1
|
Indurthi DC. The effect of unliganded gating on agonist response in nicotinic receptors. Eur J Pharmacol 2024; 980:176830. [PMID: 39032761 DOI: 10.1016/j.ejphar.2024.176830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Understanding the agonist concentration-response curve (CRC) is the cornerstone in pharmacology. While CRC parameters, agonist potency (EC50) and efficacy (maximum response, Imax) are well-studied, the role of unliganded gating (minimum response, Imin) on CRC is often overlooked. This study explores the effect of unliganded gating on agonist response in muscle-type acetylcholine (ACh) receptors, focusing on the underexplored role of Imin in modulating EC50 and Imax. Three Gain-of-Function (GOF) mutations that increase, and two Loss-of-Function (LOF) mutations that decrease the unliganded gating equilibrium constant (L0) were studied using automated patch-clamp electrophysiology. GOF mutations enhanced agonist potency, whereas LOF mutations reduced it. The calculated CRC aligned well with empirical results, indicating that agonist CRC can be estimated from knowledge of L0. Reduction in agonist efficacy due to LOF mutations was calculated and subsequently validated using single-channel patch-clamp electrophysiology, a factor often obscured in normalized CRC. The study also evaluated the combined impact of mutations (L0) on CRC, confirming the predictive model. Further, no significant energetic coupling between distant residues (>15 Å) was found, indicating that the mutations' effects are localized and do not alter overall agonist affinity. These findings substantiate the role of unliganded gating in modulating agonist responses and establishes a predictive model for estimating CRC parameters from known changes in L0. The study highlights the importance of intrinsic activity in receptor theory.
Collapse
Affiliation(s)
- Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States.
| |
Collapse
|
2
|
Borghese CM, Goldschen-Ohm MP. State-dependent energetics of GABA A receptor modulators. Biophys J 2024; 123:1903-1906. [PMID: 38303510 PMCID: PMC11309981 DOI: 10.1016/j.bpj.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Cecilia M Borghese
- University of Texas at Austin, Department of Neuroscience, Austin, Texas
| | | |
Collapse
|
3
|
Peverini L, Shi S, Medjebeur K, Corringer PJ. Mapping the molecular motions of 5-HT 3 serotonin-gated channel by voltage-clamp fluorometry. eLife 2024; 12:RP93174. [PMID: 38913422 PMCID: PMC11196107 DOI: 10.7554/elife.93174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
The serotonin-gated ion channel (5-HT3R) mediates excitatory neuronal communication in the gut and the brain. It is the target for setrons, a class of competitive antagonists widely used as antiemetics, and is involved in several neurological diseases. Cryo-electron microscopy (cryo-EM) of the 5-HT3R in complex with serotonin or setrons revealed that the protein has access to a wide conformational landscape. However, assigning known high-resolution structures to actual states contributing to the physiological response remains a challenge. In the present study, we used voltage-clamp fluorometry (VCF) to measure simultaneously, for 5-HT3R expressed at a cell membrane, conformational changes by fluorescence and channel opening by electrophysiology. Four positions identified by mutational screening report motions around and outside the serotonin-binding site through incorporation of cysteine-tethered rhodamine dyes with or without a nearby quenching tryptophan. VCF recordings show that the 5-HT3R has access to four families of conformations endowed with distinct fluorescence signatures: 'resting-like' without ligand, 'inhibited-like' with setrons, 'pre-active-like' with partial agonists, and 'active-like' (open channel) with partial and strong agonists. Data are remarkably consistent with cryo-EM structures, the fluorescence partners matching respectively apo, setron-bound, 5-HT bound-closed, and 5-HT-bound-open conformations. Data show that strong agonists promote a concerted motion of all fluorescently labeled sensors during activation, while partial agonists, especially when loss-of-function mutations are engineered, stabilize both active and pre-active conformations. In conclusion, VCF, though the monitoring of electrophysiologically silent conformational changes, illuminates allosteric mechanisms contributing to signal transduction and their differential regulation by important classes of physiological and clinical effectors.
Collapse
Affiliation(s)
- Laurie Peverini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Sophie Shi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Karima Medjebeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| |
Collapse
|
4
|
Absalom NL, El-Kamand S, Chua HC, Ahring PK. Follow the allosteric transitions to predict variant pathogenicity: a channel-specific approach. Brain 2024; 147:e37-e40. [PMID: 38198781 PMCID: PMC11068099 DOI: 10.1093/brain/awae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Affiliation(s)
- Nathan L Absalom
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Serene El-Kamand
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Han Chow Chua
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Philip K Ahring
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
5
|
Kumari M, Khatoon N, Sharma R, Adusumilli S, Auerbach A, Kashyap HK, Nayak TK. Mechanism of hydrophobic gating in the acetylcholine receptor channel pore. J Gen Physiol 2024; 156:e202213189. [PMID: 38153395 PMCID: PMC10757554 DOI: 10.1085/jgp.202213189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
Neuromuscular acetylcholine receptors (AChRs) are hetero-pentameric, ligand-gated ion channels. The binding of the neurotransmitter acetylcholine (ACh) to two target sites promotes a global conformational change of the receptor that opens the channel and allows ion conduction through the channel pore. Here, by measuring free-energy changes from single-channel current recordings and using molecular dynamics simulations, we elucidate how a constricted hydrophobic region acts as a "gate" to regulate the channel opening in the pore of AChRs. Mutations of gate residues, including those implicated in congenital myasthenia syndrome, lower the permeation barrier of the channel substantially and increase the unliganded gating equilibrium constant (constitutive channel openings). Correlations between hydrophobicity and the observed free-energy changes, supported by calculations of water densities in the wild-type versus mutant channel pores, provide evidence for hydrophobic wetting-dewetting transition at the gate. The analysis of a coupled interaction network provides insight into the molecular mechanism of closed- versus open-state conformational changes at the gate. Studies of the transition state by "phi"(φ)-value analysis indicate that agonist binding serves to stabilize both the transition and the open state. Intersubunit interaction energy measurements and molecular dynamics simulations suggest that channel opening involves tilting of the pore-lining M2 helices, asymmetric outward rotation of amino acid side chains, and wetting transition of the gate region that lowers the barrier to ion permeation and stabilizes the channel open conformation. Our work provides new insight into the hydrophobic gate opening and shows why the gate mutations result in constitutive AChR channel activity.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Nadira Khatoon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Rachita Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Sushanth Adusumilli
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Anthony Auerbach
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Tapan K. Nayak
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
6
|
Lam AKM, Dutzler R. Mechanistic basis of ligand efficacy in the calcium-activated chloride channel TMEM16A. EMBO J 2023; 42:e115030. [PMID: 37984335 PMCID: PMC10711664 DOI: 10.15252/embj.2023115030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Agonist binding in ligand-gated ion channels is coupled to structural rearrangements around the binding site, followed by the opening of the channel pore. In this process, agonist efficacy describes the equilibrium between open and closed conformations in a fully ligand-bound state. Calcium-activated chloride channels in the TMEM16 family are important sensors of intracellular calcium signals and are targets for pharmacological modulators, yet a mechanistic understanding of agonist efficacy has remained elusive. Using a combination of cryo-electron microscopy, electrophysiology, and autocorrelation analysis, we now show that agonist efficacy in the ligand-gated channel TMEM16A is dictated by the conformation of the pore-lining helix α6 around the Ca2+ -binding site. The closure of the binding site, which involves the formation of a π-helix below a hinge region in α6, appears to be coupled to the opening of the inner pore gate, thereby governing the channel's open probability and conductance. Our results provide a mechanism for agonist binding and efficacy and a structural basis for the design of potentiators and partial agonists in the TMEM16 family.
Collapse
Affiliation(s)
- Andy KM Lam
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Raimund Dutzler
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| |
Collapse
|
7
|
Roy M, Horovitz A. Distinguishing between concerted, sequential and barrierless conformational changes: Folding versus allostery. Curr Opin Struct Biol 2023; 83:102721. [PMID: 37922762 DOI: 10.1016/j.sbi.2023.102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Characterization of transition and intermediate states of reactions provides insights into their mechanisms and is often achieved through analysis of linear free energy relationships. Such an approach has been used extensively in protein folding studies but less so for analyzing allosteric transitions. Here, we point out analogies in ways to characterize pathways and intermediates in folding and allosteric transitions. Achieving an understanding of the mechanisms by which proteins undergo allosteric switching is important in many cases for obtaining insights into how they function.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
8
|
Indurthi DC, Auerbach A. Agonist efficiency links binding and gating in a nicotinic receptor. eLife 2023; 12:e86496. [PMID: 37399234 DOI: 10.7554/elife.86496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Receptors signal by switching between resting (C) and active (O) shapes ('gating') under the influence of agonists. The receptor's maximum response depends on the difference in agonist binding energy, O minus C. In nicotinic receptors, efficiency (η) represents the fraction of agonist binding energy applied to a local rearrangement (an induced fit) that initiates gating. In this receptor, free energy changes in gating and binding can be interchanged by the conversion factor η. Efficiencies estimated from concentration-response curves (23 agonists, 53 mutations) sort into five discrete classes (%): 0.56 (17), 0.51(32), 0.45(13), 0.41(26), and 0.31(12), implying that there are 5 C versus O binding site structural pairs. Within each class efficacy and affinity are corelated linearly, but multiple classes hide this relationship. η unites agonist binding with receptor gating and calibrates one link in a chain of coupled domain rearrangements that comprises the allosteric transition of the protein.
