidiabetogenic MHC Class II. THE JOURNAL OF IMMUNOLOGY 2013; 191:70-82. [DOI: 10.4049/jimmunol.1300168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Antidiabetogenic MHC class II promotes the differentiation of MHC-promiscuous autoreactive T cells into FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 2013; 110:3471-6. [PMID: 23401506 DOI: 10.1073/pnas.1211391110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polymorphisms in MHC class II molecules, in particular around β-chain position-57 (β57), afford susceptibility/resistance to multiple autoimmune diseases, including type 1 diabetes, through obscure mechanisms. Here, we show that the antidiabetogenic MHC class II molecule I-A(b) affords diabetes resistance by promoting the differentiation of MHC-promiscuous autoreactive CD4(+) T cells into disease-suppressing natural regulatory T cells, in a β56-67-regulated manner. We compared the tolerogenic and antidiabetogenic properties of CD11c promoter-driven transgenes encoding I-A(b) or a form of I-A(b) carrying residues 56-67 of I-Aβ(g7) (I-A(b-g7)) in wild-type nonobese diabetic (NOD) mice, as well as NOD mice coexpressing a diabetogenic and I-A(g7)-restricted, but MHC-promiscuous T-cell receptor (4.1). Both I-A transgenes protected NOD and 4.1-NOD mice from diabetes. However, whereas I-A(b) induced 4.1-CD4(+) thymocyte deletion and 4.1-CD4(+)Foxp3(+) regulatory T-cell development, I-A(b-g7) promoted 4.1-CD4(+)Foxp3(+) Treg development without inducing clonal deletion. Furthermore, non-T-cell receptor transgenic NOD.CD11cP-I-A(b) and NOD.CD11cP-IA(b-g7) mice both exported regulatory T cells with superior antidiabetogenic properties than wild-type NOD mice. We propose that I-A(b), and possibly other protective MHC class II molecules, afford disease resistance by engaging a naturally occurring constellation of MHC-promiscuous autoreactive T-cell clonotypes, promoting their deviation into autoregulatory T cells.
Collapse
|
12
|
Bertin-Maghit S, Pang D, O'Sullivan B, Best S, Duggan E, Paul S, Thomas H, Kay TW, Harrison LC, Steptoe R, Thomas R. Interleukin-1β produced in response to islet autoantigen presentation differentiates T-helper 17 cells at the expense of regulatory T-cells: Implications for the timing of tolerizing immunotherapy. Diabetes 2011; 60:248-57. [PMID: 20980463 PMCID: PMC3012178 DOI: 10.2337/db10-0104] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The effectiveness of tolerizing immunotherapeutic strategies, such as anti-CD40L or dendritic cells (DCs), is greater when administered to young nonobese diabetic (NOD) mice than at peak insulitis. RelB(lo) DCs, generated in the presence of an nuclear factor-κB inhibitor, induce T-regulatory (Treg) cells and suppress inflammation in a model of rheumatoid arthritis. Interleukin (IL)-1β is overexpressed in humans and mice at risk of type 1 diabetes, dysregulates Treg cells, and accelerates diabetes in NOD mice. We investigated the relationship between IL-1β production and the response to RelB(lo) DCs in the prediabetic period. RESEARCH DESIGN AND METHODS We injected RelB(lo) DCs subcutaneously into 4- or 14-week-old NOD mice and tracked the incidence of diabetes and effect on Treg cell function. We measured the expression of proinflammatory cytokines by stimulated splenocytes and unstimulated islets from mice of different ages and strains and proliferative and cytokine responses of T effectors to Treg in vitro. RESULTS Tolerizing RelB(lo) DCs significantly inhibited diabetes progression when administered to 4-week-old but not 14-week-old mice. IL-1β production by NOD splenocytes and mRNA expression by islets increased from 6 to 16 weeks of age when major histocompatibility complex (MHC)-restricted islet antigen presentation to autoreactive T-cells occurred. IL-1 reduced the capacity of Treg cells to suppress effector cells and promoted their conversion to Th17 cells. RelB(lo) DCs exacerbated the IL-1-dependent decline in Treg function and promoted Th17 conversion. CONCLUSIONS IL-1β, generated by islet-autoreactive cells in MHC-susceptible mice, accelerates diabetes by differentiating Th17 at the expense of Treg. Tolerizing DC therapies can regulate islet autoantigen priming and prevent diabetes, but progression past the IL-1β/IL-17 checkpoint signals the need for other strategies.
Collapse
Affiliation(s)
- Sebastien Bertin-Maghit
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Dimeng Pang
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Brendan O'Sullivan
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Shannon Best
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Emily Duggan
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Sanjoy Paul
- Queensland Clinical Trials and Biostatistics Centre, School of Population Health, The University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Helen Thomas
- Islet Biology Laboratory, St. Vincent's Institute, Melbourne, Australia
| | - Thomas W.H. Kay
- Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute, Melbourne, Australia
| | - Leonard C. Harrison
- Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute, Melbourne, Australia
| | - Raymond Steptoe
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Corresponding author: Ranjeny Thomas,
| |
Collapse
|
13
|
Driver JP, Serreze DV, Chen YG. Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 2010; 33:67-87. [DOI: 10.1007/s00281-010-0204-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/18/2010] [Indexed: 01/12/2023]
|
14
|
Brims DR, Qian J, Jarchum I, Mikesh L, Palmieri E, Ramagopal UA, Malashkevich VN, Chaparro RJ, Lund T, Hattori M, Shabanowitz J, Hunt DF, Nathenson SG, Almo SC, Dilorenzo TP. Predominant occupation of the class I MHC molecule H-2Kwm7 with a single self-peptide suggests a mechanism for its diabetes-protective effect. Int Immunol 2010; 22:191-203. [PMID: 20093428 DOI: 10.1093/intimm/dxp127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic beta cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk. These findings are consistent with the requirement for both CD4(+) and CD8(+) T cells in the pathogenesis of T1D. Although a large body of work has permitted the identification of multiple mechanisms to explain the diabetes-protective effect of particular class II MHC alleles, studies examining the protective influence of class I alleles are lacking. Here, we explored this question by performing biochemical and structural analyses of the murine class I MHC molecule H-2K(wm7), which exerts a diabetes-protective effect in NOD mice. We have found that H-2K(wm7) molecules are predominantly occupied by the single self-peptide VNDIFERI, derived from the ubiquitous protein histone H2B. This unexpected finding suggests that the inability of H-2K(wm7) to support T1D development could be due, at least in part, to the failure of peptides from critical beta-cell antigens to adequately compete for binding and be presented to T cells. Predominant presentation of a single peptide would also be expected to influence T-cell selection, potentially leading to a reduced ability to select a diabetogenic CD8(+) T-cell repertoire. The report that one of the predominant peptides bound by T1D-protective HLA-A*31 is histone derived suggests the potential translation of our findings to human diabetes-protective class I MHC molecules.
