1
|
Lukkes JL, Drozd HP, Fitz SD, Molosh AI, Clapp DW, Shekhar A. Guanfacine treatment improves ADHD phenotypes of impulsivity and hyperactivity in a neurofibromatosis type 1 mouse model. J Neurodev Disord 2020; 12:2. [PMID: 31941438 PMCID: PMC6961243 DOI: 10.1186/s11689-019-9304-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a mutation in one copy of the neurofibromin gene (NF1+/−). Even though approximately 40–60% of children with NF1 meet the criteria for attention deficit hyperactivity disorder (ADHD), very few preclinical studies, if any, have investigated alterations in impulsivity and risk-taking behavior. Mice with deletion of a single NF1 gene (Nf1+/−) recapitulate many of the phenotypes of NF1 patients. Methods We compared wild-type (WT) and Nf1+/− mouse strains to investigate differences in impulsivity and hyperactivity using the delay discounting task (DDT), cliff avoidance reaction (CAR) test, and open field. We also investigated whether treatment with the clinically effective alpha-2A adrenergic receptor agonist, guanfacine (0.3 mg/kg, i.p.), would reverse deficits observed in behavioral inhibition. Results Nf1+/− mice chose a higher percentage of smaller rewards when both 10- and 20-s delays were administered compared to WT mice, suggesting Nf1+/− mice are more impulsive. When treated with guanfacine (0.3 mg/kg, i.p.), Nf1+/− mice exhibited decreased impulsive choice by waiting for the larger, delayed reward. Nf1+/− mice also exhibited deficits in behavioral inhibition compared to WT mice in the CAR test by repetitively entering the outer edge of the platform where they risk falling. Treatment with guanfacine ameliorated these deficits. In addition, Nf1+/− mice exhibited hyperactivity as increased distance was traveled compared to WT controls in the open field. This hyperactivity in Nf1+/− mice was reduced with guanfacine pre-treatment. Conclusions Overall, our study confirms that Nf1+/− mice exhibit deficits in behavioral inhibition in multiple contexts, a key feature of ADHD, and can be used as a model system to identify alterations in neural circuitry associated with symptoms of ADHD in children with NF1.
Collapse
Affiliation(s)
- J L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA.
| | - H P Drozd
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Program in Medical Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Fitz
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA
| | - A I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA
| | - D W Clapp
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Program in Medical Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Clinical and Translation Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Yang T, Song B, Zhang J, Yang GS, Zhang H, Yu WF, Wu MC, Lu JH, Shen F. STK33 promotes hepatocellular carcinoma through binding to c-Myc. Gut 2016; 65:124-33. [PMID: 25398772 PMCID: PMC4717356 DOI: 10.1136/gutjnl-2014-307545] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/29/2014] [Indexed: 01/28/2023]
Abstract
OBJECTIVE STK33 has been reported to play an important role in cancer cell proliferation. We investigated the role of STK33 in hepatocellular carcinoma (HCC) and its underlying mechanisms. DESIGN 251 patients with HCC were analysed for association between STK33 expression and clinical stage and survival rate. Tamoxifen (TAM)-inducible, hepatocyte-specific STK33 transgenic and knockout mice models were used to study the role of STK33 in liver tumorigenesis. HCC cell lines were used to study the role of STK33 in cell proliferation in vitro and in vivo. RESULTS STK33 expression was found to be frequently upregulated in patients with HCC. Significant associations were found between increased expression of STK33 and advanced HCC staging and shorter disease-free survival of patients. Overexpression of STK33 increased HCC cell proliferation both in vitro and in vivo, whereas suppression of STK33 inhibited this effect. Using a TAM-inducible, hepatocyte-specific STK33 transgenic mouse model, we found that overexpression of STK33 resulted in increased hepatocyte proliferation, leading to tumour cell burst. Using a TAM-inducible, hepatocyte-specific STK33 knockout mouse model, we found that, when subjected to the diethylnitrosamine (DEN) liver cancer bioassay, STK33KO(flox/flox, Alb-ERT2-Cre) mice exhibited a markedly lower incidence of tumour formation compared with control mice. The underlying mechanism may be that STK33 binds directly to c-Myc and increases its transcriptional activity. In particular, the C-terminus of STK33 blocks STK33/c-Myc association, downregulates HCC cell proliferation, and reduces DEN-induced liver tumour cell number and tumour size. CONCLUSIONS STK33 plays an essential role in hepatocellular proliferation and liver tumorigenesis. The C-terminus of STK33 could be a potential therapeutic target in the treatment of patients with STK33-overexpressed HCC.