Collapse
Affiliation(s)
- Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Anthony Auerbach
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| |
Collapse
|
9
|
Kaczor PT, Michałowski MA, Mozrzymas JW. α 1 Proline 277 Residues Regulate GABA AR Gating through M2-M3 Loop Interaction in the Interface Region. ACS Chem Neurosci 2022; 13:3044-3056. [PMID: 36219829 PMCID: PMC9634794 DOI: 10.1021/acschemneuro.2c00401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cys-loop receptors are a superfamily of transmembrane, pentameric receptors that play a crucial role in mammalian CNS signaling. Physiological activation of these receptors is typically initiated by neurotransmitter binding to the orthosteric binding site, located at the extracellular domain (ECD), which leads to the opening of the channel pore (gate) at the transmembrane domain (TMD). Whereas considerable knowledge on molecular mechanisms of Cys-loop receptor activation was gathered for the acetylcholine receptor, little is known with this respect about the GABAA receptor (GABAAR), which mediates cellular inhibition. Importantly, several static structures of GABAAR were recently described, paving the way to more in-depth molecular functional studies. Moreover, it has been pointed out that the TMD-ECD interface region plays a crucial role in transduction of conformational changes from the ligand binding site to the channel gate. One of the interface structures implicated in this transduction process is the M2-M3 loop with a highly conserved proline (P277) residue. To address this issue specifically for α1β2γ2L GABAAR, we choose to substitute proline α1P277 with amino acids with different physicochemical features such as electrostatic charge or their ability to change the loop flexibility. To address the functional impact of these mutations, we performed macroscopic and single-channel patch-clamp analyses together with modeling. Our findings revealed that mutation of α1P277 weakly affected agonist binding but was critical for all transitions of GABAAR gating: opening/closing, preactivation, and desensitization. In conclusion, we provide evidence that conservative α1P277 at the interface is strongly involved in regulating the receptor gating.
Collapse
|
10
|
GABA A receptor proline 273 at the interdomain interface of the β 2 subunit regulates entry into desensitization and opening/closing transitions. Life Sci 2022; 308:120943. [PMID: 36096246 DOI: 10.1016/j.lfs.2022.120943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
Abstract
AIMS GABAA receptors belong to Cys-loop ion channel family and mediate inhibition in the brain. Despite the abundance of structural data on receptor structure, the molecular scenarios of activation are unknown. In this study we investigated the role of a β2P273 residue in channel gating transitions. This residue is located in a central position of the M2-M3 linker of the interdomain interface, expected to be predisposed to interact with another interfacial element, the β1-β2 loop of the extracellular side. The interactions occurring on this interface have been reported to couple agonist binding to channel gating. MAIN METHODS We recorded micro- and macroscopic current responses of recombinant GABAA receptors mutated at the β2P273 residue (to A, K, E) to saturating GABA. Electrophysiological data served as basis to kinetic modeling, used to decipher which gating transition were affected by mutations. KEY FINDINGS Mutations of this residue impaired macroscopic desensitization and accelerated current deactivation with P273E mutant showing greatest deviation from wild-type. Single-channel analysis revealed alterations mainly in short-lived shut times and shortening of openings, resulting in dramatic changes in intraburst open probability. Kinetic modeling indicated that β2P273 mutants show diminished entry into desensitized and open states as well as faster channel closing transitions. SIGNIFICANCE In conclusion, we demonstrate that β2P273 of the M2-M3 linker is a crucial element of the ECD-TMD interface regulating the receptor's ability to undergo late gating transitions. Henceforth, this region could be an important target for new pharmacological tools affecting GABAAR-mediated inhibition.
Collapse
|
11
|
Kwon DH, Zhang F, Fedor JG, Suo Y, Lee SY. Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis. Nat Commun 2022; 13:2874. [PMID: 35610228 PMCID: PMC9130279 DOI: 10.1038/s41467-022-30602-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Single particle cryo-EM often yields multiple protein conformations within a single dataset, but experimentally deducing the temporal relationship of these conformers within a conformational trajectory is not trivial. Here, we use thermal titration methods and cryo-EM in an attempt to obtain temporal resolution of the conformational trajectory of the vanilloid receptor TRPV1 with resiniferatoxin (RTx) bound. Based on our cryo-EM ensemble analysis, RTx binding to TRPV1 appears to induce intracellular gate opening first, followed by selectivity filter dilation, then pore loop rearrangement to reach the final open state. This apparent conformational wave likely arises from the concerted, stepwise, additive structural changes of TRPV1 over many subdomains. Greater understanding of the RTx-mediated long-range allostery of TRPV1 could help further the therapeutic potential of RTx, which is a promising drug candidate for pain relief associated with advanced cancer or knee arthritis.
Collapse
Affiliation(s)
- Do Hoon Kwon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Feng Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Justin G Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
12
|
Han L, Shan Q. Different Behaviors of a Glycine Receptor Channel Pore Residue between Wild-Type-Mimicking and Disease-Type-Mimicking Formats. ACS Chem Neurosci 2021; 12:3397-3409. [PMID: 34460217 DOI: 10.1021/acschemneuro.1c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glycine receptor (GlyR) is a neurotransmitter-gated chloride channel that mediates fast inhibitory neurotransmission, predominantly in the spinal cord and brain stem. Mutations of the GlyR are the major cause of hereditary hyperekplexia. Site-specific cysteine substitution followed by labeling with a fluorophore has previously been used to explore the behaviors of the hyperekplexia-related 271 (19') residue of the GlyR. However, this manipulation dramatically compromises sensitivity toward the agonist glycine and alters the pharmacological effects of various agents in manners similar to those of the hyperekplexia-causing R19'Q/L mutations, raising the question whether what is reported by the substituted and modified residue faithfully reflects what actually happens to the wild-type (WT) residue. In this study, a mechanism-rescuing second-site mutation was introduced to create a WT-mimicking GlyR (with the 19' residue cysteine substitution and modification still in place), in which the sensitivity toward glycine and pharmacological effects of various agents were restored. Further experiments revealed stark differences in the behaviors upon the various pharmacological treatments and consequently the underlying mechanisms of the 19' residue between this WT-mimicking GlyR and the GlyR without the mechanism rescue, which is correspondingly defined as the disease-type (DT)-mimicking GlyR. The data presented in this study warn generally that caution is required when attempting to deduce the behaviors of a WT residue from data based on substituted or modified residues that alter protein structure and function. Extra measures, such as rescuing mechanisms via alternative means as presented in this study, are needed to mitigate this challenge.
Collapse
Affiliation(s)
- Lu Han
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
13
|
Abstract
Nicotinic acetylcholine receptors (AChRs) are ligand-gated ion channels that generate transient currents by binding agonists and switching rapidly between closed- and open-channel conformations. Upon sustained exposure to ACh, the cell response diminishes slowly because of desensitization, a process that shuts the channel even with agonists still bound. In liganded receptors, the main desensitization pathway is from the open-channel conformation, but after agonists dissociate the main recovery pathway is to the closed-channel conformation. In this Viewpoint, I discuss two mechanisms that can explain the selection of different pathways, a question that has puzzled the community for 60 yr. The first is based on a discrete-state model (the “prism”), in which closed, open, and desensitized conformational states interconnect directly. This model predicts that 5% of unliganded AChRs are desensitized. Different pathways are taken with versus without agonists because ligands have different energy properties (φ values) at the transition states of the desensitization and recovery reactions. The second is a potential energy surface model (the “monkey saddle”), in which the states connect indirectly at a shared transition state region. Different pathways are taken because agonists shift the position of the gating transition state relative to the point where gating and desensitization conformational trajectories intersect. Understanding desensitization pathways appears to be a problem of kinetics rather than of thermodynamics. Other aspects of the two mechanisms are considered, as are experiments that may someday distinguish them.