Collapse
Affiliation(s)
- Daniel R Brims
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Serreze DV, Niens M, Kulik J, Dilorenzo TP. Bridging mice to men: using HLA transgenic mice to enhance the future prediction and prevention of autoimmune type 1 diabetes in humans. Methods Mol Biol 2010; 602:119-134. [PMID: 20012396 DOI: 10.1007/978-1-60761-058-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Similar to the vast majority of cases in humans, the development of type 1 diabetes (T1D) in the NOD mouse model is due to T-cell mediated autoimmune destruction of insulin-producing pancreatic beta cells. Particular major histocompatibility complex (MHC) haplotypes (designated HLA in humans and H2 in mice) provide the primary genetic risk factor for T1D development. It has long been appreciated that within the MHC, particular unusual class II genes contribute to the development of T1D in both humans and NOD mice by allowing for the development and functional activation of beta-cell autoreactive CD4 T cells. However, studies in NOD mice have revealed that through interactions with other background susceptibility genes, the quite common class I variants (K(d), D(b)) characterizing this strain's H2 ( g7 ) MHC haplotype aberrantly acquire an ability to support the development of beta cell autoreactive CD8 T-cell responses also essential to T1D development. Similarly, recent studies indicate that in the proper genetic context some quite common HLA class I variants also aberrantly contribute to T1D development in humans. This chapter will focus on how "humanized" HLA transgenic NOD mice can be created and used to identify class I-dependent beta cell autoreactive CD8 T-cell populations of clinical relevance to T1D development. There is also discussion on how HLA transgenic NOD mice can be used to develop protocols that may ultimately be useful for the prevention of T1D in humans by attenuating autoreactive CD8 T-cell responses against pancreatic beta cells.
Collapse
|
16
|
Ridgway WM, Peterson LB, Todd JA, Rainbow DB, Healy B, Burren OS, Wicker LS. Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv Immunol 2009; 100:151-75. [PMID: 19111166 DOI: 10.1016/s0065-2776(08)00806-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human genome wide association studies (GWAS) have recently identified at least four new, non-MHC-linked candidate genes or gene regions causing type one diabetes (T1D), highlighting the need for functional models to investigate how susceptibility alleles at multiple common genes interact to mediate disease. Progress in localizing genes in congenic strains of the nonobese diabetic (NOD) mouse has allowed the reproducible testing of gene functions and gene-gene interactions that can be reflected biologically as intrapathway interactions, for example, IL-2 and its receptor CD25, pathway-pathway interactions such as two signaling pathways within a cell, or cell-cell interactions. Recent studies have identified likely causal genes in two congenic intervals associated with T1D, Idd3, and Idd5, and have documented the occurrence of gene-gene interactions, including "genetic masking", involving the genes encoding the critical immune molecules IL-2 and CTLA-4. The demonstration of gene-gene interactions in congenic mouse models of T1D has major implications for the understanding of human T1D since such biological interactions are highly likely to exist for human T1D genes. Although it is difficult to detect most gene-gene interactions in a population in which susceptibility and protective alleles at many loci are randomly segregating, their existence as revealed in congenic mice reinforces the hypothesis that T1D alleles can have strong biological effects and that such genes highlight pathways to consider as targets for immune intervention.
Collapse
Affiliation(s)
- William M Ridgway
- University of Pittsburgh School of Medicine, 725 SBST, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Devoss JJ, Shum AK, Johannes KPA, Lu W, Krawisz AK, Wang P, Yang T, Leclair NP, Austin C, Strauss EC, Anderson MS. Effector mechanisms of the autoimmune syndrome in the murine model of autoimmune polyglandular syndrome type 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:4072-9. [PMID: 18768863 PMCID: PMC2556863 DOI: 10.4049/jimmunol.181.6.4072] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mutations in the Aire gene result in a clinical phenomenon known as Autoimmune Polyglandular Syndrome (APS) Type I, which classically manifests as a triad of adrenal insufficiency, hypoparathyroidism, and chronic mucocutaneous infections. In addition to this triad, a number of other autoimmune diseases have been observed in APS1 patients including Sjögren's syndrome, vitiligo, alopecia, uveitis, and others. Aire-deficient mice, the animal model for APS1, have highlighted the role of the thymus in the disease process and demonstrated a failure in central tolerance in aire-deficient mice. However, autoantibodies have been observed against multiple organs in both mice and humans, making it unclear what the specific role of B and T cells are in the pathogenesis of disease. Using the aire-deficient mouse as a preclinical model for APS1, we have investigated the relative contribution of specific lymphocyte populations, with the goal of identifying the cell populations which may be targeted for rational therapeutic design. In this study, we show that T cells are indispensable to the breakdown of self-tolerance, in contrast to B cells which play a more limited role in autoimmunity. Th1 polarized CD4(+) T cells, in particular, are major contributors to the autoimmune response. With this knowledge, we go on to use therapies targeted at T cells to investigate their ability to modulate disease in vivo. Depletion of CD4(+) T cells using a neutralizing Ab ameliorated the disease process. Thus, therapies targeted specifically at the CD4(+) T cell subset may help control autoimmune disease in patients with APS1.
Collapse
Affiliation(s)
- Jason J Devoss
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Serreze DV, Choisy-Rossi CM, Grier AE, Holl TM, Chapman HD, Gahagan JR, Osborne MA, Zhang W, King BL, Brown A, Roopenian D, Marron MP. Through regulation of TCR expression levels, an Idd7 region gene(s) interactively contributes to the impaired thymic deletion of autoreactive diabetogenic CD8+ T cells in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:3250-9. [PMID: 18292549 DOI: 10.4049/jimmunol.180.5.3250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When expressed in NOD, but not C57BL/6 (B6) genetic background mice, the common class I variants encoded by the H2g7 MHC haplotype aberrantly lose the ability to mediate the thymic deletion of autoreactive CD8+ T cells contributing to type 1 diabetes (T1D). This indicated some subset of the T1D susceptibility (Idd) genes located outside the MHC of NOD mice interactively impair the negative selection of diabetogenic CD8+ T cells. In this study, using both linkage and congenic strain analyses, we demonstrate contributions from a polymorphic gene(s) in the previously described Idd7 locus on the proximal portion of Chromosome 7 predominantly, but not exclusively, determines the extent to which H2g7 class I molecules can mediate the thymic deletion of diabetogenic CD8+ T cells as illustrated using the AI4 TCR transgenic system. The polymorphic Idd7 region gene(s) appears to control events that respectively result in high vs low expression of the AI4 clonotypic TCR alpha-chain on developing thymocytes in B6.H2g7 and NOD background mice. This expression difference likely lowers levels of the clonotypic AI4 TCR in NOD, but not B6.H2g7 thymocytes, below the threshold presumably necessary to induce a signaling response sufficient to trigger negative selection upon Ag engagement. These findings provide further insight to how susceptibility genes, both within and outside the MHC, may interact to elicit autoreactive T cell responses mediating T1D development in both NOD mice and human patients.
Collapse
|
19
|
Tian C, Ansari MJI, Paez-Cortez J, Bagley J, Godwin J, Donnarumma M, Sayegh MH, Iacomini J. Induction of robust diabetes resistance and prevention of recurrent type 1 diabetes following islet transplantation by gene therapy. THE JOURNAL OF IMMUNOLOGY 2007; 179:6762-9. [PMID: 17982066 DOI: 10.4049/jimmunol.179.10.6762] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have previously shown that the development of type 1 diabetes (T1D) can be prevented in nonobese diabetic (NOD) mice by reconstitution with autologous hemopoietic stem cells retrovirally transduced with viruses encoding MHC class II I-A beta-chain molecules associated with protection from the disease. In this study we examined whether a blockade of the programmed death-1 (PD-1)-programmed death ligand-1 (PD-L1) pathway, a major pathway known to control diabetes occurrence, could precipitate T1D in young NOD mice following reconstitution with autologous bone marrow retrovirally transduced with viruses encoding protective MHC class II I-A beta-chain molecules. In addition, we examined whether the expression of protective MHC class II alleles in hemopoietic cells could be used to prevent the recurrence of diabetes in mice with pre-existing disease following islet transplantation. Protection from the occurrence of T1D diabetes in young NOD mice by the expression of protective MHC class II I-A beta-chain molecules in bone marrow-derived hemopoietic cells was resistant to induction by PD-1-PD-L1 blockade. Moreover, reconstitution of NOD mice with pre-existing T1D autologous hemopoietic stem cells transduced with viruses encoding protective MHC class II I-A beta-chains allowed for the successful transplantation of syngeneic islets, resulting in the long-term reversal of T1D. Reversal of diabetes was resistant to induction by PD-1-PDL-1 blockade and depletion of CD25(+) T cells. These data suggest that expression of protective MHC class II alleles in bone marrow-derived cells establishes robust self-tolerance to islet autoantigens and is sufficient to prevent the recurrence of autoimmune diabetes following islet transplantation.