Collapse
Affiliation(s)
- Tian Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Bin Song
- The 3rd Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jin Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guang-Shun Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Han Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Feng Yu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun-Hua Lu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Carvalho ATP, Szeler K, Vavitsas K, Åqvist J, Kamerlin SCL. Modeling the mechanisms of biological GTP hydrolysis. Arch Biochem Biophys 2015; 582:80-90. [PMID: 25731854 DOI: 10.1016/j.abb.2015.02.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 01/11/2023]
Abstract
Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond in GTP. In addition, the availability of an increasing number of crystal structures of translational GTPases such as EF-Tu and EF-G have made it possible to probe the molecular details of GTP hydrolysis on the ribosome. However, despite a wealth of biochemical, structural and computational data, the way in which GTP hydrolysis is activated and regulated is still a controversial topic and well-designed simulations can play an important role in resolving and rationalizing the experimental data. In this review, we discuss the contributions of computational biology to our understanding of GTP hydrolysis on the ribosome and in small GTPases.
Collapse
Affiliation(s)
- Alexandra T P Carvalho
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| | - Klaudia Szeler
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| | - Konstantinos Vavitsas
- Copenhagen Plant Science Centre (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Johan Åqvist
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
4
|
Fleischer A, Duhamel M, Lopez-Fernandez LA, Muñoz M, Rebollo MP, Alvarez-Franco F, Rebollo A. Cascade of transcriptional induction and repression during IL-2 deprivation-induced apoptosis. Immunol Lett 2007; 112:9-29. [PMID: 17651815 DOI: 10.1016/j.imlet.2007.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/05/2007] [Accepted: 06/07/2007] [Indexed: 11/21/2022]
Abstract
Apoptosis of mature T lymphocytes is an essential process for maintaining immune system homeostasis. However, the details of the molecular signaling pathways leading to T cell apoptosis are poorly understood. We used cDNA microarrays containing 15,630 murine genes to study the gene expression profile in T lymphocytes at different time points of IL-2 withdrawal. Comparison of the gene expression profiles revealed that 2% of the genes were affected by cytokine starvation. Interestingly, the apoptotic program rather seems to activate gene expression in the early phase of cell death. On the contrary, transcription was strongly repressed in later stages of apoptosis. Self-organizing map clustering of the 270 differentially expressed transcripts revealed specific temporal expression patterns supporting the idea that IL-2 deprivation triggers a tightly regulated transcriptional program to induce cell death. To validate microarray results, changes in gene expression following IL-2 deprivation were confirmed for selected genes by Northern blot. In addition, the signaling pathways created can explain the molecular events leading to T cell apoptosis, even if the T cell line used in this study might not reflect individual T cell subpopulations expressing different level of IL-2 receptor or IL-2 dependence. Taken together, these results provide novel insights into the temporal regulation of gene expression during T lymphocyte death.
Collapse
Affiliation(s)
- Aarne Fleischer
- Immunologie Cellulaire et Tissulaire, INSERM U543, 83 Bd de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The completely assembled human genome has made it possible for modern medicine to step into an era rich in genetic information and high-throughput genomic analysis. These novel and readily available genetic resources and analytical tools may be the key to unravel the molecular basis of hepatocellular carcinoma (HCC). Moreover, since an efficient treatment for this disease is lacking, further understanding of the genetic background of HCC will be crucial in order to develop new therapies aimed at selected targets. We report on the current status and recent developments in HCC genetics. Special emphasis is given to the genetics and regulation of major signalling pathways involved in HCC such as p53, Wnt-signalling, TGFβ, Ras, and Rb pathways. Furthermore, we describe the influence of chromosomal aberrations as well as of DNA methylation. Finally, we report on the rapidly developing field of genomic expression profiling in HCC, mainly by microarray analysis.