Collapse
Affiliation(s)
- Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
14
|
Signal transduction through Cys-loop receptors is mediated by the nonspecific bumping of closely apposed domains. Proc Natl Acad Sci U S A 2021; 118:2021016118. [PMID: 33785596 DOI: 10.1073/pnas.2021016118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most fundamental questions in the field of Cys-loop receptors (pentameric ligand-gated ion channels, pLGICs) is how the affinity for neurotransmitters and the conductive/nonconductive state of the transmembrane pore are correlated despite the ∼60-Å distance between the corresponding domains. Proposed mechanisms differ, but they all converge into the idea that interactions between wild-type side chains across the extracellular-transmembrane-domain (ECD-TMD) interface are crucial for this phenomenon. Indeed, the successful design of fully functional chimeras that combine intact ECD and TMD modules from different wild-type pLGICs has commonly been ascribed to the residual conservation of sequence that exists at the level of the interfacial loops even between evolutionarily distant parent channels. Here, using mutagenesis, patch-clamp electrophysiology, and radiolabeled-ligand binding experiments, we studied the effect of eliminating this residual conservation of sequence on ion-channel function and cell-surface expression. From our results, we conclude that proper state interconversion ("gating") does not require conservation of sequence-or even physicochemical properties-across the ECD-TMD interface. Wild-type ECD and TMD side chains undoubtedly interact with their surroundings, but the interactions between them-straddling the interface-do not seem to be more important for gating than those occurring elsewhere in the protein. We propose that gating of pLGICs requires, instead, that the overall structure of the interfacial loops be conserved, and that their relative orientation and distance be the appropriate ones for changes in one side to result in changes in the other, in a phenomenon akin to the nonspecific "bumping" of closely apposed domains.
Collapse
|
15
|
Agonist efficiency from concentration-response curves: Structural implications and applications. Biophys J 2021; 120:1800-1813. [PMID: 33675765 DOI: 10.1016/j.bpj.2021.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Agonists are evaluated by a concentration-response curve (CRC), with a midpoint (EC50) that indicates potency, a high-concentration asymptote that indicates efficacy, and a low-concentration asymptote that indicates constitutive activity. A third agonist attribute, efficiency (η), is the fraction of binding energy that is applied to the conformational change that activates the receptor. We show that η can be calculated from EC50 and the asymptotes of a CRC derived from either single-channel or whole-cell responses. For 20 agonists of skeletal muscle nicotinic receptors, the distribution of η-values is bimodal with population means at 51% (including acetylcholine, nornicotine, and dimethylphenylpiperazinium) and 40% (including epibatidine, varenicline, and cytisine). The value of η is related inversely to the size of the agonist's headgroup, with high- versus low-efficiency ligands having an average volume of 70 vs. 102 Å3. Most binding site mutations have only a small effect on acetylcholine efficiency, except for αY190A (35%), αW149A (60%), and those at αG153 (42%). If η is known, the EC50 and high-concentration asymptote can be calculated from each other. Hence, an entire CRC can be estimated from the response to a single agonist concentration, and efficacy can be estimated from EC50 of a CRC that has been normalized to 1. Given η, the level of constitutive activity can be estimated from a single CRC.
Collapse
|
16
|
Lam AKM, Dutzler R. Mechanism of pore opening in the calcium-activated chloride channel TMEM16A. Nat Commun 2021; 12:786. [PMID: 33542228 PMCID: PMC7862263 DOI: 10.1038/s41467-020-20788-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/16/2020] [Indexed: 01/14/2023] Open
Abstract
The anion channel TMEM16A is activated by intracellular Ca2+ in a highly cooperative process. By combining electrophysiology and autocorrelation analysis, we investigated the mechanism of channel activation and the concurrent rearrangement of the gate in the narrow part of the pore. Features in the fluctuation characteristics of steady-state current indicate the sampling of intermediate conformations that are successively occupied during gating. The initial step is related to conformational changes induced by Ca2+ binding, which is ensued by rearrangements that open the pore. Mutations in the gate shift the equilibrium of transitions in a manner consistent with a progressive destabilization of this region during pore opening. We come up with a mechanism of channel activation where the binding of Ca2+ induces conformational changes in the protein that, in a sequential manner, propagate from the binding site and couple to the gate in the narrow pore to allow ion permeation.
Collapse
Affiliation(s)
- Andy K M Lam
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
17
|
Huysmans GHM, Ciftci D, Wang X, Blanchard SC, Boudker O. The high-energy transition state of the glutamate transporter homologue GltPh. EMBO J 2021; 40:e105415. [PMID: 33185289 PMCID: PMC7780239 DOI: 10.15252/embj.2020105415] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Mass Spectrometry for Biology Unit, USR 2000CNRSInstitut PasteurParisFrance
| | - Didar Ciftci
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
| | - Xiaoyu Wang
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Scott C Blanchard
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- St. Jude Children’s Research HospitalMemphisTNUSA
| | - Olga Boudker
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
18
|
Tian Y, Chen S, Shan Q. Charged residues at the pore extracellular half of the glycine receptor facilitate channel gating: a potential role played by electrostatic repulsion. J Physiol 2020; 598:4643-4661. [PMID: 32844405 DOI: 10.1113/jp279288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS The Arg271Gln mutation of the glycine receptor (GlyR) causes hereditary hyperekplexia. This mutation dramatically compromises GlyR function; however, the underlying mechanism is not yet known. This study, by employing function and computation methods, proposes that charged residues (including the Arg residue) at the pore extracellular half from each of the five subunits of the homomeric α1 GlyR, create an electrostatic repulsive potential to widen the pore, thereby facilitating channel opening. This mechanism explains how the Arg271Gln mutation, in which the positively charged Arg residue is substituted by the neutral Gln residue, compromises GlyR function. This study furthers our understanding of the biophysical mechanism underlying the Arg271Gln mutation compromising GlyR function. ABSTRACT The R271(19')Q mutation in the α1 subunit of the glycine receptor (GlyR) chloride channel causes hereditary hyperekplexia. This mutation dramatically compromises channel function; however, the underlying mechanism is not yet known. The R271 residue is located at the extracellular half of the channel pore. In this study, an Arg-scanning mutagenesis was performed at the pore extracellular half from the 262(10') to the 272(20') position on the background of the α1 GlyR carrying the hyperekplexia-causing mutation R271(19')Q. It was found that the placement of the Arg residue rescued channel function to an extent inversely correlated with the distance between the residue and the pore central axis (perpendicular to the plane of the lipid bilayer). Accordingly, it was hypothesized that the placed Arg residues from each of the five subunits of the homomeric α1 GlyR create an electrostatic repulsive potential to widen the pore, thereby facilitating channel opening. This hypothesis was quantitatively verified by theoretical computation via exploiting basic laws of electrostatics and thermodynamics, and further supported by more experimental findings that the placement of another positively charged Lys residue or even a negatively charged Asp residue also rescued channel function in the same manner. This study provides a novel mechanism via which charged residues in the pore region facilitate channel gating, not only for the disease-causing 19'R residue in the GlyR, but also potentially for charged residues in the same region of other ion channels.
Collapse
Affiliation(s)
- Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin, 300071, China
| | - Shijie Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
19
|
Xu L, Han Y, Chen X, Aierken A, Wen H, Zheng W, Wang H, Lu X, Zhao Z, Ma C, Liang P, Yang W, Yang S, Yang F. Molecular mechanisms underlying menthol binding and activation of TRPM8 ion channel. Nat Commun 2020; 11:3790. [PMID: 32728032 PMCID: PMC7391767 DOI: 10.1038/s41467-020-17582-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Menthol in mints elicits coolness sensation by selectively activating TRPM8 channel. Although structures of TRPM8 were determined in the apo and liganded states, the menthol-bounded state is unresolved. To understand how menthol activates the channel, we docked menthol to the channel and systematically validated our menthol binding models with thermodynamic mutant cycle analysis. We observed that menthol uses its hydroxyl group as a hand to specifically grab with R842, and its isopropyl group as legs to stand on I846 and L843. By imaging with fluorescent unnatural amino acid, we found that menthol binding induces wide-spread conformational rearrangements within the transmembrane domains. By Φ analysis based on single-channel recordings, we observed a temporal sequence of conformational changes in the S6 bundle crossing and the selectivity filter leading to channel activation. Therefore, our study suggested a 'grab and stand' mechanism of menthol binding and how menthol activates TRPM8 at the atomic level.
Collapse
Affiliation(s)
- Lizhen Xu
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang Province, China
| | - Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Chen
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang Province, China
| | - Aerziguli Aierken
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang Province, China
| | - Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Hongkun Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Zhejiang, China
| | - Xiancui Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, 650223, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenye Zhao
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang Province, China
| | - Cheng Ma
- Protein facility, School of Medicine, Zhejiang University, Zhejiang, China
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Zhejiang, China
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang Province, China.