Collapse
Affiliation(s)
- Chaorui Tian
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
It is known that CD4(+) regulatory T cells (Tr cells) play a central role in inducing immune tolerance in animals and humans. Compared to polyclonal Tr cells, autoantigen-specific Tr cells are more potent at blocking pathogenic immune responses. In order to better understand the role of Tr cells in controlling type 1 diabetes development and to help design effective antigen-specific cell-based therapeutic methods to treat the disease, it is necessary to: (a) determine the antigen specificity of Tr cells; (b) study how antigen-specific Tr cells behave in vivo; (c) investigate the interaction of Tr cells with pathogenic T cells (Tpath cells) and determine whether such interaction correlates with the progression or inhibition of diabetes; and (d) determine the cellular and molecular mechanisms underlying the regulation of diabetes by Tr cells. We have addressed these questions with a focus on the studies of glutamic acid decarboxylase (GAD)-specific T cells. Previous studies have suggested that GAD-specific T cells play a key role in type 1 diabetes. Treatment of NOD mice with GAD or its peptides can prevent the progression toward overt disease. The preventive effect could be due to either the deletion of antigen-specific pathogenic T cells or the induction of potent antigen-specific Tr cells. Using antigen-specific I-Ag7 tetramers we have isolated several populations of GAD peptide-specific T cells from diabetes-prone NOD and diabetes-resistant NOR mice. Herein, we summarize our studies on the role of these GAD peptide-specific T cells in type 1 diabetes. We present evidence that supports the hypothesis that the repertoire of T cells specific for these GAD peptides is biased toward Tr cells that inhibit diabetes rather than toward pathogenic T cells that induce diabetes.
Collapse
Affiliation(s)
- Chih-Pin Liu
- Beckman Research Institute, City of Hope, Division of Immunology, 1450 E. Duarte, Duarte CA 91010, USA.
| |
Collapse
|
21
|
Giarratana N, Penna G, Adorini L. Animal models of spontaneous autoimmune disease: type 1 diabetes in the nonobese diabetic mouse. Methods Mol Biol 2007; 380:285-311. [PMID: 17876100 DOI: 10.1007/978-1-59745-395-0_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The nonobese diabetic (NOD) mouse represents probably the best spontaneous model for a human autoimmune disease. It has provided not only essential information on type 1 diabetes (T1D) pathogenesis, but also valuable insights into mechanisms of immunoregulation and tolerance. Importantly, it allows testing of immunointervention strategies potentially applicable to man. The fact that T1D incidence in the NOD mouse is sensitive to environmental conditions, and responds, sometimes dramatically, to immunomanipulation, does not represent a limit of the model, but is likely to render it even more similar to its human counterpart. In both cases, macrophages, dendritic cells, CD4+, CD8+, and B cells are present in the diseased islets. T1D is a polygenic disease, but, both in human and in NOD mouse T1D, the primary susceptibility gene is located within the MHC. On the other hand, T1D incidence is significantly higher in NOD females, although insulitis is similar in both sexes, whereas in humans, T1D occurs with about equal frequency in males and females. In addition, NOD mice have a more widespread autoimmune disorder, which is not the case in the majority of human T1D cases. Despite these differences, the NOD mouse remains the most representative model of human T1D, with similarities also in the putative target autoantigens, including glutamic acid decarboxylase IA-2, and insulin.
Collapse
|
22
|
Mellanby RJ, Koonce CH, Monti A, Phillips JM, Cooke A, Bikoff EK. Loss of Invariant Chain Protects Nonobese Diabetic Mice against Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2006; 177:7588-98. [PMID: 17114428 DOI: 10.4049/jimmunol.177.11.7588] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The invariant (Ii) chain acts as an essential chaperone to promote MHC class II surface expression, Ag presentation, and selection of CD4(+) T cells. We have examined its role in the development of type 1 diabetes in NOD mice and show that Ii chain-deficient NOD mice fail to develop type 1 diabetes. Surprisingly, Ii chain functional loss fails to disrupt in vitro presentation of islet Ags, in the context of NOD I-A(g7) molecules. Moreover, pathogenic effector cells could be shown to be present in Ii chain-deficient NOD mice because they were able to transfer diabetes to NOD.scid recipients. The ability of these cells to transfer diabetes was markedly enhanced by depletion of CD25 cells coupled with in vivo anti-CD25 treatment of recipient mice. The numbers of CD4(+)CD25(+)Foxp3(+) T cells in thymus and periphery of Ii chain-deficient NOD mice were similar to those found in normal NOD mice, in contrast to conventional CD4(+) T cells whose numbers were reduced. This suggests that regulatory T cells are unaffected in their selection and survival by the absence of Ii chain and that an alteration in the balance of effector to regulatory T cells contributes to diabetes prevention.
Collapse
Affiliation(s)
- Richard J Mellanby
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Serreze DV, Osborne MA, Chen YG, Chapman HD, Pearson T, Brehm MA, Greiner DL. Partial versus Full Allogeneic Hemopoietic Chimerization Is a Preferential Means to Inhibit Type 1 Diabetes as the Latter Induces Generalized Immunosuppression. THE JOURNAL OF IMMUNOLOGY 2006; 177:6675-84. [PMID: 17082580 DOI: 10.4049/jimmunol.177.10.6675] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In both humans and NOD mice, particular combinations of MHC genes provide the primary risk factor for development of the autoreactive T cell responses causing type 1 diabetes (T1D). Conversely, other MHC variants can confer dominant T1D resistance, and previous studies in NOD mice have shown their expression on hemopoietically derived APC is sufficient to induce disease protection. Although allogeneic hemopoietic chimerization can clearly provide a means for blocking T1D development, its clinical use for this purpose has been obviated by a requirement to precondition the host with what would be a lethal irradiation dose if bone marrow engraftment is not successful. There have been reports in which T1D-protective allogeneic hemopoietic chimerization was established in NOD mice that were preconditioned by protocols not including a lethal dose of irradiation. In most of these studies, virtually all the hemopoietic cells in the NOD recipients eventually converted to donor type. We now report that a concern about such full allogeneic chimeras is that they are severely immunocompromised potentially because their T cells are positively selected in the thymus by MHC molecules differing from those expressed by the APC available in the periphery to activate T cell effector functions. However, this undesirable side effect of generalized immunosuppression is obviated by a new protocol that establishes without a lethal preconditioning component, a stable state of mixed allogeneic hemopoietic chimerism sufficient to inhibit T1D development and also induce donor-specific tolerance in NOD recipients.