Collapse
Affiliation(s)
- Andreas Teufel
- Department of Medicine, Johannes Gutenberg University, Building 301, Langenbeckstr. 1, 55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Liang DC, Shih LY, Fu JF, Li HY, Wang HI, Hung IJ, Yang CP, Jaing TH, Chen SH, Liu HC. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer 2006; 106:950-6. [PMID: 16404744 DOI: 10.1002/cncr.21687] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND It is believed that Ras mutations drive the proliferation of leukemic cells. The objective of this study was to investigate the association of Ras mutations with childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) with special reference to the presence or absence of mixed-lineage leukemia gene (MLL) rearrangements. METHODS Bone marrow samples from 313 children with B-precursor ALL and 130 children with de novo AML were studied at diagnosis. Southern blot analysis was used to detect MLL rearrangements, and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was used to detect common MLL fusion transcripts. Complementary DNA panhandle PCR was used to identify the infrequent or unknown MLL partner genes. DNA PCR or RT-PCR followed by direct sequencing was performed to detect mutations at codons 12, 13, and 61 of the N-Ras and K-Ras genes. RESULTS Twenty of 313 patients with B-precursor ALL and 17 of 130 patients with de novo AML had MLL rearrangements. N-Ras mutations were detected in 2 of 20 patients with MLL-positive ALL and in 27 of 293 patients with MLL-negative ALL (P = 1.000). N-Ras mutations were detected in 2 of 17 patients with MLL-positive AML and in 14 of 113 patients with MLL-negative AML (P = 1.000). K-Ras mutations were present in 8 of 20 patients with MLL-positive ALL compared with 32 of 293 patients with MLL-negative ALL (P = 0.001). K-Ras mutations were detected in 3 of 17 patients with MLL-positive AML compared with 5 of 113 patients with MLL-negative AML (P = 0.069). CONCLUSIONS Ras mutations were detected in 20.8% of patients with childhood B-precursor ALL and in 17.7% of patients with childhood AML. MLL-positive B-precursor ALL was associated closely with Ras mutations (50%), especially with K-Ras mutations (40%), whereas MLL-positive AML was not associated with Ras mutations.
Collapse
Affiliation(s)
- Der-Cherng Liang
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Paz K, Socci ND, van Nimwegen E, Viale A, Darnell JE. Transformation fingerprint: induced STAT3-C, v-Src and Ha-Ras cause small initial changes but similar established profiles in mRNA. Oncogene 2004; 23:8455-63. [PMID: 15378015 DOI: 10.1038/sj.onc.1207803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Induced transformation of mouse fibroblasts was carried out by releasing tetracycline-repressed expression of an oncogenic mutant of STAT3, STAT3-C, or of v-Src or Ha-Ras. At 15 days after derepression of each oncogene, DNA microarrays showed elevation (>3-fold) of a similar group of approximately 25 mRNAs compared to untransformed cells. RT-PCR confirmed a number of these mRNA elevations. RNA samples were then analysed at intervals during the first 24 h after doxycycline removal to determine the time of early changes. Extensive changes were not observed by array analysis, except in v-Src-expressing cells where about 10 mRNAs were elevated threefold or more. However, RT-PCR did uncover changes in each derepressed cell type that included some of the changes observed after the 15-day transformation period. In addition, STAT3-C target genes such as BclXI and cyclin D1, which were not observed on array analysis, were elevated by RT-PCR analysis. We conclude, therefore, that early after oncogene induction, transcriptional changes, including those initiated by STAT3-C, may occur only in scarce mRNA and/or to a limited extent. However, with additional time and probably additional cell division, a new epigenetic state is established that is mirrored by a changed transcriptional profile emblematic of transformation by each of three oncogenes.
Collapse
Affiliation(s)
- Keren Paz
- Laboratory of Molecular Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
8
|
Singh US, Pan J, Kao YL, Joshi S, Young KL, Baker KM. Tissue transglutaminase mediates activation of RhoA and MAP kinase pathways during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Biol Chem 2003; 278:391-9. [PMID: 12401808 DOI: 10.1074/jbc.m206361200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (RA) plays a crucial role in survival and differentiation of neurons. For elucidating signaling mechanisms involved in RA-induced neuronal differentiation, we have selected SH-SY5Y cells, which are an established in vitro cell model for studying RA signaling. Here we report that RA-induced neuronal differentiation of SH-SY5Y cells is coupled with increased expression/activation of TGase and in vivo transamidation and activation of RhoA. In addition, RA promotes formation of stress fibers and focal adhesion complexes, and activation of ERK1/2, JNK1, and p38alpha/beta/gamma MAP kinases. Using C-3 exoenzyme (RhoA inhibitor) or monodansylcadaverine (TGase inhibitor), we show that transamidated RhoA regulates cytoskeletal rearrangement and activation of ERK1/2 and p38gamma MAP kinases. Further, by using stable SH-SY5Y cell lines (overexpressing wild-type, C277S mutant, and antisense TGase), we demonstrate that transglutaminase activity is required for activation of RhoA, ERK1/2, JNK1, and p38gamma MAP kinases. Activated MAP kinases differentially regulate RA-induced neurite outgrowth and neuronal marker expression. The results of our studies suggest a novel mechanism of RA signaling, which involves activation of TGase and transamidation of RhoA. RA-induced activation of TGase is proposed to induce multiple signaling pathways that regulate neuronal differentiation.