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, 150040, Harbin, China.
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
20
|
Brodzki M, Michałowski MA, Gos M, Mozrzymas JW. Mutations of α 1F45 residue of GABA A receptor loop G reveal its involvement in agonist binding and channel opening/closing transitions. Biochem Pharmacol 2020; 177:113917. [PMID: 32194055 DOI: 10.1016/j.bcp.2020.113917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
GABAA receptors (GABAARs) mediate inhibitory neurotransmission in the mammalian brain. Recently, numerous GABAAR static structures have been published, but the molecular mechanisms of receptor activation remain elusive. Loop G is a rigid β-strand belonging to an extensive β-sheet that spans the regions involved in GABA binding and the interdomain interface which is important in receptor gating. It has been reported that loop G participates in ligand binding and gating of GABAARs, however, it remains unclear which specific gating transitions are controlled by this loop. Analysis of macroscopic responses revealed that mutation at the α1F45 residue (loop G midpoint) resulted in slower macroscopic desensitization and accelerated deactivation. Single-channel analysis revealed that these mutations also affected open and closed times distributions and reduced open probability. Kinetic modeling demonstrated that mutations affected primarily channel opening/closing and ligand binding with a minor effect on preactivation. Thus, α1F45 residue, in spite of its localization close to binding site, affects late gating transitions. In silico structural analysis suggested an important role of α1F45 residue in loop G stability and rigidity as well as in general structure of the binding site. We propose that the rigid β-sheet comprising loop G is well suited for long range communication within GABAAR but this mechanism becomes impaired when α1F45 is mutated. In conclusion, we demonstrate that loop G is crucial in controlling both binding and gating of GABAARs. These data shed new light on GABAAR activation mechanism and may also be helpful in designing clinically relevant modulators.
Collapse
Affiliation(s)
- Marek Brodzki
- University of Wrocław, Department of Molecular Physiology and Neurobiology, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland.
| | - Michał A Michałowski
- University of Wrocław, Department of Molecular Physiology and Neurobiology, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland.
| | - Michalina Gos
- University of Wrocław, Department of Molecular Physiology and Neurobiology, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Jerzy W Mozrzymas
- Wrocław Medical University, Department of Biophysics, Laboratory of Neuroscience, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland.
| |
Collapse
|
21
|
Cryo-EM structures of a lipid-sensitive pentameric ligand-gated ion channel embedded in a phosphatidylcholine-only bilayer. Proc Natl Acad Sci U S A 2020; 117:1788-1798. [PMID: 31911476 PMCID: PMC6983364 DOI: 10.1073/pnas.1906823117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The lipid dependence of the nicotinic acetylcholine receptor from the Torpedo electric organ has long been recognized, and one of the most consistent experimental observations is that, when reconstituted in membranes formed by zwitterionic phospholipids alone, exposure to agonist fails to elicit ion-flux activity. More recently, it has been suggested that the bacterial homolog ELIC (Erwinia chrysanthemi ligand-gated ion channel) has a similar lipid sensitivity. As a first step toward the elucidation of the structural basis of this phenomenon, we solved the structures of ELIC embedded in palmitoyl-oleoyl-phosphatidylcholine- (POPC-) only nanodiscs in both the unliganded (4.1-Å resolution) and agonist-bound (3.3 Å) states using single-particle cryoelectron microscopy. Comparison of the two structural models revealed that the largest differences occur at the level of loop C-at the agonist-binding sites-and the loops at the interface between the extracellular and transmembrane domains (ECD and TMD, respectively). On the other hand, the transmembrane pore is occluded in a remarkably similar manner in both structures. A straightforward interpretation of these findings is that POPC-only membranes frustrate the ECD-TMD coupling in such a way that the "conformational wave" of liganded-receptor gating takes place in the ECD and the interfacial M2-M3 linker but fails to penetrate the membrane and propagate into the TMD. Furthermore, analysis of the structural models and molecular simulations suggested that the higher affinity for agonists characteristic of the open- and desensitized-channel conformations results, at least in part, from the tighter confinement of the ligand to its binding site; this limits the ligand's fluctuations, and thus delays its escape into bulk solvent.
Collapse
|
22
|
Munro L, Ladefoged LK, Padmanathan V, Andersen S, Schiøtt B, Kristensen AS. Conformational Changes in the 5-HT 3A Receptor Extracellular Domain Measured by Voltage-Clamp Fluorometry. Mol Pharmacol 2019; 96:720-734. [PMID: 31582575 DOI: 10.1124/mol.119.116657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/28/2019] [Indexed: 01/13/2023] Open
Abstract
The 5-hydroxytryptamine (5-HT) type 3 receptor is a member of the cysteine (Cys)-loop receptor super family of ligand-gated ion channels in the nervous system and is a clinical target in a range of diseases. The 5-HT3 receptor mediates fast serotonergic neurotransmission by undergoing a series of conformational changes initiated by ligand binding that lead to the rapid opening of an intrinsic cation-selective channel. However, despite the availability of high-resolution structures of a mouse 5-HT3 receptor, many important aspects of the mechanistic basis of 5-HT3 receptor function and modulation by drugs remain poorly understood. In particular, there is little direct evidence for the specific conformational changes predicted to occur during ligand-gated channel activation and desensitization. In the present study, we used voltage-clamp fluorometry (VCF) to measure conformational changes in regions surrounding the orthosteric binding site of the human 5-HT3A (h5-HT3A) receptor during binding of 5-HT and different classes of 5-HT3 receptor ligands. VCF utilizes parallel measurements of receptor currents with photon emission from fluorescent reporter groups covalently attached to specific positions in the receptor structure. Reporter groups that are highly sensitive to the local molecular environment can, in real time, report conformational changes as changes in fluorescence that can be correlated with changes in receptor currents reporting the functional states of the channel. Within the loop C, D, and E regions that surround the orthosteric binding site in the h5-HT3A receptor, we identify positions that are amenable to tagging with an environmentally sensitive reporter group that reports robust fluorescence changes upon 5-HT binding and receptor activation. We use these reporter positions to characterize the effect of ligand binding on the local structure of the orthosteric binding site by agonists, competitive antagonists, and allosterically acting channel activators. We observed that loop C appears to show distinct fluorescence changes for ligands of the same class, while loop D reports similar fluorescence changes for all ligands binding at the orthosteric site. In contrast, the loop E reporter position shows distinct changes for agonists, antagonists, and allosteric compounds, suggesting the conformational changes in this region are specific to ligand function. Interpretation of these results within the framework of current models of 5-HT3 and Cys-loop mechanisms are used to expand the understanding of how ligand binding in Cys-loop receptors relates to channel gating. SIGNIFICANCE STATEMENT: The 5-HT3 receptor is an important ligand-gated ion channel and drug target in the central and peripheral nervous system. Determining how ligand binding induced conformational changes in the receptor is central for understanding the structural mechanisms underlying 5-HT3 receptor function. Here, we employ voltage-gated fluorometry to characterize conformational changes in the extracellular domain of the human 5-HT3 receptor to identify intrareceptor motions during binding of a range of 5-HT3 receptor agonists and antagonists.