Collapse
|
24
|
O'Shea H, Yousaf N, Altmann D, Fehervari Z, Tonks P, Hetherington C, Harach S, Bland C, Cooke A, Lund T. Effect of X- and Y-box deletions on the development of diabetes in H-2Ealpha-chain transgenic nonobese diabetic mice. Scand J Immunol 2006; 63:17-25. [PMID: 16398697 DOI: 10.1111/j.1365-3083.2006.001701.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of type 1 diabetes in nonobese diabetic (NOD) mice is influenced by major histocompatibility complex (MHC) class II genes. The NOD-E transgenic mouse, which expresses H2-E as a result of the introduction of an Ead gene, is protected from development of type 1 diabetes. While the mechanism of protection remains unclear, the effect has been regarded as a model system for MHC protection from autoimmunity. We have investigated the effect of deletions of the Ea promoter region, which, in turn, affect H2-E expression patterns in transgenic NOD mice. We have constructed transgenic NOD mice where the X (DeltaX) and Y (DeltaY) boxes of the Ead gene have, respectively, been functionally deleted. Previous reports, using X- or Y-box-deleted H2-E transgenic mice, made by crossing the appropriate transgenes onto the NOD background from C57BL/6 transgenic mice, indicated that promoter mutation abrogated the H2-E-mediated protection seen in NOD-E. The NOD DeltaX and NOD DeltaY transgenic mice generated in the present study differ in susceptibility to diabetes from wild-type NOD mice. NOD DeltaY1 animals are protected from diabetes development, while DeltaX mice remain susceptible, albeit to a lesser extent than the parental NOD strain.
Collapse
Affiliation(s)
- H O'Shea
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The relative risk of type 1 (autoimmune) diabetes mellitus for a sibling of an affected patient is fifteen times that of the general population, indicating a strong genetic contribution to the disease. Yet, the incidence of diabetes in most Western communities has doubled every fifteen years since the Second World War - a rate of increase that can only possibly be explained by a major etiological effect of environment. Here, the authors provide a selective review of risk factors identified to date. Recent reports of linkage of type 1 diabetes to genes encoding pathogen pattern recognition molecules, such as toll-like receptors, are discussed, providing a testable hypothesis regarding a mechanism by which genetic and environmental influences on disease progress are integrated.
Collapse
Affiliation(s)
| | | | - Alan G. Baxter
- Comparative Genomics Centre, Molecular Sciences Building 21, James Cook University, Townsville QLD 4811, Australia
| |
Collapse
|
26
|
Logunova NN, Viret C, Pobezinsky LA, Miller SA, Kazansky DB, Sundberg JP, Chervonsky AV. Restricted MHC-peptide repertoire predisposes to autoimmunity. ACTA ACUST UNITED AC 2005; 202:73-84. [PMID: 15998789 PMCID: PMC2212910 DOI: 10.1084/jem.20050198] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
MHC molecules associated with autoimmunity possess known structural features that limit the repertoire of peptides that they can present. Such limitation gives a selective advantage to TCRs that rely on interaction with the MHC itself, rather than with the peptide residues. At the same time, negative selection is impaired because of the lack of negatively selecting peptide ligands. The combination of these factors may predispose to autoimmunity. We found that mice with an MHC class II–peptide repertoire reduced to a single complex demonstrated various autoimmune reactions. Transgenic mice bearing a TCR (MM14.4) cloned from such a mouse developed severe autoimmune dermatitis. Although MM14.4 originated from a CD4+ T cell, dermatitis was mediated by CD8+ T cells. It was established that MM14.4+ is a highly promiscuous TCR with dual MHC class I/MHC class II restriction. Furthermore, mice with a limited MHC–peptide repertoire selected elevated numbers of TCRs with dual MHC class I/MHC class II restriction, a likely source of autoreactivity. Our findings may help to explain the link between MHC class I responses that are involved in major autoimmune diseases and the well-established genetic linkage of these diseases with MHC class II.
Collapse
|
27
|
DiLorenzo TP, Serreze DV. The good turned ugly: immunopathogenic basis for diabetogenic CD8+ T cells in NOD mice. Immunol Rev 2005; 204:250-63. [PMID: 15790363 DOI: 10.1111/j.0105-2896.2005.00244.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is a T-cell-mediated autoimmune disease in which the insulin-producing pancreatic islet beta-cells are selectively eliminated. As a result, glucose metabolism cannot be regulated unless exogenous insulin is administered. Both the CD4(+) and the CD8(+) T-cell subsets are required for T1D development. Approximately 20 years ago, an association between certain class II major histocompatibility complex (MHC) alleles and susceptibility to T1D was reported. This finding led to enormous interest in the CD4(+) T cells participating in the development of T1D, while the CD8(+) subset was relatively ignored. However, the isolation of beta-cell-autoreactive CD8(+) T-cell clones from the islets of NOD mice helped to generate interest in the pathogenic role of this subset, as has accumulating evidence that certain class I MHC alleles are additional risk factors for T1D development in humans. Three distinct diabetogenic CD8(+) T-cell populations have now been characterized in NOD mice. Here, we review recent investigations exploring their selection, activation, trafficking, and antigenic specificities. As CD8(+) T cells are suspected contributors to beta-cell demise in humans, continued exploration of these critical areas could very possibly lead to tangible benefits for T1D patients and at-risk individuals.
Collapse
Affiliation(s)
- Teresa P DiLorenzo
- Department of Microbiology, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
28
|
Beilhack GF, Landa RR, Masek MA, Shizuru JA. Prevention of type 1 diabetes with major histocompatibility complex-compatible and nonmarrow ablative hematopoietic stem cell transplants. Diabetes 2005; 54:1770-9. [PMID: 15919799 DOI: 10.2337/diabetes.54.6.1770] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Progression to hyperglycemia in young nonobese diabetic (NOD) mice is blocked by the transplantation of hematopoietic cells mismatched at the major histocompatibility complex (MHC). Because the NOD MHC class II allele, I-A(g7), is the primary disease susceptibility gene, it is logical to conclude that MHC-mismatched hematopoietic grafts prevent diabetes by replacement of this susceptibility allele on critical hematolymphoid populations. In this report, transplantation of MHC-matched purified hematopoietic stem cells (HSCs) pre-vented diabetes development in NOD mice, demonstrating that alleles of non-MHC background genes expressed on hematopoietic cells are sufficient to disrupt the autoaggressive process. Nonmarrow ablative conditioning was 100% protective, further showing that elimination of NOD hematopoiesis, including T-cells, was not required for the graft to block diabetes pathogenesis. The current standard clinical practice of hematopoietic cell transplantation uses donor/recipient pairs that are matched at the MHC. In our view, the principles established here using an MHC-matched engineered hematopoietic graft in conjunction with nonmarrow ablative conditioning to successfully block autoimmune diabetes sufficiently reduces the morbidity of the allogeneic transplantation procedure such that a similar approach can be translated to the treatment of human autoimmune disorders.
Collapse
Affiliation(s)
- Georg F Beilhack
- Division of Blood and Marrow Transplantation, Stanford University Medical Center, Stanford, CA 94305-5623, USA
| | | | | | | |
Collapse
|
29
|
Suri A, Unanue ER. The murine diabetogenic class II histocompatibility molecule I-Ag7: structural and functional properties and specificity of peptide selection. Adv Immunol 2005; 88:235-65. [PMID: 16227092 DOI: 10.1016/s0065-2776(05)88007-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The onset of type 1 diabetes mellitus (T1DM) is directly linked to the expression of class II MHC molecules. The NOD mouse, which is an excellent animal model for the human disease, expresses the I-Ag7 molecule that shares many features with the human diabetogenic class II MHC alleles. In this review, the structural, biochemical, and biological properties of the I-Ag7 molecules and how they relate to onset of diabetes is discussed. In particular, the focus is on the unique properties of peptide selection by I-Ag7 that reveal the preferred binding motif of diabetogenic MHC molecules and its role in display of peptides derived from islet beta cells.