Collapse
Affiliation(s)
- Ugra S Singh
- Division of Molecular Cardiology, Cardiovascular Research Institute, The Texas A&M University System Health Science Center, College of Medicine, Temple, Texas 76504, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Most human tumors are of epithelial origin, and these tumors gradually lose their epithelial character in a process termed the epithelial-mesenchymal transition. Approximately 40% of human tumors have activating mutations in one of the three RAS genes. Given these statistics, it is critically important to understand the role of Ras signaling in the epithelial-mesenchymal transition. This review considers the mechanisms and effectors through which Ras may regulate intercellular junction formation in epithelial cells. Conversely, intercellular junction proteins themselves may play a role in regulating Ras activation and signaling.
Collapse
Affiliation(s)
- J A Mercer
- McLaughlin Research Institute, 1520 23rd St South, Great Falls, MT 59405-4900, USA.
| |
Collapse
|
10
|
Chen YH, Lu Q, Schneeberger EE, Goodenough DA. Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol Biol Cell 2000; 11:849-62. [PMID: 10712504 PMCID: PMC14815 DOI: 10.1091/mbc.11.3.849] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin-mediated cell-cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell-cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell-cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.
Collapse
Affiliation(s)
- Y h Chen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
11
|
Zubiaur M, Sancho J, Terhorst C, Faller DV. A small GTP-binding protein, Rho, associates with the platelet-derived growth factor type-beta receptor upon ligand binding. J Biol Chem 1995; 270:17221-8. [PMID: 7615521 DOI: 10.1074/jbc.270.29.17221] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ligand binding to the platelet-derived growth factor (PDGF) receptor initiates a complex and diverging cascade of signaling pathways. GTP-binding proteins with intrinsic GTPase activity (G-proteins) frequently link cell surface receptors to intracellular signaling pathways, but no close associations of the PDGF receptor and any small G-proteins, nor any such associations activated by ligand binding to the receptor have been previously reported. We demonstrate that a small GTP-binding protein binds specifically to the murine and human PDGF type-beta receptor. In response to PDGF-BB stimulation, there is an increase in the amount of labeled small G-protein associated with the PDGF type-beta receptor. The GTP-binding protein did not undergo ligand-induced association with a mutant receptor protein that was unable to bind ATP. Proteolytic cleavage analysis, together with two-dimensional separation techniques, identified the small G-protein specifically associating with the PDGF type-beta receptor after ligand binding as a member of the Rho family. This was confirmed by demonstration that the small G-protein coimmunoprecipitated by the anti-PDGF receptor antibody was a substrate for the ADP-ribosyltransferase C3 exoenzyme. Thus, the PDGF type-beta receptor may form a complex with one or more small G-proteins upon binding PDGF-BB, and the Rho small G-protein is likely to be an important component of the proteins making up the multimeric signaling complex of the PDGF type-beta receptor.
Collapse
Affiliation(s)
- M Zubiaur
- Cancer Research Center, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
12
|
Ziman M, Johnson DI. Genetic evidence for a functional interaction between Saccharomyces cerevisiae CDC24 and CDC42. Yeast 1994; 10:463-74. [PMID: 7941732 DOI: 10.1002/yea.320100405] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cdc24p and Cdc42p are involved in the control of cell polarity during the Saccharomyces cerevisiae cell cycle. Cdc42p is a member of the Ras superfamily of GTPases and Cdc24p displays limited amino-acid sequence similarity with the Dbl proto-oncoprotein, which acts to stimulate guanine-nucleotide exchange on human Cdc42p. We have performed several genetic experiments to test whether Cdc24p and Cdc42p interact within the cell. First, overexpression of Cdc24p suppressed the dominant-negative cdc42D118A allele. Second, overexpression of wild-type CDC24 and CDC42 genes together was a lethal event resulting in a morphological phenotype of large, round, unbudded cells, indicating a loss of cell polarity. Third, a cdc24ts cdc42ts double mutant exhibited a synthetic-lethal phenotype at the semi-permissive temperature of 30 degrees C. These data suggest that Cdc24p and Cdc42p interact within the cell and that Cdc24p may be involved in the regulation of Cdc42p activity.