Collapse
Affiliation(s)
- Lachlan Munro
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Lucy Kate Ladefoged
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Vithushan Padmanathan
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Signe Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Birgit Schiøtt
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Oliveira ASF, Shoemark DK, Campello HR, Wonnacott S, Gallagher T, Sessions RB, Mulholland AJ. Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure 2019; 27:1171-1183.e3. [PMID: 31130483 DOI: 10.1016/j.str.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission in the nervous system. These receptors have emerged as therapeutic targets in drug discovery for treating several conditions, including Alzheimer's disease, pain, and nicotine addiction. In this in silico study, we use a combination of equilibrium and nonequilibrium molecular dynamics simulations to map dynamic and structural changes induced by nicotine in the human α4β2 nAChR. They reveal a striking pattern of communication between the extracellular binding pockets and the transmembrane domains (TMDs) and show the sequence of conformational changes associated with the initial steps in this process. We propose a general mechanism for signal transduction for Cys-loop receptors: the mechanistic steps for communication proceed firstly through loop C in the principal subunit, and are subsequently transmitted, gradually and cumulatively, to loop F of the complementary subunit, and then to the TMDs through the M2-M3 linker.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Biochemistry, University of Bristol, Bristol BS8 1DT, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Hugo Rego Campello
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
24
|
Wodak SJ, Paci E, Dokholyan NV, Berezovsky IN, Horovitz A, Li J, Hilser VJ, Bahar I, Karanicolas J, Stock G, Hamm P, Stote RH, Eberhardt J, Chebaro Y, Dejaegere A, Cecchini M, Changeux JP, Bolhuis PG, Vreede J, Faccioli P, Orioli S, Ravasio R, Yan L, Brito C, Wyart M, Gkeka P, Rivalta I, Palermo G, McCammon JA, Panecka-Hofman J, Wade RC, Di Pizio A, Niv MY, Nussinov R, Tsai CJ, Jang H, Padhorny D, Kozakov D, McLeish T. Allostery in Its Many Disguises: From Theory to Applications. Structure 2019; 27:566-578. [PMID: 30744993 PMCID: PMC6688844 DOI: 10.1016/j.str.2019.01.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
Allosteric regulation plays an important role in many biological processes, such as signal transduction, transcriptional regulation, and metabolism. Allostery is rooted in the fundamental physical properties of macromolecular systems, but its underlying mechanisms are still poorly understood. A collection of contributions to a recent interdisciplinary CECAM (Center Européen de Calcul Atomique et Moléculaire) workshop is used here to provide an overview of the progress and remaining limitations in the understanding of the mechanistic foundations of allostery gained from computational and experimental analyses of real protein systems and model systems. The main conceptual frameworks instrumental in driving the field are discussed. We illustrate the role of these frameworks in illuminating molecular mechanisms and explaining cellular processes, and describe some of their promising practical applications in engineering molecular sensors and informing drug design efforts.
Collapse
Affiliation(s)
| | | | - Nikolay V Dokholyan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Departments of Pharmacology and Biochemistry & Molecular Biology, Penn State Medical Center, Hershey, PA, USA
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jing Li
- Departments of Biology and T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, USA
| | - Vincent J Hilser
- Departments of Biology and T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, USA
| | - Ivet Bahar
- School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | | | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, Freiburg, Germany
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Roland H Stote
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Jerome Eberhardt
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Yassmine Chebaro
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Annick Dejaegere
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177 CNRS & Université de Strasbourg, Strasbourg, France
| | | | - Peter G Bolhuis
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Jocelyne Vreede
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Pietro Faccioli
- Physics Department, Università di Trento and INFN-TIFPA, Trento, Italy
| | - Simone Orioli
- Physics Department, Università di Trento and INFN-TIFPA, Trento, Italy
| | - Riccardo Ravasio
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Le Yan
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Matthieu Wyart
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Paraskevi Gkeka
- Structure Design and Informatics, Sanofi R&D, Chilly-Mazarin, France
| | - Ivan Rivalta
- École Normale Supérieure de Lyon, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Giulia Palermo
- Department of Chemistry and Biochemistry, University of California, San Diego, USA; Department of Bioengineering, University of California Riverside, CA 92507, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, USA
| | - Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS) and Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Munich, Germany
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, Robert H Smith Faculty of Agriculture Food and Environment, The Hebrew University, Jerusalem, Israel
| | - Ruth Nussinov
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA
| | - Hyunbum Jang
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tom McLeish
- Department of Physics, University of York, York, UK
| |
Collapse
|
25
|
Bouzat C, Mukhtasimova N. The nicotinic acetylcholine receptor as a molecular machine for neuromuscular transmission. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Yang F, Xiao X, Lee BH, Vu S, Yang W, Yarov-Yarovoy V, Zheng J. The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel. Nat Commun 2018; 9:2879. [PMID: 30038260 PMCID: PMC6056546 DOI: 10.1038/s41467-018-05339-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/19/2018] [Indexed: 01/17/2023] Open
Abstract
The capsaicin receptor TRPV1 has been intensively studied by cryo-electron microscopy and functional tests. However, though the apo and capsaicin-bound structural models are available, the dynamic process of capsaicin activation remains intangible, largely due to the lack of a capsaicin-induced open structural model and the low occupancy of the transition states. Here we report that reducing temperature toward the freezing point substantially increased channel closure events even in the presence of saturating capsaicin. We further used a combination of fluorescent unnatural amino acid (fUAA) incorporation, computational modeling, and rate-equilibrium linear free-energy relationships analysis (Φ-analysis) to derive the fully open capsaicin-bound state model, and reveal how the channel transits from the apo to the open state. We observed that capsaicin initiates a conformational wave that propagates through the S4–S5 linker towards the S6 bundle and finally reaching the selectivity filter. Our study provides a temporal mechanism for capsaicin activation of TRPV1. The capsaicin receptor TRPV1 has been structurally characterized, but the capsaicin activation dynamics remain elusive. Here authors use fluorescent unnatural amino acid incorporation, computational modeling and Φ-analysis to derive the capsaicin-bound open state model and reveal the capsaicin induced conformational changes.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China. .,Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.
| | - Xian Xiao
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.,Institute for Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Shilongshan Road No. 18, Xihu District, Hangzhou, 310024, Zhejiang Province, China
| | - Bo Hyun Lee
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.,University of Washington, Department of Physiology and Biophysics, Seattle, WA, 98195, USA
| | - Simon Vu
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Wei Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
27
|
Bouzat C, Sine SM. Nicotinic acetylcholine receptors at the single-channel level. Br J Pharmacol 2018; 175:1789-1804. [PMID: 28261794 PMCID: PMC5979820 DOI: 10.1111/bph.13770] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 01/28/2023] Open
Abstract
Over the past four decades, the patch clamp technique and nicotinic ACh (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding ACh released from nerves and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique towards understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc/.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, INIBIBB (CONICET‐UNS), Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMN55905USA
- Department of NeurologyMayo Clinic College of MedicineRochesterMN55905USA
- Department of Pharmacology and Experimental TherapeuticsMayo Clinic College of MedicineRochesterMN55905USA
| |
Collapse
|
28
|
Gielen M, Corringer P. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. J Physiol 2018; 596:1873-1902. [PMID: 29484660 PMCID: PMC5978336 DOI: 10.1113/jp275100] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast neurotransmission in the nervous system. Their dysfunction is associated with psychiatric, neurological and neurodegenerative disorders such as schizophrenia, epilepsy and Alzheimer's disease. Understanding their biophysical and pharmacological properties, at both the functional and the structural level, thus holds many therapeutic promises. In addition to their agonist-elicited activation, most pLGICs display another key allosteric property, namely desensitization, in which they enter a shut state refractory to activation upon sustained agonist binding. While the activation mechanisms of several pLGICs have been revealed at near-atomic resolution, the structural foundation of desensitization has long remained elusive. Recent structural and functional data now suggest that the activation and desensitization gates are distinct, and are located at both sides of the ion channel. Such a 'dual gate mechanism' accounts for the marked allosteric effects of channel blockers, a feature illustrated herein by theoretical kinetics simulations. Comparison with other classes of ligand- and voltage-gated ion channels shows that this dual gate mechanism emerges as a common theme for the desensitization and inactivation properties of structurally unrelated ion channels.
Collapse
Affiliation(s)
- Marc Gielen
- Channel Receptors UnitInstitut PasteurCNRS UMR 3571ParisFrance
| | | |
Collapse
|
29
|
Mukhtasimova N, Sine SM. Full and partial agonists evoke distinct structural changes in opening the muscle acetylcholine receptor channel. J Gen Physiol 2018; 150:713-729. [PMID: 29680816 PMCID: PMC5940249 DOI: 10.1085/jgp.201711881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/08/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
The muscle acetylcholine (ACh) receptor transduces a chemical into an electrical signal, but the efficiency of transduction, or efficacy, depends on the particular agonist. It is often presumed that full and partial agonists elicit the same structural changes after occupancy of their binding sites but with differing speed and efficiency. In this study, we tested the alternative hypothesis that full and partial agonists elicit distinct structural changes. To probe structural changes, we substituted cysteines for pairs of residues that are juxtaposed in the three-dimensional structure and recorded agonist-elicited single-channel currents before and after the addition of an oxidizing reagent. The results revealed multiple cysteine pairs for which agonist-elicited channel opening changes after oxidative cross-linking. Moreover, we found that the identity of the agonist determined whether cross-linking affects channel opening. For the αD97C/αY127C pair at the principal face of the subunit, cross-linking markedly suppressed channel opening by full but not partial agonists. Conversely, for the αD97C/αK125C pair, cross-linking impaired channel opening by the weak agonist choline but not other full or partial agonists. For the αT51C/αK125C pair, cross-linking enhanced channel opening by the full agonist ACh but not other full or partial agonists. At the complementary face of the subunit, cross-linking between pairs within the same β hairpin suppressed channel opening by ACh, whereas cross-linking between pairs from adjacent β hairpins was without effect for all agonists. In each case, the effects of cross-linking were reversed after addition of a reducing reagent, and receptors with single cysteine substitutions remained unaltered after addition of either oxidizing or reducing reagents. These findings show that, in the course of opening the receptor channel, different agonists elicit distinct structural changes.