Collapse
Affiliation(s)
- Anish Suri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
30
|
Tian C, Bagley J, Cretin N, Seth N, Wucherpfennig KW, Iacomini J. Prevention of type 1 diabetes by gene therapy. J Clin Invest 2004; 114:969-78. [PMID: 15467836 PMCID: PMC518667 DOI: 10.1172/jci22103] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 07/20/2004] [Indexed: 01/06/2023] Open
Abstract
The autoimmune disease type 1 diabetes in humans and NOD mice is determined by multiple genetic factors, among the strongest of which is the inheritance of diabetes-permissive MHC class II alleles associated with susceptibility to disease. Here we examined whether expression of MHC class II alleles associated with resistance to disease could be used to prevent the occurrence of diabetes. Expression of diabetes-resistant MHC class II I-Abeta chain molecules in NOD mice following retroviral transduction of autologous bone marrow hematopoietic stem cells prevented the development of autoreactive T cells by intrathymic deletion and protected the mice from the development of insulitis and diabetes. These data suggest that type 1 diabetes could be prevented in individuals expressing MHC alleles associated with susceptibility to disease by restoration of protective MHC class II expression through genetic engineering of hematopoietic stem cells.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Susceptibility
- Female
- Genes, MHC Class II
- Genetic Therapy
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/physiology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Transgenic
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retroviridae/genetics
- Retroviridae/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/physiology
- Transduction, Genetic
Collapse
Affiliation(s)
- Chaorui Tian
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abdus Salam M, Matsumoto N, Matin K, Tsuha Y, Nakao R, Hanada N, Senpuku H. Establishment of an animal model using recombinant NOD.B10.D2 mice to study initial adhesion of oral streptococci. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:379-86. [PMID: 15013991 PMCID: PMC371204 DOI: 10.1128/cdli.11.2.379-386.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An oral biofilm is a community of surface-attached microorganisms that coats the oral cavity, including the teeth, and provides a protective reservoir for oral microbial pathogens, which are the primary cause of persistent and chronic infectious diseases in patients with dry mouth or Sjögren's syndrome (SS). The purpose of this study was to establish an animal model for studying the initial adhesion of oral streptococci that cause biofilm formation in patients with dry mouth and SS in an attempt to decrease the influence of cariogenic organisms and their substrates. In nonobese diabetogenic (NOD) mice that spontaneously develop insulin-dependent diabetes mellitus (IDDM) and SS, we replaced major histocompatibility complex (MHC) class II (A(g7) E(g7)) and class I D(b) with MHC class II (A(d) E(d)) and class I D(d) from nondiabetic B10.D2 mice to produce an animal model that inhibited IDDM without affecting SS. The adhesion of oral streptococci, including Streptococcus mutans, onto tooth surfaces was then investigated and quantified in homologous recombinant N5 (NOD.B10.D2) and N9 (NOD.B10.D2) mice. We found that a higher number of oral streptococci adhered to the tooth surfaces of N5 (NOD.B10.D2) and N9 (NOD.B10.D2) mice than to those of the control C57BL/6 and B10.D2 mice. On the basis of our observation, we concluded that these mouse models might be useful as animal models of dry mouth and SS for in vivo biological studies of oral biofilm formation on the tooth surfaces.
Collapse
Affiliation(s)
- Mohammad Abdus Salam
- Department of Bacteriology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Creusot RJ, Fathman CG. Gene therapy for type 1 diabetes: a novel approach for targeted treatment of autoimmunity. J Clin Invest 2004; 114:892-4. [PMID: 15467826 PMCID: PMC518674 DOI: 10.1172/jci23168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It has been difficult to develop therapies that target those T cells initiating and mediating the pathogenesis of autoimmune disease. Indeed, most current treatments indiscriminately affect both the autoreactive T cells and the "good" T cells, putting the patient at risk of compromised immune function. A new approach raises the possibility of targeted therapy for autoimmunity. Transplantation of hematopoietic stem cells modified to express a protective form of MHC class II corrects a defect in central tolerance. This method contrasts with other targeted therapies that attempt to modify peripheral tolerance, which is also defective in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Rémi J Creusot
- Department of Medicine, Division of Immunology and Rhematology, Stanford University School of Medicine, Stanford, Califormia 94305, USA
| | | |
Collapse
|
33
|
Martinez-Soría E, Ibnou-Zekri N, Iwamoto M, Santiago-Raber ML, Kikuchi S, Kosco-Vilbois M, Izui S. Epitope-dependent inhibition of T cell activation by the Ea transgene: an explanation for transgene-mediated protection from murine lupus. THE JOURNAL OF IMMUNOLOGY 2004; 173:2842-8. [PMID: 15295003 DOI: 10.4049/jimmunol.173.4.2842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A high level expression of the Ea(d) transgene encoding the I-E alpha-chain is highly effective in the suppression of lupus autoantibody production in mice. To explore the possible modulation of the Ag-presenting capacity of B cells as a result of the transgene expression, we assessed the ability of the transgenic B cells to activate Ag-specific T cells in vitro. By using four different model Ag-MHC class II combinations, this analysis revealed that a high transgene expression in B cells markedly inhibits the activation of T cells in an epitope-dependent manner, without modulation of the I-E expression. The transgene-mediated suppression of T cell responses is likely to be related to the relative affinity of peptides derived from transgenic I-E alpha-chains (Ealpha peptides) vs antigenic peptides to individual class II molecules. Our results support a model of autoimmunity prevention based on competition for Ag presentation, in which the generation of large amounts of Ealpha peptides with high affinity to I-A molecules decreases the use of I-A for presentation of pathogenic self-peptides by B cells, thereby preventing excessive activation of autoreactive T and B cells.
Collapse
|
34
|
Yang Y, Santamaria P. T-cell receptor-transgenic NOD mice: a reductionist approach to understand autoimmune diabetes. J Autoimmun 2004; 22:121-9. [PMID: 14987740 DOI: 10.1016/j.jaut.2003.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Yang
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada
| | | |
Collapse
|
35
|
Jang MH, Seth NP, Wucherpfennig KW. Ex vivo analysis of thymic CD4 T cells in nonobese diabetic mice with tetramers generated from I-A(g7)/class II-associated invariant chain peptide precursors. THE JOURNAL OF IMMUNOLOGY 2004; 171:4175-86. [PMID: 14530340 DOI: 10.4049/jimmunol.171.8.4175] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC determines susceptibility and resistance to type 1 diabetes in humans and nonobese diabetic (NOD) mice. To investigate how a disease-associated MHC molecule shapes the T cell repertoire in NOD mice, we generated a series of tetramers from I-A(g7)/class II-associated invariant chain peptide precursors by peptide exchange. No CD4 T cell populations could be identified for two glutamic acid decarboxylase 65 peptides, but tetramers with a peptide mimetic recognized by the BDC-2.5 and other islet-specific T cell clones labeled a distinct population in the thymus of young NOD mice. Tetramer-positive cells were identified in the immature CD4(+)CD8(low) population that arises during positive selection, and in larger numbers in the more mature CD4(+)CD8(-) population. Tetramer labeling was specific based on the use of multiple control tetramers, including one with a single amino acid analog peptide in which a critical TCR contact residue was substituted. The T cell population was already present in the thymus of 2-wk-old NOD mice before the typical onset of insulitis and was detected in B10 mice congenic for the NOD MHC locus, but not B10 control mice. These results demonstrate that a T cell population can expand in the thymus of NOD mice to levels that are at least two to three orders of magnitude higher than estimated for a given specificity in the naive T cell pool. Based on these data, we propose a model in which I-A(g7) confers susceptibility to type 1 diabetes by biasing positive selection in the thymus and later presenting peptides from islet autoantigens to such T cells in the periphery.