Collapse
Affiliation(s)
- M Ziman
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington 05401
| | | |
Collapse
|
13
|
Vogel L, Persin C, Haustein D. Changes in the expression of Ig-associated proteins on B lymphocytes activated by anti-IgM antibodies. Scand J Immunol 1993; 37:277-81. [PMID: 8441915 DOI: 10.1111/j.1365-3083.1993.tb02554.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Binding of antigen to receptor complexes on B cells elicits a cascade of intracellular signalling events leading to proliferation and, together with T-cell help, Ig secretion. Components of the antigen receptor (AgR) complex have been demonstrated to be either covalently bound or associated with surface Ig (sIg) molecules. The function of these proteins is still unknown. In order to address this question, we have stimulated B cells with anti-mu antibodies and have studied possible changes in the expression of AgR complexes. After anti-mu stimulation, the IgM molecules disappeared rapidly from the cell surface together with the covalently bound proteins. The IgM molecules were internalized and probably degraded. The IgM-associated heterodimer Ig-alpha/Ig-beta was also removed from the cells, leaving the IgD-associated heterodimer unaffected. Two proteins showed an enhanced association with sIg after 15 min and then were gradually removed from the cell surface. Two other proteins became increasingly attached to sIg. This association remained stable for the rest of the culture period (up to 4 h). Further studies are underway to characterize these proteins more closely and to examine possible interactions with downstream members of the signalling cascade.
Collapse
Affiliation(s)
- L Vogel
- Paul-Ehrlich-Institut, Langen, Germany
| | | | | |
Collapse
|
14
|
Schedl T. The role of cell-cell interactions in postembryonic development of the Caenorhabditis elegans germ line. Curr Opin Genet Dev 1991; 1:185-90. [PMID: 1822268 DOI: 10.1016/s0959-437x(05)80068-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review addresses the role of cell-cell interactions in the development of the Caenorhabditis elegans germ line: specifically, the relative contributions of germ-line-soma interactions versus autonomous processes are considered. Current knowledge of the interacting cell types and the genes essential for various aspects of germ-line development is discussed.
Collapse
Affiliation(s)
- T Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
15
|
Affiliation(s)
- M Reth
- Max-Planck Institute for Immunobiology, Freiburg, Germany
| |
Collapse
|
16
|
Affiliation(s)
- I G Macara
- Environmental Health Sciences Center, University of Rochester Medical Center, NY 14642
| |
Collapse
|
17
|
Schiffmann Y. An hypothesis: phosphorylation fields as the source of positional information and cell differentiation--(cAMP, ATP) as the universal morphogenetic Turing couple. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1991; 56:79-105. [PMID: 1658848 DOI: 10.1016/0079-6107(91)90015-k] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is hypothesized that (cAMP, ATP) is the elusive, universal Turing morphogenetic couple, which defies the second law of thermodynamics, i.e. the inexorable march towards homogeneity. cAMP and ATP can be distributed nonhomogeneously because the whole of the intermediary metabolism is so organized that they mutually satisfy the Turing bifurcation conditions upon nonlocalized application of an extracellular ligand, in particular a soluble peptide growth factor, which is nature's distinguished universal bifurcation parameter, acting homogeneously in space and removing the substrate inhibition from adenylate cyclase and thus triggering embryonic induction by triggering the (cAMP, ATP) Turing system. The hypothesis predicts that although the extracellular signal, the growth factor, is applied homogeneously, an organized "dissipative structure" will emerge spontaneously in the responding tissue; this "symmetry breaking" in a reaction-diffusion system occurs precisely in the manner envisaged by Turing, where (cAMP, ATP) constitutes the "reaction-diffusion system". This Turing bifurcation explicates the recent experiments where a differentiated embryoid emerges from the mere immersion of frog animal caps in an homogeneous growth factor solution, and similar experiments on chicks. The "metabolic" patterns found by Child and colleagues also reflect dissipative structures arising in a (cAMP, ATP) reaction-diffusion system when interpreted in the light of modern biochemistry: in particular, the localized glycogen depletion reflects localized cAMP; localized redox, respiratory or susceptibility activity reflects localized ATP. The dramatic collapse of organized structure found by Child and colleagues, for example, when Planaria or a section of it is exposed to an homogeneous environment of a narcotic solution, and the reemergence of structure upon return to water, are explained on the basis of the violation or satisfaction of the Turing bifurcation conditions with respect to (cAMP, ATP), respectively. cAMP is the "activator", ATP is the "inhibitor", and together they mutually satisfy the four activator-inhibitor inequalities, including the all-important autocatalytic cAMP production, as well as the lateral inhibition condition. The functional significance of gap junctions is to generate a multicellular purely reaction-diffusion system for (cAMP, ATP) as envisaged by Turing. It is emphasized that localization and pattern formation occur intracellularly in gap junction-coupled cells and not, as often suggested, extracellularly, the latter localization being too fragile to be maintained for long enough, and soon succumbing to the mixing effect of convection and movement. The activator-inhibitor property of (cAMP, ATP) means that the spatial distribution of cAMP and ATP could be not only nonhomogeneous but also of the same shape.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y Schiffmann
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, U.K
| |
Collapse
|