Collapse
Affiliation(s)
- Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
30
|
Pflanz NC, Daszkowski AW, Cornelison GL, Trudell JR, Mihic SJ. An intersubunit electrostatic interaction in the GABA A receptor facilitates its responses to benzodiazepines. J Biol Chem 2018; 293:8264-8274. [PMID: 29622679 DOI: 10.1074/jbc.ra118.002128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/04/2018] [Indexed: 02/01/2023] Open
Abstract
Benzodiazepines are positive allosteric modulators of the GABAA receptor (GABAAR), acting at the α-γ subunit interface to enhance GABAAR function. GABA or benzodiazepine binding induces distinct conformational changes in the GABAAR. The molecular rearrangements in the GABAAR following benzodiazepine binding remain to be fully elucidated. Using two molecular models of the GABAAR, we identified electrostatic interactions between specific amino acids at the α-γ subunit interface that were broken by, or formed after, benzodiazepine binding. Using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes, we investigated these interactions by substituting one or both amino acids of each potential pair. We found that Lys104 in the α1 subunit forms an electrostatic bond with Asp75 of the γ2 subunit after benzodiazepine binding and that this bond stabilizes the positively modified state of the receptor. Substitution of these two residues to cysteine and subsequent covalent linkage between them increased the receptor's sensitivity to low GABA concentrations and decreased its response to benzodiazepines, producing a GABAAR that resembles a benzodiazepine-bound WT GABAAR. Breaking this bond restored sensitivity to GABA to WT levels and increased the receptor's response to benzodiazepines. The α1 Lys104 and γ2 Asp75 interaction did not play a role in ethanol or neurosteroid modulation of GABAAR, suggesting that different modulators induce different conformational changes in the receptor. These findings may help explain the additive or synergistic effects of modulators acting at the GABAAR.
Collapse
Affiliation(s)
- Natasha C Pflanz
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol and Addiction Research, Institutes for Neuroscience and Cell and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Anna W Daszkowski
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol and Addiction Research, Institutes for Neuroscience and Cell and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Garrett L Cornelison
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol and Addiction Research, Institutes for Neuroscience and Cell and Molecular Biology, University of Texas, Austin, Texas 78712
| | - James R Trudell
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305
| | - S John Mihic
- Department of Neuroscience, Division of Pharmacology and Toxicology, Waggoner Center for Alcohol and Addiction Research, Institutes for Neuroscience and Cell and Molecular Biology, University of Texas, Austin, Texas 78712.
| |
Collapse
|
31
|
Feng HJ, Forman SA. Comparison of αβδ and αβγ GABA A receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 2017; 133:289-300. [PMID: 29294355 DOI: 10.1016/j.phrs.2017.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/27/2022]
Abstract
GABAA receptors play a dominant role in mediating inhibition in the mature mammalian brain, and defects of GABAergic neurotransmission contribute to the pathogenesis of a variety of neurological and psychiatric disorders. Two types of GABAergic inhibition have been described: αβγ receptors mediate phasic inhibition in response to transient high-concentrations of synaptic GABA release, and αβδ receptors produce tonic inhibitory currents activated by low-concentration extrasynaptic GABA. Both αβδ and αβγ receptors are important targets for general anesthetics, which induce apparently different changes both in GABA-dependent receptor activation and in desensitization in currents mediated by αβγ vs. αβδ receptors. Many of these differences are explained by correcting for the high agonist efficacy of GABA at most αβγ receptors vs. much lower efficacy at αβδ receptors. The stoichiometry and subunit arrangement of recombinant αβγ receptors are well established as β-α-γ-β-α, while those of αβδ receptors remain controversial. Importantly, some potent general anesthetics selectively bind in transmembrane inter-subunit pockets of αβγ receptors: etomidate acts at β+/α- interfaces, and the barbiturate R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) acts at α+/β- and γ+/β- interfaces. Thus, these drugs are useful as structural probes in αβδ receptors formed from free subunits or concatenated subunit assemblies designed to constrain subunit arrangement. Although a definite conclusion cannot be drawn, studies using etomidate and R-mTFD-MPAB support the idea that recombinant α1β3δ receptors may share stoichiometry and subunit arrangement with α1β3γ2 receptors.
Collapse
Affiliation(s)
- Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Gonzalez-Gutierrez G, Wang Y, Cymes GD, Tajkhorshid E, Grosman C. Chasing the open-state structure of pentameric ligand-gated ion channels. J Gen Physiol 2017; 149:1119-1138. [PMID: 29089419 PMCID: PMC5715906 DOI: 10.1085/jgp.201711803] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/14/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Members of the pentameric ligand-gated ion channel family have been crystallized in different conformations, including one in which the transmembrane pore is surprisingly wide. Gonzalez-Gutierrez et al. show that the open-channel conformation of animal members is more similar to the models with narrow pores. Remarkable advances have been made toward the structural characterization of ion channels in the last two decades. However, the unambiguous assignment of well-defined functional states to the obtained structural models has proved challenging. In the case of the superfamily of nicotinic-receptor channels (also referred to as pentameric ligand-gated ion channels [pLGICs]), for example, two different types of model of the open-channel conformation have been proposed on the basis of structures solved to resolutions better than 4.0 Å. At the level of the transmembrane pore, the open-state models of the proton-gated pLGIC from Gloeobacter violaceus (GLIC) and the invertebrate glutamate-gated Cl– channel (GluCl) are very similar to each other, but that of the glycine receptor (GlyR) is considerably wider. Indeed, the mean distances between the axis of ion permeation and the Cα atoms at the narrowest constriction of the pore (position −2′) differ by ∼2 Å in these two classes of model, a large difference when it comes to understanding the physicochemical bases of ion conduction and charge selectivity. Here, we take advantage of the extreme open-channel stabilizing effect of mutations at pore-facing position 9′. We find that the I9′A mutation slows down entry into desensitization of GLIC to the extent that macroscopic currents decay only slightly by the end of pH 4.5 solution applications to the extracellular side for several minutes. We crystallize (at pH 4.5) two variants of GLIC carrying this mutation and solve their structures to resolutions of 3.12 Å and 3.36 Å. Furthermore, we perform all-atom molecular dynamics simulations of ion permeation and picrotoxinin block, using the different open-channel structural models. On the basis of these results, we favor the notion that the open-channel structure of pLGICs from animals is much closer to that of the narrow models (of GLIC and GluCl) than it is to that of the GlyR.
Collapse
Affiliation(s)
| | - Yuhang Wang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Gisela D Cymes
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Claudio Grosman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL .,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
33
|
Atif M, Estrada-Mondragon A, Nguyen B, Lynch JW, Keramidas A. Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. PLoS Pathog 2017; 13:e1006663. [PMID: 28968469 PMCID: PMC5638611 DOI: 10.1371/journal.ppat.1006663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/12/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Ivermectin (IVM) is a widely-used anthelmintic that works by binding to and activating glutamate-gated chloride channel receptors (GluClRs) in nematodes. The resulting chloride flux inhibits the pharyngeal muscle cells and motor neurons of nematodes, causing death by paralysis or starvation. IVM resistance is an emerging problem in many pest species, necessitating the development of novel drugs. However, drug optimisation requires a quantitative understanding of GluClR activation and modulation mechanisms. Here we investigated the biophysical properties of homomeric α (avr-14b) GluClRs from the parasitic nematode, H. contortus, in the presence of glutamate and IVM. The receptor proved to be highly responsive to low nanomolar concentrations of both compounds. Analysis of single receptor activations demonstrated that the GluClR oscillates between multiple functional states upon the binding of either ligand. The G36’A mutation in the third transmembrane domain, which was previously thought to hinder access of IVM to its binding site, was found to decrease the duration of active periods and increase receptor desensitisation. On an ensemble macropatch level the mutation gave rise to enhanced current decay and desensitisation rates. Because these responses were common to both glutamate and IVM, and were observed under conditions where agonist binding sites were likely saturated, we infer that G36’A affects the intrinsic properties of the receptor with no specific effect on IVM binding mechanisms. These unexpected results provide new insights into the activation and modulatory mechanisms of the H. contortus GluClRs and provide a mechanistic framework upon which the actions of drugs can be reliably interpreted. IVM is a gold standard anti-parasitic drug that is used extensively to control invertebrate parasites pest species. The drug targets the glutamate-gated chloride channel receptor (GluClR) found on neurons and muscle cells of these organisms, causing paralysis and death. However, IVM resistance is becoming a serious problem in human and animal health, as well as human food production. We provide the first comprehensive investigation of the functional properties of the GluClR of H. contortus, which is a major parasite in grazing animals, such as sheep and goats. We compared glutamate and IVM induced activity of the wild-type and a mutant GluClR, G36’A, that markedly reduces IVM sensitivity in wild populations of pests. Our data demonstrate that the mutation reduces IVM sensitivity by altering the functional properties of the GluClR rather than specifically affecting the binding of IVM, even though the mutation occurs at the IVM binding site. This study provides a mechanistic framework upon which the actions of new candidate anthelmintic drugs can be interpreted.