Collapse
Affiliation(s)
- Mei-Huei Jang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
36
|
Serreze DV, Holl TM, Marron MP, Graser RT, Johnson EA, Choisy-Rossi C, Slattery RM, Lieberman SM, DiLorenzo TP. MHC Class II Molecules Play a Role in the Selection of Autoreactive Class I-Restricted CD8 T Cells That Are Essential Contributors to Type 1 Diabetes Development in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:871-9. [PMID: 14707058 DOI: 10.4049/jimmunol.172.2.871] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of autoreactive CD4 T cells contributing to type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is either promoted or dominantly inhibited by particular MHC class II variants. In addition, it is now clear that when co-expressed with other susceptibility genes, some common MHC class I variants aberrantly mediate autoreactive CD8 T cell responses also essential to T1D development. However, it was unknown whether the development of diabetogenic CD8 T cells could also be dominantly inhibited by particular MHC variants. We addressed this issue by crossing NOD mice transgenically expressing the TCR from the diabetogenic CD8 T cell clone AI4 with NOD stocks congenic for MHC haplotypes that dominantly inhibit T1D. High numbers of functional AI4 T cells only developed in controls homozygously expressing NOD-derived H2(g7) molecules. In contrast, heterozygous expression of some MHC haplotypes conferring T1D resistance anergized AI4 T cells through decreased TCR (H2(b)) or CD8 expression (H2(q)). Most interestingly, while AI4 T cells exert a class I-restricted effector function, H2(nb1) MHC class II molecules can contribute to their negative selection. These findings provide insights to how particular MHC class I and class II variants interactively regulate the development of diabetogenic T cells and the TCR promiscuity of such autoreactive effectors.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Autoantigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Clonal Anergy/genetics
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Female
- Genetic Carrier Screening
- Genetic Variation/immunology
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Haplotypes
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Histocompatibility Testing
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- David V Serreze
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Michelle Solomon
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
38
|
Roberts SA, Barbour G, Matarrese MR, Mason DL, Leiter EH, Haskins K, Hanson MS. Adoptive transfer of islet antigen-autoreactive T cell clones to transgenic NOD.Ea(d)mice induces diabetes indicating a lack of I-E mediated protection against activated effector T cells. J Autoimmun 2003; 21:139-47. [PMID: 12935783 DOI: 10.1016/s0896-8411(03)00090-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transgenic insertion of the MHC class II Ea(d)gene in NOD mice restores I-E expression and prevents T-cell-mediated autoimmune diabetes (IDDM). The specific molecular and cellular mechanisms responsible for the diabetes resistance of transgenic NOD.Ea(d)mice remain unclear. We adoptively transferred islet antigen-specific T cell clones into NOD and transgenic NOD.Ea(d)mice to evaluate the level of protection provided by I-E expression against activated effector T cells. We have found that neither neonatal or 3-5-week-old I-E-expressing NOD.Ea(d)mice can completely inhibit the diabetogenic activities of activated islet antigen-specific T cell clones. These data indicate that Ealpha protein expression in NOD antigen presenting cells (APC) does not reduce islet autoantigen presentation in the context of I-A(g7)below the threshold required for stimulation of effector/memory diabetogenic T cells. Our results suggest that the mechanism of Ealpha protein-mediated diabetes resistance in NOD mice may be "antigen ignorance," in which the quantity of islet autoantigens presented in the context of I-A(g7)by APC is reduced below the threshold required to activate nai;ve islet antigen-specific T cells.
Collapse
Affiliation(s)
- Samantha A Roberts
- Department of Biology, Wittenberg University, Ward St. at N. Wittenberg Ave., Springfield, OH 45501-0720, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Suri A, Walters JJ, Kanagawa O, Gross ML, Unanue ER. Specificity of peptide selection by antigen-presenting cells homozygous or heterozygous for expression of class II MHC molecules: The lack of competition. Proc Natl Acad Sci U S A 2003; 100:5330-5. [PMID: 12682304 PMCID: PMC154345 DOI: 10.1073/pnas.0330859100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2003] [Indexed: 01/24/2023] Open
Abstract
We isolated and identified naturally processed peptides selected by antigen-presenting cells homozygous for expression of I-A(g7) or I-A(d) class II MHC molecules, or from heterozygous antigen-presenting cells that express I-A(g7) along with I-A(g7PD) or I-A(d). Identification of large numbers of peptides demonstrated that despite being closely related on a structural level, each class II MHC molecule selected for very unique peptides. The large data sets allowed us to definitively establish the preferred peptide-binding motifs critical for selection of peptides by I-A(g7), I-A(g7PD), and I-A(d). Finally, extensive analyses of peptide families reveals that there was little competition among class II MHC alleles for display of peptides and that presence of one allele had minimal impact on the repertoire of peptides selected by another.
Collapse
Affiliation(s)
- Anish Suri
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
40
|
Rietz C, Screpanti V, Brenden N, Böhme J, Fernández C. Overexpression of bcl-2 in T cells affects insulitis in the nonobese diabetic mouse. Scand J Immunol 2003; 57:342-9. [PMID: 12662297 DOI: 10.1046/j.1365-3083.2003.01244.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nonobese diabetic (NOD) mouse is a useful model for human autoimmune diabetes. The gene for the anti-apoptotic protein Bcl-2 has previously been suggested as a probable susceptibility candidate for the NOD mouse disease. In this study, we investigated how overexpression of Bcl-2 in lymphocytes might affect insulitis in NOD mice. A bcl-2 transgene expressed constitutively under the SV40-promoter and the 5'Igh enhancer, Emu, was bred onto NOD background. Two bcl-2 transgenic NOD strains were produced and analysed, one with overexpression of Bcl-2 on only B cells and the other with overexpression of Bcl-2 on both B and T cells. Subsequent to verification of expression pattern and functionality of the transgene, insulitis intensity was investigated in different backcross generations of the two transgenic strains. Overexpression of Bcl-2 on both B and T cells leads to a statistically significant protection of the mice from insulitis compared with normal littermates. Overexpression of Bcl-2 on only B cells, on the other hand, does not have any statistically significant effect on insulitis. Possible mechanisms for the effect of Bcl-2 on insulitis in NOD mice are discussed.
Collapse
Affiliation(s)
- C Rietz
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
41
|
Magira EE, Papaioakim M, Nachamkin I, Asbury AK, Li CY, Ho TW, Griffin JW, McKhann GM, Monos DS. Differential distribution of HLA-DQ beta/DR beta epitopes in the two forms of Guillain-Barré syndrome, acute motor axonal neuropathy and acute inflammatory demyelinating polyneuropathy (AIDP): identification of DQ beta epitopes associated with susceptibility to and protection from AIDP. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3074-80. [PMID: 12626563 DOI: 10.4049/jimmunol.170.6.3074] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Guillain-Barré syndrome (GBS), an acute, immune-mediated paralytic disorder affecting the peripheral nervous system, is the most common cause of acute flaccid paralysis in the post-polio era. GBS is classified into several subtypes based on clinical and pathologic criteria, with acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN) being the most common forms observed. To better understand the pathogenesis of GBS and host susceptibility to developing the disease, the distribution of HLA class II Ags along with the seroreactivity to Campylobacter jejuni were investigated in a population of GBS patients from northern China. Using DNA-based typing methods, 47 patients with AMAN, 25 patients with AIDP, and 97 healthy controls were studied for the distribution of class II alleles. We found that the DQ beta RLD(55-57)/ED(70-71) and DR beta E(9)V(11)H(13) epitopes were associated with susceptibility to AIDP (p = 0.009 and p = 0.004, respectively), and the DQ beta RPD(55-57) epitope was associated with protection (p = 0.05) from AIDP. These DQ beta/DR beta positional residues are a part of pockets 4 (DQ beta 70, 71, DR beta 13), 6 (DR beta 11), and 9 (DQ beta 56, 57, DR beta 9); have been demonstrated to be important in peptide binding and T cell recognition; and are associated with other diseases that have a pathoimmunological basis. Class II HLA associations were not identified with AMAN, suggesting a different immunological mechanism of disease induction in the two forms of GBS. These findings provide immunogenetic evidence for differentiating the two disease entities (AMAN and AIDP) and focuses our attention on particular DR beta/DQ beta residues that may be instrumental in understanding the pathophysiology of AIDP.
Collapse
Affiliation(s)
- Eleni E Magira
- Department of Pediatrics, University of Pennsylvania School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Marron MP, Graser RT, Chapman HD, Serreze DV. Functional evidence for the mediation of diabetogenic T cell responses by HLA-A2.1 MHC class I molecules through transgenic expression in NOD mice. Proc Natl Acad Sci U S A 2002; 99:13753-8. [PMID: 12361980 PMCID: PMC129768 DOI: 10.1073/pnas.212221199] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2002] [Indexed: 11/18/2022] Open
Abstract
Particular major histocompatibility complex (MHC) class II alleles clearly contribute to T cell-mediated autoimmune type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice. However, studies in NOD mice indicate MHC class I-restricted T cell responses are also essential to T1D development. In humans, epidemiological studies have suggested that some common class I alleles, including HLA-A2.1 (A*02011), may confer increased susceptibility to T1D when expressed in conjunction with certain class II alleles. We show here that when HLA-A2.1 molecules are transgenically expressed in NOD mice, A2-restricted T cell responses arise against pancreatic beta cells, leading to an earlier onset of T1D. The accelerated onset of T1D in the NOD.HLA-A2.1 transgenic mice is not due to nonspecific effects of expressing a third class I molecule, because a stock of NOD mice transgenically expressing HLA-B27 class I molecules showed no such acceleration of T1D, but rather were significantly protected from disease. These findings provide the first functional evidence that certain human MHC class I molecules can contribute to the development of T1D.
Collapse
Affiliation(s)
- Michele P Marron
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | |
Collapse
|
43
|
Moustakas AK, Papadopoulos GK. Molecular properties of HLA-DQ alleles conferring susceptibility to or protection from insulin-dependent diabetes mellitus: keys to the fate of islet beta-cells. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 115:37-47. [PMID: 12116175 DOI: 10.1002/ajmg.10342] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The major histocompatibility complex Class II alleles, HLA-DQ, and the related HLA-DR, are the chief genetic elements of human type 1 diabetes. These genes code for polymorphic heterodimeric proteins, whose chief function is to trap peptide antigens in the endosome and present them on the surface of antigen-presenting cells (dendritic cells, B lymphocytes, monocytes/macrophages) to CD4(+) T helper cells. A systematic investigation of the molecular properties of HLA-DQ alleles linked to susceptibility or resistance to type 1 diabetes has shown that these properties segregate along lines of susceptibility or resistance. A correlation of these features with the function of each particular segment of the HLA-DQ molecule yields interesting insights into the possible pathways leading to type 1 diabetes. There remain, however, areas to be clarified, including mechanisms by which dominant protection is conferred by certain alleles, the interplay between HLA-DQ and the related locus HLA-DR, that also shows autoantigen-specific reactivity, and the cross-Class help delivered to CD8(+) T cells, the final effectors in pancreatic beta-cell destruction. Clarification of these issues may lead to ways to prevent diabetes in predisposed individuals already exhibiting the genetic and immunological characteristics, and perhaps a cure in those with the disease, by means of transplantation, and measures for prevention of disease recurrence.
Collapse
|
44
|
Abstract
Herein we describe the major signaling events that occur in T-cells upon T-cell receptor (TCR) engagement, and the mechanisms responsible for the induction of T-cell anergy that may ultimately lead to the development of immunospecific therapies in T-cell mediated autoimmune diseases. A new type of antigen presenting molecule (dimeric MHC class-II/peptide, DEF) endowed with antigen-specific immunomodulatory effects such as induction of Th2 polarization and T-cell anergy is also described as a potential antidiabetogenic agent. According to our preliminary results, the MHC II/peptide-based approach may provide rational grounds for further development of antigen-specific immunotherapeutic agents such as human-like MHC lI/peptide chimeras endowed with efficient down-regulatory effects in CD4 T-cell-mediated autoimmune diseases such as Type 1 diabetes, multiple sclerosis, primary biliary cirrhosis, and rheumatoid arthritis.
Collapse
Affiliation(s)
- T D Brumeanu
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
45
|
van Halteren AGS, Roep BO, Gregori S, Cooke A, van Eden W, Kraal G, Wauben MHM. Cross-reactive mycobacterial and self hsp60 epitope recognition in I-A(g7) expressing NOD, NOD-asp and Biozzi AB/H mice. J Autoimmun 2002; 18:139-47. [PMID: 11908946 DOI: 10.1006/jaut.2001.0578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The highly conserved 60 kD endogenous heat shock protein (hsp60) has been suggested to be a target for T cell recognition in autoimmune diseases such as type I diabetes. We previously reported cross-recognition of both mycobacterial hsp60 (Mt60) and self hsp60 (m60) by Mt60 immunized NOD mice. To identify the epitopes involved, we generated T cell lines against m60 or its mycobacterial counterpart and tested these lines for recognition of complete sets of overlapping peptides spanning either hsp60 sequence. T cell lines responded to identical regions in the hsp60 proteins, regardless of their degree of conservation or I-A(g7) binding-affinity. Additionally, we determined whether a protective genetic background would affect the presence of hsp60 cross-reactive T cells in the peripheral repertoire by comparing epitope recognition in I-A(g7) expressing NOD, NOD-asp and Biozzi AB/H mice. Two out of five immunodominant murine peptides were able to induce proliferation in NOD and NOD-asp Mt60 T cell lines, but not in Biozzi AB/H T cell lines. Our results point out that Mt60 immunization not necessarily leads to proliferative T cells responding to endogenous hsp60 peptides in the context of diabetes-predisposing I-A(g7). Moreover, the capacity of T cells to respond to self hsp60 is not influenced by the presence of protective I-A(g7asp). Yet, proliferation of hsp60 autoreactive T cells is solely measured in combination with insulitis and as such serves as a surrogate marker for islet inflammation.
Collapse
Affiliation(s)
- Astrid G S van Halteren
- Department of Immunohematology and Blood Transfusion, Leids Universitair Medisch Centrum, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
46
|
Thiessen S, Serra P, Amrani A, Verdaguer J, Santamaria P. T-cell tolerance by dendritic cells and macrophages as a mechanism for the major histocompatibility complex-linked resistance to autoimmune diabetes. Diabetes 2002; 51:325-38. [PMID: 11812739 DOI: 10.2337/diabetes.51.2.325] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
For poorly understood reasons, the development of autoimmune diabetes in humans and mice is dominantly inhibited by major histocompatibility complex (MHC) class II molecules with diverse antigen-binding sites. We have previously shown that thymocytes expressing a highly diabetogenic I-A(g7)-restricted T-cell receptor (TCR) (4.1-TCR) undergo negative selection in mice carrying one copy of the antidiabetogenic H-2(b) haplotype in an I-A(b)-dependent but superantigen-independent manner. Here, we show that 4.1-TCR-transgenic thymocytes undergo different forms of tolerance in NOD mice expressing antidiabetogenic I-A(d), I-A(g7PD), or I-Ealpha(k) transgenes. The ability of protective MHC class II molecules to induce thymocyte tolerance in 4.1-TCR-transgenic NOD mice correlates with their ability to prevent diabetes in non-TCR-transgenic mice and is associated with polymorphisms within positions 56-67 of their beta1 domains. The 4.1-thymocyte tolerogenic activity of these MHC class II molecules is mediated by dendritic cells and macrophages but not by B-cells or thymic epithelial cells and is a peptide-dependent process. Antidiabetogenic MHC class II molecules may thus afford diabetes resistance by presenting, on dendritic cells and macrophages, tolerogenic peptides to a subset of highly diabetogenic and MHC-promiscuous CD4(+) T-cells that play a critical role in the initiation of diabetes.