Collapse
Affiliation(s)
- Mohammed Atif
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Bindi Nguyen
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Joseph W. Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JL)
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JL)
| |
Collapse
|
34
|
Changeux JP, Christopoulos A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes Obes Metab 2017; 19 Suppl 1:4-21. [PMID: 28880476 DOI: 10.1111/dom.12959] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Four major receptor families enable cells to respond to chemical and physical signals from their proximal environment. The ligand- and voltage-gated ion channels, G-protein-coupled receptors, nuclear hormone receptors and receptor tyrosine kinases are all allosteric proteins that carry multiple, spatially distinct, yet conformationally linked ligand-binding sites. Recent studies point to common mechanisms governing the allosteric transitions of these receptors, including the impact of oligomerization, pre-existing and functionally distinct conformational ensembles, intrinsically disordered regions, and the occurrence of allosteric modulatory sites. Importantly, synthetic allosteric modulators are being discovered for these receptors, providing an enriched, yet challenging, landscape for novel therapeutics.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Site/drug effects
- Animals
- Binding Sites/drug effects
- Dimerization
- Drug Discovery/trends
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacology
- Humans
- Ligand-Gated Ion Channels/agonists
- Ligand-Gated Ion Channels/antagonists & inhibitors
- Ligand-Gated Ion Channels/chemistry
- Ligand-Gated Ion Channels/metabolism
- Ligands
- Models, Molecular
- Protein Conformation/drug effects
- Protein Multimerization/drug effects
- Receptor Protein-Tyrosine Kinases/agonists
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Voltage-Gated Sodium Channels/chemistry
- Voltage-Gated Sodium Channels/metabolism
Collapse
Affiliation(s)
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052 Parkville, Australia
| |
Collapse
|
35
|
Prinston JE, Emlaw JR, Dextraze MF, Tessier CJG, Pérez-Areales FJ, McNulty MS, daCosta CJB. Ancestral Reconstruction Approach to Acetylcholine Receptor Structure and Function. Structure 2017; 25:1295-1302.e3. [PMID: 28689969 DOI: 10.1016/j.str.2017.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022]
Abstract
Acetylcholine receptors (AChRs) are members of a superfamily of proteins called pentameric ligand-gated ion channels, which are found in almost all forms of life and thus have a rich evolutionary history. Muscle-type AChRs are heteropentameric complexes assembled from four related subunits (α, β, δ, and ɛ). Here we reconstruct the amino acid sequence of a β subunit ancestor shared by humans and cartilaginous fishes (i.e., Torpedo). Then, by resurrecting this ancestral β subunit and co-expressing it with human α, δ, and ɛ subunits, we show that despite 132 substitutions, the ancestral subunit is capable of forming human/ancestral hybrid AChRs. Whole-cell currents demonstrate that the agonist acetylcholine has reduced potency for hybrid receptors, while single-channel recordings reveal that hybrid receptors display reduced conductance and open probability. Our results outline a promising strategy for studies of AChR evolution aimed at identifying the amino acid origins of AChR structure and function.
Collapse
Affiliation(s)
- Jethro E Prinston
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Johnathon R Emlaw
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Mathieu F Dextraze
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Christian J G Tessier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - F Javier Pérez-Areales
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Melissa S McNulty
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Corrie J B daCosta
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
36
|
Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Nat Struct Mol Biol 2017; 23:494-502. [PMID: 27273633 DOI: 10.1038/nsmb.3214] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
Abstract
Ion channels gated by neurotransmitters are present across metazoans, in which they are essential for brain function, sensation and locomotion; closely related homologs are also found in bacteria. Structures of eukaryotic pentameric cysteine-loop (Cys-loop) receptors and tetrameric ionotropic glutamate receptors in multiple functional states have recently become available. Here, I describe how these studies relate to established ideas regarding receptor activation and how they have enabled decades' worth of functional work to be pieced together, thus allowing previously puzzling aspects of receptor activity to be understood.
Collapse
|
37
|
Soh MS, Estrada-Mondragon A, Durisic N, Keramidas A, Lynch JW. Probing the Structural Mechanism of Partial Agonism in Glycine Receptors Using the Fluorescent Artificial Amino Acid, ANAP. ACS Chem Biol 2017; 12:805-813. [PMID: 28121133 DOI: 10.1021/acschembio.6b00926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficacy of an agonist at a pentameric ligand-gated ion channel is determined by the rate at which it induces a conformational change from the resting closed state to a preopen ("flip") state. If the ability of an agonist to promote this isomerization is sufficiently low, then it becomes a partial agonist. As partial agonists at pentameric ligand-gated ion channels show considerable promise as therapeutics, understanding the structural basis of the resting-flip-state isomerization may provide insight into therapeutic design. Accordingly, we sought to identify structural correlates of the resting-flip conformational change in the glycine receptor chloride channel. We used nonsense suppression to introduce the small, fluorescent amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (ANAP), into specific sites in the extracellular and transmembrane domains. Then, under voltage-clamp conditions in Xenopus oocytes, we simultaneously quantified current and fluorescence responses induced by structurally similar agonists with high, medium, and low efficacies (glycine, β-alanine, and taurine, respectively). Analyzing results from nine ANAP-incorporated sites, we show that glycine receptor activation by agonists with graded efficacies manifests structurally as correspondingly graded movements of the β1-β2 loop, the β8-β9 loop, and the Cys-loop from the extracellular domain and the TM2-TM3 linker in the transmembrane domain. We infer that the resting-flip transition involves an efficacy-dependent molecular reorganization at the extracellular-transmembrane domain interface that primes receptors for efficacious opening.
Collapse
Affiliation(s)
- Ming S. Soh
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Argel Estrada-Mondragon
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nela Durisic
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Angelo Keramidas
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joseph W. Lynch
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- School
of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
38
|
Welsh BT, Todorovic J, Kirson D, Allen HM, Bayly MD, Mihic SJ. Disruption of a putative intersubunit electrostatic bond enhances agonist efficacy at the human α1 glycine receptor. Brain Res 2017; 1657:148-155. [PMID: 27923639 DOI: 10.1016/j.brainres.2016.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
Partial agonists have lower efficacies than compounds considered 'full agonists', eliciting submaximal responses even at saturating concentrations. Taurine is a partial agonist at the glycine receptor (GlyR), a member of the cys-loop ligand-gated ion channel superfamily. The molecular mechanisms responsible for agonism are not fully understood but evidence suggests that efficacy at these receptors is determined by conformational changes that occur early in the process of receptor activation. We previously identified a residue located near the human α1 glycine binding site (aspartate-97; D97) that, when mutated to arginine (D97R), results in GlyR channels opening spontaneously with a high open probability, mimicking the effects of saturating glycine concentrations on wildtype GlyR. This D97 residue is hypothesized to form an electrostatic interaction with arginine-119 on an adjacent subunit, stabilizing the channel in a shut state. Here we demonstrate that the disruption of this putative bond increases the efficacy of partial agonists including taurine, as well as two other β-amino acid partial agonists, β-aminobutyric acid (β-ABA) and β-aminoisobutyric acid (β-AIBA). Even the subtle charge-conserving mutation of D97 to glutamate (D97E) markedly affects partial agonist efficacy. Mutation to the neutral alanine residue in the D97A mutant mimics the effects seen with D97R, indicating that charge repulsion does not significantly affect these findings. Our findings suggest that the determination of efficacy following ligand binding to the glycine receptor may involve the disruption of an intersubunit electrostatic interaction occurring near the agonist binding site.
Collapse
Affiliation(s)
- Brian T Welsh
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, United States
| | - Jelena Todorovic
- Waggoner Center for Alcohol & Addiction Research, Austin, TX 78712, United States
| | - Dean Kirson
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, United States
| | - Hunter M Allen
- Waggoner Center for Alcohol & Addiction Research, Austin, TX 78712, United States
| | - Michelle D Bayly
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, United States
| | - S John Mihic
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, United States; Waggoner Center for Alcohol & Addiction Research, Austin, TX 78712, United States; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cell & Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
39
|
Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell 2017; 8:169-177. [PMID: 28044278 PMCID: PMC5326624 DOI: 10.1007/s13238-016-0353-7] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/22/2016] [Indexed: 11/06/2022] Open
Abstract
Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel’s transmembrane segments, where it takes a “tail-up, head-down” configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by “pull-and-contact” with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.