Collapse
Affiliation(s)
- Shari Thiessen
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
47
|
Abstract
Type 1 or insulin-dependent diabetes is an autoimmune disease that causes the selective destruction of insulin-secreting beta cells in the pancreatic islets. Although this is a polygenic disease, with at least 20 genes implicated, the dominant susceptibility locus maps to the major histocompatibility complex (MHC), both in humans and in rodent models. However, in spite of progress on several fronts, the molecular pathology of autoimmune diabetes remains incompletely defined. Major areas of research include environmental trigger factors, the identification and role of beta-cell antigens in inducing and maintaining the autoimmune response, and the nature of the pathogenic and protective lymphocytes involved. In this review, we will focus on these areas to highlight recent advances in understanding the pathogenesis of autoimmune diabetes, drawing extensively on insights gained by studying the non-obese diabetic (NOD) mouse.
Collapse
Affiliation(s)
- Luciano Adorini
- Roche Milano Ricerche, Via Olgettina 58, I-20132 Milan, Italy.
| | | | | |
Collapse
|
48
|
Bach JF. Immunotherapy of type 1 diabetes: lessons for other autoimmune diseases. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S3-15. [PMID: 12110118 PMCID: PMC3240130 DOI: 10.1186/ar554] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 02/27/2002] [Accepted: 03/03/2002] [Indexed: 02/07/2023]
Abstract
The nonobese diabetic (NOD) mouse is a well-recognised animal model of spontaneous autoimmune insulin-dependent diabetes mellitus. The disease is T-cell mediated, involving both CD4 and CD8 cells. Its progress is controlled by a variety of regulatory T cells. An unprecedented number of immunological treatments have been assessed in this mouse strain. This chapter systematically reviews most of these therapeutic manoeuvres, discussing them in the context of their significance with regard to the underlying mechanisms and the potential clinical applications. The contrast between the surprisingly high rate of success found for a multitude of treatments (more than 160) administered early in the natural history of the disease and the few treatments active at a late stage is discussed in depth. Most of the concepts and strategies derived from this model apply to other autoimmune diseases, for which no such diversified data are available.
Collapse
|
49
|
Rietz C, Screpanti V, Brenden N, Fernández C. Neonatal pattern of V(H) gene utilization in nonobese diabetic mice does not correlate with development of insulitis. Scand J Immunol 2001; 54:470-6. [PMID: 11696198 DOI: 10.1046/j.1365-3083.2001.00991.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nonobese diabetic (NOD) mouse model is a model of human autoimmune insulin dependent diabetes, IDDM. The effector cells of the disease have been shown to be T cells, but also B cells seem to contribute. Adult NOD mice have been shown to display a bias in their utilization of immunoglobulin (Ig) variable heavy (V(H)) genes. In this study the analysis of VH gene utilization in NOD mice protected from insulitis by transgenic insertion of a major histocompatibility complex (MHC) class II E(alpha) gene, point out that the bias in V(H) gene expression is not correlated to disease development. The aberrant V(H) gene utilization pattern in mice with the NOD genetic background is instead suggested to be a consequence of a deregulation of the apoptosis inhibiting gene bcl-2. We also investigated if prolonged in vitro survival of NOD lymphocytes is correlated to disease development. The E(alpha) transgenic NOD mice were shown to display a prolonged in vitro survival of spleen T cells, similar to normal NOD mice. These results indicate that defective death mechanisms of T cells may not be primarily involved in the development of autoimmune disease in these mice. However, in contrast to results from other groups, no difference in in vitro survival could be detected for B cells from mice with NOD genetic background compared to C57BL/6 mice.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Cell Survival
- DNA Primers/genetics
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Disease Models, Animal
- Genes, Immunoglobulin
- Genes, MHC Class II
- Genes, bcl-2
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Lymphocytes/immunology
- Lymphocytes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
Collapse
Affiliation(s)
- C Rietz
- Transplantation Biology, Department of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
50
|
Trembleau S, Gregori S, Penna G, Gorny I, Adorini L. IL-12 administration reveals diabetogenic T cells in genetically resistant I-Ealpha-transgenic nonobese diabetic mice: resistance to autoimmune diabetes is associated with binding of Ealpha-derived peptides to the I-A(g7) molecule. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4104-14. [PMID: 11564833 DOI: 10.4049/jimmunol.167.7.4104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nonobese diabetic (NOD) and NOD-DRalpha transgenic (tg) mice, expressing Aalpha(d):Abeta(g7) and Aalpha(d):Abeta(g7) plus DRalpha:Ebeta(g7) class II molecules, respectively, both develop insulin-dependent diabetes mellitus (IDDM), whereas NOD-Ealpha tg mice expressing Aalpha(d):Abeta(g7) plus Ealpha:Ebeta(g7) are protected. We show that IL-12 administration induces rapid IDDM onset in NOD-DRalpha but fails to provoke insulitis and diabetes in NOD-Ealpha tg mice. Nevertheless, T cells from IL-12-treated NOD-Ealpha tg mice secrete IFN-gamma and transfer IDDM to NOD-SCID and NOD-Ealpha-SCID recipients, demonstrating the presence of peripheral diabetogenic Th1 cells in the protected mice. Surprisingly, regulatory cells were undetectable. Moreover, Ealpha:Ebeta(g7) could substitute for DRalpha:Ebeta(g7) in Ag presentation, arguing against mechanisms of protection involving capture of diabetogenic I-A(g7)-restricted epitopes by Ealpha:Ebeta(g7)molecules. Interestingly, the expression of naturally processed epitopes derived from DRalpha- and Ealpha-chains bound to I-A(g7) is different in the two strains of tg mice, and the difference is enhanced by IL-12 administration. I-A(g7) molecules from both NOD-DRalpha and NOD-Ealpha tg mice present the conserved DRalpha/Ealpha 52-68 sequence, at high and low levels, respectively. In addition, only IDDM-resistant NOD-Ealpha tg mice possess APCs bearing Ealpha65-77/I-A(g7) complexes, which tolerize the specific T cells. This is associated with the selective inhibition of the response to insulinoma-associated protein 2 (IA-2), an autoantigen in IDDM. Our results support protective mechanisms based on I-A(g7) blockade by peptides unique to the Ealpha-chain, such as Ealpha65-77 and/or tolerance of diabetogenic T cells cross-reactive with Ealpha-peptide/I-A(g7) complexes.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Autoantigens
- Cells, Cultured
- Cytokines/biosynthesis
- Diabetes Mellitus, Type 1/immunology
- HLA-DR Antigens/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Interleukin-12/pharmacology
- Membrane Proteins/immunology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Pancreas/immunology
- Peptide Fragments
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 8
- Receptors, Antigen, T-Cell
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Th1 Cells/immunology
Collapse
Affiliation(s)
- S Trembleau
- Roche Milan Ricerche, Via Olgettina 58, I-20132 Milan, Italy
| | | | | | | | | |
Collapse
|