Collapse
|
40
|
Gupta S, Chakraborty S, Vij R, Auerbach A. A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip. J Gen Physiol 2016; 149:85-103. [PMID: 27932572 PMCID: PMC5217088 DOI: 10.1085/jgp.201611673] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/20/2016] [Accepted: 11/10/2016] [Indexed: 01/29/2023] Open
Abstract
Gupta et al. use single-channel electrophysiology to investigate the gating mechanism of acetylcholine receptor ion channels. They propose that channel opening starts at the M2–M3 linker and ligand-binding sites and proceeds through four brief intermediate conformations before ending with the collapse of a gate bubble. Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing (“gating”) between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component (“flip”) apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2–M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2–M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a “bubble” that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation.
Collapse
Affiliation(s)
- Shaweta Gupta
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214
| | - Srirupa Chakraborty
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214
| | - Ridhima Vij
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214
| | - Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
41
|
Indurthi DC, Lewis TM, Ahring PK, Balle T, Chebib M, Absalom NL. Ligand Binding at the 4-4 Agonist-Binding Site of the 42 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State. PLoS One 2016; 11:e0161154. [PMID: 27552221 PMCID: PMC4995024 DOI: 10.1371/journal.pone.0161154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/01/2016] [Indexed: 11/18/2022] Open
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors.
Collapse
Affiliation(s)
| | - Trevor M. Lewis
- School of Medical Sciences, University of NSW, Kensington, NSW, 2052, Australia
| | | | - Thomas Balle
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
| | - Mary Chebib
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
- * E-mail: (NLA); (MC)
| | - Nathan L. Absalom
- Faculty of Pharmacy, University of Sydney, NSW, 2006, Australia
- * E-mail: (NLA); (MC)
| |
Collapse
|
42
|
Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell 2016; 166:1084-1102. [DOI: 10.1016/j.cell.2016.08.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/13/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
|
43
|
Janssens A, Gees M, Toth BI, Ghosh D, Mulier M, Vennekens R, Vriens J, Talavera K, Voets T. Definition of two agonist types at the mammalian cold-activated channel TRPM8. eLife 2016; 5. [PMID: 27449282 PMCID: PMC4985286 DOI: 10.7554/elife.17240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/22/2016] [Indexed: 11/13/2022] Open
Abstract
Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. DOI:http://dx.doi.org/10.7554/eLife.17240.001 Sensory neurons in our skin detect cues from the environment – such as temperature and touch – and pass the information onto other cells in the nervous system. A protein called TRPM8 in sensory neurons is responsible for our ability to detect cool temperatures. TRPM8 sits in the membrane that surrounds the cell and forms a channel that can allow sodium and calcium ions to enter the cell. Cold temperatures activate TRPM8, which opens the channel and triggers electrical activity in the sensory neurons. Chemicals that cause a cold sensation – such as menthol, the refreshing substance found in mint plants – can also open the TRPM8 channel. Janssens, Gees, Toth et al. investigated how menthol, and another natural compound called mustard oil, influence the opening of TRPM8. The experiments show that menthol and mustard oil both stimulate sensory neurons by opening the TRPM8 ion channel, but using different mechanisms. Mustard oil forces the channel to open faster than it normally would, whereas menthol prevents the channel from closing. Further experiments show that these mechanisms explain why some compounds stimulate sensory neurons more strongly than others. The findings of Janssens, Gees, Toth et al. will help to understand how chemicals act on this class of ion channels, and how this affects the roles of the ion channels in cells. Altering the activity of TRPM8 and related ion channels may help to reduce pain in humans so a future challenge is to use these new insights to develop drugs that target these channels more efficiently. DOI:http://dx.doi.org/10.7554/eLife.17240.002
Collapse
Affiliation(s)
- Annelies Janssens
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Maarten Gees
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Balazs Istvan Toth
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Debapriya Ghosh
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Marie Mulier
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.,Laboratory of Experimental Gynaecology, University of Leuven, Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Diaz-Franulic I, Poblete H, Miño-Galaz G, González C, Latorre R. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels. Annu Rev Biophys 2016; 45:371-98. [DOI: 10.1146/annurev-biophys-062215-011034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ignacio Diaz-Franulic
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
- Fraunhofer Chile Research, Las Condes 7550296, Santiago, Chile
| | - Horacio Poblete
- Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802
| | - Germán Miño-Galaz
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| |
Collapse
|
45
|
Structural correlates of affinity in fetal versus adult endplate nicotinic receptors. Nat Commun 2016; 7:11352. [PMID: 27101778 PMCID: PMC4845029 DOI: 10.1038/ncomms11352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ∼30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs. Adult and fetal nicotinic acetylcholine receptors (AChRs) have different functional requirements and affinity for ACh. Here, the authors use molecular dynamics and electrophysiology to investigate this affinity, and identify four amino acids that when swapped exchange function between adult and fetal AChRs.
Collapse
|
46
|
Abstract
Allosteric transition, defined as conformational changes induced by ligand binding, is one of the fundamental properties of proteins. Allostery has been observed and characterized in many proteins, and has been recently utilized to control protein function via regulation of protein activity. Here, we review the physical and evolutionary origin of protein allostery, as well as its importance to protein regulation, drug discovery, and biological processes in living systems. We describe recently developed approaches to identify allosteric pathways, connected sets of pairwise interactions that are responsible for propagation of conformational change from the ligand-binding site to a distal functional site. We then present experimental and computational protein engineering approaches for control of protein function by modulation of allosteric sites. As an example of application of these approaches, we describe a synergistic computational and experimental approach to rescue the cystic-fibrosis-associated protein cystic fibrosis transmembrane conductance regulator, which upon deletion of a single residue misfolds and causes disease. This example demonstrates the power of allosteric manipulation in proteins to both elucidate mechanisms of molecular function and to develop therapeutic strategies that rescue those functions. Allosteric control of proteins provides a tool to shine a light on the complex cascades of cellular processes and facilitate unprecedented interrogation of biological systems.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
47
|
Di Maio D, Chandramouli B, Brancato G. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel. PLoS One 2015; 10:e0140258. [PMID: 26465896 PMCID: PMC4605793 DOI: 10.1371/journal.pone.0140258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/12/2015] [Indexed: 11/29/2022] Open
Abstract
Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested.
Collapse
Affiliation(s)
- Danilo Di Maio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | | | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- * E-mail:
| |
Collapse
|
48
|
Auerbach A. Agonist activation of a nicotinic acetylcholine receptor. Neuropharmacology 2015; 96:150-6. [PMID: 25446670 PMCID: PMC4398594 DOI: 10.1016/j.neuropharm.2014.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
How does an agonist activate a receptor? In this article I consider the activation process in muscle nicotinic acetylcholine receptors (AChRs), a prototype for understanding the energetics of binding and gating in other ligand-gated ion channels. Just as movements that generate gating currents activate voltage-gated ion channels, movements at binding sites that generate an increase in affinity for the agonist activate ligand-gated ion channels. The main topics are: i) the schemes and intermediate states of AChR activation, ii) the energy changes of each of the steps, iii) the sources of the energies, iv) the three kinds of AChR agonist binding site and v) the correlations between binding and gating energies. The binding process is summarized as sketches of different conformations of an agonist site. The results suggest that agonists lower the free energy of the active conformation of the protein in stages by establishing favorable, local interactions at each binding site, independently. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14219, USA.
| |
Collapse
|
49
|
Don't flip out: AChRs are primed to catch and hold your attention. Biophys J 2015; 107:8-9. [PMID: 24988335 DOI: 10.1016/j.bpj.2014.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 11/23/2022] Open
|
50
|
Marabelli A, Lape R, Sivilotti L. Mechanism of activation of the prokaryotic channel ELIC by propylamine: a single-channel study. ACTA ACUST UNITED AC 2015; 145:23-45. [PMID: 25548135 PMCID: PMC4278187 DOI: 10.1085/jgp.201411234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5-50 mM) in outside-out patches at -60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50-600 ms, 1-50 mM, -100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the "Flip" model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The "Primed" model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ∼ 102 (∼ 20 for α1β glycine channels). The microscopic affinity for the agonist increased as the channel activated, from 7 mM for the resting state to 0.15 mM for the partially activated intermediate state.
Collapse
Affiliation(s)
- Alessandro Marabelli
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| | - Lucia Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|